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Abstract

The high T, superconductors are of type II, that is, in an applied magnetic field
the field penetrates in the form of vortices. Further, the extreme anisotropy of these
materials leads to longitudinal disorder along the vortex itself. A means to calculate the
internal magnetic field distributions including the effects of disorder has been developed
and is presented. Three dimensional vortices are built up from two-dimensional pancake
vortices, each located in a single plane in the crystalline structure of the material. By
summing the magnetic fields associated with each pancake, an overall field distribution
is obtained. Disorder is introduced by randomly displacing the pancakes, and the
magnetic field probability distributions are presented for a range of applied fields and

degrees of disorder.



Introduction

Superconductors have been known and studied since 1911, when Dutch physicist Kammer-
lingh Onnes discovered the property in mercury at a temperature of 4K. The basic idea
behind superconductivity is that many materials can exhibit zero resistance to current flow
if cooled to a certain critical temperature (7;) that is unique to the material [1]. Super-
conductors are described by two fundamental parameters: the penetration depth (A) is the
length in which magnetic fields die off within a superconductor, and the coherence length
(€) is a measure of the distance over which local fields within a material have an noticeable
effect. From these we define the Ginzburg-Landau parameter (k = 2), which allows us to
group superconductors into two types: type I (k < %), and type II (k > %) [2].

In 1933, Walter Meissner and Robert Ochsenfeld discovered another characteristic of su-
perconductors, dubbed the Meissner Effect. They found that the electric currents normally
induced in a conductor by a magnetic field were actually able to repel the field in a su-
perconducting material [2]. In other words, when cooled below its 7, a superconductor in
an applied field will expel the field and become a perfect diamagnet. Only when the field
strength reaches some critical value does the field re-enter the material. Depending on the
type of superconductor, the field can either re-enter almost immediately or more gradually.
In a type I material, the field is completely expelled when it is less than the critical field
(H < H.). If the field is greater than H,., the material goes out of the superconducting
state and the field penetrates completely. In type II materials, once the field reaches an
initial critical field H¢y, there is a period of transition called the mixed state, lasting until

superconductivity is lost at the second critical value Hgo. In the mixed state, the field en-
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Figure 1: A FLL revealed by decoration with fine iron powder.

ters the sample in the form of wvortices, each carrying a magnetic flux ®y = hc/2e = 2.07
x 107"Gem?. These vortices can be pictured as swirling tubes of electrical current at the
center of which superconductivity is suppressed [2]. The properties of vortices are such that
they usually arrange themselves at the corners of a triangular pattern known as a Flux Line
Lattice (FLL) or Abrikosov lattice (Fig. 1). This arrangement minimizes the free energy of
the system, with the vortices held apart by magnetic repulsion and arranged somewhat like

drinking glasses on a cupboard shelf [3].

Theory

Calculations of the magnetic fields associated with a FLL can be performed using what is
called the London theory, a much simpler alternative than the more comprehensive BCS
theory [4, 2]. The fields for the vortices are actually calculated in three separate ways. The
first is with a reciprocal lattice technique, the second is with three-dimensional vortices, and

the third approach is with two-dimensional pancake vortices. To assemble the complete field



distribution, the the fields from the nearby three-dimensional vortices are subtracted from
the reciprocal lattice result, and then the fields from nearby pancake vortices are added back
in. This is accomplished by our computer programs described in a later section, but first we

need to outline the theory for each approach.

Reciprocal Lattice Calculation

The first step in the development of the theory is the case of a single vortex in an isotropic
superconductor. We can construct the free energy density of the superconductor by including
a term for the energy density of the magnetic field (%) and the kinetic energy density of
the superconducting particles in the solid (ns%mUZ, where n, is the superconducting charge

carrier density) [4]. Then, given the equation for current density:

J = nsev

where e is the charge per particle, we can solve for v and plug it into the kinetic energy

density equation to obtain:

1 my?
E,=-
T nge2
From here we can use the Maxwell equation:
4
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add in the magnetic field energy density, and derive the total free energy of the system [4]:

1 2 mc’ 2 1 2 2 2
F=|[dv— (b + IVxbl*)=— [ dV (0> + A\}|V x b]?) (1)

4nge?

