An Algorithm to Resolve Dead Blocks in the

Radiative-¢ Experiment Software

A senior project submitted in partial fulfillment of the requirements
for a

Bachelor of Science in Physics

from the College of William & Mary in Virginia,

by

Adam P. Gurson

Project Advisor: Dr. David Armstrong

Contents

1 INTRODUCTION 3
2 BASIC THEORY 4
3 THE RADPHI EXPERIMENT 5
4 THE SOFTWARE 7
5 THE CLUSTERIZER 13
6 OUR GOAL 14
7 LOCATING DEAD BLOCKS 16
7.1 The Base Test Events 17
7.2 The LGD Monitor Events 20
7.3 Groups o o 21
7.4 The Algorithm 23

8 THE 1ST ORDER DEAD BLOCK ADJUSTMENT ALGORITHM 26

8.1 Required Input and Provided Output 26
8.2 The Algorithm 29
8.3 Additional Considerations 30
9 RESULTS 33
10 REFERENCES 36

1 INTRODUCTION

There are two scalar mesons [1], the isoscalar f,(975) and the isovector ag(980), which
lately have been receiving a great deal of attention from many particle physicists.
Having been incorporated into the particles of the subatomic realm, they were long
thought to belong to the Py gq scalar nonet. However, there have been many subtle
inconsistencies with this scenario, and the designation has come under heavy inquiry.
For instance, the f3(975) and the a(980), are fairly light particles, having respective
masses of 975 MeV/c? and 980 MeV/c?. Tt is unusual for them to be placed in this
category when its strange member is the lightest scalar kaon, the Kj(1430), having
a mass of 1430 MeV/c?. While looking for a more suitable model, these light-weight
particles have been suggested to be 4-quark states (¢?¢*) or even effective molecules
(KK), and Quantum Chromo-Dynamics does allow the existence of such particles.
While many different models for these particles have been proposed, no one model
has proven conclusive.

The purpose of this computer software-based research is to aid in the evaluation
and interpretation of data to be collected in the next phase of an experiment currently
in production in Hall B of Jefferson Laboratory by the Radiative-¢ group. The
primary goal of the experiment is to empirically determine the branching ratios of

the two decays
¢ = 1fo = ymm (1)
and

¢ — yag — ynm. (2)

It is theorized [2] that different models for the f, and ay will yield a different result
for the ratio of these respective branching ratios. If an empirical ratio is determined,
true insight into the quark-gluon makeup of the f, and ay may be achieved.

The software implemented in this research will allow real-time and post-evaluation
of the data collected. By using a graphical interface designed to emulate the real
components of the detector used in the experiment, the software provides greater

ease of interpretation and manipulation of the Radiative-¢ experiment.

2 BASIC THEORY

The makeup of the fy and ag could be solely quark-based (standard model or 4-q
bag), solely gluon-based (a “glueball”), a hybrid of the two (such as a ¢gg), or even a
mesonic molecule (KK). Each of these models would necessarily behave differently
in reference to branching ratios under the Okubo-Zweig-lizuka (OZI) rule [3]. Several

calculations have been performed [2,4] to predict the ratio

BR(¢ — ap?)
BR(¢ — foy).

For instance, if the f; were a quark-based particle such as 3s, its radiative decay

(3)

branching ratio is expected to be ~107°. Now, as Ref. [2] suggests, it is possi-
ble to compare this model against one where the fy is a glueball, and, to follow
OZI-violation rules, this requires the glueball-quark mixing angle to be less than

[T(fo — am) /T(3Py — =m)]z. Simplifying:

I'(¢ — (glueball)y) < % T(¢ — fo(quark)y)
< 21—0 -T'(¢p = fo(quark)y),

shows that we would expect the branching ratio to be an order of magnitude less
for the glueball model than for the standard quark model. Continuing this method,

predicted values, such as those found in Table 1 [5], have been obtained.

model %
quark model ~0

K K molecule 1

4-q bag 9

Table 1: Model predictions for ratios of radiative ¢-decay couplings.

While a large amount of theoretical work has been accomplished, conclusive empir-
ical data on the true branching ratios is still lacking. Some preliminary measurements
[4, 6] have been made by other groups along with accompanying analysis of the re-
spective results, however the next phase of the Radphi experiment is anticipated to

be more enlightening.

3 THE RADPHI EXPERIMENT

As mentioned above, the primary goal of the Radphi experiment is to empirically
determine the branching ratios sought after in section 2 so that a better understanding
of the fy and ay makeup can be achieved [7]. The experiment can best be described
as consisting of three main parts: the creation of the ¢ particles, the main detector,
and the accompanying software package, which is the primary focus of my research.
To create an influx of ¢ particles, the experiment utilizes the Bremsstrahlung process

to create a “tagged” photon beam from Jefferson Lab’s continuous electron beam.

This photon beam is then incident upon a beryllium target, allowing the photons
to interact with the protons inside the beryllium. The reaction yp — ¢p can then
provide the appropriate ¢ particles, which then go on to decay as expected. The
¢ particle has several different decay sequences, most of which are more common
than those from section 2. It is therefore necessary to discriminate between decay

sequences. Again, the two decays of interest are

¢ — vfo = Ym0 = Yy (4)

and
¢ — yag = yNm° = YYYYY. (5)

Therefore, a relevant decay consists ultimately of 5 photons and a proton. To detect
these properly, the detector consists of three main parts: barrel scintillator detector
(BSD), the charged particle veto wall (CPV), and the lead glass detector (LGD).

