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1 Introduction

The fundamental goal of theoretical particle physics is to find a theory
that describes all observed particles and interactions. To that end, particle
theorists have developed what is known as the standard model. This model
describes the constituents and dynamics of the electromagnetic, weak, and
strong interactions. The standard model consists of two types of particles,
those that participate in an interaction (fermions), and those that mediate
the interaction (gauge bosons).

The standard model is a quantum field theory. A quantum field the-
ory describes particles as fields and their interactions as the overlap of these
fields. These fields are quantized in that they are allowed only certain oscilla-
tory states. The oscillatory modes of such fields are associated with particle
masses, thus tying a given field theory to real particle dynamics.

When defining a quantum field theory, we need only state two things
about a system: the fields involved, and the symmetries that they obey. All
information about the system falls out of this fairly straightforward initial
information. If one knows what kinds of fields are involved (scalar, vector,
psuedoscalar, etc.) and whether they are commuting or anticommuting, then
it is possible to define the action of the system. The action is the integral
over all space-time of the Lagrangian, the kinetic energy minus the potential
energy of the system. Requiring certain symmetries imposes conditions of

invariance on the action, and therefore allows or disallows certain terms in



the Lagrangian. Thus by writing down the Lagrangian and how the various
fields transform under certain symmetries, we have a complete theory.

Incorporating experimental constants into the theory makes it possible
to predict the outcome of any processes (particle interactions) allowed in the
system. One necessary feature of a field theory is the ability to tie certain
coupling constants (strengths of interactions) to observed phenomena thus
giving predictive power to that theory. To that end, a quantum field theory,
when constructed, must be renomalizable, that is, infinite divergences in
quantum mechanical amplitudes (the likelihood of a given process) can be
removed from the theory by redefinition of couplings. An example of such a
theory is the gauge theory of quantum electrodynamics (QED). By requiring
the Lorentz invariance of a single field in the Lagrangian in conjunction with a
simple gauge symmetry, we produce the rules that govern electromagnetism.

The dynamics are more complicated, however, in trying to unify the elec-
tromagnetic and weak forces into a single theory. The electromagnetic inter-
action is mediated by the massless photon. Because the photon is massless,
the uncertainty principle places no restriction on the range of the force. How-
ever, the weak interaction is mediated by the vector bosons, the W* and the
7. The weak interaction is short ranged, implying that these particles are
massive.

Experimentally, the vector bosons have mass. However, massive bosons

present a problem in defining a field theory. There is no way to simply write



down mass terms in the Lagrangian and still maintain renormalizablility.
Without renormalization, the theory loses its predictive power. The solution
lies in spontaneous symmetry breaking. It is a means of generating particle
masses while maintaining the renormalizability of the theory.

The Glashow-Weinberg-Salam (GWS) unified electroweak theory accounts
for the massive vector bosons by incorporating an instance of spontaneous
symmetry breaking called the Higgs mechanism. This mechanism, in the
form of a broken SU(2) x U(1) symmetry, assigns a nonzero vacuum expec-
tation value to a self-interacting complex scalar field. The particles resulting
from this theory are identified as the free, massive neutral Z boson, the mas-
sive, charged W= bosons, and the massless photon.

An extra consequence of this theory, however, is a massive neutral scalar
boson often referred to as the Higgs boson which has yet to be identified.
Upper and lower bounds can be placed on the scalar mass simply by requiring
that perturbation theory remain valid up to the unification scale and that the
vacuum be stable, i.e. that the ground state of the universe itself does not
decay spontaneously. In particular, this paper will explore several extensions
of the standard model and the bounds that can be placed on the neutral

scalars of those theories.



2 Theory

2.1 Spontaneous Symmetry Breaking

The idea of spontaneous symmetry breaking is quite simple. Sponta-
neous symmetry breaking (SSB) occurs when we require that the Lagrangian
of a theory obey a certain symmetry while allowing the vacuum state to vi-
olate that symmetry. A good example is the classical ferromagnet. At high
energy, the ferromagnet has no preferred spin alignment. However, at low
energy, the ferromagnet’s spin points in a particular direction. The ferro-
magnet breaks rotational symmetry at minimum energy [10]. Another good
example is that of a knitting needle aligned lengthwise with a particular axis.
Given lateral compression, the needle will, at some point, buckle in an ar-
bitrary direction in the perpendicular plane, sacrificing rotational invariance

for a lower energy configuration.

