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Abstract

High energy classical orbits of the Hydrogen atom in parallel electric
and magnetic fields are chaotic under certain field strengths. Ionization
times of orbits originating in chaotic regions of phase space are very sensi-
tive to initial conditions, and structure-within-structure is observed, sug-
gesting a fractal pattern. Chaotic classical orbits are associated with the
system’s heteroclinic tangle, and the structure of the tangle has been used
to describe the ionization process. Escape regions in the tangle have been
identified and their back-iterates shown to impose an exponential grid
on the surface of section in the vicinity of a stable manifold. This grid,
elsewhere discussed as a fractal tiling of phase space [1], is the physical
source of a generic exponential scaling found in the ionization times. Non-
generic features and their source have also been identified, but may not
yet be predicted. We give evidence that a graph of the ionization time
versus initial condition may be a fractal curve. We call this an epistrophic
fractal, characterized by multiple base structures which scale as a single
parameter. This is in contrast to a multifractal, which possesses a single

base structure and multiple scaling parameters.



Contents

1 Introduction

2 Background

2.1 The system

2.2 Chaotic motion in phase space . . . . . . . .. . ... ... ... ..

2.3 Ionization and the tent map . . . . . . . ... .. ... oL,

3 Motivations

3.1 Escape of high energy orbits . . . . . ... .. ... ...

3.2 Structure within structure . . . . . . . . . . . ...

The Heteroclinic Tangle

4.1 Landmarks in the Heteroclinic Tangle . . . . . . . ... ... ... ..

4.2 Recasting the

5 Scaling

escape time function . . . . . ... ... ... ... ..

5.1 'The scaling parameter alpha . . . . . .. . ... ..o

5.2 Scaling, escape, and the heteroclinic tangle . . . . . . .. ... .. ..

5.3 Non-generic traits . . . . . . . . ... oL

5.4 Generic traits

6 Summary

10

13

13

15

16

16

28

28

28

30

33

38

39



1 Introduction

This thesis is a theoretical investigation of the classical dynamics of Hydrogen in
parallel electric and magnetic fields. It is a continuation of work contained in the
undergraduate honors thesis of Abigail Flower. Specifically, our work has sought to
further understand the ionization times of this system. These times have sensitive
dependence on initial conditions, especially near discontinuities in the vicinity of
periodic orbits. Evidence of structure-within-structure indicates that the dependence
is a multifractal. In this work, we identify structures which repeat themselves on
all scales. Also, we identify structures which are nonrepeating, but which constitute

initial steps of subsequent repeating structures. [3].

2 Background

2.1 The system

It is reasonable to describe an electron of large principal quantum number classically.
[4] In such a description of the Hydrogen atom the electron moves in an orbit around
the proton, just as the planets around the sun. We consider such an atom (having been
excited, for example, by a laser pulse) in the presence of parallel electric and magnetic
fields. These electric and magnetic forces, together with the Coulomb attraction of
the nucleus, cause the equations of motion to be nonlinear. In addition, the parallel
nature of the fields allows the system to be studied in two dimensions.

The Hamiltonian of the system is [5]
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H = (27) +qV;fotal
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V;otal = VC’oulomb + ‘/electric

It is most convenient to study the system in rotational parabolic coordinates.
With respect to polar coordinates this two-dimensional coordinate system may be

written
u = +/Tv1+ cosb
v =+/rv1—cosb

We take angular momentum about the z-axis to be zero and transform to a rotating
coordinate frame to eliminate the paramagnetic term [2|. Letting E represent the
energy of the orbit, F' the magnitude of the electric field, and B the magnitude of
the magnetic field, we may scale the electric field strength to 1 in the following way

(scaled variables are hatted) so as to reduce the number of parameters to two.

p=p
u=aF"1
v=pF"1
E=FEF3
B = BFi

In its final form the Hamiltonian is

SN

po+Dp

H=



Note that the term involving B? (the diamagnetic term) couples % and 9 and intro-
duces nonlinearity. In its absence the system is a separable 2-dimensional anharmonic
oscillator.

Coordinate space contours of the effective potential energy are shown in Figure
1. Considering the proton to be fixed at the origin, we see that if an electron is to

escape, it must do so over one of the saddles on the ¢ axis.

Figure 1: Coordinate space contours of the effective potential of Hydrogen in parallel

electric and magnetic fields

2.2 Chaotic motion in phase space

Hamiltonian systems are deterministic, meaning that once the initial state of the
system is specified, all future states are thereby determined. That is, the motion of

the system may be predicted for all times to come, and there is no ambiguity in that



prediction.

Many nonlinear systems, including the one under study, display chaotic motion.
To understand this, we need several definitions. A dense orbit comes arbitrarily close
to any point in the domain of the mapping. A transitive system is one which, given any
two points, possesses an orbit which approaches arbitrarily close to those two points.
A sensitive system is any system such that, given some arbitrary distance, two orbits
will eventually evolve so as to be further apart than that distance. Formally, then,

Devaney defines chaotic systems as follows [10]:

1. Periodic orbits are dense
2. The dynamical system is transitive

3. The system is sensitive

To fully specify the state of a two-dimensional Hamiltonian system, one must
know not only its 4 and © coordinates but its velocity along both of those axes.
The time evolution of the system occurs in this four-dimensional space, called phase
space. From its starting point (the system’s initial conditions) the system traces a
curve in phase space, called a trajectory. Because the system is deterministic, no two
trajectories may cross. Should they cross, there would be ambiguity about the future
evolution of the crossing point; there would be two possible paths away from that
single point.

To simplify visualization of phase space we make use of Poincaré’s surface of
section, whereby the system is reduced to two dimensions by fixing the energy and
the value of one coordinate. This reduction in dimension allows us to choose a plane in

space defined by one coordinate and its conjugate momentum; each time a trajectory



crosses the plane, we mark the point of crossing. Thus, a set of four differential
equations has been reduced to a two-dimensional difference equation or mapping
function. Each choice of energy and fixed coordinate specifies a different plane and
mapping function [6]. We have fixed the p, coordinate and have chosen E=-10
and B = 3.26.