In brief, we can then perform a variational calculation of this result, minimizing the free
energy and integrating by parts, and the result is an equation that allows the calculation of

the magnetic fields b(x,y) in the mixed state of an isotropic superconductor:
b+ MV x (Vxb)=®dr—r,) (2)

The materials relevant to this study, the newer, high temperature copper-oxide super-
conductors, are highly anisotropic. This means the current flows more easily in a direction
parallel to the CuQO planes [6]. The next step in the process, therefore, is to introduce
anisotropy into the theory by considering the masses of the superconducting charge carriers
both within (M;) and perpendicular to (Mj3) the superconducting planes as components of

an effective mass tensor [1]. These masses first must be normalized so that:

M

™ M,
M,

ms3 = M

where M,, = (M?2M;)'/?



We can make the following modification to the penetration depth in Egs. 1 and 2:
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Here m;; are the components of the tensor and i and j are either x, y, or z [1]. From our new
expression of the free energy density, the same minimization calculation is performed, and
the field equations for the anisotropic case are:
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b, = N°my j€isi€ip | ———
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)+<1>o(szk(r 1) (1)

It remains to extend the theory to enable the calculation of the magnetic field from any
point within a vortex lattice. The calculation involves a Fourier transform of the three
vector components of equation 4 (b, by, b,) into reciprocal lattice space, using the following

relationship:

b(r) =) b(G)e'%"
G

b(G) = (}% / b(r)e "CTd3r (5)

The G’s are the reciprocal lattice vectors, and B is the average field strength over the FLL

unit cell. We can now write the components of the field in terms of the reciprocal lattice



vectors [1]:

b (G) = B)\meGZ/d
by(G) = —B)\2msz$Gy/d
b.(G) = B(1 + )‘szzGQ)/d

where d = (1 4+ X’m G2 + N’mg,GL) (1 + N’m,,G?) — \*m2,G°G? (6)

Finally, one must perform the sum in Eq. 5 over the reciprocal lattice vectors for each
component in Eq. 6.

As it turns out, we will be comparing against field distributions in a single crystal with the
applied field parallel to the c (crystal) axis. Any complications associated with anisotropy,
therefore, could have been avoided, but the original program described below utilizes the

more general form.

Three Dimensional Vortices

In the isotropic case, the magnetic field from a single, three-dimensional vortex is:

(DO T

b= WKO(_)'Q (7)

where K is the zero order Bessel function of imaginary argument andZ is a unit vector in
the z direction[4]. The fields then can be built up from an array of such vortex fields. As
explained above, this equation is still useable for the anisotropic case when the applied field

is parallel to the c axis.



Pancake Fields

Using the anisotropic London theory, the microscopic magnetic fields within a FLL can
be calculated numerically by means of a computer program, given the necessary input.
The required parameters are the average magnetic field (B), the effective penetration depth
(A), the angle between B and the direction of the crystal structure (6), and the anisotropy
parameter (I') for the superconductor in question [1]. This anisotropy parameter, equal to
ms/m;, varies greatly in the different copper-oxide superconductors. The London theory
as developed here (Egs. 2 and 6) applies well to YBCO (Y BayCu307), which has a T" of
25. BSCCO (BiS13Ca1Cus0s45) on the other hand, has a I' of over 3000, requiring us
to utilize a somewhat different model of the vortex structure. Clem [6] has emphasized the
discreteness of the CuO, layers in introducing the theory of pancake vortices. The model
describes a stack of these two-dimensional pancakes, one at each CuO plane in the crystal
structure, as opposed to a continuous flux tube running through the material (as with three-
dimensional vortices). The magnetic field produced by a single pancake vortex in an isolated

superconducting layer is shown to be:

b = pby(p,2) + 2b.(r. 2) ®)



where 7 and Z are the unit vectors in cylindrical coordinates (7 = Z cos ¢ + g sin @) [6]. The

field components for such a vortex in an infinite stack of superconducting layers is:

Po oy,
(7, 2) = " 9
b,(r,2) 5 Te 9)
0N Z el _ Z oA
- . z _ = T 1
by(r,z) = 5 A <|Z|e € (10)

where @ is the magnetic flux quantum, A is the thin-film screening length, and A is the
effective penetration depth (A = (sA/2)"/?, and s is the spacing between sheets). These

fields can be summed to produce the magnetic field from a lattice of pancake vortices.