2.2 The Higgs Mechanism

When applied to a set of scalar fields, SSB is known as the Higgs
mechanism. A way to illustrate the Higgs mechanism is by considering the
simplest case of ¢* theory, a complex scalar field under global U(1) symmetry

(¢ — e ¥¢). We first construct the simplest invariant Lagrangian

L= (0"9)"(0u0) — V(9), (1)



with the potential given as

V(9) = 1*d'é + No'9)?, (2)

where ;2 and )\ are arbitrary couplings.

Considering the case where p? > 0, the potential is a simple paraboloid
with minimum ¢f¢ = 0. However, considering the case where p? < 0 and
A > 0, the potential takes the shape that is popularly called the ” Mexican
Hat” (Fig. 1). There is a local maximum at ¢'¢ = 0, and the minimum is
#'¢ = —p?/2). The field, therefore, can be said to have a nonzero vacuum

expectation value (VEV) [10, 9].

Figure 1: The "Mexican Hat” Potential



The minimum, without loss of generality, can be chosen to lie in the
direction of R(¢). A perturbation about the vacuum can be performed,

expanding about the minimum, to redefine the theory in terms of the nonzero

VEV. The field can be expanded as,

1
¢(z) = 7z (o +n(z) +ix(2)), (3)
where 02 = —%, and where 7(z) and x(x) are both real fields, each with

a zero VEV, representing perturbations in the radial and angular directions
respectively. Substituting the expanded field back into the Lagrangian and

throwing out higher order terms, we have

1 1 1
L = 5(3;477)2 + 5(5;»02 = 5(2)\02)772 — donx?
1 1 1
__/\ 4__)\ 4__)\ 2.2 4
2T X AT X (4)

Now, in the redefined theory, we have mass terms of the form %m2¢2. The
mass-squared of the 7 is then 2\o? and the x is massless.

The massless boson is the direct result of SSB, known as Goldstone’s
theorem. A spontaneously broken symmetry will always result in a massless
particle (a Goldstone particle). For every degree of freedom lost by a broken
symmetry, there will be a resulting Goldstone particle in the theory. While
this is not generally obvious, it is readily apparent in the previous example.
The massive n corresponds to the positive-frequency oscillatory mode in the
radial direction, while the massless x corresponds to the zero-frequency mode

in the angular direction [10].



The idea of the Goldstone boson is an important one in SSB. A theory
with a global symmetry, such as the previous example, produces a massless
scalar boson. However, we know that there are no such particles in the
physical universe. Real massless particles, like the photon, have two degrees
of freedom, while massive vector bosons have three, and massive scalars have
one. The question then arises as to what this Goldstone boson actually
represents.

The answer lies in introducing a local gauge symmetry to the theory
(¢ — e*(®)¢). With such a symmetry imposed, we find that the new theory,
with a properly defined gauge, now has no massless particles. Instead, there
is a massive vector boson with three degrees of freedom, and a single massive
scalar. We say, then, that the Goldstone boson has been ”eaten” to provide
the third degree of freedom to the vector field. The fact of the matter is that
the Goldstone boson is simply a placeholder for degrees of freedom, and that,
given a properly, physically defined gauge, it disappears with a redefinition

of the theory’s fields.

2.3 The Standard Model

The GWS electroweak theory is the core component of the Standard
Model. This model incorporates the idea of SSB into a locally gauge-invariant
SU(2) x U(1) theory. This model requires the vector bosons to acquire mass
and unifies the weak and electromagnetic interactions into a single theory.

