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Abstract

An excited Hydrogen atom in parallel electric and magnetic
fields is studied as an example of a nonlinear system. Ultimately,
the escape times of various electron trajectories in the system are
studied, and a fractal relationship between escape time and initial
motion is investigated, a relationship which has been found in
other nonlinear systems. Expecting to find this fractal structure in
the region of the heteroclinic tangle, the tangle was located and an
image of it generated. It is shown that this heteroclinic tangle
organizes the system's behavior in phase space.



I. Introduction

A. The system

The system is an electron in a classical orbit about a proton
in the presence of parallel electric and magnetic fields®. Several
aspects of the system invite study. First, the system is nonlinear;
we can learn about nonlinear dynamics and chaos as it manifests
itself in this particular situation. In this sense, I am approaching
the Hydrogen atom as a means of understanding nonlinear
systems. Furthermore, studying an atomic system has its own
unique interest. Experimental measurements of energies and
lifetimes of states can be made, and it has been shown that
nonlinear dynamics manifests itself in the behavior of the atom'?’.
In addition, studying such an atomic system allows us to look at
the connection between classical and quantum behavior in chaotic
systems. [ am approaching the problem classically, but there is
the potential for it to be treated quantum mechanically and
compare the results.

I will identify the parameters of special interest to this
system, identify the relevant short periodic orbits, compute the
heteroclinic tarngle (see section ID) of the system under these
conditions, and begin to study the "lifetimes" of certain electron
irajectories; in other words, to determine how long it takes an
electron to escape the system (ionization). We predict, based on
previous research involving similar systems, that these escape
times will be closely related to other aspects of the dynamics of
the system. The electron iu the system has three forces
acting on it: the Coulomb force with the proton it orbits, and the
forces created by the static electric and magnetic fields. The
Hamiltonian of the system is given by:

_(p-qA)
B, 0 Eq. 1.1
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where p is the momentum, A the vector potential. The total
potential is
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and
g=-e, the electronic charge

B. Background

It has been well substautiated that, in dissipative nonlinear
systems, chaotic dynamics leads to the existence of fractal basin
boundaries in phase space, that is a fractal dependence of final
position on initial position"**. Such fractal behavior can also arise
in conservative systems. This fractal relation is of practical
significance as it indicates that the behavior of a particle has an
extremely sensitive dependence on its initial conditions.

For an inelastic collision of a helium atom with an iodine
molecule, a nonlinear system studied by Jaffe and Tiyapan, it was
demonstrated that a homoclinic tangle partitions the classical
phase space into an invariant fractal tiling. (See section D for
details on the homoclinic tangle). The tangle, in other words,
organizes the phase space dynamics of the system.

I will demonstrate that similar behavior occurs in my
system. It wii be shown that, for short times, the escape time as
a function of initial momentum is function that looks like it may
be fractal. We are continuing to study the relationship between
this fractal function and the tendrils of the heteroclinic tangle.
Ultimately, this is a search for zome sort of pattern or order to the
chaos in the system.

C. Surfaces of section and their properties

When studying a nonlinear system, it is most convenient to
study the dynamics in phase space. When dealing with systems of
two coordinates, (i, 7), one then has to consider four-dimensional
phase space, (i,9,p,,p,). To make things comprehensible, surfaces
of section are used. This involves using two of the four phase
space dimensions to "strobe" the motion in the other two
dimensions. For instance, every time a trajectory passes through
=0 in the positive p sense, a point is plotted on the V- p, plane.
The resulting eraph is called the surface of section. This process
can be thought of as a repeated mapping of an initial (¥, p,) point,
the mapping determined by the numerically integrated
Hamiltonian equations of motion.

Points generated this way may lie upon smooth curves
topologically equivalent to ellipses or hyperbolas, or they may



Trajectories displaying regular motion, that is periodic or quasi-
periodic, appear as concentric ellipses about a fixed stable point,
called an "O-point."> This is illustrated in Figure 1.1.