Trajectories which remain in some neighborhood of phase space cross the Poincaré
plane repeatedly in that region. Periodic trajectories in phase space intersect the sur-
face of section at fixed points; these fixed points play an important role in organizing
the motion of the system. Trajectories having equal energy but different initial con-
ditions describe one-dimensional manifolds on the surface of section; one manifold
is a smooth curve composed of the discrete crossings of many trajectories. Stable
fixed points (O points) are enclosed by elliptical manifolds; unstable fixed points are
at the intersection of two manifolds (called separatrices): the inset and the outset.
Trajectories move towards and away from an unstable fixed point (X point) along the
inset and outset, respectively. The inset and outset of an X point are also called the
stable and unstable manifolds of that point. On each new iterate, a trajectory on an
inset crosses the surface of section closer to the fixed point; it only reaches the fixed
point, however, in the limit as time goes to infinity[6].

The physical pendulum provides a simple example of a dynamical system in phase
space. The system possesses a stable equilibrium (hanging straight down) and an
unstable equilibrium (balancing upright). The ellipses about the stable fixed point
represent oscillations about the equilibrium position, as in the ticking of a grandfather

clock or the swinging of a child on a swing-set. The separatrices which approach the
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Figure 2: The phase space representation of the simple physical pendulum. There is a
stable fixed point, or O point, at # = 0 and an unstable fixed point, or X point, at 8 = .
These points are repeated periodically every +nw, n=1,2,3....

unstable fixed point represent the admittedly unlikely scenario in which the swinging
child reaches the upright position and balances there (or rather, reaches the balancing
point in the limit of infinite time); conversely, it is also possible to fall away from the
upright position. Which scenario is actually the case depends whether the separatrix
is an inset or an outset. There is one other class of motion, in which the oscillations
of the swinging child are so energetic that they repeatedly make a full circle about the
bar from which the swing hangs. Figure 2 shows these motions in phase space. The
separatrices are so named because they separate the regions of qualitatively different
motion. An unusual feature of the pendulum is that insets and outsets join smoothly.

In contrast to Figure 2, which depicts purely regular motion, stands Figure 3,
a surface of section for the parallel fields system generated by Flower. [2] Regular

motion about a single X-point and two O-points is apparent, but exterior to this
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Figure 3: The Hydrogen atom in parallel electric fields system with scaled parameters
E = —1 and B = 3.26. We observe regular motion (two 0 points and an X point) in a sea
of chaos.

region we see what looks like random noise. This is chaotic motion in phase space,
as viewed in the Poincaré plane.

A manifestation of chaos in Hamiltonian systems is that an inset and outset do
not join smoothly but cross each other instead. Such a crossing is a point shared
by both the inset and the outset; because motion in the Poincaré plane is described
by a single difference equation, all future iterates of this point will also be shared.
As a consequence of this, once the manifolds cross once, they must cross an infinite
number of times, each crossing moving successively closer to the inset’s fixed point
[6].

An interesting feature of Hamiltonian orbits or maps is that they preserve oriented

areas in the surface of section[7]. Given an area in the plane, all future iterates of



that area will be of equal area. This is of interest as manifolds cross because between
the first and second crossings the inset and outset enclose an area. All future pairs
of crossings will involve the enclosure of an equal area. These enclosed areas take the
form of “lobes” having one separatrix as their base. If we consider lobes having the
inset as their base, it is apparent that with each iterate forward in time, the base of the
lobe becomes shorter, forcing the lobe to become narrower. In order to preserve area,
then, the lobe must become longer than it was on the previous iterate. Moreover, an
inset or outset can never cross itself. These elongated lobes wrap around each other
in the Poincaré plane forming incredibly complicated structures. If the intersecting
inset and outset belong to the same fixed point, the structure is called a homoclinic
tangle; if they belong to different fixed points the structure is a heteroclinic tangle.

The motion of trajectories which are on or near tangles is chaotic[6].

2.3 Ionization and the tent map

Fractals are geometric objects which, at all scales below some maximum scale display
self-similarity. Just as a square may be decomposed into smaller squares which may
in turn be similarly decomposed, a fractal at one size scale may be decomposed into
smaller units of its “large-scale” structure. Multifractals, more complex than a simple
fractal structure, possess multiple scaling parameters.

Fractal structure may be illustrated by a simplified one-dimensional model of
atomic ionization, the tent map[3] [7]. Let the position of the electron be described

by the variable 0 < z < oo, and let the proton be at x = 0. Let us say that for
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Figure 4: Early development of a heteroclinic tangle after the first crossing of inset and
outset. The red X points are unstable periodic orbits. The blue curve is part of the outset
from the left-hand periodic orbit. The green curve is part of the inset of the right-hand
periodic orbit. Following the evolution of the blue outset further in time reveals increasingly
narrow, elongated, and complex lobe structures.

x < 1, the system is bound; for z > 1, the electron has escaped. We will describe
the evolution of the electron’s position by a discrete mapping, just as the surface of
section represents a discrete mapping of continuously varying motion in phase space.

Moreover, we will take the dynamics of this mapping to be given by the tent map

3x for0<z <
A =
3(x-1) for i<z <1
We see that, for each iteration, the first third and final third of the entire unit
interval 0 < z < 1 is mapped back onto the interval. The middle third is mapped to
values x > 1. Once mapped beyond the unit interval, the tent map provides no means

for return to that interval; escape is permanent. On each iteration of the tent map,

the middle third of each remaining interval is mapped to x > 1, and is eliminated.

11
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Figure 5: The tent map and the time evolution of the Cantor set, which serves as a
simplistic approximation to the ionization process.

After an infinite number of iterations, we are left with a set of points known as the
Cantor set. These points are bound orbits of the system. Figure 5 shows how the
progressive escape of segments on the initial unit interval (the set of initial conditions)
eventually leaves only these bound orbits behind. The structure-within-structure here
is evident in the time evolution of the system, a repeated stripping away of the middle
third of a line segment.