Obtaining the Magnetic Field Probability Distribution

Once a data set of field values is obtained, it is useful to determine the probability distribution
of the values contained in the data. This step involves a numerical integration over the field

contours:

n(M) = / 5((M(z,y) — My)dA (11)

Here A is the area of the region in question (one unit of the FLL), M(x,y) is the field value
at the position (x,y), M is the value at some point on the contour line, and § is the Dirac
delta function. The resulting magnetic field probability distributions can then be plotted an

analyzed.



Disorder

At low temperatures, the vortices in a superconductor form a static lattice, and all of the
above theory applies. When higher temperatures are involved, however, individual vortices
can shear, bend, and even jitter back and forth in the plane. The pancake model has
been used to develop a theory of this phenomenon of vortex disorder. Disorder refers to
the disruption of the normal equilibrium positions of the vortices in a flux line lattice. A
greater heat energy, for example, causes the vortex lattice to melt in a sense and become a

two-dimensional flux liquid [3].

Calculations

The portion of the project I have been involved in consists of using Fortran programs to
calculate the field distributions, then subsequently modifying the calculations to accommo-
date disorder. We began with three primary programs, each corresponding to one of the
three approaches for calculating the fields (see Appendix): hpxy.f performs the near pancake
calculation, hspag.f calculates the near direct lattice (from the three-dimensional vortices,
designated here as spaghetti fields), and hsum.f calculates the reciprocal lattice result. Before
we could proceed, we needed to verify that these previously existing programs were working
properly. In the near limit, hspag.f and hpxy.f should produce the same results, but the
numbers were significantly off. The problem was traced to hpxy.f, but after we fixed it we
encountered a similar setback with hsum.f. To resolve this, we inserted a more straightfor-

ward calculation of the reciprocal lattice result from Tinkham [7], creating a newer version

10
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Figure 2: Wigner-Seitz cells.

of hsum.f.

After this initial debugging phase, we could finally begin focusing on disorder. The
disorder consists of a series of random displacements in the x-y plane as one moves up or
down in a stack of pancakes, so to include it in the pancake program we needed to utilize a
random number generator. Since these displacements could wander quite far from the origin,
the first step was to create a program that could take a set of coordinates and re-map them
onto an equivalent position closer to the origin (that is, with the same position relative to a
vortex). For this it was necessary to employ the concept of a Wigner-Seitz cell, defined as
the region of space about a lattice point that is closer to that point than to any other lattice
point [7]. We used the XMGR application to plot a grid of points and their surrounding

hexagonal Wigner-Seitz cells as a visual aid (Fig. 2).

11



It was these hexagonal cells that were the basis for our re-mapping. No matter where
the point had strayed, its position in any Wigner-Seitz cell was considered equivalent to the
corresponding position in the origin cell. The next task, therefore, was to write a program
that would take the coordinates of the end point of the random walk, find the nearest vortex
to that point, and then subtract off the distance from that vortex to the origin. This program
(xnearest.f) does so by comparing the squares of the distances from the point to the four
possible nearest vortices (those surrounding the point). The xnearest subroutine then returns
the coordinates of the re-mapped point, which would always be within the first Wigner-Seitz
cell. We tested this program using the same gaussian probability distribution method of
random number generation that would be used in the actual calculation of disorder. The
random numbers were scaled so that on average they would be greater than the dimensions of
a single Wigner-Seitz cell, so we would expect the resulting re-mapped points to be roughly
evenly distributed within the origin cell. This was indeed the case (see figure 3), and we
were then able to insert the pancake calculation into the program containing the random
walk and re-mapping functions.

The product of this combination was the program tryout.f, which generates the array of
field values predicted by the pancake theory and modified by the disorder calculation. This
array can then be fed into another previously existing program, integp.f, which does the
numerical integration described in equation 11 to calculate the magnetic field distributions.
Once we were convinced that the tryout program was working correctly, we renamed it hpxy.f
and reverted back to an older program (longdis.f) that called each of the three magnetic field

programs (hxpy.f, hspag.f, and hsum.f). Finally, the complete picture could be assembled,

12
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Figure 3: The test of the remapping subroutine (xnearest.f).

and integp.f could be used to finalize the task and produce actual theoretical data in the
form of the field distributions n(b) as a function of magnetic field. The basic sequence of

programs used to generate these data is summarized in figure 4.

