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Planar Josephson junctions (JJs) have emerged as a promising platform for the realization of
topological superconductivity and Majorana zero modes. To obtain robust quasi one-dimensional
(1D) topological superconducting states using planar JJs, limiting the number of 1D Andreev bound
states’ subbands that can be present, and increasing the size of the topological superconducting
gap, are two fundamental challenges. It has been suggested that both problems can be addressed by
properly designing the interfaces between the JJ’s normal region and the superconducting leads. We
fabricated Josephson junctions with periodic hole structures on the superconducting contact leads
on InAs heterostructures with epitaxial superconducting Al. By depleting the chemical potential
inside the hole region with a top gate, we observed an enhancement of the supercurrent across the
junction. Such an enhancement is reproduced in theoretical simulations. The theoretical analysis
shows that the enhancement of the JJ’s critical current is achieved when the hole depletion is such
to optimize the matching of quasiparticles’ wave-function at the normal/superconductor interface.
These results show how the combination of carefully designed patterns for the Al coverage, and
external gates, can be successfully used to tune the density and wave functions’ profiles in the
normal region of the JJ, and therefore open a new avenue to tune some of the critical properties,
such as number of subbands and size of the topological gap, that must be optimized to obtain robust
quasi 1D superconducting states supporting Majorana bound states.

Planar Josephson junctions based on 2DEGs with spin-
orbit coupling and induced superconductivity have at-
tracted a lot of attention in recent years, mainly due to
their potential to realize topological superconductivity
and Majorana zero modes (MZM) [1–6]. Under the pres-
ence of a suitable Zeeman field, the normal region in the
Josephson junction can serve as a quasi-one-dimensional
channel, which can host Majorana zero modes at its ends
[7, 8]. While solid progress has been made in both planar
Josephson junctions and hybrid nanowire systems toward
the realization of MZM [9–16], so far an unambiguous
demonstration of MZM is still missing [17–20]. More and
more evidence indicates that in hybrid systems there is
a competition between disorder and the topological gap
where disorder is still too strong [21, 22]. To make the
hybrid system more robust against disorder, a large topo-
logical gap is preferable. As spin-orbit coupling and in-
duced gaps jointly determine the size of the topological
gap at finite magnetic fields [23], an ideal hybrid sys-
tem should have strong spin-orbit coupling and a large
induced gap. Such improvements are feasible with the
development of new combinations of semiconductors and
superconductors. For example, the recent introduction
of Sn and Pb into the nanowire system brings a much
larger induced gap [24, 25]. However, new materials also
raise new challenges in material growth and device fabri-
cation. InAs quantum well with epitaxial Aluminum, so
far, is still the most suitable choice between nanofabrica-
tion and quality.

Compared to hybrid nanowire systems, planar Joseph-
son junctions have a great advantage as the junction ge-

ometry can be easily modified to achieve strengthened
properties. In particular, it might be possible to design
the carrier density profiles and realize “wave-function”
engineering using a combination of Al coverage patterns
and external gates to minimize the number of subbands
of Andreev bound states (ABSs), and maximize the
topologcal superconducting gap. Several theoretical pro-
posals also suggest modification of the Josephson junc-
tion geometry could lead to an enhanced induced gap and
even an enhanced Rashba spin-orbit coupling [2, 26, 27].
With these potential benefits, it is natural to explore dif-
ferent geometries and utilize this degree of freedom to
improve the system.