Maps having less symmetry than the tent map have comparable properties; any
map having a single maximum of height greater than 1 on the unit interval will
produce a pattern similar to the middle thirds pattern, two maxima generate an even

fifths pattern, and so on [9].
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3 Motivations

3.1 Escape of high energy orbits

“Escape” means that the electron has left the Coulomb field of the proton, or equiv-
alently, ionization of the Hydrogen atom has occurred. Orbits of the system are
calculated by numerical integration of the equations of motion (see Appendix A);
this integration places practical constraints on the study. It is possible for the elec-
tron to spend a very long time in the vicinity of the proton before escaping, and a
bound orbit will spend an infinite amount of time near the proton. Not knowing
beforehand whether a particular orbit will escape, we must constrain ourselves to a
certain window of time or risk integrating a bound orbit forever. If, within the allot-
ted time, the electron does not escape, we declare the orbit to be bound; if it reaches
some escape condition (of our choosing), we declare the orbit to have escaped. In
this sense we are studying escape orbits having short ionization times. The chosen

condition for escape is the hyperbola

It can be shown that particles reaching this curve with velocity away from the proton
continue their motion away from the proton for all time.

For Figure 6, each orbit was started from the origin moving toward the upper-right
quadrant of 4 — v space; initial momentum in the ¥ direction was varied. Such orbits
of the system possess qualitative similarities: each makes some number of ”loops”

around the proton before escaping, unless it is a bound orbit, which loops for all

13
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Figure 6: Escape times and crossings of the line v = 0 in the region of the heteroclinic
tangle

time. Figure 7 shows two such orbits.

For initial p, < 1.36, all orbits appear to be bound; for p, > 1.62, it appears
that all orbits escape immediately. This region in p, corresponds to the heteroclinic
tangle identified by Flower. [2] Between these two values, escape time depends sen-
sitively on initial momentum; indeed, the functional relationship possesses multiple
discontinuities, as shown in Figure 6.

This relationship may be expressed in a different manner. As stated above, each
escape orbit oscillates about the proton some finite number of times before escaping;
as it does so, it repeatedly crosses the line 4 = 0. We have chosen to examine
the number n, of crossings of the ¥-axis before escape, and we record this n, as a
function of initial direction of motion, represented by p,. Figure 6 demonstrates the
effect of such a change in focus. Clearly this transformation does little violence to the
qualitative features of the escape time dependence; moreover the discreteness of the

n, variable allows us to easily identify regions of common qualitative characteristics

14
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Figure 7: Bounded and unbounded orbits of Hydrogen in parallel electric and magnetic
fields. Both orbits were started from the origin, and differ only in their initial momentum
along the ¥ coordinate, p,,.

on the line of initial conditions.

3.2 Structure within structure

Our graphs of n, vs. p, are the proxy for escape time dependence on initial conditions.
In these graphs there are several wide swaths of constant n, separated by cascades
of varying n, in the vicinity of the discontinuities of the ionization time function.
We anticipate similarity between both the shape of these cascades and the spacing
between them [3][8]. We may look for intra- or cross-generational similarities, a
generation referring to some scale in p,. These similarities may be most readily seen
for cascades of low n,, corresponding to short escape times. Cascades described by
longer orbits have more complex structure, and it is unclear whether that structure is

repeated within or between generations. Observation of the two cascades at the border
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of the long orbit region (p, ~ 1.47) reveals structure similar to that of short orbit
cascades. Figure 8 shows similarity between three generations, each a progressively
smaller window in p,. Note that the third and fourth generations are roughly the
flipped image of the second.

Whether there is repeated cascade structure of high n, value, particularly on the
left of the first generation, is not clear. Moreover, spacing between cascades seems to

be mapped nonlinearly between generations.

4 The Heteroclinic Tangle

The heteroclinic tangle of the parallel fields system, identified by Flower, provides a
framework in which to describe qualitatively the structure of the escape-time function
and to quantify some features. Figure 9 shows the heteroclinic tangle in its entirety;

Figures 10 - 17 display its early iterates singly.

4.1 Landmarks in the Heteroclinic Tangle

The heteroclinic tangle in its entirety is too complex to make much sense of. It is more
helpful to view it iterate by iterate, watching as it unfolds. The first iterates map out
several simple structures which are useful reference points; these are elaborated here.

There are two insets and two outsets. From the fixed points to the first intersection
of each pair of separatrices is enclosed a region in phase space which shall be called
the “complex”. Calculations indicate that if a point maps from inside the complex

to outside the complex, then it will within a few more iterations reach the escape

16
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Figure 8: Three generations of nearly self-similar structure. The first generation pictured
is approximately the flipped image of the latter two.
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Figure 9: The heteroclinic tangle of the parallel fields system owing to the separatrices in
the upper-half plane. In blue is the upper-half plane outset of the left X point; in red is
the upper-half plane inset of the right X point. There is a conjugate tangle created by the
lower-half plane separatrices; by symmetry its structure is the same.
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Figure 10: The 0% iterate of £, a curve which is on the outset of the left fixed point of a
0 — P, surface of section of the Hydrogen atom in parallel electric and magnetic fields.
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Figure 11: The first iterate of £, which, together with the inset of the right fixed point,
encloses the turnstile.
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Figure 12: The second iterate of £. First escape through E(even).
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Figure 13: The third iterate of £. The lobe of trajectories which escaped through E(odd;i =
1) is omitted for this and all future iterates.
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Figure 14: The fourth iterate of £. First escape with n, = 3.
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Figure 15: The fifth iterate of £.
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Figure 16: The sixth iterate of /.
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Figure 17: The seventh iterate of £. First escape with n, = 4.
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Figure 18: The complex (a) and the upper-half plane turnstile (b). Points in the region
A arrive in A’ after one iteration of the map; furthermore this is the only way out of the
complex in the upper-half plane. Scattering orbits enter the complex by going from B to
B'. There exists a conjugate turnstile in the lower-half plane.

2 42 > 2, and it will never return to the complex. Therefore we redefine

condition, v
the “bound” region of phase space to be the points within the complex, and we say
the electron has escaped if it goes from inside the complex to outside.

