

Space-Time Correlation Fields

Methods for Observing Wave-Velocities
 from a Sparsely Sampled Data Set

A thesis submitted in partial fulfillment of the requirement

for the degree of Bachelor of Science with Honors in
Physics from the College of William and Mary in Virginia,

By

Stephen Simons

 Accepted for_________________________
 (Honors, High Honors, or Highest Honors)

 Director

 2

Table of Contents Page
Acknowledgements 3
Abstract 4
1. Introduction 4
2. Background 6
3. The Model 9
4. Limits 11
5. Statistics 11
6. Results 13
7. Conclusion 24
Appendix 1 – Derivation of the eigenvalue relation 25
Appendix 2 – Wave field construction (C++) 26
Appendix 3 – Gaussian noise and Wave field constructor (C++) 28
Appendix 4 – Space-Time Correlation (C++) 31
Appendix 5 – Histogram Binning of Correlation Function (C++) 33
Appendix 6 – Coarse Sampling – TOPEX/POSEIDON 36
Appendix 7 – Sparse Sampling (C++) 37
Appendix 8 – Random Number Generator (C++) 39
References 40

 3

Acknowledgements:
 I would like to thank Andrew Norman for his computer expertise, his general
knowledge of physics, and his many hours of help without which I could not have
finished this project. I would also like to thank Professor Gene Tracy for his
understanding of the subject matter and his willingness to work with me even when his
schedule was incredibly busy.

 4

Abstract:
 The hypothesis presented by Kaufman et al. is that there is resonance between an
equatorially trapped Yanai mode and a coastal Kelvin mode in the Gulf of Guinea. The
TOPEX/POSEIDON merged geophysical data records are the data set proposed to be
used to observe the eastern Atlantic region in consideration. Using satellite altimetry data
to observe this propagating waves presents several interesting data analysis challenges.
This paper deals with the issues of the maximum bandwidth, minimum signal to noise
ratio, maximum sparsity, and smallest sample size allowed to created statistically
significant evidence of signal propagation in the ocean. To create a controlled
experiment, a model Yanai wave will be used as the wave field for this analysis.

1. Introduction:
 The problem presented is one of observation. Can propagating signals be
detected using sparsely sampled data? Can causality be maintained using auto-
correlation functions of discrete sets in space and time? These questions are of particular
relevance to the physical problem at hand. The hypothesis under consideration (Kaufman
et al.) is that there is resonance between an equatorially trapped Yanai wave and a coastal
Kelvin wave in the Gulf of Guinea (see figure 1.1).

Figure 1.1: The Gulf of Guinea with an eastward propagating Yanai mode and a

westward propagating Kelvin mode (Kaufman et al.).
The ocean’s vast expanse prevents the present day observer from obtaining a complete
data set, with high spacial and temporal resolution. Due to this limitation, various
methods have been developed to track the circulation, temperature, wind fields, and many
other useful observables for the study of the fluid dynamics involved with our earth’s
oceans. One of the most promising techniques for acquiring more complete and
uniformly sampled data sets is satellite altimetry. Using radar, laser range finders, and
the global positioning satellite network, radar altimeters can calculate the surface height

 5

of the ocean to a precision of the order of one centimeter. This level of precision is
actually not only due to the hardware, but is imposed by the sophisticated set of data flags
and correction factors that are applied to the raw data in the calculation.

Of particular interest is the TOPEX/POSEIDON satellite, a joint effort of NASA,
the French Space Agency, Jet Propulsion Laboratories (JPL), and NOAA. The
TOPEX/POSEIDON satellite uses a dual band radar altimeter (Ku and C band radar, 13.6
GHz and 5.3 GHz respectively). The satellite has been in its observation phase since
February of 1993. The satellite emits RF radiation toward the earth’s surface. It then
receives and processes the back-scattered radiation. The onboard computer then has “the
height above the earth’s surface (pulse transmit time), ocean significant wave height (via
return pulse shape characteristics), and surface radar backscatter coefficient (via received
energy)” as raw data for its calculations (Brooks et al). Its average altitude is 1339 km,
which provides a sampled footprint with a radius of 11.0 km. The ground track velocity
of the satellite is 5.8 km/s and the groundtrack pattern repeats within ±1 km every 9.92
days creating a grid of 254 groundtracks on the earth’s surface.

 The difficulty in using satellite data to study wave motion becomes evident in
figure 1.2.

Figure 1.2: Graphic mapping of sea surface height data from the

TOPEX/POSEIDON satellite
In figure 1.2 the diagonal colored lines are the satellite ground tracks. The gray

spaces in between these lines reveal the incompleteness of the collected data. This
spacing produces a less than ideal resolution in the data. For instance, the section of the
Atlantic Ocean that is proposed to have resonance between coastal Kelvin modes and
equatorially trapped Yanai modes in Kaufman et al., is the Gulf of Guinea.
Comparing figure 1.1 to figure 1.2, it becomes obvious that only a total of ≈ 20 ground
tracks lie in the area of interest. So for any given latitude, there will only be on the order
of 20 data points. This, needless to say, does not even begin to approach the size of a
data set needed to perform a Fourier transformation to confirm the dispersion relations of
the two wave modes and calculate their phase speeds and time lags to prove the
hypothesis of resonance between the two (Kaufman et al). Therefore, an alternative

 6

method of data analysis must be used in order to obtain a meaningful result using satellite
altimetry.
 The proposed alternative technique for data analysis is to use the
TOPEX/POSEIDON sea surface height data as a displacement field in space and time.
Using statistical methods presented in the paper by Sciremamano, auto-correlation
functions will be found independently in space and time to determine the separation in
space and time between statistically independent data points. Once this decorrelation
time and distance are found, correlation functions can be found for space and time lags
together. It is the object of this study to use a model wave signal to test the limits of this
analysis process. Through examination of the correlation functions produced, the ability
to detect a wave propagating, the maximum bandwidth that is still detectable, and the
minimum signal to noise ratio and data sample needed for detection will be estimated.

2. Background:

Kaufman et al. presents a hypothesis that there is resonance between the Kelvin
mode propagating westward along the coast of the Gulf of Guinea and the incoming
(eastward propagating) mixed-Rossby gravity mode (Yanai). The theory is developed
using β-plane and f -plane models (see Appendix 1) for the Yanai mode and Kelvin
mode respectively. These models are developed using the shallow water approximation.
This approximation is valid because the wavelength of the waves involved and the length
scale of the Atlantic Ocean are large with respect to the depth of the ocean. Table 2.1
provides a general idea of the depths of the oceans covering the Earth.

TABLE 2.1

The physics involved will be dealt with more thoroughly in a moment. Theoretical
considerations suggest that the wavelength of the resonant modes is on the order of 100
kilometers, at least one order of magnitude greater than the maximum depth of the
Atlantic Ocean.