Results

These distributions are subject to a number of parameters that are read in by the program.
The first is the scale factor (sc) for the random walk calculation, in units of thousands of
angstroms. The others include the applied field strength B, the number of pancake sheets
summed over (nsh), the spread of pancakes in the x-y plane (npanxy), and the number of

iterations of the pancake calculation being averaged (nave). For initial comparison, and to

13
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Figure 4: A flowchart of the main programs used to sum the magnetic fields and calculate
the probability distributions.

see if the numbers were coming out as expected, we generated data for fields of 1000 G,
10000 G, and 60000 G, and for scale factors of 0, .02, .04, .05, .06, .08, .1, .14, .18, .2, .4,
6, .8, 1.0, 2.0, and 3.0. The expectation was that with greater disorder (higher sc), the
distribution would become narrower and more like a straight peak instead of one with a
gradual downslope (fig. 5). Also, with a higher field, we expect the effect of a given scale
factor to be more pronounced. This result can be seen in the progression of figures 6, 7, and

8.

Conclusion

As expected, the field distribution narrows with increasing disorder, but we did encounter
one obvious discrepancy. The average field was supposed to be roughly equal to the external

applied field (B), but we found that with a higher field and increasing disorder the average

14
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Figure 6: Probability distribution for sc=.05 and b=1kG
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Figure 9: Schematic view of experimental setup for SR [5]

shifted down slightly. This is believed to be the result of the average pancake position being
further away from the origin with increasing disorder.

We hope these results will help us better understand the phenomenon of disorder in
superconductors, but most of the conclusions have yet to be made. Some inconsistencies
need to be addressed by further study, but the initial findings are promising and generally
agree with the expected outcome. The theoretical calculations will eventually be used to
compare with experimental data from the TRIUMF lab in British Colombia, Canada, which
conducts muon spin rotation spectroscopy (uSR) experiments. In uSR, a surface beam of
muons is fired at a superconducting target, and the resulting positrons are detected by the
1SR apparatus (fig. 9). Since muons decay preferentially in the direction of their spin, and
the spin itself is meanwhile rotating (precessing) around the direction of the local magnetic
field, these studies can be used to determine the microscopic magnetic fields inside the target

[5]. With the numerical models we have been building, the theory of disorder of pancake

17



vortices in superconductors can be tested against the experimental results to better our

understanding of these materials.
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Appendix: Fortran Code

CH kKoK KoK oK ok K ok ook o oK o K ok 3ok ook o Kok ook o ok ok ook o K ok ook o ok ok K ok ook o ok ook ok ok o ok o ok ok ok ook ok ook o ok ok ok ok
subroutine hpxy(B,xlab,sc,nsh,npanxy,hpan, INDEX)
dimension hpan(0:INDEX,0:INDEX)
parameter (pi=3.14159265,phi0=2.07e3,5=.03081/2.)

c s is peculiar to BSCCO.
Jddddddddddddddddddddddddddddddodofde
save
z=0.
S8=8*s

x1=(2./s) *x1ab**2

a=sqrt (phi0*2/(B*sqrt(3.)))

xmax=a/2.

ymax=sqrt(3.)*a/4.

axl=a

ax2=a/2

ay2=a*sqrt(3.)/2.

dx=xmax/index

dy=ymax/index

pref=phi0/(2.*pi*x1)
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCececececece
¢ All the above is set up
c
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecececece

print*,’Away we go!’

do i=0,index

x=1i*dx

do j=0,index ! These are the x and y positions of the muon.
y=j*dy
do k=-npanxy,npanxy ! Pancake positions.

do 1=-npanxy,npanxy
xmp0=x- (k*ax1+1*ax2)
xs=(xmp0) **2
ympO=y-1*ay2
ys=(ympO0) **2
Xpys=xs+ys
do m=-nsh,nsh
zs=(s*m) **2
r=sqrt (xpys+zs)
hpan(i,j)=hpan(i,j)+exp(-r/xlab)/r
enddo