Shown in Figure 18 is the first pair of lobes of both the upper inset and outset;
there is an equivalent structure in the lower half-plane (the system is symmetric about
v and p,). This structure is called the turnstile because points moving from inside
to outside the complex, or vice versa, must move through it[6]. As we are interested
in dynamics as time moves forward, we focus attention on the regions A and A'.
Trajectories inside the complex which will pass outside of it and escape with v > 0 all
go from A to A’, thus making region A the “doorway to escape. Note that trajectories

passing through the upper-right escape region will have n, odd, while those passing

through the lower left will have n, even.
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4.2 Recasting the escape time function

To better identify features in the escape time function suggested by study of the
heteroclinic tangle, we recast our depiction of the function. Previous representations
have been for a range of initial conditions having ¥ = 0 and some range in p,. This
is the most physical choice of initial conditions, and corresponds to what would be
seen in experiment. Anticipating escape times which can be more easily understood
in terms of the structure of the heteroclinic tangle, we choose our initial conditions to
be along the outset of the left fixed point from o = 1.2788 to © = 0. This corresponds
to the the portion of the upper-left outset (the blue curve) that bounds regions A
and B in Figure 10. Figure 19 shows escape times along this curve, as well as the
dependence of n, and n;, the number of iterates before a particular initial condition

left the complex. This final graph shows strong Cantor-like qualities.

5 Scaling

5.1 The scaling parameter alpha

It was stated previously that chaotic trajectories which start close to each other

diverge exponentially. That is, the distance between them should scale as [3] [8] [9]
At = A@()Oéi

where Aty is the initial distance between the trajectories, « is a scaling parameter,
and ¢ is the number of iterations of the map. We anticipate that the scaling parameter

should play a role in the structure of the escape time function, and determine its value
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Figure 19: Three representations of escape along the outset of the left fixed point. Note
the Cantor-like features of the third graph, showing middle-third escape regions, and some
even-fifths as well.

below.

We measure the divergence in the distance between two near trajectories on the
outset from the left-hand fixed point. Figure 20 shows the evolution of these distances.
A linear fit to these points gives a @ = 9.0085 4 0.0083. This is a fairly large value;
points diverge quickly in this system. Because of this quick divergence, it is often
possible to calculate only a handful of points before running into numerical limitations

when measuring such divergences.
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Figure 20: Two trajectories, both very near the left fixed point, were started on its outset.
Plotted above are the separations in v of successive iterates of these trajectories. A fit of
the form Av = Aypa® gives a = 9.0085 4 0.0083.

Such exponential divergence may be understood in terms of the insets and outsets,
manifolds in the Poincaré plane departing or approaching an unstable fixed point.
Trajectories iterating along the separatrices approach or recede from the unstable
fixed point; and only in the limit of infinite time do they reach the X point. In this
context we may understand that, given any window in time of fixed duration, the
distance the between successive crossings of the Poincaré plane in each progressive
window decreases (if on an inset) and increases (if on an outset) exponentially. The

parameter « is a measure of this exponential change.

5.2 Scaling, escape, and the heteroclinic tangle

We have focused our attention on the escape times of points on the outset of the

left fixed point. Specifically, we have chosen that region of the outset which forms
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the turnstile; we identify this segment by finding the endpoints of the lobes of the
turnstile and taking them one iterate backwards in time. We subdivide this segment
into two smaller pieces, corresponding to the inner and outer lobes. Points on the
outer lobe escape after the next crossing of the line © = 0, while points on the inner
lobe remain bound at least for the next crossing of the line © = 0. This process
of back-iteration of the turnstile may be repeated infinitely, creating an alternating
pattern of escaping and surviving (in the near-future sense) segments the lengths of
which scale as a. We will see that a Cantor-like escape structure is generated by
mapping this segmenting pattern onto sub-segments of the heteroclinic tangle in a
recursive process. The manner of this mapping is specific to the system, but it may
be described as a process of stretching and folding. The first few steps are made
explicit below.

We already stated that points in the complex escape to the right only by entering
region A’; they escape to the left only by entering a corresponding region in the lower-
left quadrant. Those escaping to the right or to the left have crossed v = 0 an odd or
even number of times respectively. Therefore we rename the escape zone A’ = E°%,
and its conjugate region in the lower-left quadrant is E¢"¢".

Any section of the tangle intersecting with the escape lobes E°% and E¢ve" will
escape. Let £(0) represent the curve of initial conditions (the portion of the blue
curve in Figure 18 bounding regions A and B). Let £(i) be the " iterate of £. The
portions of £(i) that escape on the 5 iterate have n; = i and some n, value; these
escaping portions are called A(n;;n,). These are the segments of the one-dimensional

curve £(i) which lie within the two-dimensional region in phase space E°% or E®".
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This may be succinctly stated as follows:

£(7) N E™ = A(ni, n, = even)

£(i) N E°% = X(n;, n, = odd)

Note that several subsections of £ can be specified at once by this notation. A single
iterate of £ may, and indeed for higher i often does, overlap multiply both E°¥ and
Feven.

We need not view the escape lobes as static entities. Letting £7*"(0) represent an
escape lobe in the A’ turnstile position, E¢**"(—j) represents its j* back-iterate. We
know that any portion of ¢ intersecting with the i** back-iterate of E¢¥*" will escape
J iterations in the future. Such a segment will simply iterate forward in time in such
a way as to overlap E°"(0). That is, the back iterates of E€*"°%(() are equally

valid escape conditions, or

A(ni, ny) = £(ng) N B 244(0) = £(n; — j) N E(—7)

By viewing a surface of section showing some £(i) and the back-iterates of an es-
cape region (say F¢"(—1,—2,—3), we can identify the A(n;; n,) before they actually
reach E°""(0). Consider the particular segment of ¢(2) depicted in Figure 21. It
intersects with back iterates E€*"(i) ¢ = 0...c0. The overlaps with each lobe will
escape with the same n, (in this depiction n, = 2) and different n;. These lobes are
anchored on the manifold defining the boundary of the complex; the lengths between
their anchor points are exactly the same sort of lengthss the scaling of which was used

to determine a. In this way the escape/survive segmenting pattern, characterized by
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«, is mapped onto the portion of ¢ which survived its first pass of E°%: that is, all of
£ except that attributable to A(1;1). As £ iterates it wraps around the complex and
the pattern will continue to be mapped onto surviving portions of /. The mapping
takes the form of an exponential grid imposed on the Poincaré plane by back-iterates

of the escape region in the vicinity of an inset. Figures 21 and 22 depict this scenario.