X
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O

Figure 1.1. Regular motion on a surface of section appears as ellipses.’

This O-point is a point of stable equilibrium, and the ellipses
surrounding it represent trajectories that oscillate about this fixed
point, much like small angle oscillations in a pendulum.

On the other hand, trajectories representing chaotic motion
appear as random scatterings of points on the surface of section.
This behavior occurs in the region near unstable fixed points,
called "X-points," on the surface of section, due to the occurrence
of homoclinic or heteroclinic tangles. (See section D), In the case of
the pendulum, these X-points represent the pendulum suspended
in the inverted position, 180 degrees from equilibrium.

There are several properties of the motion in phase space
that must be noted to better understand and interpret these
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curve that crosses a stable manifold maps to another section of a
curve, also crossing the stable manifold in the same sense.
Therefore, if the stable and unstable manifolds cross once, they
must cross an infinite number of times.

manifold P, .
unstable manifo ' $table manifold
_}( X-point
(PN
Figure 1.2. Motion of a pendulum as it appears in phase space

As the crossing points approach the X-point, they get closer
and closer together. But the area enclosed between stable and
unstable manifolds must be preserved. As its width decreases, its
length must increase. This behavior leads to a heteroclinic or
homoclinic tangle--heteroclinic, if the manifolds belong to
different X-points, homoclinic if they belong to the same X-point.
A heteroclinic tangle can be seen in Figure 1.3.

The heteroclinic and homoclinic orbits are asymptotic, in
both the past and the future, to the unstable periodic orbits.
These orbits are significant in that the bound and unbound
dynamics of the system must :omehow weave themselves around
these orbits. The heteroclinic tangle, in this way, acts as the
partition of phase space.

Often, it is such tangles that separate qualitatively different
motions, similar to the pendulum case in which the manifolds
separate small oscillations from rotation.



Figure 1.3. A heteroclinic tangle formed by the unstable manifold of P
and the stab's manifold of P’, intertwining in such a way as

described in text. The progressively longer "lobes” formed

between consecutive heteroclinic points are called tendrils.

The heteroclinic points approach P’ asymptotically.
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II. Orbits and Surfaces of Secticr
A. Transforming the Hamiltonian

It is helpful to transform the Hamiltonian (as given in
equation 1.1) to a convenient set of coordinates to simplify the
study of it. In order to do this, we first took advantage of the
cylindrical symmetry of the system, allowing me to reduce it from
a three-dimensional to a two-dimensional problem. We then,
performed a series of canonical transformations on the
Hamiltonian to preserve the form of the Hamiltonian equations of
motion. We arrived at a Hamiltonian expressed in semi-parabolic
coordinates, (i,7), with a discontinuity at the origin. To alleviate

this problem, it was necessary to transform to a new “time”
variable. Finaliy, we expressed the function in atomic units and
rescaled so as to remove the electric field as an explicit parameter
of the system. The resulting Hamiltonian is (see Appendix A for
the derivation):

A2 A2 B gt -t
(b.+5.) ;pv )—E(ﬁ2+92)+§;(ﬁ4\72+ﬁ20“)+(ié—ﬂ—2 Eq. 2.1
C

A=

The rescaled energy, E, and rescaled magnetic field, B, are related
to their original values and the electric field, F, by:

1

E = EF?
3
B= BF*

Conveniently, this Hamiltonian, in the absence of the third term,
(B= 0), is separable, and represents a 2-dimensional anharmonic
oscillator with a stable equilibrium and two unstable equilibria.
The contours of the potential for this separable system are shown
in Figure 2.1 in semi-parabolic coordinates.

The third term in equation 2.1 is the coupling term, the term
which essentially adds the element of chaos to our system, with

the parameter, B, determining the magnitude of its contribution
to the system.

11
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" Figure 2.1. The potential of the B=0 system in (&) coordinates.