19



enddo
enddo
hpan(i, j)=pref*hpan(i, j)
enddo
enddo
return
end

20



subroutine hsumc(B,xlab,hsum, INDEX)
parameter (phi=2.07e3,pi=3.142592654,1G=50)
dimension hsum(0:INDEX,O0:INDEX) ,hq(-IG:IG,-IG:IG)
dimension gx(-IG:IG,-IG:IG),qy(-IG:IG,-IG:IG)
complex ci
save
ad=sqrt (phi*2./(B*sqrt(3.)))
xlabs=xlab**2
tpioa=2*pi/ad
tpioaor3=tpioa/sqrt(3.)
pr2=tpioaor3*2
¢ First get the Q72
do i=-ig,ig
do j=-ig,ig
gx (i, j)=ix*tpioa
qy(i,j)=-ixtpioaor3 + pr2x*j
qs=qx (i, j)**2+qy (i, j)**2
hq(i,j)=B/(1.+xlabs*qs)
enddo
enddo
ci=(0,1)
dx=ad/ (2*INDEX)
dy=ad*sqrt (3.)/(4.*INDEX)
do i=0,INDEX
do j=0,INDEX
rx=dx*1i
ry=dy*]j
do 1=-ig,ig
do m=-ig,ig
hsum(i, j)=hsum(i, j)+hq(1l,m)*exp(ci*(rx*qx(1l,m)+ry*qy(1l,m)))
enddo
enddo
enddo
enddo
end

21



KKK A KK KoK KoK KK K K ok KoK oK o K oK oK oK ok o oK o K ok o ok o ok ok K oK ok o 3ok ook ok K ok o ok o ok ok ok ook ok ok o ok ok oK ok
subroutine hspags(B,xlab,hspag,INDEX,npanxy)
parameter (pi=3.14159265,phi0=2.07e3)
dimension hspag(0:INDEX,O0: INDEX)

cceceececeecccececcecccceccceccecccecececece
save
z=0.

SS=s*S

x1=(2./s) *x1lab**2

a=sqrt (phi0*2/(B*sqrt(3.)))
print*,’a=’,a

xmax=a/2.

ymax=sqrt(3.)*a/4.

axl=a

ax2=a/2

ay2=a*sqrt(3.)/2.
prefspag=phi0/(2.*pi*xlabx*2)
printx*,’prefspag=’,prefspag,’ =7’
dx=xmax/index

dy=ymax/index

¢ Next calculate the near spaghetti.

c npanxy=10
do i=0,index

x=1i*dx
do j=0,index
y=j*dy
hspag(i, j)=0.
do k=-npanxy,npanxy
do 1l=-npanxy,npanxy
xx=x-(k*axl+1*ax2)
yy=y-l*ay2
r=sqrt (xx*xx+yy*yy)+.0001
hspag(i,j)=hspag(i,j)+bessk0(r/xlab)
enddo
enddo
hspag(i,j)=prefspag+*hspag(i, j)
enddo
enddo
return
end

22



C*****program INTEGP . £k kkkkk*kkk

parameter (index=9,1len=100)
dimension hsum(O:INDEX,O:INDEX),fldnow(LEN) ,field(LEN),
1 hsumz(0:INDEX,O0:INDEX)
nr=(index+1) **2
open(9,file="field_array")
do k=1, (index+1)x*x*2
read(9,%)i, j, hsum(i,j)
enddo
close(9)

dx=1.

dy=1.

call integ(hsum,hsumz,index,dx,dy,fldnow,field,len,theta,nflds)

open(9,file="testfile")

fdndw=0.

wt=0.

do i=1,len
fdndw=fdndw +field(i)*fldnow(i)
wt=wt+fldnow (i)
write(9,*)field (i) ,fldnow (i)

enddo

bave=fdndw/wt

printx*,’baverage= ’,bave

close(9)

end

€ %k 3k 3k 3k 3k 3k 3k 3k 5k 5k 5k 5k 5k 5k 5k 5k %k 5k %k 5k 5k 5k 3k 3k 3k 5k 3k 5k >k >k %k 3k 3k 5k 3k 3k 5k 5k >k %k %k %k 5k 3k 3k 5k 5K 5k 5k 5k %k %k 5k 5k 3k 3k 5k 5k >k >k >k >k %k 3k %k >k 5k 3k 5k *k %k %k %k %k %k %k %k *k

O O O O O 0O 0

subroutine integ(hsum,hsumz,INDEX,dx,dy,fldnow,field,LEN,theta,
1 nflds)

..This routine will run through field values and sum for the line-shape

..at each one. Field values are assumed to vary linearly between successive
..points on the grid, and also across diagonals. Each contribution to the
..sum is calculated by dividing the length of the field line through half
..of the rectangle by the gradient. Updated 2/93 for the calculation of

. .dn/db*<bperp~2/b~2> -- hence the inclusion of the hsumz grid to calc
..bperp. Again 5/27/93 for bx dn/db & by dn/db.