5.3 Non-generic traits

A first glance at Figure 19 shows Cantor like features, but it is clear there is additional
complexity present. To better understand this it is useful to distinguish what will
be referred to as generic and non-generic behavior of the system. Generic behavior
constitutes all escape segments the lengths of which correspond to a a~* scaling of
the length of a “base” escape segment. Non-generic behavior constitutes the set of
all such base escape segments. We shall see that base segments pertain to the tips of
lobes in the heteroclinic tangle.

The heteroclinic tangle develops as a series of lobes, formed by the outset, which
extend off of the inset. Though there may be much folding in a given lobe, observation
indicates that there is always a central tip to the lobe (there is an observed symmetry
in the ordering of n, and n; values of escape segments for any given iterate of /).
We define a tip as an escape segment A" or pair of escape segments )\a,bq“i”t having
n, = n!® and n; = n’ for which both of the nearest neighboring escape segments
(one on either side, in the sense of £(0)) of equal n, have n; = nf” + 1. Though the

tip of each new lobe does not always broach a new n, value, any new n, value will
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Figure 21: Intersections of £(2) with back iterates of E¢’*". The tertiary tip is escaping
through E€*"(0), while the first three generic segments intersect E¢’*"(—1), E*"(-2),
and E¢’¢"(—3), respectively.
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Figure 22: Intersections of £(4) (red curve) with back iterates of F°% (blue curves). There
are two new base escape segments (non-generic segments which are the base of a generic
a-scaling sequence of escape segments) overlapping each back-iterate of E°%, always in
what may be informally recognized as a tip of the lobe formed by the back-iterate.
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Figure 23: Tertiary and quintenary tips. Tertiary tips are composed of three sub-segments
which survive beyond n;, escape at n;, and survive beyond n;, respectively. Quintenary
tips are composed of five sub-segments which survive, escape, survive, escape, and survive,
respectively.

first be broached by the tip of a lobe. In this sense, the tips of lobes are the source of
non-generic behavior. There are fundamentally two circumstances in which the tip
of a lobe may be found; they are shown in Figure 23.

In the first, the tip is found to be in an escape region, and thus outside the
complex; this is referred to as a tertiary tip. In the second, the tip is inside the
complex, creating a quintenary tip. A tertiary tip creates a middle thirds escape
pattern: there is a single region that escapes at n; with some n,; on either side of it
is a region that remains bound until some larger n,; next to those are two regions
which escape at (n; +1,n,), and so on. A quintenary tip creates an even fifths escape
pattern; the four crossings of the escape region boundary divide the segment into
fifths, with the tip representing the middle fifth, which remains bound. Instead, the

sub-segments adjacent to the tip (the even fifths, \,%™ and \,7"™) escape on the n;
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iteration.

Note that the lengths of each escaping sub-segment of the lobe tip need not be
equal; this is due both to the non-constant density of points along the manifold and the
different positions the sub-segments occupy within the escape region. These single
(tertiary) and double (quintenary) escape segments are the base escape segments
referred to above (given that they belong to the first lobe entering the escape region
with a particular value of n,). All future segments escaping with that n, are mapping
near one of these base segments; if the base segment escaped with n; = n;,, escape
segments with the same n, and n; = n;,; will scale as "o "0+i. We have not
been able to see any long-time, long-term pattern in the base escape segments in this
system. Also we are sure that if there were any such long-time pattern in this system,
the pattern would be different in other systems. Therefore we say that the type and
length of base segments at each n; and n, are non-generic properties.

Note that, according to the definition of a tip given above, a tip is not uniquely
what is often meant in the colloquial sense of the word (as in, for example, the tip of
a finger). As £ iterates forward, it approaches closely and occasionally wraps around
previous iterates of itself. These previous iterates had tips (in the colloquial sense),
and a portion of £ wrapping around one of the old tips qualifies as a tip itself. Thus,
although each lobe has a central tip, it may have multiple tips according to the above

definition, each corresponding to a base escape segment.
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5.4 Generic traits

We can show that there are generic traits which may be understood after the non-
generic properties have been observed. Figure 24 does just this. As discussed above,
escape segments which come from lobe tips in ¢ constitute non-generic features of
the system. They are followed by pairs of escape segments A(n; + j,n,) where j =
1,2,3,... such that A\(n; + j,n,) = aA(n;n,). Escape segments from tertiary
and quintenary tips alike possess a-scaling sequences composed of pairs of escape
segments, despite the fact that tertiary tips incorporate a single escape segment,
while quintenary tips incorporate two.

We suggest that the escape-time curve of the parallel fields represents a novel sort
of fractal dependence which we term epistrophic. The generic scaling described above
is typical of fractal structures; however, the presence of multiple base segments is a
complication. Despite these multiple bases, all lengths scale as a single parameter o.
Multifractals, by contrast, present a single basic structure which scales as multiple
parameters, or a spectrum of parameters. Although it is possible that there is a
pattern to the appearance of base escape segments which is yet to be identified,
that pattern would be destroyed under a change of parameters. Instead, we propose
that the escape-time dependence is a fractal variant having multiple bases and a
single scaling parameter, as opposed to the single basis and multiple parameters of
a multifractal. We name this an epistrophic fractal, after the rhetorical device of
epistrophe, in which multiple sentences end in the repetition of a single phrase. This

is intended to draw analogy to the introduction of new base segments followed by
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scalings thereof.

6 Summary

The dependence of ionization times on initial conditions may be a fractal function in
the parallel fields system; that it is has been explored but not conclusively demon-
strated. We have given observational motivation for the presence of structure-within-
structure, a feature of the system more readily apparent for regions of relatively quick
ionization. The ionization time function looks something like the result of an iterative
escape process, such as the evolution of the Cantor set which occurs under repeated
applications of the tent map. We have sought a similar iterative escape mechanism in
the stretches and folds of the system’s heteroclinic tangle. This complex structure in
phase space results from the intersection of separatrices of two unstable fixed points
and generates chaotic motion in the system. As chaotic orbits diverge exponentially,
it is not surprising that the ionization time of two neighboring orbits should show
little correlation.