The essential equations of any fluid motion are two conservation laws:
conservation of mass and conservation of momentum. In a fluid continuum, conservation
of mass is
∂ρ
∂t

+ ∇ ⋅ ρu() = 0 (2.1)

where ρ is the density of the fluid and u is the velocity field. Conservation of
momentum in a fluid is,

ρ du
dt

+ 2Ω × u

+ ∇p + ρ∇Φ = 0 , (2.2)

the sum of external forces with ∇p as the pressure gradient force, ρ∇Φ is the body force
with Φ as the gravitational potential energy per unit mass, and Ω = 2π 24hours is the
rotational frequency of the earth. It is of note that at these scales of motion, viscous

Ocean Mean Depth (km) Maximum Depth (km)

Pacific 3.94 11.022

Atlantic 3.575 8.605

Indian 3.84 7.45

Arctic 1.117 4.6

 7

effects are negligible. Fluids are also subject to conservation of energy and the first and
second laws of thermodynamics, but these will not play significant roles in this
discussion.
 With the conservation equations in place we are interested in developing the
mathematics of the Kelvin and Yanai modes. There are two length scales that will
determine whether or not shallow water theory is a valid approximation for these two
modes: the Rossby radii of the two modes
 Re = c β()1 2

 (2.3)

(where the Coriolis parameter of the β-plane approximation is f y() ≡ βyand c = ′ g H()1 2

is the wave speed in terms of the reduced gravity ′ g ≡ ∆ρ ρ()g with ∆ρ equal to the

change in density over the thermocline (Kaufman et al.)(see Appendix 1)) and

 δ =
D
L

 (2.4)

with D as the characteristic depth and L as the characteristic length scale.
As it turns out, the Rossby radius of the Kelvin mode is ≈ 70km and of the Yanai mode is
≈ 190km . Both of these are at least one order of magnitude larger than the mean depth of
the Atlantic Ocean (3.575km). This fulfils the first condition for the shallow water
approximation to be valid; the second is that δ = D L << 1. With a depth scale of 3.575
kilometers and a length scale on the order of 1000 kilometers, the Atlantic Ocean
obviously fulfills δ = D L << 1.
Seeing that these two conditions are met, the shallow water approximation can be used to
model the Kelvin and Yanai modes in the Gulf of Guinea. For the purpose of this
discussion, six assumptions will be made to simplify the shallow water equations:
• The fluid is incompressible: ∇ ⋅u = 0.
• The fluid has constant and uniform density. This eliminates internal waves and

restricts the theory to a description of thermocline dynamics. Although the equations
presented are derived for a simple shallow water system, they can be used to describe
the dynamics of the thermocline under the rigid lid approximation.

• The fluid is shallow. Described above, this is the essential condition on which this
theory is based.

• W ≤ O δU(). The vertical scale of the velocity field, W, is much smaller than the

horizontal scale of the velocity field, U, by a factor on the order of δ << 1.
• For this solution, there is no background fluid flow. In other words, the perturbation

will be about a rest state.
• A columnar model of the ocean is assumed where the pressure, p, at any point in the

field is
p = ρg h − z()+ p0 (2.6)

where p0 is the pressure at the surface atmospheric pressure, and h is the height of the

surface from some reference level below the seafloor. Note that this equation for
pressure establishes the independence of the vertical and horizontal pressure gradient:
∂p
∂x

= ρg
∂h
∂x

 (2.7a)

∂p
∂y

= ρg
∂h
∂y

 (2.7b)

 8

This also establishes that the horizontal accelerations must be independent of z. This
means that it is consistent to say that the horizontal velocities remain z-independent if
they initially are so.

 With these six assumptions in place, we are interested in deriving the dispersion
relations of the Kelvin and Yanai modes. To do this we will manipulate the momentum
equation (2.2). The linearized forms of the momentum equations for shallow water
theory with no background flow disregard any quadratic terms in u,v,η (see Appendix 1
for a more complete derivation of shallow water equations).
∂u
∂t

− fv = −g
∂η
∂x

 (2.8a)

∂v
∂t

+ fu = −g
∂η
∂y

 (2.8b)

∂η
∂t

+
∂
∂x

uH0()+
∂
∂y

vH0()= 0 (2.8c)

where H0 is the constant depth about which the perturbation is created. These three

equations can then be manipulated to obtain an equation in one variable
∂
∂t

∂2

∂t 2 + f 2

η− ∇ ⋅ C0

2∇η()

− gfJ H0 ,η()= 0 (2.9)

where J is the Jacobian of two functions

J(A,B) ≡
∂A
∂x

∂B
∂y

−
∂A
∂y

∂B
∂x

 (2.10)

and the squared phase velocity of the wave is
C0

2 = gH0 . (2.11)

 The eigenvalue relation that arises from imposing the boundary condition (in y) of an
infinite (in x) channel of width L is

ω2 − f 2()ω2 − C0
2k2()sin ω2 − f 2

C0
2 − k2

 L

= 0 (2.12)

Taking the second factor of this relation and assuming a local boundary in the horizontal
plane of motion gives us the Kelvin mode with the dispersion relation

k = −
ω
C0

 (2.13)

This result will be seen to be particularly interesting because the dispersion relation for
the Yanai mode (Kaufman et al.) is

k =
ω
C

−
β
ω

 (2.14)

where β is the comes from the Coriolis parameter in the β-plane approximation
f y() = βy (2.15)

From these two dispersion relations comes the claim that resonance between Kelvin and
Yanai modes is possible. The two dispersion curves intersect at a well-defined frequency
and wavenumber; there is resonance (see figure 2.1) (Kaufman et al.).

 9

Figure 2.1: The intersection of the Kelvin and Yanai dispersion relations in dimensionless

form. The curves cross at ωR βc()
1

2 = 2
− 1

2 ,kR c β()
1

2 = −2
− 1

2 (Kaufman et al.).

Looking back at figure 1.1 it is seen that the two modes are travelling in opposite
directions. This is because the group velocity of the two modes propagate in opposite
directions. Returning to figure 2.1, it may be seen that Kelvin and Yanai dispersion
relations have opposite slope (group velocity) but intersect at a well defined wave
number and frequency with phase speed in the same direction.
 Finally there are a couple of numbers that will be useful in later discussions:
The Rossby Deformation Radius is

R =
C0

2Ω
 (2.16)

and is the distance over which the gravitational tendency to flatten the fluid surface is
balanced by the Coriolis acceleration to deform the surface (Pedlosky).

• The Rossby number is a dimensionless number which is the ratio of inertial force to
geostrophic force and is used to determine if a motion is large scale

ε =
U

2ΩL
 (2.17)

with U equal to the horizontal velocity scale and L equal to the horizontal length
scale.

3. The Model:

For the purposes of this discussion, we are only going to develop a model Yanai
wave, not a Kelvin wave. This is because the Yanai mode is dispersive and therefore
harder to detect.