An experimental “event” consists of a time-slice of particle interactions between
the separate detectors. Ideally, all interactions will be the result of one ¢ decay. The
BSD is a barrel of 48 scintillator counters in 3 layers surrounding the beryllium target.
For an event to be valid, a recoil proton from the yp — ¢p decay must be detected
by one of the scintillators in each layer.

The LGD is a series of 784 lead glass blocks, 628 of which are connected to a
photomultiplier tube sitting downstream of the BSD. The purpose of the LGD is
to detect the 5 remaining photons from the ¢ decay (actually, by this time, the
5 remaining photons have themselves radiated into a “shower” of many localized

photons [8] which are to then be reconstructed by means of the algorithm to be

described in section 5). The LGD is used to detect the energy and spatial vector
coordinates of the incident photons.

In an attempt to protect the experiment from incident charged particles which can
interfere with the LGD, the CPV is placed just upstream of the LGD. It is designed
to detect any charged particles which have entered the beam area and may falsely
interact with the LGD, yielding misleading results.

Clearly, the lifetime of the fy and ag are too short (~1072% s) to detect these par-
ticles directly. All of the data of interest consists of only the 5 photons which are left
behind. It is therefore necessary to “rebuild” these photons into a “pre-decay” parti-
cle and establish their connection with either an f;, ag, some particle corresponding
to their respective decays, or none of these. In essence, using conservation of energy
and momentum, the photons detected by the LGD are to be combined until their to-
tal energy resembles the sought after particle. This “rebuilding” method has already
been successfully used in other similar experiments [4, 6, 9] and some preliminary
results for the Radphi experiment based on this technique are available [5].

Once all of these ¢-decays have been properly identified, it will be possible to
empirically derive real values for BR(¢ — foy) and BR(¢ — ag7), thereby discrimi-

nating among the many proposed models for the f, and ay.

4 THE SOFTWARE

The data collected during the experiment are initially in a very terse, encoded state,

which is not easy to directly comprehend, consisting of calibration constants, various

detector channel hits, and other information relevant to specific run setups and events.
The purpose of the software is to aid the researcher in reorganizing this data into
individual records from which it can be easier to grab the necessary information, as
well as providing the user with a graphical interface designed to recreate any specific
recorded event. The graphical interface can be used to evaluate the data quickly
while it is being obtained. It uses special algorithms to quickly accomplish much of
the photon “rebuilding” process, allowing the researcher to easily identify initial decay
sequences as well as faulty data, indicating a possible need for detector readjustment.

The software is a suite of programs written in ANSI C which was created by many
different people at different times for different needs. Since its conception, the code
has grown, and the different parts of the code have been incorporated together into
what is now to be used for the next phase of the Radphi experiment. This new version
consists of an analytical side and an interactive side. The analytical side is designed
to handle most of the “grunt” work such as transforming the initial mess of input data
into simple descriptive groups of human-readable information. The interactive side
is designed to graphically emulate each of the main detectors, allowing the researcher
to evaluate and manipulate the data in real-time.

Data from the Radphi experiment is stored in three main forms. The initial
form is the compact and terse raw data already described. This is taken and run
through a preprocessor program which “wraps” parts of the raw data with a special
C data structure. This data is considered packed and cannot be directly read by the
graphical interface. The packed data can then be run through an unpacking program

which collects the data into “groups” in the form of C structures relevant to each

5] Rad Phi

| Filenane: r6550.itp Run: 6550 Physics Trigger online || File —| Hatch Up Trigger
Event nunber: B _I LG seale |ge]ect
Energy Calibrated data Goto event | Mext event B Connect

{in HeV)
400

|52 [

Real Horld X: 78.33 cn

Real Horld Y: 76.67 cn
Distance fron bean: 109.61 cn
Angle fron bean: 0.831 rad

300 =
] 5 Energy: 2.076 Ge¥Y Position X: -0.1

. l ey - ¥: 309

Energy: 1,026 Ge¥ Position X: -21.6
2 - —— T: 20,0

200 Energy: 0,391 Ge¥ Position X: 37.5
3 -1 ¥: -30.8

ZZH——"’

100

% Kinenatics of 0 marked photons:
-» Total energy: 0,0000 GeY
: — Invariant nass: 0,.0000 GeY
{Looking Downstrean) 5
0 AN Enerey: 120 t=Invariant; 0,0000 Ge¥
HAH Hass squared: 54
Troels C, Petersen, NBI/Jefferson Lab, June 1995
kel [HE]

Figure 1: The main window for the graphical interface program.

run and each event within each run. In this unpacked form, the grouped data can be
interpreted with greater ease by researchers, but its primary purpose is to now serve as
input to the user-interface graphical data-analyzing program. Once given input data
for a specific run, this program will display all hits collected on the various detectors
by means of a simple color-coding scheme based on energy. Also, once the raw data
has been drawn out, the code continues to run a clusterizing algorithm (described
in section 5) which attempts to reconstruct the shower left by the 5 final photons.
These clusters can then be analyzed and combined directly by the researcher, allowing
immediate insight into the data.