We fabricated Josephson junctions on epitaxial su-
perconducting Al thin films grown in-situ on InAs het-
erostructures. Such devices have shown high trans-
parency [28–31] a spin-orbit induced anomalous phase
[32]. The junction is 4 µm long with a width of around
100 nm. Two rows of periodic holes are etched on each
side of the Al contacts as shown in Fig. 1(a). Each hole
is approximately 110 nm wide and 220 nm long. To con-
trol the chemical potential in the junction as well as in
the hole region, we fabricated two layers of gates. In the
first layer, a junction gate (JG) that covers the middle
section of the junction is used to control the chemical
potential in the junction. In the second layer, which is
separated from the first layer of the gate by a second layer
of dielectric, a top gate (TG) covers a much larger device
region that includes the holes and the ends of the junc-
tion. A schematic diagram of the device and the material
stacks are presented in Fig. 1(b). As shown in Fig. 1(a),
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FIG. 1. Device geometry and Fraunhofer patterns at
different gate configurations. (a) alse-color scanning elec-
tron micrograph of the measured device. (b) of the device and
the material stacks. (c)(d) Differential resistance as a func-
tion of the bias current and out-of-plane magnetic field for (c)
JG = 0 V and TG = 0 V and (d) JG = 0 V and TG = -5 V.

the JG is shorter than the junction by 100 nm at each
end by design. While JG itself cannot fully deplete the
junction since it does not cover the ends of the junction,
the chemical potential in the whole junction can still be
fully controlled by using JG and TG together (Fig. S1).
We notice TG depletes the ends of the junction around
-2.5 V (Fig. S1). Since the 2DEG inside the hole re-
gion should have a similar density and coupling to TG
as the 2DEG in the junction, we expect the 2DEG in
the hole region should also be depleted around -2.5 V
by TG. The depletion of the 2DEG in the hole region
has a nontrivial effect on the junction, as discussed be-
low. All the measurements in this study are performed
in a dilution refrigerator equipped with a three-axis vec-
tor magnet. As shown in Fig. 1(a), the z-axis of the
magnet is perpendicular to the device plane, while x and
y-axes are in-plane fields aligned parallel and perpendic-
ular to the current, respectively. Differential resistance
is measured using standard low-frequency lock-in tech-
niques in a four-point manner (more details about the
device fabrication and measurement can be found in the
methods section). In Fig. 1 (c)(d), we present the dif-
ferential resistance as a function of the bias current and
applied out-of-plane magnetic field for two different gate
configurations. To eliminate the hysteresis due to heat-
ing effects, the current bias is always swept from zero to
high bias in these two scans. All gates are set to 0 for
Fig. 1(c). For the results shown in Fig. 1(d), TG is set
to -5 V while JG remains at 0. In Fig. 1(d), all the holes
are supposed to be depleted as the result of a TG voltage
below -2.3 V. In both configurations, the observed Fraun-
hofer patterns are symmetric with respect to the bias and
the out-of-plane field, indicating an absence of hysteresis
and a uniform supercurrent distribution across the junc-
tion. It is worth noting that extra resistance peaks have
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FIG. 2. Supercurrent gate dependence at different in-
plane magnetic fields. (a) Differential resistance as a func-
tion of the bias current and TG voltages at zero magnetic
field. (b) Differential resistance as a function of the bias cur-
rent and TG voltages at By = 200 mT. The Supercurrent is
significantly enhanced when more negative voltages is applied
to TG. (c)(d) Differential resistance as a function of the bias
current and JG voltages at By = 200 mT when TG = 0 V
(c) and TG = - 5 V (d). Depletion of holes (d) brings more
supercurrent than when the holes are not depleted (c).
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FIG. 3. Supercurrent in-plane field dependence at
different gate configurations. (a) Switching current ex-
tracted from panels (b) and (c). (b) Differential resistance as
a function of the bias current and By when JG = 0 V and
TG = 0 V. (c) Differential resistance as a function of the bias
current and By when JG = 0 V and TG = -5 V. When the
holes are depleted (c), the supercurrent shows an almost lin-
ear decreasing with increasing By.