 10

The equation used to build the model wave field is
Ψ = a j

j
∑ cos(k jx −ωj t + φj) . (3.1)

The amplitude of the j-th mode is

a j = e−(j − j d) 2 / σ 2

 (3.2)
and varies between zero and one with jd as the index of the dominant mode (amplitude

one). The wavenumber of the j-th mode is

k j ≡
−2πj

L
 (3.3)

with L as the characteristic length scale, the Rossby radius of the resonant mode, 365km.
The frequency of the Yanai mode of the j-th term is derived from the dispersion relation
to be

ωj =
1
2

k jC0 +
1
2

k j
2C0

2 + 4βC0 . (3.4)

φj is a random phase between 0 and 2π . It is of note that (3.1) will be expanded in odd

values of j about jd .

 The model Yanai wave field is constructed using code developed in C++ (see
appendix 2) to create two dimensional (space and time), double-precision arrays. The
arrays are created by sampling the wave field at
xi = iL 100.0 (3.5)

t k =
2πk

100.0ω jd

 (3.6)

This process creates an array with indices i and k which are related to the position and
time by the above scale factors. Figure 3.1 is an example of a model Yanai mode.

 11

Figure 3.1: A model Yanai wave field in the second quadrant (negative space, positive

time)

 The end in mind is to create a model Yanai wave signal that can be manipulated
to test the limits of the space-time correlation method of data analysis. This model allows
us to test the four essential limits on this data analysis technique: the size of the data
sample, the maximum allowed bandwidth, the minimum signal to noise ratio, and the
sparsity in space and time of the data samples allowed to detect a propagating signal.

4. Limits:

The ability to detect a wave will be tested by using a single j-term expansion of
the wave at j=15 (an arbitrary value). The test for the size of the data set will be
discussed further in the section on statistical methods. However, it may be seen that the
size of the array [i,k] may be varied. The maximum allowed bandwidth will be tested by
varying the σ2 term in the power spectrum and then including all significant j-terms in
the expansion of (3.1). Finally, the minimum signal to noise ratio will be tested by
creating gaussian noise with a variable RMS (see appendix 3) and then calculating the
RMS of the wave field. This done, the two may be superimposed and used as a new
wave field to be tested using the data analysis techniques described in the next section.

5. Statistics:

 12

 The question at hand is one of interpretation and analysis by statistical methods.
The technique used to discern waves propagating in a data field is space-time correlation.
The basic idea being that if a signal is propagating at some velocity

v =
∆x
∆t

 (5.1)

significant correlations should be found between data sets sampled from points in space
and time that are separated by space and time lags whose ratio returns the propagation
velocity plus or minus some bin width. In other words, space-time correlations will be
shown to reveal a signal propagating at velocity v within some confidence level (bin
width).
 The correlation coefficient relating two data samples x and y
x = xi{ }= x1,x2 ,x3 ,...xn()
y = y i{ }= y1, y2 , y3,...yn()

 (5.2)

is defined as

R =
n xi

i =0

n−1

∑ yi

− xi

i =0

n −1

∑

yi

i =0

n−1

∑

n xi
i =0

n−1

∑
2

 − x i

i =0

n −1

∑

2

n yi
i =0

n−1

∑
2

 − yi

i =0

n−1

∑

2
 (5.3)

where n is the number of statistically independent points in each set. The first extension
from this is to create an auto-correlation function. Assume that x = x t() then the
autocorrelation function of that data set in time would be defined as

R(∆t) =
n ∑ x t()x t + ∆t()()− ∑ x t()() ∑ x t + ∆t()()

n ∑ x t()2()− ∑x t()()2
n ∑x t + ∆t()2()− ∑x t + ∆t()()2

 (5.4)

This autocorrelation function is a function of the time lag between the first sample from
the data set x and the second sample. Just as in the calculation of the correlation
coefficient R, the size of the two samples must be the same (the summations must have
the same limits). The autocorrelation function can also be calculated as a function of
space-lag. This function is interesting because it allows the observer to determine what
statistically independent samples are in space and time. Two statistically independent
points in space-time are separated by at least the significant decorrelation time and space.
Although autocorrelation functions in space or time independently will not be used in the
analysis of the wave model, they are essential in analyzing data sets from satellite
altimetry (Sciremamano).
 From this point the derivation of a space-time correlation function is somewhat
elementary. Instead of only having x as a function of t, now x = x(z,t) where z is a
spatial coordinate. Then the space-time correlation function is defined as

R(∆z,∆t) =
n ∑ x z,t()x z + ∆z, t + ∆t()()− ∑ x z, t()() ∑ x z + ∆z,t + ∆t()()

n ∑ x z, t()2()− ∑ x z,t()()2 n ∑ x z + ∆z,t + ∆t()2()− ∑ x z + ∆z,t + ∆t()()2

 (5.5)
and is a function of the space-lag and time-lag separating the two samples of the data set
x. For the purpose of detecting a propagating signal, one would expect to see a peak in
the correlation function when

 13

∆z
∆t

≈ C0 (5.6)

Once again turning to the physical problem at hand, x is actually a discrete data set, not a
continuous function. With this in mind, x z,t()→ x l, m where l is the space index and m is

the time index used in (3.6) and (3.7) to sample the model wave. With the data set now
in matrix form, R ∆z,∆t()→ Ri ,k and is defined as

Ri ,k =
n xl, m

l ,m
∑ xl + i,m + k

 − x l,m

l, m
∑

 x l+ i, m+ k

l, m
∑

n x l,m
l, m
∑

2

 − xl, m

l ,m
∑

2

n x l+ i, m+ k
l,m
∑

2

 − xl + i ,m +k

l ,m
∑

2
 (5.7)

where i and k are offsets to the space and time indices respectively. This correlation
function creates a two-dimensional array of correlation coefficients with the offsets as
indices. This allows the observer to see patterns that will be directly related to space and
time lag and therefore be able to detect a propagating signal with velocity

C0 − ε ≤
∆z
∆t

≤ C0 + ε (5.8)

where 2ε is a bin width of wave speeds.
 Having established the correlation functions and a general concept of the method
of detection of signals, we turn to a discussion of the methods used in discovering a
significant correlation indicative of a propagating signal. For the purposes of this paper,
visual analysis of correlation functions will be sufficient to recognize evidence of
propagating signals. However, before actual data handling can take place, further
exploration of numerical methods to derive wave speed is needed.

6. Results:
 Visual analysis of the wave and correlation fields yields conceptual results,
although it will take a great deal more analysis to achieve numerical results. There are
six essential results that will be estimated in this section, the effects of: bandwidth, noise,
bandwidth and noise, sparse sampling, sparse sampling of a broadband, noisy field, and
coarse sampling on the ability of an observer to detect a propagating signal.

 Broadening the bandwidth did not appear to have a significant effect on the ability
to observe a propagating signal (see Appendix 2 for C++ code used to construct
broadband wave fields). Figures 6.1 and 6.2 illustrate the effects of broadening the
bandwidth. Although the figures are not showing the widest bandwidth, the beat
frequency of the 25 modes can be seen to have positive slope where the wave itself has
negative slope. This difference in sign is to be expected from figure 2.1 where it is seen
that the phase speed is negative, but the slope of the dispersion relation is positive. This
implies that the beat frequency seen in 6.1 and 6.2 is somehow linked to the phase
velocity of the wave detected.