The heteroclinic tangle is composed of two manifolds in phase space which cross
each other repeatedly in a manner so as to preserve the area enclosed by successive
crossings. Any single trajectory iterates discretely from point to point on one of
the manifolds (or separatrices or inset/outsets). The smooth curve in phase space
which is the manifold is composed of a family of such trajectories. As trajectory
points iterate along the manifold, the distance between points along the manifold

increases or decreases exponentially, depending on whether the manifold is an outset
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Figure 24: The evolution of escape segments A(n;;2) (first plot) and A(n;;3) (second plot).
In both cases we see only bases generated by tertiary tips, which split to produce two
chains of generic escape segments. Colors are used to affiliate base segments and their
scaled shadows. The plotted line is of slope a to indicate that escape segment lengths do,
indeed, scale as .
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or an inset. The length between any two successive iterates is a factor of a larger or
smaller than the lengths between neighboring iterates.

This is significant because the points at which inset and outset cross, like any other
points on a manifold, scale in this way. Lobes of the tangle extend off of the crossing
points. The spacing and width of these lobes scale as «, and near the manifold off
of which they extend they are like logarithmic demarcations of the surface of section.
Further away from this manifold, they develop in a system-specific fashion, but locally
every tangle will impose this grid pattern on the Poincaré plane.

In a qualitative sense, ionization may be understood in terms of this localized grid
pattern. Back-iterates of a lobe which is an escape region establish the grid. Portions
of the tangle which intersect the back-iterates away from the gridded region of the
surface of section, near the tip of the escape lobe, constitute what we have termed
base escape segments. As they iterate forward, they are drawn increasingly closer to
the inset and, correspondingly, the gridded region. Thus the tails of tips scale as «,
and this scaling improves with successive iterations, as the base segment is “pulled”
closer to the inset.

The exponential grid in phase space establishes a comfortable qualitative under-
standing of the ionization process. We have given evidence that the dependence of
escape time on initial conditions has a pattern which we call an epistrophic fractal.
At each (n;,n,) there is a set of “base segments” that escape at that (n;,n,). We
find no pattern to these base segments. Each base segment is followed by a sequence
of segments that escape at (n;y;,n,). The lengths of these segments scales as a™7;

more precisely lim;_,o [A(itjt1, 7o) /A (Nis5, 1) | = .
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Appendix A: Code

CCCCCCCCCCeCeeeeeeeeeeecceeeecceeccceeecceeeccceecccceececcceecccccecececcceecccce
C escape.f C
C AUTHOR: Brian Tighe C
C PURPOSE: escape numerically integrates classical trajectories of the C
Hydrogen atom in parallel electric and magnetic fields. C
It outputs u-v space representations of those trajectories, C
surfaces of section in the v-pv Poincare plane, and C
escape times, iterates, and crossings of the line v = 0 as a C
function of an initial condition. These initial conditions C
may be any user-specified, single-valued function in phase C
space. C
CCCCCCCCCeeeeeeeeecceeeeceeeccceeeccceecceeecccceeccceececcceecccececceccceecccce

e NN NN ES!

PROGRAM escape
implicit none

real*8 Hamiltonian
real*8 PVFIT

integer*4 neqn, nw, i
integer*4 numSosMax, numSosMin
parameter (neqn = 5, nw = 100 + 21*neqn)

real*8 energy, B, Pi, tMax

logical plotTraj, plotSoS, plotSep, recordIts
common/phys/energy, B

common/num/Pi

common/logic/plotTraj, plotSoS, plotSep, recordIts
common/end/tMax

common/SoS/numSosMax, numSosMin

real*8 yO(neqn), y1(neqn)

real*8 u, v, v0, pv, pu, pvO, pvMax, pvMin, puSq

real*8 vMin, vMax, vtest

real*8 h

real*8 t, tau, tauO, taul, tauStep, tauBaby
c realx*8 c0, c1, c2, c3

integerx4 numTraj, currSos

integerx4 iflag

integerx4 nv '# of times traj crosses v = 0

logical recordTime, recordLoops

logical finish

logical changeV, changePv

open (11, file = ’sos.d’) ! file 11 -> SoS data
open (21, file = ’ni.d’) ! file 21 -> other SoS data
open (31, file = ’orbit.d’) ! file 31 -> trajectory data
open (41, file = ’nv.d’) ! file 41 -> times across v = 0
open (51, file = ’tescape.d’) ! file 51 -> escape times
open (61, file = ’info.d’) ! file 61 -> misc. info

!

open (71, file = ’input.d’) file 71 -> input data
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110 format(1h , 4(el5.8, 2x))

111 format(1h , 4(el7.10, 2x), 2(i7))
310 format(1h , 4(el2.5, 2x))
510 format(1h , 3(eld4.7, 2x), i5)
511 format(1h , 3(el3.6, 2x), i3, (eld4.6, 2x), i6)
410 format(1h , (el4.7, 2x), 2(ib), (el5.7, 2x), i6)
610 format(’ i=’, i6, ’ pv=’, gl12.5, ’ outside allowed region’)
611 format (’ failed on trajectory’,i5,’ iflag=’,i3,
+ > pv0=’,gl12.5,’ taul-tau0=’,gl2.5)

Pi = 4.0d0*datan(1.0d0)
cO = 1.6067
cl = 0.17313
c2 = -0.76589
c3 0.063494

oo o0

C Initialize from input file

read (71,%) energy ! read energy

read (71,%) B ! B-field

read (71,*) tMax ! max integration time

read (71,*) tauStep

read (71,*) numTraj ! # of trajectories to compute
read (71,*) plotSep

read (71,*) changeV

read (71,%) vMin

read (71,%) vMax

read (71,%) changePv

read (71,*) pvMin

read (71,*) pvMax

read (71,*) plotTraj

read (71,*) plotSoS

read (71,*) numSosMin ! first saved SoS

read (71,%) numSosMax ! max # of passes through the SoS
read (71,%) recordTime

read (71,*) recordLoops

read (71,*) recordIts

if ( plotTraj ) then

tauStep = tauStep / 10.0 ! take baby steps if plotting
endif
tauBaby = tauStep / 100.0

do i = 1 , numTraj !trajectory loop

iflag = -10
nv = 0

C Set trajectory initial conditions

t = 0.0d0

45



tau = 0.0d40
tau0 = 0.0d40
u = 0.0d40
if (plotSep) then
v = vmin + ((vmax - vmin)/(numTraj-1.))*(i-1.)