been observed in Fig. 1(d), which possibly indicates a
stronger multiple Andreev reflection when the hole re-
gion is depleted. Overall, the two Fraunhofer patterns
show similar periodicity, suggesting the effective junction
area is not significantly modified by the depletion of the
hole region. Next, we characterize the supercurrent gate
dependence at different magnetic fields. At zero field, the
supercurrent decreases when the voltage on TG is swept
from 0 to -3 V as the result of the depletion of the ends
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FIG. 4. (a) Schematic of simulation setup to model the ex-
periments. (b) Ic as a function of EZ for µh = µ = 1.25∆
(red) and µh = −1.25∆ (green). (c), (d) Ic vs µh for EZ = 0
and EZ = 1.14∆, respectively. In (c) and (d) I0 is the value
of Ic when µh = µ.

of the junction (Fig. 2(a)). Below TG = -3 V, however,
the supercurrent remains almost unchanged. For JG, the
dependence is simpler as the supercurrent always mono-
tonically decreases with decreasing JG voltages (Fig.s).
When the magnetic field is turned on, the supercurrent
shows a very different behavior. At By = 200 mT, where
By is perpendicular to the supercurrent, the supercurrent
is enhanced when more negative voltage is applied to the
TG (Fig. 2(b)). The supercurrent reaches its maximum
around TG = -2.5V and remains constant after that. Ap-
plying a more negative voltage on TG can deplete both
the ends of the junction and the hole region. Depletion of
the ends of the junction should lead to a drop of the su-
percurrent as shown in Fig. 2(a). For fields parallel to the
supercurrent, we also observed a similar enhancement of
supercurrent with TG voltages(Fig.s ). When TG is fixed
to 0 V and -5 V and By = 200mT, sweeping JG reveals
that the supercurrent still monotonically decreases with
decreasing JG voltages (Fig. 2(c)(d)). That indicates the
enhancement of supercurrent is solely determined by the
TG voltage and is not related to the change of chemical
potential in the junction.

The enhancement of the supercurrent can also be ob-
served in in-plane magnetic field scans when the gate
voltages are fixed. In Fig. 3(b), we plot differential re-
sistance as a function of By and bias current for TG
= 0 V. The supercurrent exhibits a nonlinear behavior
as it first quickly decreases at low fields followed by a
much slower decline at higher fields. The supercurrent
also shows some wiggles at higher fields. Overall, the
supercurrent at By = 0.5 T is less than 10 percent of
the supercurrent at By = 0.1 T. We notice the differ-

(a) (b)

(c) (d)

M1 N1

N2 N3

FIG. 5. Profile of Jx for the case when EZ = 0 and µh = µ,
M1 point in Fig. 4 (c). (b), (c), (d) Profiles of Jx for the
case when EZ = 1.14∆ and µh corresponds to the points N1,
N2, N3 in Fig. 4 (d), respectively. J0 is the average current
density for the case when EZ = 0, µh = µ. The red dashed
lines indicate the boundary of the normal strip. The red boxes
show positions of some of the depleted holes.

ential resistance of the ”supercurrent” is finite at high
fields, which is occasionally seen in our junctions. We at-
tribute it to some part of the junction becoming normal
at high fields. But the sudden dropping in resistance and
the Fraunhofer patterns at high fields (Fig. S2 ) indicate
there is still supercurrent flow through the semiconductor
part of the junction. When TG is fixed to -5 V, Fig. 3(c),
the supercurrent has an almost linear dependence on By.
From By = 0.1 T By Bx = 0.5 T, the supercurrent still
preserves 40 percent of its value and the resistance re-
mains to zero. In Fig. 3(a), we extract the switching
current from Fig. 3(b)(c) and plot them together. As
can be seen, the two switching currents cross around By

= 0.12 T, confirming the observation that the enhance-
ment of the supercurrent only happens at finite fields and
when the voltage on TG is below the specific value. In
another device, we have observed a similar enhancement
of supercurrent at finite fields when TG is below a certain
value (see supplementary information for more details).