 14

Figure 6.1: Yanai wave field expanded in 25 terms about j=25 with σ2 = 100.0 in the

power spectrum

 15

Figure 6.2: Correlation field of a Yanai wave expanded in 25 terms about j=25 with

σ2 = 100.0 in the power spectrum

 The second limiting factor to be added is noise. For the purposes of this model,
Gaussian noise was generated and superposed on the wave field (see Appendix 3). To
maintain a controlled experiment, the wave used is a single mode Yanai wave expanded
about j=15. The RMS of the wave field used (figure 6.3) is 0.707. The maximum signal
to noise ratio of a wave still visibly detectable in the correlation function was found to be
0.035 where the noise has an RMS value of 20.0. This result can be seen in figures 6.4
and 6.5. With the RMS of the noise at 20.0, the wave is essentially indistinguishable in
figure 6.4. However, the signal reappears in the correlation function in figure 6.5. The
conclusion to be drawn from this is that using correlation fields to detect waves allows
for a significant amount of noise in the signal.

 16

Figure 6.3: A single mode Yanai wave at j=15

 17

Figure 6.4: A single mode Yanai wave with RMS 0.707 at j=15 with Gaussian noise of

RMS=20.0 superposed (signal to noise ratio is 0.035).

 18

Figure 6.5: Correlation field of a single mode Yanai wave with RMS 0.707 at j=15 with

Gaussian noise of RMS=20.0 superposed (signal to noise ratio is 0.035).

The obvious next step is to take the previous two alteration to the data and
combine them to test the limits of observation in a noisy broadband wave field. For this
result a 100 mode Yanai wave expanded about j=100 with σ2 = 1000.0 in the power
spectrum (figure 6.6) will be used with Gaussian noise of RMS equal to 10.0 (figure 6.7).
Although the signal to noise ratio is higher, the ability to detect the wave is more
challenging. This is because the wave pattern to be found in the noise is more complex.
Once again, though, the correlation field (figure 6.8) brings out the signal for visual
analysis.

 19

Figure 6.6: A 100 mode Yanai wave expanded about j=100 with σ2 = 1000.0 in the

power spectrum.

 20

Figure 6.7: A 100 mode Yanai wave expanded about j=100 with σ2 = 1000.0 in the

power spectrum superposed on Gaussian noise of RMS = 10.0.

 21

Figure 6.8: Correlation field of a 100 mode Yanai wave expanded about j=100 with

σ2 = 1000.0 in the power spectrum superposed on Gaussian noise with an RMS=10.0.

Having estimated limits on the bandwidth and signal to noise ratio, sparse data
sampling is the next result to be considered. For the purposes of this paper, sparse data
sampling means that a wavefield is created and then in calculating the correlation
function, only every n-th x value and m-th t value are used (with n and m being
integers)(see Appendix 7). This means that with n and m equal to one a correlation field
similar to those previously calculated will be constructed. The outside limit for detecting
a propagating signal is found when n=10 and m=10 (figure 6.9). The interesting question
in this limit is how to establish a causal link between one time series in space and the next
time series in space. The answer comes from the hypothesis being tested. We are only
interested in finding a wave of a given velocity (in this case -0.85 m/s). Therefore, we
simply need to establish how far the wave travels in each time increment and then it
becomes obvious which correlations are linked by this signal and which are not (the
green line in figure 6.9). The more challenging question arises when there is discrete
sampling in both time and space. This is the ultimate question to be answered in this
research before satellite data will be useful in discovering a propagating signal.

 22

Figure 6.9: Correlation function of single mode Yanai wave at j=15 sampled on a grid of

n=10 and m=10. The green line represents the wave velocity 0.85 m/s.

 As previously, we are interested in combining the effects of sparse sampling with
noise and bandwidth. A 25 mode Yanai wave expanded around j=25, with σ2 = 100.0 in
the power spectrum, is superposed on Gaussian noise with a signal-to-noise ratio of
0.2877 and will be sampled on a grid of n=5 and m=5. The correlation function seen in
Figure 5.10 is the result. As expected, the dominant wave velocity is harder to see in this
result because of the combined effects of bandwidth, noise, and sparse sampling.
However, in comparing the sparsely sampled correlation function (left) with the regularly
sampled correlation function (right), the wave velocity becomes apparent. In the case of
actual observation, a complete correlation function like the one seen on the right in figure
5.10 is not available. However, having done this preliminary analysis on the model
wave, interpretation of the sparsely sampled wave field is now possible.

 23

Figure 6.10: The correlation function of a 25 mode Yanai wave expanded around j=25
with σ2 = 100.0 in the power spectrum superposed on Gaussian noise with a signal-to-

noise ratio of 0.287717 sampled on a grid of n=5 and m=5 (left) as compared to the same
correlation function sampled on a grid of n=1 and m=1 (right).

The final result to be discussed is the effect of coarse sampling (see Appendix 6).

The TOPEX/POSEIDON satellite samples the ocean on a discrete time and space grid.

 24

The hypothesis presented in Kaufman et al. is that there is resonance in the Gulf of
Guinea. Geographically, the Gulf of Guinea lies between 339.4515 and 12.0499 degrees
longitude. This defines the area of interest for this discussion. Over the course of
29.7468 days, the TOPEX/POSEIDON satellite completes three cycles, recording 72
points in space-time along the equator in the area of interest (see figure 5.11).

Figure 6.11: Superposition of TOPEX/POSEIDON satellite sampling in the geographical

region of interest on a single mode Yanai wave at j=15.

The blue points seen in the figure represent a total distance of 3628.7974 kilometers
observed over a total of 40642.96 minutes. This means that the satellite (as seen in the
figure) has the opportunity to observe 9.9419 modes in space and 1.2271 modes in time
because the resonant length scale of the Yanai wave is 365 kilometers and the resonant
period is 33120 minutes. With the analysis of the model wave in mind, it may be seen
that the regular grid of space and time lags of the TOPEX/POSEIDON data, will
facilitate observation of a propagating signal in the Gulf of Guinea. This conclusion is
based on the fact that if all the space-time lags between sets of two points are considered
there are on the order of 40 pairs of data points collected by TOPEX/POSEIDON along
the equator that are separated in space-time by 0.85 m/s ±0.1m / s .

7. Conclusion:
 Space-time correlation functions are an essential aspect of data analysis when the
samples are not continuous in space and time. Even from this simple visual analysis of
the model Yanai wave it may be seen that a broadband, low signal-to-noise ratio, sparsely
sampled data set can be used to observe a propagating signal. The ability to sift through
the raw data and retrieve a significant result lies in the statistical methods described in

 25

Sciremammano and this paper. Further research needs to be pursued to develop
numerical results. However, the evidence of the power of these statistical methods is
apparent even in a cursory visual analysis of the presented results.