This model, as previously stated, also produces the yet undetected Higgs

8



boson [5].
Let us now consider the minimal standard model, the simplest allowed

Higgs field. Let ® be a complex SU(2) doublet such that

@:(§>. (5)

The kinetic and potential terms of the simplest locally SU(2) invariant La-

grangian are

9 g 9 pi
Ls = (D"®)Y(D,®) -V (®), D, =0, — i AL =15 By (6)

The most general potential is
V(®) = 20Td + \(1D)2. (7)

Higher order terms in the potential lead to renormalization problems, and
are therefore excluded from the potential.

The field couples to the fermions to generate fermion masses. The Yukawa
coupling terms in the Lagrangian that give mass to the charge -1/3 quarks

and leptons are of the form
hey Qi ®dyy + hiy Ly Pep + hoc., (8)
with

u? vY
w pr— a Lw p— ( a ) . (9)
aL w ’ aL w
( da ) L ea L

Here, Q¥, are the SU(2) doublets representing the left-handed quarks (in-

dexed over the 3 u and the 3 d generations), and Q% are the left-handed

9



leptons (indexed over the 3 v and the 3 e generations). The right-handed
quarks are given by the SU(2) singlets u”, and d¥g, while the right-handed

e is denoted by e¥;,. A second field

o, = ( _QS;_ ) = —in®* (10)

can be constructed from the first to couple to charge 2/3 as such
hY, Q" ® uf + h.c. (11)

The h matrices above are 3 x 3 coupling matrices. The Lagrangian is then
the sum of the kinetic and potential terms and the Yukawa coupling terms
[10].

To incorporate spontaneous symmetry breaking, we must minimize the
potential and expand about the nonzero minimum, as in the previous exam-
ple. The complex doublet must first be expressed in terms of four real scalar

fields

_ L [ ¢+io
‘I"ﬁ<¢3+i¢4)' (12)

The direction of the minimum is arbitrary. For simplicity, we will choose the
minimum to lie along the real part of the neutral component of ®, ¢3. We
perform an SU(2) rotation of the field such that ¢; = ¢ = ¢4 = 0. The

minimum is then given in terms of the real parameter o as

@ = (1) (13)
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Again, choosing p? < 0, provides a minimum at 0% = —%. Now the
Higgs field is shifted to the vacuum state, and a gauge is chosen to eliminate
the remnants of the broken generators. The new field to be put back into

the Lagrangian is then

B(z) = % ( 0+077(x) ) . (14)

Substituting this field into the Lagrangian, and making the following

definitions
WE = (AL 5 42 15
Z, =sinbw B, — cos QWAZ, (16)
A, = cosby B, +sin OWA:;’L, (17)
gl
tan ew = E, (18)

we can read the masses of the bosons from the quadratic terms. They are

1

MI%V = 192025 (19)
2 1 2 12\ 2
M3 = 0. (21)

The masses of the quarks also arise from Yukawa terms in the redefined

Lagrangian. They take the form m, = g’%, where the coupling constants g}

11



are determined from the simultaneous diagonalization of the h matrices with
the mass matrices. The Higgs’s mass, identified from the 7 field, can also be
read off from terms quadratic in 7 as m? = 2Ao*. It should be noted that o
is a scale determined to high precision to be o = 247 GeV [10].

The fate of the massless Goldstone bosons is the same as in our previous
example. While the Higgs field started with four degrees of freedom, the
single Higgs boson is a massive scalar with one degree of freedom. The three
remaining degrees of freedom have been absorbed by the three vector fields

(W#,Z), one by each.

2.4 Renormalization Group Equations

Renormalization Group Equations (RGEs) define, for a given theory,
how the potential changes with the energy scale. With increasing energy, the
couplings in the Lagrangian vary, leading to an “effective” potential. The
variations of the couplings are due to first-order corrections to the single-
vertex self-interaction of the scalar field. At higher energies these corrections
become a significant factor when determining resulting amplitudes. These
corrections then provide new fixing conditions for renormalization. This re-
quires the notion of the effective potential in the redefined Lagrangian [9].