Figure 1 shows the main window for the graphical interface program [10]. Each
display corresponds to a specific event of a specific run, labeled at the top. For in-

stance, this example is event number 6 of run number 6550. The left side of the

display represents the LGD and the modules inside it which are connected to pho-
tomultiplier tubes. The view is looking down the beam (the z-axis). A hit in a
photomultiplier tube is represented by a coloring of the corresponding module. The
different colors represent the energy of the hit on a scale located to the left. Here
we see a few localized photon “showers” have triggered hits on the LGD (a pedestal
energy level corresponding to the ambient noise in Hall B is subtracted from all mod-
ules to prevent the LGD display from having an overall low-energy pink tint). The
clusterizing algorithm will then attempt to reconstruct showers that could have been
caused by incident photons. When a cluster is found, a corresponding circle is draw
on the display, centered at the hit location of the incident photon (weighted by energy
distribution), and with a radius proportional to the energy of the reconstructed pho-
ton. The display also allows the user to select and group clusters, whose combined
kinematic data is then displayed on the right side of the screen. This method allows
for an easy detection of possible incident 7% or n particles, implying the relevant decay
sequences.

The BSD is “rolled out” by the software and shown in Figure 2. There are
three lines of detectors, vertical (corresponding to the downstream direction) and
both diagonal directions. A colored-in section corresponds to a hit somewhere in the
corresponding line of the detector. To pinpoint the location of a recoiled proton, one
locates the triangular section of the display where all three directions are colored.
Multiple charged particle hits in the detector can further be analyzed for relevance.
If no proton is detected, the data for that event could be defective.

As was mentioned above, if a charged particle reaches the LGD, it could trigger

10

Barrel Scintillator Detector {(BS0O)

Event nunber: b

==

Figure 2: The “rolled out” Barrel Scintillator Detector (BSD).

a misleading hit, hence the presence of the CPV, which is emulated by the computer
program as shown in Figure 3. The CPV display is the same size as the LGD display,
allowing the researcher to quickly relate information between the two. Color-coded
by energy, a hit in one of the CPV target sections (separated by horizontal black
lines) corresponds to a possible interfering charged particle. If a strong hit is found
in a corresponding section of the LGD, it can most likely be discarded as a charged
particle.

Finally, Figure 4 illustrates a display which can be used to track the properties
of the incident photon beam. The energy hits drawn correspond to the energies of
residual electrons left during the Bremsstrahlung process. This information aids the
researcher by predicting the necessary total energy calculated in the reconstruction
of the 5 final photons.

Together, this software package resides on the machines at Jefferson Lab and can

11

Charged Particle Yeto (CPY)

Event nunber: b

[T

Figure 3: The computer depiction of the CPV.

Photon

Tagger

Event nunmber: b

Right T-counters

Hizh Energy

Left T=counters

Low Energy

Figure 4: The computer window dealing with the tagged photon beam.

12

be used for direct analysis of the data during experimentation or for post-analysis

purposes.

5 THE CLUSTERIZER

It has already been established that when a photon enters the LGD, it can radiate
into a shower of low-energy photons whose total energy is equal to the energy of the
incident photon. This occurs because the incident photon creates an electron-positron
pair. This electron then, through the Bremsstrahlung process, radiates another pho-
ton, which then radiates another pair, and so on. This can again be seen by noting
the cluster of colored squares in the upper LGD display in Figure 1. A section of
code known as the “clusterizer” attempts to locate these groups of hits and associate
them with one or more incident photons. Once these groups are found, their data are
combined and marked appropriately on the LGD display.

The clusterizer works in three steps. First, it searches the LGD module by module
for the greatest energy hit. It then adds in the 8 surrounding modules and a primary
cluster is formed. These modules are then excluded, and the search begins again. This
continues until there are no hits greater than 350 MeV (this number was based on an
empirical study and appears to generate a reasonable ratio of real to fake clusters).

The next step considers the 16 blocks around any primary clusters. If a hit is
found in this area, the module is added to the current cluster. If one of these 16
blocks is shared by two or more clusters, the energy in the module is divided among

the sharing clusters in proportion to their energy. Finally, the first step is repeated,

13

but this time the lower threshold is reduced to 150 MeV.
Once the clusters are formed, the following formula is used to determine their
respective “center”, or point where the incident photon would have hit had it not

dispersed into a shower:
N
Te = N)
2 =1 Wy (Ej)

(6)
where z. is the assumed z-coordinate of the center, N is the number of modules
associated with the cluster, z; is the z-coordinate of the center of the j-th module,
and w;() is a function of the energy associated with the j-th module designed to
create a logarithmic weighting scheme. There is also the appropriate similar equation
for the y-coordinate of the center. All of the relevant calculated information is then
packed together and added as a new data group associated with the current event. It
is this data group which is then read by the LGD display. For more information on

the clusterizer, see [8].

6 OUR GOAL

As was mentioned above, the code written for this software project is really a merging,
modification, and addendum to different sources of pre-written code. Many changes
have been added to aid in the code’s usefulness, and more changes are planned for
future modification.