To understand the origin of this dependence of critical
currents on the gate voltage, we setup a tight-binding
model for the Boguliobov de Gennes (BdG) Hamilto-
nian describing the system, see SM for details, using the
python package Kwant [33]. To be able to obtain from
the model all the desired quantities, in particular the crit-
ical current, with the available computational resources,
we scaled down all the dimensions while using a value
of the superconducting gap ∆ and of the chemical po-
tential µ in the regions outside the holes such that the
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FIG. 6. (a) Layout of simplified two-strip model. (b) Scaling
of Ic with µh obtained using the simplified model for the case
when l2 = ξ/6. (c) Same as (b) for the case when l2 = ξ/2.
In (b) and (c) I0 = Ic(µh = µ).

ratio between the geometric dimensions and the super-
conducting coherence length, ξ, is of the same order as in
the experiment. For the results presented below we use a
value of ∆ 16 times larger than the physical one and set
µ = 1.25∆. The geometry of the model used is shown in
Fig. 4 (a). To properly model the superconducting leads
we chose a value of Lx,l, see Fig. 4 (a), sufficiently larger
than ξ to avoid spurious finite-size effects.

We first obtain the ABSs’s spectrum {ϵn(φ)} as a
function of the phase difference φ between the super-
conducting pairing of the two leads. We then calculate
the supercurrent I(φ) =

∑
ϵn<0(∂ϵn/∂φ)(2π/Φ0), where

Φ0 = h/2e is the magnetic flux quantum. From this,
the critical current Ic = max(I(φ)) is extracted for dif-
ferent values of the in-plane magnetic field and chemical
potential µh of the holes.

Figure 4 (b) shows the evolution of Ic with the
strenghth of the Zeeman energy EZ due to an in-plane
magnetic field perpendicular to the current for the case
when µh = µ, in red, and µh = −1.25∆, in green. The
Zeeman energy in the superconductor is taken to be 1/2
the value in the normal and depleted regions. In the first
case the holes are normal regions, i.e., regions where ∆ is
set to zero, with the same carrier density as the rest of the
system. In the second case the carrier density in the holes
is lower than in the areas around them. In both cases we
see that Ic first decreases with EZ up to EZ ≈ 0.6∆. For
Ez > 0.6∆ in the first case Ic changes non-monotonically
with EZ , a behavior that can be attributed to the almost
closing a reopening of the gap of the ABS’s spectrum In
the second case Ic keeps decreasing also for Ez > 0.6∆,
albeit more slowly, suggesting that in this case the gap

of the ABS doesn’t recover with EZ .
As in the experimental case, from Fig. 4 (b), we see

that above a threshold value of EZ , EZ ≈ 1.1∆, Ic for
the depleted case is larger than for the non-depleted sug-
gesting that for EZ > 1.1∆ the evolution of Ic with µh

might be not monotonic. This is confirmed by the re-
sults for the evolution of Ic with respect to µh shown in
Fig. 4 (c), (d), for the EZ = 0 and EZ = 1.14∆ cases,
respectively. We see that for EZ = 0 Ic decreases mono-
tonically as the depletion (−µh) of the holes increases,
whereas for EZ = 1.14∆ Ic varies non-monotonically
with µh, in qualitative agreement with the experimen-
tal results.

We have verified, see SM, that different values of the
spin-orbit coupling (SOC) strength, and different direc-
tions of the in-plane magnetic field do not modify quali-
tatively the results presented in Fig. 4 (b)-(d).

Figure 5 shows the spatial profile of the quasiparticle
current density Jx(x, y) = −i(ℏ/2m∗)

∑
ϵn<0(ψ

∗
n∇ψn −

ψn∇ψ∗
n) [34], where ψn are the eigenstates of the BdG

Hamiltonian. Notice that the regions where J = 0 are
regions where the current is carried by the superconduct-
ing condensate. Panel (a) shows the profile of J for the
case when EZ = 0. We see that the presence of the holes
induces a periodic modulation in the transverse direc-
tion of the current in the normal region of the JJ. Panels
(b), (c), (d) show the results for the case EZ = 1.14∆
for the values of µh denoted by N1, N2, and N3 in
Fig. 4 (d). We see that for the value of µh for which
Ic is maximum, panel (c), J is more uniform in the cen-
tral region of the JJ. This suggest that the optimal value
of µh results in a better matching of the quasiparticle
wave-functions across the different regions of the JJ.