€k >k 3k 3k 3k 3k 3k 3k 5k 5k 5k 5k 5k 5k 5k 5k %k 5k %k 5k 5k 5k 3k 3k 3k 5k 3k 5k >k >k %k 3k 3k 5k 3k 3k 5k 5k >k %k %k %k 5k 3k 3k 5k 5k 5k 5k 5k %k 5k 5k %k 3k 3k 5k 5k >k >k >k >k %k %k %k 5k 5k 3k 5k *k %k %k %k %k %k %k %k %

save
parameter (LEM=100)
dimension hsum(O:INDEX,O0:INDEX),fldnow(LEN),field(LEN),
1 hsumz(0:INDEX,O:INDEX)
do i=1,len

fldnow(i)=0.

23



enddo

dstot=sqrt (dx**2+dy**2)

Cc...Find max and min field values.
do 4 i=0,INDEX
do 4 j=0,INDEX
if((i.eq.0).and.(j.eq.0))then
fmax=hsum(0,0)
fmin=hsum(0,0)
endif
if (abs(hsum(i,j)) .1t. fmin) fmin=hsum(i, j)
if (abs(hsum(i,j)) .gt. fmax) fmax=hsum(i,j)

4 continue
Cc...Need to automatically choose the limits for the lineshape calculation.
c...Fstart is easy, one below its value is sufficient to give a first zero.
c...To find the end value, typical distributions were analyzed and it was
c...found that values from fmin up to a certain % of the range of fields held
c...all of the necesary information. The percentage increases as the angle
C...increases.

print*,’In integ, fmin & fmax= ’,fmin,fmax,’ = 7’

read*,fmin,fmax

itheta=nint (theta/1.571%19.)

fstart=fmin-1.

fend = fmax

print*,’Min and max field values are ’,fmin,fmax

change force nflds to 100 8/25/96
nflds=LEM
if(nflds .gt. LEN)nflds=LEN

df=(fend-fstart)/real(nflds)
print*,’start,end,df= ’,fstart,fend,df

c...Loop over field values.
do 10 ifield=1,nflds

field(ifield)=fstart + (ifield-1)x*df

c...Loop over the grid.
do 20 j=0,INDEX-1

24



do 30 i=0,INDEX-1

xd=-1.
yd=-1.
xe=-1.
ye=-1.

..Check if the field is in the lower right triangle.
if((field(ifield) .1t. amaxl(hsum(i,j),hsum(i+1,j),

1 hsum(i+1,j+1))).and. (field(ifield) .ge. aminl(hsum(i,j),

2 hsum(i+1,j) ,hsum(i+1,j+1))))then

..Calculate the gradient for the lower right triangle.

dbdx=(hsum(i+1, j)-hsum(i,j))/dx

dbdy=(hsum(i+1, j+1)-hsum(i+1,j))/dy

gradb=sqrt (dbdx**2+dbdy**2)
printx*,’dbdx,dbdy,gradb= ’,dbdx,dbdy,gradb

..Calc these for other contrib.

dbdxz=(hsumz (i+1, j)-hsumz(i,j))/dx
dbdyz=(hsumz (i+1, j+1)-hsumz(i+1,j))/dy
dbdxyz=(hsumz (i+1, j+1)-hsumz(i,j))/dstot

c...Find the intersection points on the lower right triangle.
..Xx—axis bottom.

if((field(ifield) .1t. amax1(hsum(i,j),hsum(i+1,j))) .and.
1 (field(ifield) .ge. aminl(hsum(i,j),hsum(i+1,3j)))) then
xe=(field(ifield)-hsum(i,j))/dbdx

endif

..y-axis right.