B. Creating surfaces of section

As I've already stated that the system is nonlinear, it is no
surprise that the equations of motion yielded by our final
Hamiltonian cannot be solved analytically; this is a characteristic
of a nonlinear system. In order to study the motion of the
electron, it was. therefore necessary for me to concoct a computer
program to nunierically integrate the equations of motion. We can
calculate numerically a surface of section by the method described
earlier in section IC; every time the electron passes through 4= 0
in the positive direction (p,> 0), a point is plotted in the ?-p,
plane. What I did instead, however, was to create a half-map, a
surface of section on which a point is plotted every time 4= 0,
regardless of the direction of p,. Such a mapping is permissible
due to the special symmetry of my system. I was able to show
that there exists a half-map such that, regardless of whether I
map some initial point, (9,,p,), in the positive p, sense or the
negative p, sense, (¥,,p,,) will map to the same point, (9,p,).

With the rescaled magnetic field parameter set equal to
zero, B = 0, Figure 2.2 shows a series of concentric ellipses about a
stable point located at the origin, each ellipse representing a single
trajectory. Such ellipses are the mark of regular motion. This
correlation comes from Liouville's Theorem, which states that for

12



a system in four-dimensional phase space with as many
conservation laws as degrees of freedom, the motion is restricted
to a two-dimensional surface topologically equivalent to a torus.
With B = 0, equation 2.1 meets this criterion; since the equation is
separable, the effective energies associated with the # and ¥
motion are independently conscrved. When we look at Figure 2.2,
we see the cross sections of the tori. Like two-dimensional motion
of a harmonic oscillator, the motion has two independent
frequencies.

In each successive graph, figures 2.3 to 2.5, the value of B is
increased, and we can observe an increase in the amount of chaos
in the system. Finally, at the rescaled magnetic field parameter, B
= 90, in Figure 2.5, we see total chaos uniformly distributed over
the entire system, as characterized by the seeming randomness of
the scattered points.

Looking more closely at the graphs gives us some further
insight into the system. In Figure 2.3, for example, we see two
stable points with regular trajectories about them. There seems to
be a clear boundary separating these regions of order from the
jarge "sea" of chaos. In addition, one sees the formation of island
chains. When a separable system is perturbed by a nonseparable
coupling, tori with irrational frequency ratios are distorted by the
coupling, but not destroyed. Tori with rational frequency ratios
are destroyed, and replaced by stable and unstable periodic
orbits. The stable orbits are surrounded by little islands of
stability, while the unstable ones are surrounded by heteroclinic
tangles, which show up on the surface of section as small regions
of chaos in the phase space.

After experimenting with several parameter values, I
arrived at a set of values, £ = -1.9, B=6T, and F=800 V/cm
(B=3.26), which yielded a particularly interesting surface of
section, in which approximately equal amounts of chaos and order
are manifested. This surface of section was created by iterating
one hundred trajectories seventy-five times. That is to say, each
of the one hundred trajectories represented, passed through #=0
seventy-five times.

Immediately apparent in this graph are two stable (O)
points and one X-point at the origin of the graph. The presence of
the large region of chaos surrounding the ellipses of order
suggests the presence of a heteroclinic tangle in that area, which
consequently indicates the existence of more unstable points.

13
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C. Locating the heteroclinic tangle

We already stated that the heteroclinic tangle “organizes”
the behavior of orbits. Therefore, we need to compute this tangle.
To locate it, it is first necessary to find all short periodic orbits,
orbits which pass through the same point on the surface of section
with every pass through #=0. Now I take a grid of one thousand
evenly spaced points of initial ¥ and p, values between -2 and 2

on the V- p, plane and iterate them once. The limits, -2 and 2,

were chosen as these appear, from the surfaces of sections shown
in figures 2.2 through 2.6, to be the approximate maximum radius
of trajectories before they escape the system. Then I graph the
contours of ¥ -7, and the contours of p, —p, . Superimposing

these two graphs, wherever the zero-valued contours of each
graph intersect a short periodic orbit occurs. In addition to the
one a: the origin, two such orbits were found, symmetric about
the p, axis located approximately at =0, v=1.3 and -1.3. To

identify these points to a greater degree of accuracy, I performed
a single iteration of 1000 points surrounding each periodic orbit
on the v axis, and thereby identified the location of the periodic
orbit with higher accuracy. I repeated this process with
progressively smaller intervals until I was able to locate the fixed
points to eight significant figures at ¥=1.278915389 and v=-
1.278915389.