Originally, the Event Display program could only accept unpacked, grouped data
as input. If packed data was to be analyzed, it had to be preprocessed into unpacked

data by a program which would also generate a great deal of correct, yet irrelevant,

14

data. The actual unpacking code has been incorporated into the Event Display so that
if packed data is read, the unpacking will occur automatically without the need for
a preprocessor. Also, while the clusterizer had been written, it was implemented for
simulated data which used a different format (this was originally written well before
real data were available). The clusterizer has now been fully incorporated into the new
version of the Event Display, providing relevant data for the LGD display. Finally,
there are many different event types which do not correspond to real event data,
but instead to calibration information, etc. The code was changed to automatically
detect these groups and skip over them when drawing to the Event display (rather
than drawing a blank LGD).

While these aforementioned changes have been beneficial, the main focus of this
project has been to develop an algorithm which will account for dead LGD blocks. At
any given time, a number of the LGD photomultiplier tubes may not be functioning
properly. These blocks will not respond to incident photon showers, leaving a blank
space in the LGD display. This empty reading is what suggests the name dead blocks.

As mentioned above, when a photon is incident on the LGD, it showers into many
readings on separate photomultiplier tubes in different LGD channels. These channels
are then clusterized together by the clusterizer described in the previous section to
represent groups of energy readings associated with a specific incident photon. If,
however, the photon showers into an area which includes dead blocks, some energy
associated with that photon will not be read and therefore left out of the cluster.
When these energies are then recombined to build up the incident photon, then

energy will be too small, creating a skew in the data. Our main goal for this research

15

is to design and incorporate an algorithm which will go through each of the clusters
returned by the clusterizer and look for dead blocks. Once found, the algorithm will
use energy readings from surrounding cluster blocks to extrapolate an energy level for
any dead blocks. Those dead blocks, along with their new significant energy readings,
would then be incorporated into the cluster.

The following sections describe the process involved in searching for dead blocks

and the algorithm created to estimate a first-order energy approximation for them.

7 LOCATING DEAD BLOCKS

The first necessary step to extrapolating data into dead blocks is to locate the dead
blocks. For this process, a separate algorithm was written. Below is a general de-
scription of our algorithm.

While most of the time the LGD is used to detect incident photons, there are other
events which occur at regular intervals during an experimental run. These events are
not based on photon information, but instead are a type of self-diagnostic which can
be used to probe the state of the photomultiplier tubes, electronics, and cables used
in the LGD. These events yield data that relate directly to the function of the LGD.
While looking for dead blocks, we are interested in two particular types of diagnostic
events: Base Test Events, and LGD Monitor Events. The data collected from these
two events are crucial to locating dead blocks. Therefore, we describe these events in

greater detail below.

16

7.1 The Base Test Events

Each LGD channel detects incident photon information via a specific photomultiplier
tube associated with each channel. This photomultiplier tube works with a chain of
dynodes inside, each set to a specific voltage. An incident photon interacts with the
photocathode in the tube, which creates a large shower of electrons within the tube.
These electrons each create a new shower within the first dynode, and this process
continues throughout the length of the tube. The final shower is then detected by the
base of the tube, which produces a voltage pulse which can then be digitized by an
analog-to-digital converter (ADC). The chain of voltage on the detectors determines
the sensitivity of the tube: the higher the voltage placed on the chain, the more
sensitive the tube is for detecting incident particles.

The voltages for these tubes are set remotely by a serial line cable which runs
into the base of the tubes. It is also possible via this cable to interrogate the base of
the tubes to ensure that they are in fact set at the designated voltage. During this
test, the base will respond with a pulse containing a signal voltage proportional to
the voltage on the base. If, for some reason, the tube is not functioning properly and
the voltage on the tube is zero, then the LGD block connected to the photomultiplier
tube will be unresponsive to incident photons and should therefore be marked dead.
We could therefore use the base test data to look for blocks which return a very low
incorrect voltage when interrogated and mark them dead. An example of a base test
event and how it appears when viewed with the LGD display is shown in Figure 5.

While it is true that a dead block would show an unusually low reading during

17

Filenane: rb550,itp Run: B550 Basetest/scaler Trigger
Event nunber: 442

{Looking Downstrean}

Figure 5: The LGD depiction of a base test event.

18

this test, we must be careful when making assumptions about the state of every block
which returns an anomalous reading. This is because that a base could actually fail
for other reasons, when, in fact, the photomultiplier tube is functioning perfectly.
There are three basic scenarios which could cause a base test to fail, and we now look
at each one.

First, we consider the scenario already discussed. We have a photomultiplier tube
with a base that is truly dead and therefore cannot detect incident particles. We
interrogate the base with the base test signal, and the base correctly returns a very
low reading, being dead and having no voltage on it. In this instance, the test has
provided us with information useful for correctly identifying dead blocks.

Second, we consider another scenario. The serial cable that collects data from the
base of the photomultiplier tube is connected at the other end to an Analog to Digital
Converter (ADC), which actually writes records the data into a computer-readable
format. It is possible that the base of the tube is actually working perfectly, but the
serial cable, or its connection to the ADC, could be malfunctioning. In this case,
when probed by a base test, the result would come back as a zero voltage, which is
misleading, although still useful for our purposes. This is because even though the
photomultiplier tube is collecting data properly, the ADC would not be able to record
any data taken by the photomultiplier tube, so the block would still effectively be,
and should be marked as, dead.