if((field(ifield) .1t. amax1(hsum(i+1,j),hsum(i+1,j+1))) .and.
1 (field(ifield) .ge. aminl(hsum(i+1,j),hsum(i+1,j+1))))then
ye=(field(ifield)-hsum(i+1,j))/dbdy

endif

..diagonal up-right to low-left.

if((field(ifield) .1t. amax1(hsum(i,j),hsum(i+1,j+1))).and.
1 (field(ifield) .ge. amini(hsum(i,j),hsum(i+1,j+1))))then
dbdds=(hsum(i+1, j+1)-hsum(i,j))/dstot
deltas=(field(ifield)-hsum(i, j))/dbdds

fract=deltas/dstot

xd=fract*dx

yd=fractxdy
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endif

..Only two of the above three should be satisfied.

if((xe .gt. 0.).and.(ye .gt. 0.).and.(xd .gt. 0.)) then
print*,’Problem at i,j= ’,i,j,’ lower right triangle.’
goto 40

endif

if(xe .1t. 0.)then

dlen=sqrt ((dx-xd)**2 + (yd-ye)**2)

bperp2=((hsum(i+1, j)+dbdy*ye) **2- (hsumz (i+1, j)+dbdyz*ye) **2 +

1 (hsum(i,j)+dbdds*deltas)**2-(hsumz (i, j)+dbdxyz*deltas)**2)/2.
otherc=(hsumz(i+1, j)+dbdyz*ye+hsumz (i, j) +dbdxyz*deltas)/2.
printx*, ’bp2xe= ’,bperp2

elseif(ye .1t. 0.)then
dlen=sqrt ((xd-xe)**2 + yd**2)
print*,’dlen= ’,dlen
bperp2=((hsum(i, j)+dbdx*xe) **2- (hsumz (i, j)+dbdxz*xe) **2 +
1 (hsum(i, j)+dbdds*deltas) **2-(hsumz (i, j)+dbdxyz*deltas)**2)/2.
otherc=(hsumz (i, j)+dbdxz*xe+hsumz (i, j)+dbdxyz*deltas) /2.
print*, ’hsum(i, j) ,dbdx,xe,hsumz(i, j) ,dbdxz,dbdds,deltas,dbdxyz= ’,
1 hsum(i, j),dbdx,xe,hsumz (i, j),dbdxz,dbdds,deltas,dbdxyz
printx*, ’bp2ye= ’,bperp2

else

dlen=sqrt ((dx-xe)**2 + yex*2)

bperp2=((hsum(i+1, j)+dbdy*ye) **2- (hsumz (i+1, j) +dbdyz*ye) **2 +

1 (hsum(i, j)+dbdx*xe)**2-(hsumz (i, j)+dbdxz*xe) **2) /2.
otherc=(hsumz(i+1, j)+dbdyz*ye+hsumz (i, j) +dbdxz*xe) /2.
print*,’bp2diag= ’,bperp2

endif

..Calc the contrib. to the sum.

cont=dlen/gradb
cont=dlen/gradb*bperp2
cont=dlen/gradb*otherc
fldnow(ifield)=fldnow(ifield)+cont
print*,’fldnow, cont= ’,fldnow(ifield),cont

xe=-1.
ye=-1.

..Keep xd and yd in case are needed below.
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endif

..Now for the upper left triangle.

if((field(ifield) .1t. amax1(hsum(i,j),hsum(i,j+1),

1 hsum(i+1,j+1))).and. (field(ifield) .ge. aminl(hsum(i,j),
2 hsum(i,j+1) ,hsum(i+1,j+1)))) then

..Calc gradient up here.

dbdx=(hsum(i+1, j+1)-hsum(i, j+1))/dx
dbdy=(hsum(i, j+1)-hsum(i, j))/dy

gradb=sqrt (dbdx**2 + dbdy**2)

printx*, ’dbdx2,dbdy2,gradb2= ’,dbdx,dbdy,gradb

..Calc these for othercont.

dbdxz=(hsumz (i+1, j+1)-hsumz(i, j+1))/dx
dbdyz=(hsumz (i, j+1)-hsumz(i,j))/dy
dbdxyz=(hsumz (i+1, j+1)-hsumz (i, j))/dstot

..Top.