Taking advantage of the symmetry of these points, I focused
my attention only on the periodic orbit of the positive v-axis.
While 8-significant figure precision accurately discloses the
location of the X-point for my purposes, it is not exact; when this
point is iterated multiple times, it eventually wanders from its
initial location and faintly traces the beginnings of the heteroclinic
tangle, finally escaping to infinity along the unstable manifold of
the X-point to which it was initially so close. This gives us a set of
points on the wustable manifold. Taking a series of 1000 evenly
spaced points between our X-point and a point on the unstable
manifold and iterating this line of points multiple times, I was
able to generate an image of the heteroclinic tangle as shown in
Figure 2.7. It is this complicated structure which organizes the
motion of the system near the unstable periodic orbits. (See
section IID).

19
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III. Escape time of orbits

Now we wish to start the orbits at the origin, the location of
the atom (4#=0, ¥=0). We are interested in the ionization of the
atom by a laser, so of course the electrons begin their travels at
the atom. We, therefore, start a line of points on the p, axis and
iterate them. In the regular region of the surface of section,
electrons remain forever bound to the atom and their motion is
multiply periodic. When a line segment on the p, axis

corresponding to this region is iterated, the line produces a whorl.
M.V. Berry explains the occurrence of such a structure as the
passing of an initial curve, in our case, the line segment on the p,
axis, through a fixed elliptic point.! When the line segment, [, is
iterated, [, the curve produced after n iterations, is pinned at this
fixed elliptic point but is otherwise free to evolve. Points near the
elliptic fixed point rotate around it, and the rotation rate
decreases with distance. That is to say that the rate of rotation
depends on the radius; it is slower at larger radii.

To get a sense of the actual motion in this region of the
nhase space, I generated a graph of several orbits in the region as
they appear in (&,7) space. In the densely covered "figure-8"
region of figure 3.1, a typical orbit appears like Figure 3.2.
Outside of this region, where the trajectories are less densely
scattered, a typical orbit appeaiz as Figure 3.3.

For large p, values, the corresponding trajectories exit the

system promptly along the unstable manifold. This can be
verified by the mapping of a line segment corresponding to these
large values, shown in Figure 3.4.

As indicated by Figure 3.5, the behavior of trajectories with
p, values started in the region of the tangle is complicated; these
trajectories demonstrate the chaos caused by the tangle. If one
looks carefully, one can see that the trajectories started in this
region tend to inap along, or close to, the heteroclinic tangle.

Further study is, therefore, to be focused on this region of
the surface of section, attempting to discover an underlying
pattern to the seemingly random behavior. I will concentrate my
study on the trajectories that escape in a relatively short amount
of time (within 8 nanoseconds).

Selecting [9>2 as my condition for escape, I began 1000
trajectories in the region of the heteroclinic tangle along the p,

axis and plotted the time of escape of these trajectories versus

21



<>

€0 co

DY W A
R ”. _.Ww-«w{"—u?.wuzf.\‘u%wq&.w NN

wler
N,

DAl

p’S0s,

'sTXe (=4 9yl uo T°T PuUe 0 TV RETof

"d 3o senrea 3O SUTT e Hutjexe3T AQ peleaId ,TIoyM. ¥ T°t aanbTJd

22



gl

3

Sl
S0

"gr0="d‘g=¢ I peIILIF 3ITAIC uotzow xeInbax ¥

*Z° g 2anbtyg

<

23



<«

PUGIO,

—"— el

PR
v

01

..||.>an“

v

A 2% pe3Ie3s 3ITYIO uoTow JeInbex ¥

v

‘¢ ¢ @anbtd

A

LAY

90

<

24



@

-

‘qutod-v 8yl FO PIOFTUBRU eTqeasun a9yl bBuore
ATybnox ATadwoxd 3TXe goTI03D9feI] 98IY] g998 9UQ "POIVIVIT T puR 9°'T
usamiaq >Q jJo seniea Y3iTm STXE Q0=¢ ®ya uo quowbes @UIT ¥ "y ¢ @Inbtd