The first-order contributions to the effective self-interaction potential are
of five types: a scalar coupling of order A2, gauge couplings of orders \g?

and ¢*, and Yukawa couplings of order A\h? and h*. The RGE for this simple

12



single scalar model, therefore, has the form

d\ FE
E =a)\ — b)\g2 + cg4 + d\h? — 6h4, t=1In (;) (22)

where the minus sign in the last term is due to the Feyman rules for a fermion
loop. Ignoring, for the time being, how the gauge and Yukawa terms scale
with increased energy, it is easy to see how bounds on the scalar coupling
arise. If )\q is too large, A, and thus V(®), will blow up too quickly. Imposing
the condition that perturbation theory must be valid all the way up to the
Unification Scale (taken here to be £ = 10'% GeV'), rules out this possibility.
Also, vacuum stability is an observed characteristic of our universe. We
therefore impose the condition that A, and thus V(®), cannot go negative

which restricts how large the Yukawa coupling term can be.

2.5 Bounds on the Higgs Mass

To place upper and lower bounds on the standard model Higgs mass,
we need only write down the RGEs. Simply taking the RGEs as given,
and keeping in mind that in the previous representation of the RGE form

7> = 36>+ ¢, h — gy, and 3, = % we have

1 3 3
— 24)\2 — 2 12 Qo4 22 12\2
B 62 (247 =3ABg" +97) + 79+ 29"+ ¢
+12\g% — 6gy), (23)
gy (9 s 95 17 /2)
— 02 —8a%> — 22— = 24
By = 16 (29y %= 79 — 139 ) (24)
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B = — g’ (11 - éN) : (25)

1672 3
19 ,/22 4 1
- 2 _IN_:IN 26
By = —96m29 (3 3" 7§ H) (26)
A1 ,3(20 1 )
= = B (ZEN+ N 27
by = 5629 \g N+ 6Nn ) (27)

where g, is the QCD coupling constant, N is the number of fermion genera-
tions, and Ny is the number of Higgs doublets. Boundary conditions for this

series of differential equations, at t = 0, are given by

(&)

eV,
<d¢id¢j> = Miij (29)

where M% is the mass-squared matrix with nonzero eigenvalue m?% represent-
ing the Higgs mass-squared, and where each equation is evaluated at ¢; ; = 0
fori,7 #3 and ¢3 = o [3, 7).

A simple numerical integration can be performed using Egs. (23) - (29)
to determine the allowed range of A\. Considering that the t quark has m; =
175 GeV, its Yukawa coupling strength dwarfs those of the other fermions
(though, the b quark and 7 should be included if the calculation is done
rigorously). Therefore, the calculation can be performed, without much loss
of precision, taking gy = ¢g;. Enumerating two other practical considerations,
the Unification Scale, if taken to be 10'® GeV gives a limit of integration of t ~

32, and a perturbative parameter value is taken to be A < 10 (since generally
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A < 1). Taking into account all of these factors, A can be constrained to
0.30 < A < 0.54 which corresponds to a Higgs mass of 135 GeV < mpy < 182

8.
3 The Two Higgs Doublet Model

A straightforward extension of the standard model Higgs mechanism is
to consider the case of two scalar doublets. This is known as the Two Higgs
Doublet Model (2HDM). The reason for considering this case is that it is the
simplest possible extension of the MSM without considering supersymmetry.
The new self-interaction potential now takes the form

V(®y,®y) = p2®I®; + p2050y + (120D, + hoc.) + %Al(qﬂ{@l)?

+ %)\2(@;@2)2 + A3 (DD (BIDy) 4 Ny (D] D,) (0] D)
+ {%A5(<1>{<I>2)2 + [X6(DIDB) + A7 (DI D) BT By + hec.),

(30)

where the two doublets take the form

_( X _( %
¢1_(¢1+iX1>’®2_<¢2+iX2>' (31)

The phenomena known as Flavor Changing Neutral Currents (FCNC)
arise when we consider what is called Model III, the entire potential with no
discrete symmetries imposed. The Lagrangian now has two separate Yukawa

coupling terms given as
Ly = hizhth;®1 + h1inh; B, (32)

15



where i and j represent quark generations. The mass matrix for the Yukawa

terms is

where v; and vy are the VEVs of ¢; and ¢, respectively. Because there are
now two Yukawa terms, diagonalizing M does not necessarily simultaneously
diagonalize both h; and hy. This has the effect of introducing interactions of
the field with a quark and antiquark of different flavor (e.g. ds¢).