write(*,*) v - vtest
vtest = v

vO =v
pv = PVFIT(v)
pv0 = pv

else

if (.not. changeV) v = 0.0d0
if (changeV .and. numTraj .ne. 1)
v = vmin + ((vmax - vmin)/(numTraj-1.))*(i-1.)
if (changeV .and. numTraj .eq. 1)
v = vmin
vO =v
if (.not. changePv) pv = 0.0d0
if (changePv .and. numTraj .ne. 1)
pv = pvmin + ((pvmax-pvmin)/(numTraj-1.))*(i-1.)
if (changePv .and. numTraj .eq. 1)
pv = pvmin
pv0 = pv
endif

pu 0.040
puSq = -2.0 * Hamiltonian( u, v, pu, pv )
if( puSq .1t. 0.0d0 ) then
write( 61, 610) i, pv
continue
endif
pu = dsqrt( puSq )
h = Hamiltonian( u, v, pu, pv )

if( plotTraj ) then
write( 31, 310 ) u, v

endif

tau0 = 0.0
YO(1) = u
YO(2) = v
YO(3) = pu
YO(4) = pv
YO(B) =t

currSos = 0
finish = .false.

if (plotSos .and. currSos .ge. numSosMin)
write(11,111) v, pv, vO, pv0O, nv, i

do while (currSos + 1 .le. numSosMax
.and. finish .eq. .false.) !SoS loop
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a o o0

if (plotSos .and. currSos .ge. numSosMin)
write(11,111) v, pv
currSos = currSos + 1

CALL TRAJ( tau0, yO, tauStep, tauBaby, nv,
taul, y1, iflag)

write(*,111) tauBaby, taul-tau0

Test for success:

If it fails:

if( iflag .ne. 7 .or.
( abs(taul - tau0) .lt. tauBaby )) then
write(61,611) i, iflag, pv0, taul - tau0
write(*,611) i, iflag, pv0O, taul - tau0
write(*,*) v0, currSos
return

Otherwise, it succeeded; prepare to record data:
else

u = yi(1)
v = y1(2)
pu = y1(3)
pv = yi1(4)
t = y1(5)
h = Hamiltonian( u, v, pu, pv )

If escaped, record original pv and escape time

if (iflag .eq. 7) then
if (dabs(v*v - u*u - 2.0) .1t. 1.04-05) then
if (v*v - u*u - 2.0 .gt. -1.0d4-05
.and. .not. recordIts) then
if (recordTime) then
if (v .gt. 0) write(51, 510) pv0, t
if (v .1t. 0) write(51, 510) pv0, -t
endif
if (recordTime) then
if (changeV) write(51, 510) vO, t
if (changePv) write(51, 510) pv0, t
endif
if (recordLoops)
write(41, 410) vO, nv, currSos
if (recordIts) write(21, 410) v0O, currSos
write(*, 511) pv0O, v0, t, nv, h, i
if (plotSos) finish = .true.
endif
if (dabs(t - tMax) .1lt. 1.0d-05 ) then
if (tMax - t .1t. 1.0d4-05
.and. .not. recordIts) then
if (recordTime) write(51, 510) pv0, t + 2.0
if (recordLoops) write(41, 410) v0, -1, -1
if (recordIts) write(21, 410) vO0, -1, -1
write(*, 511) pv0, vO, t, -1, h, i
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if (plotSos) finish = .true.
endif
if (plotSoS) then
if (currSos .ge. numSosMin)
write(11, 111) v, pv, v0, pvO, nv, i
if (currSos .eq. numSosMax
.and. finish .eq. .false.) then
write(*, 511) pv0, v0, t, nv, h, i
if (recordTime) write(51, 510) vO0, t
if (recordLoops)
write(41, 410) v0, nv, currSos
if (recordIts) write(21, 410) v0, currSos
endif
endif
if (recordIts) then
if (dabs(v) .gt. 1.278827859) then
write(21, 410) v0, currSos, nv
write(*, 511) pv0O, vO, t, nv, h, i
finish = .true.
endif
if (dabs(v) .le. 1.278827859) then
if (v .le. 0.0 .and.
dabs(pv) .gt. PVFIT(v)) then
write(21, 410) v0, currSos, nv
write(*, 511) pv0O, v0, t, nv, h, i
finish = .true.
endif
if(v .gt. 0.0 .and.
dabs(pv) .gt. PVFIT(-v)) then
write(21, 410) v0, currSos, nv
write(*, 511) pv0O, v0, t, nv, h, i
finish = .true.
endif
endif
if (currSos .eq. numSosMax
.and. finish .eq. .false.) then
write(21, 410) v0O, currSos, nv
write(*, 511) pv0, v0, t, nv, h, i

endif
endif
endif
endif
tau0 = taul
YO(1) = u
YO(2) = v
YO(3) = pu
Y0(4) = pv
Y0(5) =t
enddo !SoS loop
enddo !trajectory loop
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stop

end !escape program

realx8 FUNCTION Hamiltonian( u, v, pu, pv )
implicit none

real*8 u, v, pu, pv, energy, B
common/phys/energy, B

Hamiltonian = (pu**2 + pv**2)/2.0d0 - energy*(u**2 + vx*2) +
+ (B*%2/8.0d0) * (u**4*v**2 + ukx*2%xv*x*x4) +
+ (u*x4 - v*x4)/2.0d0 - 2.040

return
end !'Hamiltonian function
real*8 FUNCTION PVFIT( v )
implicit nomne

real*8 v
real*8 c0, cl1, c2, c3, c4, cb5, c6, c7, c8, c9

c0 = 1.6077 '1.6067
cl = 0.15465 ' 0.17313
c2 = -0.78232 '-0.76589
c3 = 0.10549 10.063494
c4 = 0.047889
cb = 0.011052
'c6 = 0.010355
'c7 = 0.051993
'c8 = 0.040297
'c9 = 0.010101