Finally, it was mentioned above that the base test uses a special independent
circuit in the base of the photomultiplier to return a relevant pulse during a base test

interrogation. It is possible that this circuit, itself, could be malfunctioning, while the

19

photomultiplier tube and base, functioning in a completely separate manner, could
still be working perfectly. A base test would still fail, however, for the circuitry used
to return a signal would not return anything, and the base test would interpret this
as a return of zero voltage. This case actually causes a significant problem with using
a base test to determine dead blocks. In this scenario, the block is not dead, and
will function normally during experimentation, but a base test alone would imply the
opposite. We have found that this scenario is actually quite common, and a majority
of blocks labeled dead by only this method will, in fact, be fine. Therefore, while the
base test does provide a good manner of double-checking the status of a block labeled
dead, it is still necessary to look for another primary way of identifying dead blocks.

We therefore consider the additional method in the next section.

7.2 The LGD Monitor Events

The LGD monitor event is designed to simultaneously subject every photomultiplier
tube in the LGD to a fairly uniform shower of light. All blocks that are functioning
properly should detect a significant positive energy value, while those blocks not
functioning properly will return a value of zero incident energy to the ADC.
Located just in front of the LGD is a sheet of Plexiglas, which is attached to a
laser light source. During an LGD monitor event, this laser fires light throughout
the Plexiglas which then deflects out and into the LGD, showering light across the
entire detector. This light is then detected by the LGD and recorded as data. While
the shower should be relatively uniform across the LGD, this is not exactly the case.

In the center of the Plexiglas, as with the LGD, is a hole two blocks by two blocks

20

to allow the particle beam to pass through the equipment. As these corners of the
Plexiglas, more light is deflected out and into the LGD. It is therefore likely to expect
an increase of overall energy around the center of the LGD which decreases radially.
The test is therefore not as uniform as we would like, although it is reasonable to
expect blocks which border each other to have similar energy values during this test.

Dead blocks are fairly easy to reliably locate during this test. At any given time,
the electronic noise created by the detector itself will create an overall base amount of
data in the LGD detectors. This pedestal amount, as it is called, usually has a value
of about 50 ADC units. This value is stored into a database, converted to MeV and
subtracted from each block automatically for data purposes. Since we are looking at
this data to find dead blocks, it is reasonable to assume that any block which yields
a value above 50 ADC units during an LGD monitor event is functioning properly,
while those blocks which are barely above the pedestal value are most likely dead.
Therefore the LGD monitor event is a good way to identify dead blocks. The base
test can then be used to verify the information. An example of an LGD monitor

event and how it appears when viewed with the LGD display is shown in Figure 6.

7.3 Groups

Before discussing the algorithm, it is important to briefly discuss the concept of
groups. A Group is a coding term for a collection of data relevant to a specific concept.
Technically, it is really a C structure containing processed data. By wrapping this C
structure into a group, the data within the group can be easily retrieved with easy-

to-use function calls, and a majority of the C notation can then be hidden from the

21

Filenane: rb550,itp Run: B550 LGD Honitor Trigger
Event nunber: 66

{Looking Dounstrean) \

Figure 6: The LGD depiction of an LGD monitor event.

22

user.

Our dead block location algorithm relies on the information stored in a specific
group: GROUP_LGD_ADCS. When energy information for a particular event is sent from
the LGD to the ADC, the ADC writes out energy information for each channel/block
in the LGD. It is this energy information, sorted by channel, which is then put into
a C structure and converted into the Group GROUP_LGD_ADCS. Therefore, this group
contains a C structure that contains, for every channel in the LGD, a field designating
the LGD channel number and another field containing the energy for that channel.
While the finer details of this group and groups in general are not crucial to the
understanding of the algorithms described here, it is important to realize that the
dead block algorithm is looking for energy and channel information to be in this

particular form.

7.4 The Algorithm

As was mentioned above, a given run of the experiment can contain many types
of data. It could be real event data, such as energy hits due to incident photons,
or diagnostic data such as base test and LGD monitor event readings. Our dead
block algorithm is only concerned with base test and LGD monitor events. Also, the
algorithm will only be run once per run number, so that any dead blocks found will
be labeled dead throughout the entire course of one run.

The algorithm begins for a given run number by scanning through the list of events
until it finds either a base test event or LGD monitor event. If it finds an event of

either type, it then locates the GROUP_LGD_ADCS group and reads in the energy value

23

associated with each channel for that event.

If this is a base test event, each block is checked to see whether or not it has
returned an energy value of 5 ADC units or less. If this is the case for a given block,
we assume the block to be dead during the duration of this event for reasons stated
in section 7.1. If this is an LGD monitor event and a given channel has returned
an energy value between 40 and 55 ADC units, inclusive, we assume the block to be
dead during the duration of this event for reasons stated in section 7.2.

It is now a good place to introduce the concept of base test points and LGD
monitor points. We will be looking over several base test and LGD monitor events
before any overall dead block decisions are made, so we keep a count of how many
times a given channel has been selected as dead for all of the tests. This is a point
count for each channel in each type of test. For example, if the algorithm is currently
scanning through the channels in a base test and channel 143 fulfills the criterion of
dead block, 1 base test point is added to block 143’s counter. A separate count is
made for LGD monitor events. Our algorithm continues this process until exactly 5
base test events and 5 LGD monitor events have been scanned for dead blocks.