To check that this is the case we considered a simplified
model, shown in Fig. 6 (a). In this model the the holes
are effectively replaced by a normal strip, shown in green
in Fig. 6 (a), at a distance l2 from the normal region of
the JJ. Notice that the difference of the superconducting
phase across the normal region modeling the holes is set
to zero. This is done to take into account that in the
experimental geometry there are paths between the holes
that connect the different superconducting regions on the
same side of the JJ’s normal region, the region shown in
orange in Fig. 6 (a), that separates the left and right
superconducting leads.

Using the simplified model we were able to see that the
critical parameter determining the nature of the evolu-
tion of Ic with respect to µh is the distance l2 between
the normal region modeling the holes, the depletion strip,
and the JJ normal region. Figures 6 (b), (c), show the
results for l2 = ξ/6 and l2 = ξ/2, respectively, when
both EZ and SOC are not present. The results show
that when l2 ≪ ξ Ic decreases monotonically with (−µh),
and that when l2 ∼ ξ Ic varies non-monotonically with
(-µh). For l2 ≫ ξ the two normal strips are effectively
decoupled from each other and so µh has no effect on
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Ic. These results suggest that the main reason why ex-
perimentally a non-monotonic scaling of Ic vs (-µh) is
observed in the presence of an in-plane magnetic field is
the fact that when EZ ≳ ∆ the ABSs’ wave functions
decay faster in the superconducting regions at the sides
of the JJ’s normal region, effect that in the simplified
model corresponds to a reduction of ξ[35] and therefore
to an increase of the ratio l2/ξ to values ∼ 1 for which Ic
scales non-monotonically with µh.

To further understand the origin of the observed de-
pendence of Ic on l2/ξ and µh we calculated the reflection
coefficients of a superconducting-normal (SN) junction
with a depletion region on the superconducting side at a
distance l2 from the SN interface, see SM for details. We
found that the ratio |rA/rN | between Andreev reflection,
rA, and normal reflection, rN , is strongly affected by µh

when l2 = ξ/2 due to the fact that in this case the am-
plitude of the electron wave function at the SN interface
can be tuned in and out of the value that maximizes rA
by varying (-µh). We therefore conclude that varying via
an external gate the depletion of the holes for a JJ like
the one shown in Fig.1 (a) results in the effective tuning
of the spatial profile of the quasiparticles wave functions
leading to qualitative changes of critical properties such
as the JJ’s critical current.

In summary, we have fabricated Josephson junctions
with periodic hole structures on the Al contact. A
counter intuitive enhancement of supercurrent has been
observed when the 2DEG in the hole region is depleted
by the TG. Theoretical modeling and careful analysis of
the experimental results show that such unusual enhance-
ment of the critical current is due to changes of the spatial
profile of the quasiparticles’ wave functions. The abil-
ity to shape engineer the wave function of the electronic
quantum states is critical to realize robust topological su-
perconducting states supporting non-Abelian quasiparti-
cles. Our results show that by combining specific Al cov-
erage layouts in InAs/Al planar JJs with external gates a
unique control of the profile of the electrons’ wave func-
tions can be achieved resulting in remarkable tunability
of key properties of the JJs.

Methods

Wafers are grown by molecular beam epitaxy. Devices
are fabricated using a combination of wet etching and de-
position techniques after electron beam lithography. De-
vice mesa features are defined by a deep wet etch with
85% concentrated phosphoric acid, 30% concentrated hy-
drogen peroxide, and deionized water in a volumetric ra-
tio of 1:1:40 after selectively etching the aluminum top
layer with Transene Aluminum Etchant Type D. Junc-
tion weak links and smaller device features are defined
by a subsequent aluminum etch. Double-layer gates sub-
sequently undergo two cycles of dielectric deposition of