Appendix 1 – Derivation of the eigenvalue relation:

Having established that the horizontal velocity field is independent of z, the momentum
equation (2.2) broken down into components becomes
∂u
∂t

+ u
∂u
∂x

+ v
∂v
∂y

− fv = −g
∂h
∂x

 (A.1a)

∂v
∂t

+ u
∂u
∂x

+ v
∂v
∂y

+ fu = −g
∂h
∂y

 (A.1b)

where f = 2Ω . Still utilizing the z-independence of u and v, (2.6) can be integrated and
solved with a rigid bottom boundary so that the equation for mass conservation in this
approximation becomes
∂H
∂t

+
∂
∂x

uH() +
∂
∂y

vH() = 0 (A.2)

where H = h − hB with hB as the height of the rigid bottom from some reference depth.
Now let the thickness of the fluid layer in the absence of motion be H0 x,y(). Then with

motion included as a small perturbation about this thickness
H x, y, t() = H0 x, y() +η x, y,t() (A.3)

is the thickness of the fluid layer as it evolves in time.
 The linearized forms of (A.1) and (A.2) disregard any quadratic terms in u,v,η
and become
∂u
∂t

− fv = −g
∂η
∂x

 (A.4a)

∂v
∂t

+ fu = −g
∂η
∂y

 (A.4b)

∂η
∂t

+
∂
∂x

uH0()+
∂
∂y

vH0()= 0 (A.4c)

which can be manipulated to obtain an equation in one variable
∂
∂t

∂2

∂t 2 + f 2

η− ∇ ⋅ C0

2∇η()

− gfJ H0 ,η()= 0 (A.5)

where J is the Jacobian of two functions

J(A,B) ≡
∂A
∂x

∂B
∂y

−
∂A
∂y

∂B
∂x

 (A.6)

and C0
2 = gH0 . This equation can then be used to derive two differential equations to

solve for the velocity field
∂2

∂t 2 + f 2

 u = −g

∂2η
∂x∂t

+ f
∂η
∂y

 (A.7a)

∂2

∂t 2 + f 2

 v = −g

∂2η
∂y∂t

− f
∂η
∂x

 (A.7b)

 26

We now explore the more particular case of wave motion in a bounded channel to derive
the Kelvin mode.
Imposing this boundary condition requires that the velocity in the y-direction disappear at

the rigid walls. This implies (in view of (A.7)) that
∂2η
∂y∂t

− f
∂η
∂x

= 0;y = 0,L (A.8)

Therefore, substituting in wave solutions that are periodic in x and t of the form
η= Reη y()ei kx−ω t() (A.9)

we obtain an eigenvalue problem for the complex amplitude that varies in the y-direction
across the channel, η y().

d2η
dy2 +

ω2 − f 2

C0
2 − k 2

 η = 0 (A.10a)

dη
dy

+ f
k
ω

η = 0; y = 0, L (A.10b)

Solving these yields the eigenvalue relation

ω2 − f 2()ω2 − C0
2k2()sin

ω2 − f 2

C0
2 − k2

 L

 = 0 (A.11)

Appendix 2 – Wave field construction (C++):

//BROADBAND WAVE MATRIX GENERATOR
#include<iostream.h>
#include<fstream.h>
#include<math.h>

int main()
{
double Pi=3.141592654;
double TwoPi=2.0*Pi;
double RP[1000];
double beta, L, c;
double t[500]={0.0};
double x[500]={0.0};
double wave_array[501][1001]={0.0};
double out_array[501][1001]={0.0};
double power_array[1000]={0.0};

y

L

x

Figure 2.1 - Infinite Channel of Width L

 27

double omega[1000]={0.0};
double k[1000]={0.0};
double sigsqr=0.0;
int numberofterms=1;

extern float ran1(long *);
long seed=-1;
long *seedpoint=&seed;
ran1(seedpoint);

fstream outfile;
char outfilename[200];

cout << "Please Enter the Output File Name:" << endl;
cin >> outfilename;

cout << "Please Enter an ODD Number of Terms for the Expansion (up to
999):" << endl;
cin >> numberofterms;
while(numberofterms%2==0)
 {
 cout << "That was not an ODD number of terms!" << endl;
 cout << "Please Enter an ODD Number of Terms for the Expansion:" <<
endl;
 cin >> numberofterms;
 }
cout << "Please enter sigma squared for the power term:"<< endl;
cin >> sigsqr;

for (int rancounter=0;rancounter != numberofterms+2;rancounter++)
 {
 RP[rancounter]=TwoPi*ran1(seedpoint);

 }

double omegadominant;
int jdominant=0;
cout << "Please Enter a value for J-dominant:" << endl;
cin >> jdominant;

c=0.85;
beta=2.3E-11;
L=3.65E5;

omegadominant=0.5*(-TwoPi*jdominant/L)*c+0.5*sqrt(pow((-
TwoPi*jdominant/L),2.0)*pow(c,2.0)+4*beta*c);

cout << "jdominant = " << jdominant << endl;
cout << "omegadominant = " << omegadominant << endl;
cout << " c = " << c << endl;
cout << " beta = " << beta << endl;
cout << " L = " << L << endl;

 28

for(int s=jdominant-((numberofterms-1)/2);s!=jdominant+((numberofterms-
1)/2)+1;s++)
 {
 k[s]=(-TwoPi*s)/L;

omega[s]=((0.5*k[s]*c)+(0.5*sqrt((pow(k[s],2.0)*pow(c,2.0))+(4*beta*c)))
);
 //omega[s]=k[s];
 power_array[jdominant-((numberofterms-1)/2)-1]=0.0;
 power_array[s]=exp(-(pow((s-jdominant),2))/(sigsqr));
 cout << "the j= " << s << " k = " << k[s] << endl;
 cout << "the j= " << s << " omega = " << omega[s] << endl;
 cout << "the j= " << s << " power spectrum coef = " <<
power_array[s] << endl;
 }

int j,i,m,q,r;
for(j=jdominant-((numberofterms-1)/2);j!=jdominant+((numberofterms-
1)/2)+1;j++)
 {
 for(i=0;i!=500;i++)
 {
 for(m=0;m!=1000;m++)
 {
 x[i]=L*i*1.0/1000.0;
 // t[m]=L*m*1.0/10.0;
 t[m]=(TwoPi/omegadominant)*(m*1.0/200.0);

wave_array[i][m]=wave_array[i][m]+(power_array[j]*cos((k[j]*x[i])-
(omega[j]*t[m])+RP[j]));
 if(j==jdominant+((numberofterms-1)/2))
 out_array[i][m]=wave_array[i][m];
 }
 }
 }

outfile.open(outfilename, ios::out);
for(q=0;q!=500;q++)
 {
 for(r=0;r!=1000;r++)
 {
 outfile << out_array[q][r] << "\t" ;
 }
 outfile << endl;
 }

return 0;
}

Appendix 3 – Gaussian noise and Wave field constructor (C++):

//BROADBAND and NOISE WAVE MATRIX GENERATOR
#include<iostream.h>
#include<fstream.h>
#include<math.h>