After the algorithm has searched through all of the relevant events, it is actually
time to count up all of the points for each channel and determine which blocks should
be labeled dead for the entire duration of the run number. Let n be the number of
base test points a given channel has accumulated and m the number of LGD monitor
points a given channel has accumulated. The algorithm once again goes through each

channel in the LGD, and a block is labeled dead only if

an + fm > ¢, (7)

24

where a and [are integer weighting constants for each event type and c is a small

integer. For our research, we have found that good values are

a=1, =2, and ¢ =09. (8)

In other words, we weight finding a dead block during a LGD monitor event to be
twice as significant as finding a dead block in a base test event. This is because many
of the base test events can fail due to poor test circuitry in the photomultiplier base.
This would cause the block to appear dead when, in fact, this is not the case.

Any block fitting the criterion of equation (7) is labeled dead, and this information
is stored in a size 784 bitmap array (1 slot for each channel). If the block is dead, a
1 is entered in the block’s respective slot, otherwise a 0 is entered. This array is kept
in the Event Display code and is used to allow the creation of a new display button:
Dead Bks. When pushed, this button causes the location of all dead blocks to be
shown on the LGD display by drawing a slash through the relevant blocks.

Currently, this dead block algorithm is embedded completely within the Event
Display code. This forces the algorithm to be rerun every time a set of events for
a given run number is displayed. Eventually, this code will be moved to another
location, where it will be run before the LGD Display is used. For this reason, the
algorithm also stores dead block information by run number into a mapmanager
database. Again, this will eventually be the preferred means of retrieving dead block
information. For now, users using the LGD Event Display will notice a 20 to 30
second delay while a run number file loads. This covers the time needed for the

algorithm to find and scan 5 base tests and 5 LGD monitor events as well as to write

25

out the dead block information.

8 THE 1ST ORDER DEAD BLOCK ADJUST-

MENT ALGORITHM

Once we have located the dead blocks for a given run, the goal is to use the information
in an algorithm that will estimate a probable energy value for any dead blocks located
within a cluster for a given event. Clusters can literally be of any shape, so it is
difficult to create a general algorithm to solve this problem. It was therefore the goal
of this research to begin by providing a first-order correction to the problem. By a
first order correction, we mean only attempting to extrapolate values for dead blocks
located within the 8 blocks surrounding the center of the cluster. We assume that
a correction to these blocks would yield the most significant positive change in the

data. The following is a description of our 1st order correction algorithm.

8.1 Required Input and Provided Output

The algorithm which makes first order corrections to the dead blocks in clusters is
basically one modular C function. This section describes the input parameters that
the algorithm needs for execution as well as the output parameters returned by the
algorithm upon its completion.

Upon its completion, the clusterizer returns two types of C structures relevant to
the clusterized data: an 1gd_hits_t structure and an 1gd_clusters_t structure. The

1gd hits_t structure effectively contains two types of information. First, it contains

26

a variable, nhits, which holds the total number of channels present in any cluster
for the given event. Also, it contains a list of every block number and its respective
energy reading, sorted by cluster. For example, if nhits is 20, then 20 blocks of
the LGD are part of clusters for this event, and there is a list of 20 relevant block
numbers and their respective energies, all contained within the 1gd_hits_t structure.
As a final note on this structure, if a block is part of more than one cluster, then it
is counted twice in nhits and it is listed twice in the blocks list. This information is
clearly relevant, because it contains all energy information necessary to extrapolate
energies for dead blocks.

Second, we have the 1gd_clusters_t structure. The 1gd hits_t list of informa-
tion is helpful, but all of the hit information is stored in one structure and therefore
runs together. There is no way to look at this list by itself and determine how many
clusters there are in the list and where the information for one ends and the next one
begins. This is where the 1gd_clusters_t structure comes in. It contains information
relevant to each cluster, and where to look in the 1gd_hits_t structure for the proper
information. The 1gd_clusters_t structure contains information such as how many
total clusters there are, stored in the variable nClusters. Then for each cluster, it
contains the following information: the number of LGD blocks used in the cluster,
an index into the 1gd hits_t list that states where the first block for this cluster can
be found, flags (which can be set to certain values to tag certain clusters), a vector
stating the z, y, and z coordinates of the center of the cluster, the width of the cluster
(which is a variable parameterizing a given distance from the center in which most of

the cluster blocks can be found), and the total energy of the cluster (which is simply

27

the sum of all relevant energies in the 1gd hits_t list).

The information from these structures is usually wrapped into a group format
immediately upon its return from the clusterizer. However, our algorithm must deal
with this information directly, so this data should not be made into a group until
after our algorithm has run. Basically, our code has two input parameters, and it
returns two output parameters. The two input parameters should be a pointer to
the 1gd_hits_t structure and a pointer to the 1gd_clusters_t structure which have
been returned by the clusterizer. Our algorithm will then use this information along
with the information read in from the dead block database to find 1st order dead
blocks near clusters, give them an extrapolated energy, and then add them to the
clusters as described in the next section. Our algorithm will therefore return two new
structures, one a 1gd_hits_t and the other a 1gd_clusters_t. The user should pass
in a pointer to NULL pointers of the proper type, and the algorithm will then attach
the relevant information to them.