aluminum oxide via atomic layer deposition, and tita-
nium/gold gates are deposited via electron beam evapo-
ration. Measurements are performed in a dilution refrig-
erator at a temperature of around 30 mK using standard
low-frequency lock-in amplification techniques with ex-
citation currents of at most 10 nA and frequencies of
around 17 and 77 Hz. Magnetic field is generated by a
three-axis superconducting vector magnet.
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FIG. S1. Supercurrent gate dependence at zero field and in-plane fields parallel to the supercurrent. (a)
Differential resistance as a function of bias current and TG voltage at zero field and JG = -3.5 V. (c) Differential resistance
as a function of bias current and JG voltage at zero field and TG = 0 V. JG can not fully pinch off the supercurrent since
it doesn’t cover the ends of the junction and supercurrent can flow across the junction there. (d) Differential resistance as a
function of bias current and TG voltage at zero field and TG = -6 V. JG can fully pinch off the supercurrent when the ends of
the junction are depleted by the TG. (b)Differential resistance as a function of bias current and TG voltage at Bx = 200 mT
and JG = 0, supercurrent is enhanced when TG is below -2 V.

THEORETICAL ANALYSIS

Simulation details— In the simulations, The system sizes and the superconducting gap are rescaled for the sake of
numerical efficiency, while maintaining a proper ratio between the coherence length and the relevant lengths. The
resulting superconducting gap ∆ = 0.8µ where µ is the Fermi energy used in the normal strip and the superconductors.
The implemented Hamiltonian in the tight-binding model is the following for the normal metal (orange strip):

HN =
∑

i,j,α,β

[(4t− µ)τz0 + EZ τ0y]α,β c
†
i,j,αci,j,β +

{
[−t τz0 − i lsocτzy]α,β c

†
i,j,αci,j+1,β

+ [−t τz0 + i lsocτzx]α,β c
†
i,j,αci+1,j,β + h.c.

} (1)

in the Nambu spinor basis. Here the position of the lattice is (x, y) = (j, i)a, a is the lattice constant, α, β = 1 − 4
denote the spin and electron/hole degrees of freedom. τm,n means σm operator in the electron/hole sector, and σn
in the spin degree of freedom, where σ0 is the identity matrix and σx,y,z is the usual Pauli matrix. The tunneling
parameter t is ℏ2/2m∗a2, m∗ is the effective mass, a is the lattice constant, lsoc = αsoc/2a, αsoc is the Rashba SOC
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FIG. S3. Enhancement of supercurrent at finite fields in another device. In device B with the same geometry,
enhanced supercurrent can be observed at finite fields when TG depletes (TG < -2 V) the 2DEG in the holes (b-g). In this
device, JG is misaligned with the junction so TG can also tune the chemical potential in the junction and fully deplete the
supercurrent.

strength. EZ represents the Zeeman term when we apply a magnetic field along the y direction. In our simulations,
t = 7.32∆, lsoc = 0.23∆. In the depleted region (green), we have

Hh =
∑

i,j,α,β

[(4t− µh)τz0 + EZ τ0y]α,β c
†
i,j,αci,j,β +

{
[−t τz0 − i lsocτzy]α,β c

†
i,j,αci,j+1,β

+ [−t τz0 + i lsocτzx]α,β c
†
i,j,αci+1,j,β + h.c.

} (2)
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FIG. S4. Supercurrent in-plane field dependence for different gate configurations in device B. (a) Switching current
as functions of By for depleted holes and non-depleted holes. (b) Switching current as functions of Bx for depleted holes and
non-depleted holes. (c) Differential resistance as functions of bias current and By for non-depleted holes. (d) Differential
resistance as functions of bias current and By for depleted holes.

with a different chemical potential µh. And in the superconductor, the Hamiltonian is

HS =
∑

i,j,α,β

[(4t− µ)τz0 + gscEZ τ0y +∆(cosϕ τx0 − sinϕ τy0)]α,β c
†
i,j,αci,j,β

+
{
[−t τz0 − i lsocτzy]α,β c

†
i,j,αci,j+1,β + [−t τz0 + i lsocτzx]α,β c

†
i,j,αci+1,j,β + h.c.