 29

int main()
{
double Pi=3.141592654;
double TwoPi=2.0*Pi;
double RP[1000];
double beta, L, c;
double t[500]={0.0};
double x[500]={0.0};
double wave_array[501][1001]={0.0};
double out_array[501][1001]={0.0};
double power_array[1000]={0.0};
double omega[1000]={0.0};
double k[1000]={0.0};
double sigsqr=0.0;
int numberofterms=1;

extern float ran1(long *);
long seed=-1;
long *seedpoint=&seed;
ran1(seedpoint);

fstream outfile;
char outfilename[200];

cout << "Please Enter the Output File Name:" << endl;
cin >> outfilename;

cout << "Please Enter an ODD Number of Terms for the Expansion (up to
999):" << endl;
cin >> numberofterms;
while(numberofterms%2==0)
 {
 cout << "That was not an ODD number of terms!" << endl;
 cout << "Please Enter an ODD Number of Terms for the Expansion:" <<
endl;
 cin >> numberofterms;
 }
cout << "Please enter sigma squared for the power term:"<< endl;
cin >> sigsqr;

for (int rancounter=0;rancounter != numberofterms+2;rancounter++)
 {
 RP[rancounter]=TwoPi*ran1(seedpoint);

 }

double omegadominant;
int jdominant=0;
cout << "Please Enter a value for J-dominant:" << endl;
cin >> jdominant;

c=0.85;
beta=2.3E-11;
L=3.65E5;

 30

omegadominant=0.5*(-TwoPi*jdominant/L)*c+0.5*sqrt(pow((-
TwoPi*jdominant/L),2.0)*pow(c,2.0)+4*beta*c);

cout << "jdominant = " << jdominant << endl;
cout << "omegadominant = " << omegadominant << endl;
cout << " c = " << c << endl;
cout << " beta = " << beta << endl;
cout << " L = " << L << endl;

for(int s=jdominant-((numberofterms-1)/2);s!=jdominant+((numberofterms-
1)/2)+1;s++)
 {
 k[s]=(-TwoPi*s)/L;

omega[s]=((0.5*k[s]*c)+(0.5*sqrt((pow(k[s],2.0)*pow(c,2.0))+(4*beta*c)))
);
 //omega[s]=k[s];
 power_array[jdominant-((numberofterms-1)/2)-1]=0.0;
 power_array[s]=exp(-(pow((s-jdominant),2))/(sigsqr));
 cout << "the j= " << s << " k = " << k[s] << endl;
 cout << "the j= " << s << " omega = " << omega[s] << endl;
 cout << "the j= " << s << " power spectrum coef = " <<
power_array[s] << endl;
 }

double WaveSum=0.0;
int j,i,m,q,r;

for(j=jdominant-((numberofterms-1)/2);j!=jdominant+((numberofterms-
1)/2)+1;j++)
 {
 for(i=0;i!=500;i++)
 {
 for(m=0;m!=1000;m++)
 {
 x[i]=L*i*1.0/1000.0;
 // t[m]=L*m*1.0/10.0;
 t[m]=(TwoPi/omegadominant)*(m*1.0/200.0);

wave_array[i][m]=wave_array[i][m]+(power_array[j]*cos((k[j]*x[i])-
(omega[j]*t[m])+RP[j]));
 if(j==jdominant+((numberofterms-1)/2))
 {
 out_array[i][m]=wave_array[i][m];
 WaveSum+=(wave_array[i][m]*wave_array[i][m]);
 }
 }
 }

 }
cout << "Wave RMS is " << sqrt(WaveSum/500000)<< endl;
double sigma,a,b;
cout << "Enter the RMS of the noise:" <<endl;
cin >> sigma;

 31

outfile.open(outfilename, ios::out);
for(q=0;q!=500;q++)
 {
 for(r=0;r!=1000;r++)
 {
 a = ran1(seedpoint);
 b = ran1(seedpoint);
 outfile << out_array[q][r]+ sigma*sqrt(-
2.0*log(a))*cos(2.0*M_PI*b) << "\t" ;

 }
 outfile << endl;
 }

return 0;
}

Appendix 4 – Space-Time Correlation (C++):

//CORRELATION FIELD CONSTRUCTOR

#include <iostream.h>
#include <fstream.h>
#include <math.h>

int main()
{
 double data[501][1001]={0.0};
 double r_array[400][900]={0.0};
 double r_sum=0.0;
 double r_max=0.0;
 double r_minusmax=0.0;
 double sx, sy, sxy, sx2, sy2;
 fstream infile;
 fstream outfile;
 char outfilename[200];
 char infilename[200];
 cout << "Enter input filename:" << endl;
 cin >> infilename;
 cout << "Enter output filename:" << endl;
 cin >> outfilename;
 int N=10000;
 int i,j,n,k,s,r;
 cout << "Reading in data......" << endl;
 cout << "Please Wait" << endl;

 infile.open(infilename, ios::in);
 for(int l=0;l!=500;l++)
 {
 for(int m=0;m!=1000;m++)
 {
 infile >> data[l][m];
 }
 }
 infile.close();

 32

 cout << "Computing Correlations...... " << endl;

 for(i=399;i!= -1;i--)
 {
 cout << "-" << endl;
 for(j=0;j!= 900;j++)
 {
 sx = 0.0;
 sy = 0.0;
 sxy = 0.0;
 sx2 = 0.0;
 sy2 = 0.0;
 for(n =499;n!= 399;n--)
 {
 for(k=0;k!= 100;k++)
 {
 sx += data[n][k];
 sy += data[n-i][k+j];
 sxy += (data[n][k]*data[n-i][k+j]);
 sx2 += (data[n][k]*data[n][k]);
 sy2 += (data[n-i][k+j]*data[n-i][k+j]);
 }
 }

 r_array[i][j] = ((N*1.0*sxy)-(sx*sy))/(sqrt((N*1.0*sx2)-
(sx*sx))*sqrt((N*1.0*sy2)-(sy*sy)));

 if((N*1.0*sx2)-(sx*sx)<=0 && (N*1.0*sy2)-(sy*sy)<=0)
 {
 cout << "exception by means of x and y" << endl;
 goto myLabel;
 }
 if((N*1.0*sx2)-(sx*sx)<=0)
 {
 cout << "exception by means of x" << endl;
 goto myLabel;
 }
 if((N*1.0*sy2)-(sy*sy)<=0)
 {
 cout << "exception by means of y" << endl;
 goto myLabel;
 }
 r_sum+=r_array[i][j];
 if(r_array[i][j]>r_max && (i!=0 && j!=0))
 r_max=r_array[i][j];
 if(r_array[i][j]<r_minusmax && (i!=0 && j!=0))
 r_minusmax=r_array[i][j];
 }
 }

cout << "Creating output file....." << endl;

myLabel:
 cout << " Writing output file...." << endl;

 33

outfile.open(outfilename, ios::out);
 for(s = 0; s != 400 ; s++)
 {
 for(r = 0; r != 900 ; r++)
 {
 outfile << r_array[s][r] << "\t";// << endl;
 }
 outfile << endl;
 }
outfile.close();

 cout << "r_max = " << r_max << endl;
 cout << "r_sum = " << r_sum << endl;
 cout << "r_minusmax = " << r_minusmax << endl;

return 0;
}

Appendix 5 – Histogram Binning of Correlation Function (C++):
//HISTOGRAM BINNING