25



<>

c St b S0

- o

S0 b S [

-gTHuey OTUTTOOIPISY dY:. JUOT® yaed e @0vI3

07 weas uoibex STY3 UT pIIIeIs s9TI0309fRIY IPYJ 998 ueo sup ‘oTbuwl
2y3 3o uotbex 8yl o3 K1eso1o spuodsaliod 3t se gesoyo sem jusubes
STYL '9°T Pue GT T uS3aM3Idq >Q jo senfea Yitm sTX® (=4 sy uo sautod
Jo 3uswbes SUTT © USUM po3esI0 UOTIO8Ss 3O soevyans YL °G§'¢ a2anbT4d



thair initial mamantum in the d+-direction n Rv insnection of



gl 8¢} 9s't $SL [A* Sl 8yl ov'l 124
T 0c-
1 1 1 1 1 _®
o
L ® % o Si-
o o © © 9
<« Q0
< ol 00 Mv 00 R
i w @w A% ow % Ot
e mc
e T O
- S
8 m m W
L e o ® %}v 0}
8 3% 8o M
: 3
o <
- Sl
o0 ° °
o
o [p'Ssse, &
© ! 0_ 1 | ] | o 1 ON

‘senTeA 4 oaT3Tsod o3 swry sdeoss saT3Tsod pue ‘senfea 4 dAT3ebHIU O3

v v

spuodsaxxon swtly adedssd aariebeN .NN_¢_ se pautrjep st odeosy -o1buel

243 3o uolbHax eyl ut >®< Jo uor3ouny e se awry o2deosy "9'g LANBTL

adeossq

28



;@
S8S°1 85’} GL5°} . LS4 G95°'}L 9G5°
T T T T S¢-
L & o ©° - 0¢-
o4 00 o 00
o ° °© *
00
- o o o o w 4 G-
[o ] (o4 0&0 @ [orod
® o 9
° Q o
v ¢ ﬂ m 9 04-
» 1 w-
oA - o
B 45
- 2o
q
x4 & N8B
0? o °
- © ° 18+
Q o °
o pssa, ° & ¢
1 ! 1 1 ON
‘ydeab

STY3 Jo °Teos I9[Tews dY3 UO ¢£'¢ sanbrg ut peletdsIp eyl §° uxajazed
JeTTWIS © STedAdT €' ¢ 2anbTd FO UOTHBI [TeWS ® dn Sutmord “L°¢ axnbTd

adeoseq

29



IV. Conclusion and Future of the Project

Through my study, I was able to take a system of practical
interest and cast it in an elucidating form, in which I was able to
control the amount of chaos in the system, by virtue of a
parameterized coupling term. I identified the parameters of
special interest to the system. These parameters were selected on
the basis that they result in an equal mix of order and chaos, and
a relatively easily determined heteroclinic tangle. Furthermore, I
identified the short periodic orbits of the system and computed
the heteroclinic tangle, which is the key t understanding a
nonlinear system. After locating the tangle, it was possible for me
to explain the motion in the bound region of the graph, the
unbound region (outside of the tangle), and the chaotic behavior
of trajectories begun in the region of the tangle. by studying
these iterations of trajectories started at the atom, I was able to
show that the heteroclinic tangle does indeed organize the
behavior of the motion in phase space, by showing that the
trajectories iterate so that they iemain close to the tangle and
follow its manifolds and tendrils. Finally, I have begun study of
the escape times of trajectories in the system. From graphs I have
generated it is evident that some sort of repeating pattern,
structure within structure, exists. Further study and computation
is necessary to verify that the function is, indeed, fractal.