} (3)

where the phase of the pairing gap ∆ is ϕ = −φ/2 in superconductors to left of the normal strip, and φ/2 on the
right. gsc represents the ratio between the g-factor in superconductors and that of the normal metal. Here We choose
gsc = 1/2 in the simulations [36]. In the punched hole setup, in the unit of coherence length ξ, the system sizes
are Lx = 0.5, Lh,1 = 0.17, Lh,2 = 1.67, Lh = 3, Lx,l = 4.67, Ly,l = 9.5, Ly = 19.17. The hole has a horizontal width
Lx,h = 0.5 and a vertical width Ly,h = 1.17. In the two-strip setup, the parameters are l1 = l3 = 0.5/ξ, ls = 7.17ξ,
lw = 1.83ξ
Numerical results.—From numerical simulations, see Fig. S5, we observe that in the punched hole structure, the

SOC strength and the direction of the magnetic field don’t alter the qualitative trend. So it is justified that we use
zero SOC for simplicity. In the simplified two-strip structure, we see that the general trend can be well captured by
the first energy band, see Fig. S6. Therefore, we can shrink the width in the y−direction and focus only on the single
subband case.

Now to understand the dependence of the supercurrent on the two-strip distance in the simplified structure (see
Fig. 6(b) and (c)), we calculate the reflection matrix at the interface between the middle superconductor and the
right normal strip. The property of this interface is important since the phase jump φ is across the normal strip. To
do this, we leave out the right superconductor, and make the normal strip and the left superconductor semi-infinite,
see the schematic in Fig. S7(a). The incoming electron mode (denoted by black arrow) is assumed to have amplitude
one, and we assume the outgoing wavefunction consists of electron mode (denoted by right-pointing black arrow) and
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(a) (b) (c)

FIG. S5. Comparison of current behavior at different parameters. (a) Supercurrent vs depletion potential at Ez = 0 without
SOC in the punched-hole setup. (b). Supercurrent vs depletion potential at Ez = 1.14∆ without SOC in the punched-hole
setup. (c) Supercurrent vs depletion potential at Ez = 1.14∆ when the magnetic field is along the x−direction with SOC in
the punched-hole setup.

(a) (b)

FIG. S6. Critical current Ic from the first band (red) and the rest bands (blue) in the simplified setup. (a) Ic dependence on
the chemical potential of the green strip µh at l2 = ξ/6. Ic is scaled by the total critical current without depletion. (b) Scaled
Ic dependence on µh at l2 = ξ/2.

hole mode (right-pointing white arrow). Their amplitudes then give the normal reflection rN and Andreev reflection
rA coefficients, respectively. We then solve the wavefunction over the entire region by continuity equations.

Since we are studying the case without magnetic field or SOC, we assume the entire wavefucntion is in the same
spin configuration. The wavefunction is then reduced to two degrees of freedom (electron and hole). In the right
normal metal, the wavefunction is

ψ = (1, 0)e−ikex + rN (1, 0)eikex + rA
√
ke/kh(0, 1)e

−ikhx (4)

where rN is the normal reflection coefficient, and rA is the Andreev reflection amplitude. The electron/hole wavevector
is given by ke,h =

√
2m∗(µ± E)/ℏ2. For the middle superconducting strip, its finite width allows overlap of four

modes (decaying in different directions):