FCNC have, in the past, been considered dangerous, as they tend to lead
to certain phenomenological problems. Also, since very strict upper bounds
have been placed on these FCNC by experiment, they are not a desirable
element of our theory. However, models have been suggested to suppress
FCNC sufficiently such that Model III is worth consideration [4].

Generally, in what are called Models I and II, one of two symmetries is
imposed to eliminate these FCNC. The two symmetries are

(I) g2 = =, dy = —di, (II) ¢o = —hs. (34)
The symmetry of Model I has the effect of requiring all of the charge 2/3
quarks to couple to the first doublet and all of the -1/3 quarks to couple
to the second. Model II requires that all of the quarks couple to the first
doublet. Both have the effect of removing from the potential terms that are
linear or cubic in one field, that is A\¢ = A7 = uz = 0 [10, 6]. As Model III is

a fairly straightforward extension of the others, we will first examine Models

I and II.
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3.1 Two Higgs Doublet Models I and II

To analyze the potential, it is convenient to express the two doublets

in terms of their real components as

_ 1 [ o1 +igs _ L [ é5+ide
@1_\/§<¢3+i¢4)’@2_\/§<¢7+i¢8>' (35)

Performing an SU(2) rotation on the first doublet, we choose the minimum
to lie along the real part of the neutral component, ¢3. This has the effect
of setting ¢, = ¢ = ¢4 = 0 at the minimum. Taking :1%/- = 0, and assigning

¢3 = v; at the minimum (making v; the VEV of ®;), there are three possible

(2)
(2)

- B wA() e

where a and b are arbitrary real constants.

solutions:

We can disregard the third solution (Eq. 38) on the grounds that it breaks
the U(1) symmetry. The second solution (Eq. 37) can also be discounted
with the argument that it is equivalent to the first solution (Eq. 36) within
a redefinition of the fields being relatively imaginary and a change of sign
of A\5. Eq. 36 is then the minimum solution with v, as the VEV of &, and

where v? + v2 = o2 [10].
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To determine the scalar masses, we take the second derivative of the

potential
2 0%V
00;0¢;

and evaluate it at the minimum. This yields (after a simple redefinition of

(39)

indices) an 8 x 8 matrix of 4, 2 x 2 submatrices. The eigenvalues of the 4
submatrices are then the eigenvalues of the matrix, M, and they represent
the scalar masses.

The charged boson mass matrix is

_%uﬁqg<7@ _%w>. (40)

—v1ve V]
This submatrix is repeated twice in the mass matrix, once for each charge.
This submatrix also has a zero eigenvalue which corresponds to the Goldstone
boson absorbed as a degree of freedom of the W=. The charged scalar mass-

squared is
1

The psuedoscalar mass matrix is given by

2 —_—
—%< Y2 %W>. (42)

—U1V9 (%
This submatrix also has a zero eigenvalue, corresponding to the Goldstone
boson absorbed by the Z. The mass-squared of the neutral psuedoscalar is,

similarly,

mio = — X\s(v? +02). (43)

18



The neutral scalar mass matrix is slightly more complicated. It is

(44)

)\11)% (A3 + As + As)v109
()\3 + )\4 + )\5)1)11)2 )\Q'U% )

The two scalar masses are then

1
mio,no = 5 ()\1’1)% + AQ'U; + \/(/\1’1)% — /\2’0%)2 + 4(()\3 + )\4 + /\5)’01’02)2) .

(45)

These masses lead to some obvious conditions at the minimum [10, 8].