PVFIT = cO + cl*v + c2%v**x2 + c3*v**3 + cdxv*x*x4 + cbrvkx5 ! +
+ CO*vk*x6 + CT*v**x7 + c8*v**8 + cOxv**9

return

end !PVFIT function

SUBROUTINE TRAJ( tauO, yO, tauStep, tauBaby, nv, taul, yl, iflag)
implicit none

real*8 Hamiltonian
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external DPODRT

external tderiv, g, gb
integer*4 neqn, nw ! currSos
parameter (neqn = 5, nw = 100 + 21*neqn)
real*8 tau, tau0, taul, tauStep,

+ tauBaby, tauOut, tauOutBaby
real*8 yO(neqn), yl(neqn), y(neqn), v0, vi
real*8 work (nw)
integerx*4 iwork(6)
integerx4 iflag, i, nv
real*8 relErr, absErr, absErrRoot, relErrRoot
real*8 h
logical plotTraj, plotSoS, plotSep, recordIts
common/logic/plotTraj, plotSoS, plotSep, recordIts
integerx*4 numSosMax, numSosMin

common/SoS/numSosMax, numSosMin

311 format (1h , 4(el2.5, 2x))
910 format (’ tau=’,gl2.5,’ minus tau0=’,gl2.5,’ less than’,gl2.5)
relErr = 1.0d4-13
absErr = 1.0d4-13
absErrRoot = 100.0d0*absErr
relErrRoot = 100.0d0*relErr
iflag =1
tau = taul

do i = 1, neqn

y(i) = yo(i)
enddo
C Take a baby step

taulutBaby = tau + tauBaby/2.0

v0 = y(2)

CALL DPODRT( tderiv, neqn, y, tau, tauQutBaby,
+ relErr, absErr, iflag, work, iwork,
+ GB, relErrRoot, absErrRoot )

vl = y(2)

if (iflag .ne. 2) then

return ! problem
endif

if ((vO .1t. 0.0d0 .and. vl .gt. 0.0d0) .or.

+ (vO .gt. 0.0d0 .and. vl .1lt. 0.040) ) then
nv = nv + 1
endif

h = Hamiltonian( y(1), y(2), y(3), y(4) )

if ( plotTraj ) then
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write( 31, 311 ) y(1), y(2)
endif

Take a big step
do while (iflag .eq. 2) !integration loop

tauOut = tau + tauStep

v0 = y(2)
CALL DPODRT( tderiv, neqn, y, tau, tauQut,

+ relErr, absErr, iflag, work,

+ iwork, G, relErrRoot, absErrRoot )
vl = y(2)

taul = tau

do i = 1, neqn
y1(i) = y(i)

enddo

if ((v0O .1t. 0.0d0 .and. vl .gt. 0.0d0) .or.

+ (vO .gt. 0.0d0 .and. v1 .1t. 0.0d0) ) then
nv = nv + 1
endif

h = Hamiltonian( y(1), y(2), y(3), y(4) )
if( plotTraj ) then

write( 31, 311 ) y(1), y(2)
endif

enddo !'integration loop
If successful up to next SoS, output data to plotting file and return

if( (iflag .eq. 7) .and.
+ (abs(tau - tau0) .gt. tauBaby) ) then
h = Hamiltonian( y(1), y(2), y(3), y(4) )
if( plotTraj ) then
write(31, 311 ) y(1), y(2)

endif
return

endif

If returned to original SoS, cry for help
if( (iflag .eq. 7) .and.
+ (abs(tau - tau0) .le. tauBaby) ) then
return
endif
Otherwise, something funky happened

return !'T surrender!

end !subroutine Traj

o1



Qoo

SUBROUTINE TDeriv( tau, yy, dery)

implicit none

for use by the diff. eq. solver; evaluates time derivatives
for the Hamiltonian eq’s of motion

yy():u yy2): v yy3): pu yy@&: pv yy(B): t
tau -> independent variable

yy  —> dependent variables (a vector)

dery -> value of the rhs of the first-order diff. eq.

integer*4 neqn
parameter (neqn = 5)

real*8 yy(neqn), dery(neqn)
real*8 u, v, pu, pv

real*8 tau, t

real*8 energy, B, Pi
common/phys/energy, B
common/num/Pi

u = yy(1)

v = yy(2)

pu = yy(3)

pv = yy(4)

t = yy()

dery(1) = pu

dery(2) = pv

dery(3) = 2.0%energy*u - 2.0%ux*3 -

(B**2/8.0) % (4.0%u*x*3*xv**2 + 2,0*u*xvk*4)
dery(4) = 2.0*energy*v + 2.0%v**3 -

(B*x%2/8.0) % (2.0%vkuk*kd + 4. QkvikIkukk2)
dery(5) = u*x*2 + vk*2

return

end !subroutine TDeriv

realx8 FUNCTION G( tau, yy, dery )
implicit none
When G = 0, DPODRT returns iflag = 7, the success condition (woo-hoo!)

integer*4 neqn
parameter (neqn = 5)

real*8 yy(neqn), dery(neqn)
real*8 u, v, tau, t

real*8 gl, g2, g3

real*8 energy, B, tMax
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logical plotTraj, plotSoS, plotSep, recordIts
common/phys/energy, B
common/logic/plotTraj, plotSoS, plotSep, recordIts

common/end/tMax

u = yy()

v = yy(2)

t = yy(5)

gl = vv - u*xu - 2.0
g2 =t - tMax

g3 =u

if (.not. plotSos .and. .not. recordIts) G = gl*g2
.eq. 0 if either stop condition met
if (plotSos .or. recordIts) G = g3

return

end !function G

realx8 FUNCTION GB ( tau, yy, dery )
implicit none

integer*4 neqn

parameter (neqn = 5)

real*8 tau, yy(neqn), dery(neqn)

GB = 1.0d40

return
end
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