The new 1gd_hits_t structure will contain block number and energy information
for all of the old cluster blocks as well as information for any new blocks that were
once dead but now added to the cluster. This information will be properly sorted by
cluster. The new 1gd_clusters_t structure will be similar to the old 1gd_clusters_t
structure, except for 3 fields. If the algorithm adds blocks to a cluster, the field
containing the number of blocks for a given cluster will be incremented accordingly.
Also, the addition of new blocks for a cluster would most likely shift the list in the
lgd_hits_t structure, so the indexing information pointing to the beginning of each

cluster could change. Finally, the total energy of each cluster will most likely increase

28

after running through the algorithm, so this information is updated in the output
information.

In summary, an 1gd_hits_t structure and an 1gd_clusters_t structure get passed
in. They remain unaffected by our algorithm, which then passes out a new 1gd hits_t
structure and a new lgd_clusters_t structure. Note that our algorithm will only
make changes if a dead block is found to be one of the 8 blocks immediately surround-
ing the center block of a given cluster. Therefore, if there are no dead blocks in these
locations in any of the clusters, the output structures are guaranteed to be identical to
the input structures. After these new structures have been returned, it is the user’s
responsibility to wrap the 1gd_hits_t structure into an GROUP_LGD_CLUSTER_HITS

group and the 1gd_clusters_t structure into an GROUP_LGD_CLUSTER group.

8.2 The Algorithm

The algorithm begins by reading in the dead block information from the dead block
database. Once again, this information is based on run number and was written to
the database by the algorithm of section 7.4. This allows our algorithm to know
which of the LGD channels are dead.

After reading in the dead block information, the algorithm looks at each cluster
one at a time. It starts by retrieving the channel number of the center block of the
cluster. It then gets the channel numbers for the 8 blocks immediately bordering
the center block (if the center lies along an edge, there will obviously be less than 8
immediate neighboring blocks, but this does not affect the function of the algorithm).

Note that if a given block of the 8 is dead, the algorithm will necessarily be adjusting

29

its energy value. Be aware that these dead blocks may or may not be in the cluster
already (it is possible that the block could be dead yet have a finite energy reading
already, causing the clusterizer to include it in the cluster). If a dead block is not
already in the cluster, this algorithm will add it to the cluster, adjusting the new C
structures accordingly.

At this point, the locations of any 1st order dead blocks are known. The next
step is to determine a new energy value for each of the dead blocks and to adjust the
relevant data accordingly in the C structures. The simplistic algorithm that we have
chosen to do this is to take an average of the energy values of every 1st order block
already in the cluster that is not marked as dead. This energy value is then added
to the energies of any dead blocks already in the cluster. If there are 1st order dead
blocks not in the cluster, there energy is set exactly to this average value and the
block is added into the cluster.

Once this has been done for each cluster in the 1gd clusters_t structure, the
algorithm calculates the new total energies for each of the clusters and adjusts the
data accordingly. If any new blocks were added to any clusters, the new indexing

information is updated in the new 1gd_clusters_t structure.

8.3 Additional Considerations

While the algorithm can be considered a suitable 1st order correction to the dead
block problem, there are many subsequent additions which could be made to the
code to make the algorithm better.

For instance, consider the method of energy extrapolation for the dead blocks.

30

While averaging the non-dead blocks is a good 1st approximation, it does not take
into account the true center of the cluster. While we have identified the center block
and the eight 1st order blocks surrounding it, the clusterizer actually refines the
center of a cluster to a specific location within that center block. For instance, given
a block representing the center block of a cluster, the actual recorded center of the
cluster could be at the center of that block, in the upper right corner of that block,
or anywhere else within the block’s boundaries. Now, if we consider a case where the
true center of the cluster sits at the exact center of the center block, then it is safe to
assume that the incident photon struck near there and showered fairly equally among
the surrounding eight 1st order blocks. In this scenario, a simple average method
to determine dead block energies like the one used above should be a good method.
However, if the true center of the cluster were to lie in the upper right corner of the
center block, then we should assume that the 1st order blocks above and to the right
of the center block should be weighted more that the 1st order blocks below and to
the left. In this case, a simple average weights the lower left blocks too much and the
upper right blocks not enough. Using the same logic, we could see that a dead block
above and to the right of the center block should receive more energy than a block
below and to the left of the center block. This would require a separate extrapolation
calculation for each dead block within the cluster rather than a simple extrapolation
for all of the dead blocks.

Having made this extra consideration regarding the center, another need for a bet-
ter approximation can be suggested. Let us assume that the method of the previous

paragraph is used and the energies of the dead blocks are based on the exact location

31

of the cluster. We have already stated that adding energy to the dead blocks will
move the location of the exact center of the cluster (this is again calculated by the
weighting scheme mentioned in section 5). If we were now to throw out the energies
just calculated for the dead blocks and run the dead block algorithm again, the newly
calculated cluster center would now weight things differently than the previous run,
and we would end up with completely new energies for the dead blocks. These new
energies would again shift the center of the cluster. We could theoretically continue
this process of finding energies for dead blocks based on the cluster center, moving the
center, and then throwing out the calculated energies and starting again. Eventually,
however, it is assumed that this iteration process will eventually converge to a center
that will no longer shift upon the instance of a new iteration. This iteration process
would most like produce the best possible 1st order corrections.

While we have discussed only 1st order corrections, it is clear that the cluster
need not be refined to include only 1st order blocks. They may include many 2nd or
3rd order blocks (2 or 3 blocks away from the center block), and any of these higher
order blocks may also be dead. While it is likely that being farther away from the
center, these blocks will probably have a lower energy and therefore not contribute
much to the true energy and center of the cluster, 2nd or 3rd order corrections to the
dead block algorithm could be proposed and implemented to improve the correction

process further and produce better results.