#include <iostream.h>
#include <fstream.h>
#include <math.h>

int main()
{
 double data[501][1001]={0.0};
 double r_array[400][900]={0.0};
 double out_array[400][900]={0.0};
 double r_sum=0.0;
 double r_max=0.0;
 double r_minusmax=0.0;
 double sx, sy, sxy, sx2, sy2;
 fstream infile;
 fstream outfile;
 char outfilename[200];
 char infilename[200];
 cout << "Enter input filename:" << endl;
 cin >> infilename;
 cout << "Enter output filename:" << endl;
 cin >> outfilename;
 int N=10000;
 int i,j,n,k,s,r;
 int counttwo,countone;

 unsigned long int counterzero=0;
 unsigned long int counterone=0;
 unsigned long int countertwo=0;
 unsigned long int counterthree=0;
 unsigned long int counterfour=0;

 cout << "Reading in data......" << endl;
 cout << "Please Wait" << endl;

 infile.open(infilename, ios::in);

 34

 for(int l=0;l!=500;l++)
 {
 for(int m=0;m!=1000;m++)
 {
 infile >> data[l][m];
 }
 }
 infile.close();

 cout << "Computing Correlations...... " << endl;

 for(i=399;i!= -1;i--)
 {
 cout << "-" << endl;
 for(j=0;j!= 900;j++)
 {
 sx = 0.0;
 sy = 0.0;
 sxy = 0.0;
 sx2 = 0.0;
 sy2 = 0.0;
 for(n =499;n!= 399;n--)
 {
 for(k=0;k!= 100;k++)
 {
 sx += data[n][k];
 sy += data[n-i][k+j];
 sxy += (data[n][k]*data[n-i][k+j]);
 sx2 += (data[n][k]*data[n][k]);
 sy2 += (data[n-i][k+j]*data[n-i][k+j]);
 }
 }

 r_array[i][j] = ((N*1.0*sxy)-(sx*sy))/(sqrt((N*1.0*sx2)-
(sx*sx))*sqrt((N*1.0*sy2)-(sy*sy)));

 if((N*1.0*sx2)-(sx*sx)<=0 && (N*1.0*sy2)-(sy*sy)<=0)
 {
 cout << "exception by means of x and y" << endl;
 goto myLabel;
 }
 if((N*1.0*sx2)-(sx*sx)<=0)
 {
 cout << "exception by means of x" << endl;
 goto myLabel;
 }
 if((N*1.0*sy2)-(sy*sy)<=0)
 {
 cout << "exception by means of y" << endl;
 goto myLabel;
 }
 r_sum+=r_array[i][j];
 if(r_array[i][j]>r_max && (i!=0 && j!=0))
 r_max=r_array[i][j];
 if(r_array[i][j]<r_minusmax && (i!=0 && j!=0))
 r_minusmax=r_array[i][j];
 }

 35

 }

cout << "Creating output file....." << endl;

for(counttwo = 0; counttwo != 400 ; counttwo++)
 {
 for(countone = 0; countone != 900 ; countone++)
 {
 if(r_array[counttwo][countone] <= r_max-((4.0/5.0)*r_max))
 {
 out_array[counttwo][countone]=1.0;
 counterone++;
 }
 if(r_minusmax-((1.0/5.0)*r_minusmax) >
r_array[counttwo][countone])
 {
 out_array[counttwo][countone]=9.0;
 countertwo++;
 }
 if(r_minusmax-((1.0/5.0)*r_minusmax) <
r_array[counttwo][countone] &&r_array[counttwo][countone] > r_max-
((4.0/5.0)*r_max))
 {
 out_array[counttwo][countone]=5.0;
 counterthree++;
 }
 if(counttwo==countone)
 {
 out_array[counttwo][countone]=13.0;
 counterfour++;
 }
 }
 }
myLabel:
 cout << " Writing output file...." << endl;

outfile.open(outfilename, ios::out);
 for(s = 0; s != 400 ; s++)
 {
 for(r = 0; r != 900 ; r++)
 {
 if(out_array[s][r]==0.0)
 counterzero++;
 outfile << r_array[s][r] << "\t";// << endl;
 }
 outfile << endl;
 }
outfile.close();

cout << "no. in 0 = " << counterzero << endl;
cout << "no. in 1 = " << counterone << endl;
cout << "no. in 2 = " << countertwo << endl;
cout << "no. in 3 = " << counterthree << endl;
cout << "no. in 4 = " << counterfour << endl;
cout << "r_max = " << r_max << endl;
cout << "r_sum = " << r_sum << endl;

 36

cout << "r_minusmax = " << r_minusmax << endl;

return 0;
}
Appendix 6 – Coarse Sampling – TOPEX/POSEIDON equator crossings in space-time:
Appendix 7 – Sparse Sampling (C++):
Distance (km) Time Lag (min)

37787.5859 10736.938

37945.45928 5733.8623

38103.12115 730.7866

38260.99452 10006.1516

38418.65639 5003.076

38576.52977 0.0003

38734.19164 9275.3653

38892.07615 4272.2896

39049.73801 13547.6547

39207.62252 8544.579

39365.28439 3541.5033

39523.1689 12816.8684

39680.83077 7813.7926

39838.71528 2810.717

39996.37715 12086.082

40154.26165 7083.0063

40311.92352 2079.9306

40469.80803 11355.2957

40627.4699 6352.22

40785.35441 1349.1443

40943.00514 10624.5093

41100.88965 5621.4336

41258.55152 618.358

41416.4249 9893.723

37787.5859 25015.379

37945.45928 20012.3033

38103.12115 15009.2276

38260.99452 24284.5926

38418.65639 19281.517

38576.52977 14278.4413

38734.19164 23553.8063

38892.07615 18550.7306

39049.73801 27826.0957

39207.62252 22823.02

39365.28439 17819.9443

39523.1689 27095.3094

39680.83077 22092.2336

39838.71528 17089.158

39996.37715 26364.523

40154.26165 21361.4473

40311.92352 16358.3716

40469.80803 25633.7367

40627.4699 20630.661

40785.35441 15627.5853

40943.00514 24902.9503

41100.88965 19899.8746

41258.55152 14896.799

41416.4249 24172.164

37787.5859 39293.82

37945.45928 34290.7443

38103.12115 29287.6686

38260.99452 38563.0336

38418.65639 33559.958

38576.52977 28556.8823

38734.19164 37832.2473

38892.07615 32829.1716

39049.73801 42104.5367

39207.62252 37101.461

39365.28439 32098.3853

39523.1689 41373.7504

39680.83077 36370.6746

39838.71528 31367.599

39996.37715 40642.964

40154.26165 35639.8883

40311.92352 30636.8126

40469.80803 39912.1777

40627.4699 34909.102

40785.35441 29906.0263

40943.00514 39181.3913

41100.88965 34178.3156

41258.55152 29175.24

 37

//CORRELATION FIELD CONSTRUCTOR SPARSE SAMPLING

#include <iostream.h>
#include <fstream.h>
#include <math.h>

int main()
{
 double data[501][1001]={0.0};
 double r_array[400][900]={0.0};
 double r_sum=0.0;
 double r_max=0.0;
 double r_minusmax=0.0;
 double sx, sy, sxy, sx2, sy2;
 int samplespace=0;
 int sampletime=0;
 fstream infile;
 fstream outfile;
 char outfilename[200];
 char infilename[200];
 cout << "Enter input filename:" << endl;
 cin >> infilename;
 cout << "Enter output filename:" << endl;
 cin >> outfilename;
 cout << "Enter a time sparsity index:" << endl;
 cin >> sampletime;
 cout << "Enter a space sparsity index:" << endl;
 cin >> samplespace;