The parameters which I have found to be of interest for this
system have been sent to an experimental group in Amsterdam,
rescaled with the magnetic field having a value of 0.1 T, making
the values are appropriate and possible for experiment, so that
the ionization of this system can be studied experimentally.
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Appendix A:
Transforming the Hamiltonian

THEOREM 1: One way to obtain a canonical transformation is the
following:

Suppose we have an original Hamiltonian, h(p,x), such that:

(o
dp

_ oh
P="%

where x and p represent the original position and momentum
Let

P and X represent the new, transformed momentum and
position.

1) Write any function of P, x:

W(P,x)

2) Set
p(P,x)= %VxX
X(P,x)= ‘;—V;’

3) Solve these equations either way to obtain

P(p,x)

X(P(p.x),x)

x(P,X)
p(P,5(P.X)

4) Take H(P,X) as h(p(P,X),x(P,X)). Then:

31
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and the form of Hamiltonian equations of motion are
preserved, so the transformation is canonical.

Now we consider the case for which the change of
coordinates depends on time. For our particular system, for
instance, we will need to transform to a rotating coordinate
system, which is obviously time dependent.

THEOREM 2:  Suppose we have a set of “old" coordinates, (p,q),
with the motion described by p(t),q(z), and we wish to transform
these coordinates into time-dependent ones, given by
P(p.q:;t).0(p,q;t), with the variable, ¢, being something that we
impose on the system. We can use a generator

W(q,P;t)
such that
JdW(q, P;t
pla i) = 2P
q
oW(q,P;t
Q(q,P;t)=—(§;,—)

The new Hamiltonian, H, equals the old Hamiltonian +8—W:

. oW(q(P,Q;t), P;z)“

H = h(p(P,0;1),q(P,0;1)) ar

This transformation is canonical:

op_ (oH
ot 20 ),,

20_(21)
Jt \ JdP 0.
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Now I can proceed to transform my coordinate system into a
time-dependent one. This is prompted by Larmor's Theorem
which states that the motion of a system of particles in a weak
magnetic field is the motion in no field plus precession around the
magnetic field axis. Thus, transforming to a coordinate frame that
precesses at this Larmor frequency, ®,, about the axis would
simplify the motion.

Suppose we have a coordinate system (x’,y’,z’), as we do, and
we wish to transform into a system which is rotating in one plane
about the origin at a frequency w,. We will call the new system'’s
coordinates (x,y,z). Since only the "plane of the orbit," the x'-)’
plane is precessing, we need not worry about a transformation of
the 7z’ coordinate. Thus,

=2

Now, considering only the x-y plane, we wish to transform the
original (x’,y’) coordinates into (x,y) coordinates as if the

coordinate system were rotating with a frequency ,. Thus, at a
time, ¢, the angle of rotation would be 6=w,r. Solving for x and y
in terms of x’ and y’:

x = x"cos(@,t)+ y'sin(@,?)
y =y cos(w,t)— x’sin(®,¢)
PROPOSITION: Now, in general, if we have any change of

coordinates such that the new position variables depend only on
the old position variables,

Ql(‘ﬁ’qz)
Qz(‘h"]z)

we can then choose new P's to get a canonical transformation by
using the generator, W, such that:

W(‘]n‘lz,PpPz) = P]Ql(qh‘b)'*'PzQz(q”%)

Then

33



W

Q = o 0(4,,9,)
IW
0, = —37); = Qz(%"]z)

and the new P's are, therefore, obtained from:

W _, 90 , 90

- dq, 1 dq, ? 94,

oW a0, a0,
p, = =P, +P
’ 9q, l aq, ’ aq,

P

In order for a solution for P,P, to exist, then:

(8Q.)L9Qz]_(9Qz](9Ql)¢o

dg, \ 9q, dg, \ 9q,

Our transformation to a precessing coordinate system, outlined
previously, is a special case of this type of situation, in which the
new positions depend only on the old position variables and not
the old momenta.