32

9 RESULTS

We now present some preliminary results of these algorithms. We noted that in
section 7.4, the variables in equation 7 can be adjusted to make the dead block
location algorithm more conservative or more liberal. We believe that our values
provide a sufficient criterion. In Figure 7, we present Figures 5 and 6 again, but this
time we have placed a black line in each block that was labeled dead by the dead
block algorithm. Observing this figure, we can see a few attributes worth noting. In
the base test picture, there are many more blocks that appear white (assumed dead)
than actually have been labeled dead. This is a sign that, as mentioned above, only
using the base test as a method for locating dead blocks is not a good criterion. The
LGD monitor event is clearly more suitable, for the blocks that we could assume to
be dead and the labeling appear to coincide rather well. Having the base test there
for comparison is still necessary, however, for there are one or two blocks that appear
dead in the LGD monitor event that were actually functioning properly according to
the base test.

We ran our dead block energy adjustment algorithm and analyzed all two-cluster
events that were likely to be the result of a 7° or n decay. If our algorithm was to
be useful, we would expect that when the energies and other information of these

0 and

clusters were collected, we would achieve a better approximation to perfect 7
n particle information. We found that when we only adjusted the energies of the

dead blocks but did not recalculate the center position of the cluster, the results

obtained by our algorithm were actually less accurate than those collected prior to

33

Filenane: rb550,itp Run: 6550 Basetest/scaler Trigger

Event nunber: 442
300
200
100
{Looking Downstream}
0
Filenane: rb550,itp Run: 6550 LGD Honitor Trigger
Event nunber: 66
Energy
{in He¥}
400

200 \
100

{Looking Downstream)
1]

Figure 7: The LGD depiction of base test and LGD monitor events with lines through

blocks labeled dead by the algorithm.

34

the incorporation of our algorithm. This is understandable, however, for the center
of the cluster is directly connected to the momentum of the cluster. If we change
the energy of the cluster without changing the center accordingly, we are adjusting
the energy associated with a particle without changing its momentum. This would
therefore be expected to lead to erroneous results. A second version of the algorithm
in which the center of the cluster is recalculated based on the energy added to the
dead blocks has been implemented at the time of this project’s conclusion. However,
we have not been able to gather sufficient information to deduce the success of this
new adjustment. We do anticipate improvement, though. We also anticipate that if
the energy added to a given dead block is based on a logarithmic scale similar to the
equation used by the clusterizer to locate the center of a cluster, rather than on a
simplistic linear averaging scheme, the results obtained by the algorithm will achieve

a much higher level of success.

35

10 REFERENCES

[1]. L. Montanet et al, Review of Particle Properties, Phys. Rev. D50 (1994).

[2]. “SCALAR MESONS IN PHI RADIATIVE DECAY: THEIR IMPLICATIONS
FOR SPECTROSCOPY AND FOR STUDIES OF CP VIOLATION AT PHI FAC-

TORIES,” F.E. Close, Nathan Isgur, S. Kumano, Nucl.Phys., B389, 513 (1993).

[3]. S. Okubo, Phys. Lett. 5, 1975 (1963); Phys. Rev. D16, 2336 (1977); G. Zweig,
CERN Report No. 8419 TH 412, 1964 (unpublished); reprinted in Developments in
the Quark Theory of Hadrons, ed. D.B. Lichtenberg and S.P. Rosen (Hadronic Press,
Nonantum, MA, 1980); J. lizuka , K. Okada, and O. Shito, Prog. Theor. Phys.

Suppl. 37, 38 (1966).

[4]. “Production of Scalar K-bar K Molecules in ¢ Radiative Decays,” N.N.Achasov,

V.V.Gubin, V.I.Shevchenko, Phys.Rev. D56, 203 (1997).

[5]. “The Radphi Experiment at Jefferson Lab,” R.T. Jones, Presented at Hadron
’97 Biennial International Conference on Hadron Physics, Brookhaven National Lab-

oratory, Upton NY, August 25, (1997).

[6]. “LIGHTEST GLUEBALL AND SCALAR MESON NONET IN PRODUCTION
AND DECAY,” Wolfgang Ochs (Munich, Max Planck Inst.). MPI-PHT-99-40, Jul
1999. Talk given at International Europhysics Conference on High-Energy Physics

(EPS-HEP 99), Tampere, Finland, 15-21 Jul 1999.

[7]. The Radiative Phi Decay experiment Web Page,

http://www.jlab.org/~radphi/, May 2000.

36

[8]. R.A. Lindenbusch, Ph.D. thesis, Indiana University (1996).

[9]. “STUDY OF THE RADIATIVE DECAY PHI — — — > ETA GAMMA WITH
CMD-2 DETECTOR,” CMD2 Collaboration, R.R. Akhmetshin et al. Phys.Lett.

B460, 242 (1999).

[10]. The Event Display Web Page Web Page,

http://www.cebaf.gov/~radphi/Software/Event.html, May 2000.

[11]. Tom O’Connor’s Senior Research Thesis, College of William and Mary, 1997
(unpublished), and The RODD Web Page,

http://www.cebaf.gov/~radphi/Software/RODD.html, May 2000.

37