if((field(ifield) .1t. amax1(hsum(i,j+1),hsum(i+1,j+1))) .and.
1 (field(ifield) .ge. aminl(hsum(i,j+1),hsum(i+1,j+1))))then
xe=(field(ifield)-hsum(i, j+1))/dbdx

endif

..Left side.

if((field(ifield) .1t. amaxl(hsum(i,j),hsum(i,j+1))).and.
1 (field(ifield) .ge. amini(hsum(i,j),hsum(i,j+1))))then
ye=(field(ifield)-hsum(i,j))/dbdy

endif

..Diag. done above: if there is a crossing, xd and yd are calculated.
if((xe .gt. 0.).and.(ye .gt. 0.).and.(xd .gt. 0.))then
print*,’Problem at i,j= ’,1i,j,’ upper left triangle.’

goto 30

endif

if(xe .1t. 0.)then

dlen=sqrt(xd**2 + (yd-ye)**2)
bperp2=((hsum(i, j)+dbdy*ye) **2- (hsumz (i, j)+dbdyz*ye) **2 +

1 (hsum(i, j)+dbdds*deltas)**2-(hsumz (i, j)+dbdxyz*deltas)**2)/2.
otherc=(hsumz(i, j)+dbdyz*ye+hsumz (i, j)+dbdxyz*deltas)/2.
printx*, ’bp2xe2= ’,bperp2
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elseif(ye .1t. 0.)then

dlen=sqrt ((xd-xe)**2 + (dy-yd)**2)
bperp2=((hsum(i, j+1)+dbdx*xe) **2- (hsumz (i, j+1) +dbdxz*xe) **2 +

1 (hsum(i, j)+dbdds*deltas)**2-(hsumz (i, j)+dbdxyz*deltas)**2)/2.
otherc=(hsumz (i, j+1)+dbdxz*xe + hsumz(i,j)+dbdxyz*deltas)/2.
printx*,’bp2ye2= ’,bperp2

else

dlen=sqrt(xe**2 + (dy-ye)**2)
bperp2=((hsum(i, j+1)+dbdx*xe) **2- (hsumz (i, j+1) +dbdxz*xe) **2 +

1 (hsum(i, j)+dbdy*ye) **2-(hsumz (i, j) +dbdyz*ye) **2) /2.
otherc=(hsumz (i, j+1)+dbdxz*xe + hsumz(i, j)+dbdyz*ye)/2.
printx*,’bp2diag2= ’,bperp2

endif

..Calc contrib. for this.

cont=dlen/gradb
cont=dlen/gradb*bperp2
cont=dlen/gradb*otherc
print*,’2, fldnow,cont= ’,fldnow(ifield),cont
fldnow(ifield)=fldnow(ifield)+cont
endif

continue
continue

continue

return
end
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cxxdkkprogram LONGDIS. frskkokkkxx
parameter (INDEX=9)
dimension hsum(0:index,0:index) ,hpan(0:index,0:index)
dimension hspag(0:index,0:index)
save
nave=1
do i=0,index
do j=0,index
hsum(i, j)=0.
hspag(i, j)=0.
hpan(i, j)=0.
enddo
enddo
B=70.
sc=0.
xlab=2.
nsh=1000
npanxy=4
printx*,’B,xlab,sc,nsh,npanxy,nave=7’,B,xlab,sc,nsh,npanxy,nave
read*,B,xlab, sc,nsh,npanxy,nave
print*,’B,xlab,sc,nsh,npanxy,nave=’,B,xlab,sc,nsh,npanxy,nave
call hspags(B,xlab,hspag(0,0),INDEX,npanxy) ! The near direct lattice
call hsumc(B,xlab,hsum(0,0),INDEX)
call hpxy(B,xlab,sc,nsh,npanxy,nave,hpan(0,0) ,INDEX) ! Near Pancakes
print*, ’hpan=’, (hpan(0,j),j=1,9)
print*, ’hspag=’, (hspag(0,j),j=1,9)
do i=0,INDEX
do j=0,INDEX
hsum(i, j)=hsum(i, j)+hpan(i, j)-hspag(i,j)
enddo
enddo
open(9,file="field_array")
do i=0, index
do j=0,index
write(9,*)i, j, hsum(i,j)
enddo
enddo
close(9)
end
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