I begin the transformation by rewriting my original Hamiltonian

(Eq. 1.1) in privaed coordinates to remind us that it is the "old"

frame, and converting from MKS to Gaussian-CGS units. Eq. 1.1
becomes:

1 2p2.72 1 2np2 72
—e By 't —e‘B'x )
’r_ 1 72 (eBy'p;y (4 ) 7”2 (eBxpy)/ (4 7”2 Ze ’
H ——i; D, - c +T- + py - c +-—-——;2— +pz ——r—-+€FZ

Referring to the previous proposition, my generator, W,, will be:

W, = p,(x"cos(w,t)+ y’sin(w, 1)) + p, (¥ cos(w, ) - x’ sin(w, 1))

The old momenta and new positions can be expressed as:

, oW,
pi ox;
A

api
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So,

p. = p,cos(@;t)— p, sin(®,1)
P, = p,sin(@,t)+ p, cos(@, 1)

p,=p,

x = x"cos(w, )+ y'sin(@,?)
y=—x"sin(@,t)+ y'cos(@,?)
z=7

From Theorem 2, therefore, the new Hamiltonian, H, should equal:

ow
H=H +—%
ot

Finding expressions for x'(x,y:r) and y'(x,y:t) by adding and
subtracting thc simultaneous equations for x and y, plugging in
for H’ and simplifying, we get:

2 2n? 2
, P e eB Ze
H = -2—;+ e (x2 +y2)+-2—l;(xpy - ypx)+ eF. -
Now,
ag;L = -, px'sin(@,t)+ @ p,y cos(®.t) - 0 p,x’ cos(@,t)~ w,p,y’ sin(@,1)
ag:L = w,p,ysin*(0,1)+ @ p,ycos’(w,t) - @, p,xcos’(@,1) - w, p,xsin’ (@)
B
= w,(yp, - %p,)= {;(yp, ~ xp,)
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Thus,

2 2n2 2
W, _p B (x2+y2)+er—e—

H=H+ —
ot 2u  8uct r

I have dropped the factor of Z in the last term since Z=1l for a
hydrogen atom.

Next, I vish to transform to spherical polar coordinates, for

which we, again, already know the relationship between old and
new coordinates:

r=(x*+y" +z2)%

(< + )2
Z

(2

W= p,r(X,y,Z)-i-peG(x,y,Z) + P¢¢(xs}’,2)

6 =tan™!

So, now:

1

2 2\5
=p (X +y* +2 )% + pytan” (xl)—z + P, tan"(l)
z x

Again, referring to our proposition:

W,
ox!

So,
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Y X Py P Do X Doy Pe (x+y
P’ pr2 * r * r’ * 9 2 +y o 9 2+ y? ¥ 9(2+
(x +y2)22(1+ 2)’ ) (x +y )Z2(1+ 2y ) 24(1+x 7
Z
2 2.2
+ Py —+ Ps Y

Since, in this case, %‘K=O,H=H’, and so we get:

2 2 2n2 2
H=_— P,2+£o“+ qp",z +2 Bz(rzsin29)+eFrcose—e—
r° rsin“0) 8uc r

Next, we move to semi-parabolic coordinates (w,v) for which :

u=r1+cos6
v=Alrd1-cos@

There is not ¢-dependence for these coordinates; thus, we are
specifying cases for which p,=0.
Now,

W= p,,(\/;\/1+cos 6)+pv(\/;\/l-—cos 6)