ψ =C1(1, e
iθ)eλx+iksx + C2(1, e

−iθ)eλx−iksx

+C3(1, e
−iθ)e−λx+iksx + C4(1, e

iθ)e−λx−iksx
(5)

where cos θ = E/∆, ∆ is the superconducting gap, ks, λ are non-negative and ks + iλ =
√
2m∗(µ+ i∆sin θ)/ℏ2. The

wavefunction in the depleted strip (green) is

ψ =D1(1, 0)e
ik′

ex +D2(1, 0)e
−ik′

ex

+D3(0, 1)e
ik′

hx +D4(0, 1)e
−ik′

hx
(6)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. S7. Ratio of Andreev reflection rA to normal reflection rN as a function of l2 between two strips calculated at energy
E = 0. (a) Setup for calculation of the reflection matrix. The phases are assumed zero for the left and middle superconductors.
Here we focus on the x−direction degree of freedom. (b) |rA/rN |2 at l2 = ξ/6. (c) Distribution of electron density in the
depleted strip (green) and middle superconductor (blue) |ψe(x)|2 at Point I in the (b) panel where the Andreev reflection is
strong. (d) |ψe(x)|2 at Point II in the (b) panel. (e) |rA/rN |2 at l2 = ξ/2. (f). |ψe(x)|2 at Point I of the (e) panel. (g)
|ψe(x)|2 at Point II of (e) Panel. (h) |ψe(x)|2 at Point III of (e) Panel. (i) |rA/rN |2 at l2 = 5ξ/6. Due to the large distance
and weak coupling between the two strips in this case, the effect of the depletion is much weaker and therefore we examine a
larger range of µh. (j). |ψe(x)|2 at Point I of (i) Panel. (k) |ψe(x)|2 at II in (i) Panel. (l) Relative Andreev reflection strength
R = |rA/rN |2/R0 at µh = −∆ as a function of strip distance l2. Here R0 is the value of |rA/rN |2 without depletion for each l2
choice.

where the electron/hole wavevector in the depleted strip is k′e,h =
√
2m∗(µh ± E)/ℏ2 where µh is the chemical

potential in the depleted strip.
In the left superconductor, things are simple. There are only two vanishing modes:

ψ = E1(1, e
iθ)eλx+iksx + E2(1, e

−iθ)eλx−iksx (7)

By matching the boundary conditions (both wavefunction ψ and the its gradient ∂ψ/∂x are continuous) at all
interfaces, we then can solve for the coefficients, achieve the reflection matrix, and reconstruct the wavefunction
profile in the entire region at E = 0, see Fig. S7. One can see that the strength of the Andreev reflection depends
on the depletion potential, in a similar manner to the supercurrent. It reveals that the supercurrent enhancement at
certain depletion strength is due to the enhanced Andreev reflection at this point.

If we look at the wavefunction distribution in the depleted strip and middle superconductor, we would see that
increasing the depletion strength is always pushing the particle distribution more to the right side of the middle
superconductor. The Andreev reflection is always maximum when the amplitude of the electron sector (denoted as
ψe) is close to one at the superconductor/normal interface (defined as x = 0 position here). When the strip distance
is short, the |ψe| is big (> 1) at the interface without depletion, so stronger depletion is adding the amplitude further,
which then decrease |rA|. When the strip distance is increased, there is more space in the middle superconductor, and
the electrons spread more towards the left side. The amplitude at x = 0 is small without depletion. Now, at a proper
depletion, the amplitude gets close to one and |rA| is optimal. At even larger strip distance, the depletion potential
needs to be stronger to increase the electron amplitude at x = 0. Therefore, within our parameter range of µh, |rA|
is increasing with stronger depletion.
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(a) (b)

(c) (d)

FIG. S8. Distribution of the x − direction current density Jx(x, y) in the two-strip setup. The density is scaled by J0 which
is the average supercurrent density without depletion at l2 = ξ/6. (a) l2 = ξ/6, no depletion. (b) l2 = ξ/6, µ = −1.25∆. (c)
l2 = ξ/2, no depletion. (d) l2 = ξ/2, µh = −1.25∆. All plots share the same color bar.

So far we have clarified the picture behind the intriguing current behavior as a function of strip distance or magnetic
field. Now we look at the spatial distribution of the current. We present results at l2 = ξ/6, ξ/2 without magnetic
field in Fig. S8.