 int N=10000;
 int i,j,n,k,s,r,l,m;
 int q=0,t=0;
 cout << "Reading in data......" << endl;
 cout << "Please Wait" << endl;

 infile.open(infilename, ios::in);
 for(l=0;l!=500;l++)
 {
 for(m=0;m!=1000;m++)
 {
 infile >> data[l][m];
 }
 }
 infile.close();

 cout << "Computing Correlations...... " << endl;

 for(i=399;i > -1;i-=samplespace)
 {
 cout << "-" << endl;
 for(j=0;j < 900;j+=sampletime)
 {
 sx = 0.0;
 sy = 0.0;
 sxy = 0.0;
 sx2 = 0.0;

 38

 sy2 = 0.0;
 for(n =499;n > 399;n-=samplespace)
 {
 for(k=0;k < 100;k+=sampletime)
 {
 sx += data[n][k];
 sy += data[n-i][k+j];
 sxy += (data[n][k]*data[n-i][k+j]);
 sx2 += (data[n][k]*data[n][k]);
 sy2 += (data[n-i][k+j]*data[n-i][k+j]);
 }
 }

 r_array[q][t] = ((N*1.0*sxy)-(sx*sy))/(sqrt((N*1.0*sx2)-
(sx*sx))*sqrt((N*1.0*sy2)-(sy*sy)));

 if((N*1.0*sx2)-(sx*sx)<=0 && (N*1.0*sy2)-(sy*sy)<=0)
 {
 cout << "exception by means of x and y" << endl;
 goto myLabel;
 }
 if((N*1.0*sx2)-(sx*sx)<=0)
 {
 cout << "exception by means of x" << endl;
 goto myLabel;
 }
 if((N*1.0*sy2)-(sy*sy)<=0)
 {
 cout << "exception by means of y" << endl;
 goto myLabel;
 }
 r_sum+=r_array[q][t];
 if(r_array[q][t]>r_max && (i!=0 && j!=0))
 r_max=r_array[q][t];
 if(r_array[q][t]<r_minusmax && (i!=0 && j!=0))
 r_minusmax=r_array[q][t];
 t++;
 }
 q++;
 }

cout << "Creating output file....." << endl;

myLabel:
 cout << " Writing output file...." << endl;

outfile.open(outfilename, ios::out);
 for(s = 0; s != q ; s++)
 {
 for(r = 0; r != t ; r++)
 {
 outfile << r_array[s][r] << "\t";// << endl;
 }
 outfile << endl;
 }
outfile.close();

 39

 cout << "r_max = " << r_max << endl;
 cout << "r_sum = " << r_sum << endl;
 cout << "r_minusmax = " << r_minusmax << endl;

return 0;
}

Appendix 8 – Random Number Generator (C++):

#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

float ran1(long *idum)
{
 int j;
 long k;
 static long iy=0;
 static long iv[NTAB];
 float temp;

 if (*idum <= 0 || !iy)
 {
 if (-(*idum) < 1) *idum=1;
 else *idum = -(*idum);
 for (j=NTAB+7;j>=0;j--)
 {
 k=(*idum)/IQ;
 idum=IA(*idum-k*IQ)-IR*k;
 if (*idum < 0) *idum += IM;
 if (j < NTAB) iv[j] = *idum;
 }
 iy=iv[0];
 }
 k=(*idum)/IQ;
 idum=IA(*idum-k*IQ)-IR*k;
 if (*idum < 0) *idum += IM;
 j=iy/NDIV;
 iy=iv[j];
 iv[j] = *idum;
 if ((temp=AM*iy) > RNMX) return RNMX;
 else return temp;
}

 40

References:

Apel, J.R. Principles of Ocean Physics. Academic Press: London, 1987.

Benada, Robert J. Merged GDR (TOPEX/POSEIDON) Generation B: User Handbook.
Physical Oceanography Distributed Active Archive Center, Jet Propulsion Laboratory:
California, 1997.

Berger, Neil. “Derivation of Approximate Long Wave Equations in a Nearly Uniform
Channel of Approximately Rectangular Cross Section,” in SIAM Journal of Applied
Mathematics. Vol. 31, No. 3, November 1976.

Brooks, Ronald L., Dennis W. Lockwood, and Jeffrey E. Lee. “Land Effects on TOPEX
Radar Altimeter Measurements in Pacific Rim Coastal Zones,” from the Laboratory for
Hydrospheric Processes, Wallops Flight Facility, NASA Goddard Space Flight Center,
Wallops Island, VA 23337 USA.

Cane, Mark A., and E.S. Sarachik. “Forced Baroclinic Ocean Motions,” a three part
series in Journal of Marine Research. Vol. 34, 35, 37.

Kamenkovich, V.M. Fundamentals of Ocean Dynamics. Elsevier scientific Publishing
Company: New York, 1977.

Kaufman, A.N., J.J. Morehead, A.J.Brizard, and E.R.Tracy. “Mode Conversion in the
Ocean,” To appear in the Journal of Fluid Mechanics.

Kraus, Eric B. and Joost A. Businger. Atmosphere-Ocean Interaction. Oxford University
Press: New York, 1994.

Ocean Wave Measurement and Analysis. Edited by Billy L. Edge and J. Michael
Hemsley. International Symposium on Ocean Wave Measurement and Analysis with the
American Society of Civil Engineers: Reston, 1998. 2 volumes.

Pedlosky, Joseph. Geophysical Fluid Dynamics. Springer-Verlag: New York, 1979.

Radar Scattering from Modulated Wind Waves. Edited by G.J. Komen and W.A. Oost.
Kluwer Academic Publishers: London, 1989.

Sciremammano, Frank. “Notes and Correspondence: A Suggestion for the Presentation
of Correlations and Their Significance Levels,” in Journal of Physical Oceanography.
Volume 9, November 1979.

The data from the satellite is obtained on CD-ROM from the JPL and NASA website,
http://topex-www.jpl.nasa.gov/ on TOPEX/POSEIDON. Each CD has three 9.92 day
cycles on it, each one consisting of 254 tracks with known equatorial passing longitudes.

 41

Software developed by JPL (in C) is provided to decompress and label the data and a
hard-copy handbook is provided to explain the labels and general organization.