8 1
«/1+co J1-cos@
pr ar 2'\/— S u \/—pv cos
8W 1
= 0+ ———— 0
Ps 96 2\/1+cosf9\/_p"sm 2V1 cos \/_ sin
_oW _
P¢ —3;_
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p'=p’+ps +p,

p} p,} 1 1
= [4—"(1+c036)+ . (1—cosG)+—2—pvpu(—)\/1-—cosO\/1+c056]
r r

4r
plrsin®@  p’rsin’ 6 3 p,p,rsin’ 6
4(1+cos@) 4(1-cos8) 2+v1+cosfv1-cos@
2
-

3 &2_[(1 +c0s )" +sin’ 9]+p_v2[(1—cos 6)” +sin’ Gj|+ p.D, [(1 —cos @)(1+cosf)—sin’ 6

" 4r 1+cos@ 4r 1—cos@ 2r J1=cos@+/1+cos@
1 2 2

=— +
2r(pu p.})

Finally, using the relationships between (u,v) and (r,6), and the
above result for p2, we get as our transformed Hamiltonian:

2 2 2p2. 2.2 22 2
H=—1- Pu2+P2v +eB142v veF STV 2?.e i
2u\ u +v 8uc 2 u +v
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Appendix B:
Transforming the time variable

We need to change the time-dependence of our system so
that our hamiltonian is no longer undefined at the origin of our
coordinate sysiem; as the term "u’+v’" appears in the
denominator of the final Hamiltonian given in Appendix A, there

is a singularity at the origin.

PROPOSITION: We introduce 7,

7= f(1)
such that:
dt
ar g(p.q)
d(anything) _ ( d(anything)
dt dt J dt

Our revised Hamiltonian, H, is:

H= [%(p,q)][fl (p.q)- El.

where FE 1is the total energy.

PROOF:
dq _ JH
dt 3pq
dq _dtdq _ oH
dt dr dt ‘g(”’q)(a q]
aH
2 H ,q)— E
Fn 2 [s(pa)(H(p.a)- E)]
_98(p.q d(H(p.q)-E)
H p.q)—E|+ ,g)———r
%, [ 1+ &(p.q) %,
JH
=0+ g(P,CI)(gJ
q

~H=g(p.q)(H - E)
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. dt
For our particular system let il w+vi=2r
T

Our H, then, becomes:

2 2 22 2 _ .2 2
H=(u2+v2){[%[p"2+p2" )+e 32 (u2v2)+eF(u ’ )— 226 2:|—E}
U\ u+v 8uc 2 u+v

1 , 2np2? 4 4
='27(P.‘2+p‘‘)—E(uz+v2)+gluc2 (u4v2+u2v“)+eF(u 2v }—Ze2

Rewriting this in atomic units yields:

1 B? -
H=2(p2 4 p2)- B )+ Ll +u2v4)+p(“ = )_2
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Appendix C:
Rescaling to reduce number of parameters

We can now rescale the Hamiltonian so that F=1 and only B and
E remain as explicit parameters. Now H=0, since it is simply
equal to g(u,v)(H-E) and H-E=0. So, to rescale:

p=pF*
u=afF*f
v="7F?
E=EF"
B=BF°
p2+p)

ﬁ=O=F2a( F26B2

A " n dn o ~4 4
) o (@ = 2?)+ (897 + @9 )FP + FTY (—-—“ > ” )— 2

B + )= F{F D) PR (i oo o 250 2}
2

2 8c?

All coefficients should equal zero to make F=1:

—-y-2+20=0
—-y=-2f+20+63=0
~y=2f+1+43=0
-y-2p=0

Solvirg these ¢imultaneous equations yields:

=0

So, finally,
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a2 a2 N o
1‘1=(”u_+1_’v_)._g(ﬁz +‘72)+£2—(ﬁ402 +a20“)+(“—")_2
2 8c* 2

which is our final Hamiltonian, with the corresponding equations
of motion:

p.=- -2'E‘a+8—BC;(4a392 +209%) + 2&3]
A [ A B2 A2 A3 A4 A A3j
D, =—L_2Ev+8_c7(4u vV +2uv )—2v J
i=p,
V=p,

It is these equations which are numerically integrated by the
program in Appendix C to create my system's surfaces of section.
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