Requiring that the mass-squared of a particle remain positive, we have that

As < 0, (46)

A+ As < 0. (47)

Also, it is obvious that both A; and Ay be positive so that the potential
remains bounded in the ¢3 and ¢; directions respectively. The final condition
arises if we pick an arbitrary direction ¢3 = a7 and require that the potential
be bounded in that direction as well. Minimizing with respect to the arbitrary
parameter « and requiring that the resulting potential be positive, we arrive

at the condition
Mg > (A3 + Mg+ A5)2 (48)

It remains, then, to define the RGEs for this theory in order to determine

how the various \; scale. The RGEs for all models of the 2HDM are as

19



follows [6]:

3,
By, = — 2{12)\2 + 405 4+ 4X3hg + 20 4+ 2)2 + 247 + 2g

3
+ Z(g — g2 —12h%, — 12h%, — A\ ), (49)

3
b = 1o 2{12)\2+4)\2+4)\3>\4+2/\2+2)\2+24/\7+§g4

3
+ Z(g2 — ¢ —12h%, — 12h%, — Ao}, (50)

1
Brs = Tez{N+20)(BN + M) + AN + 223 + 202

3 3
+ 402+ 4AXN2 4+ 16X6A7 + 5g4 +5(

— 12h§th2 — 12h3,h3, — 2X3(71 +72)}, (51)

2
@ —g"°)

O = 16 2{/\4(2)\1 42X + 8A3 + 4A1) + 8AZ 4 10AF + 107

4+ 4)\6/\7 +3¢%¢"” + 121202, + 122,02, — 224( + 1)}, (52)

b = 15 2{)\5(2)\1 +2Xg + 83 + 12X,) + 8A2 + 1022 + 10A2

+ 4/\6/\7 —2X5(71 +72)} (53)
Bro = o 2{)\6(12)\1 + 63 + 8y + 10)5)

+ /\7(6/\3 + 4)\4 + 2/\5) — /\6 (3"}’1 + ")/2)}, (54)
B = 1o 2{)\7(12)\2 + 63 + 84 + 10)5)

+ )\6(6)\3 + 4\ + 2)\5) — Xé (’)/1 + 3’)’2)} (55)

where

n = 9¢°+3¢” — 12h%, — 1213, (56)
vy = 9¢%7+3¢" — 12h2, — 1212, (57)

20



The RGEs for the Yukawa couplings and gauge couplings are

= 5 2{2 o g~ 862 — 00— g, (58)
Bra = ot {oH+ ohh— 82— 1g — g, (59)
A (60)
by = L (61)
B = L (52)

(63)

In the two field notation, the Yukawa couplings are given by

\/imt = h1;v1 + hosvg, \/imb = hipvy + hopvey (64)

In both Models I and II, 2 = A\¢ = A7 = 0. In Model I, where the charge
2/3 quarks couple to the first field, and the charge -1/3 quarks couple to the
second, we have that hy, = hg; = 0. Likewise, in Model II, where all quarks
couple to the first field, we have that hy = hoy = 0.

Considering that the t quark dominates the quark mass spectrum, it is
not even necessary to include the b quark in the calculation of scalar mass
bounds. While it is less precise, this aproximation allows us to consider both
Model T and Model IT simultaneously, as the bounds that arise are equivalent

given my >> my,.
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3.2 Computational Results for Models I and II

Placing bounds on the Higgs scalars is now only a matter of numerical
computation. A convenient starting point is a set value for m,o and m,=
and a value for tan g = :—; The charged and psuedoscalar masses fix A\, and
A5, and tan § fixes the Yukawa couplings. Then, for each triplet (A1, Ao, A3),
the given values of \; are integrated up to the Unification Scale, checking at
each step to make sure that the conditions of Eqs. 46 - 48 and the positivity
of A\; and )\, are not violated. A successful parameter set implies a point in
the allowed region of the four-dimensional scalar mass space (four, because
the charged scalars are alway equal in mass). The most convenient way to
examine this mass space is to look at slices of the allowed region in the m,,
vs. my plane for varying values of m,o, m,+, and tan 3.

The results of this computation are shown in Figures 2 - 4. In each graph,
the allowed regions of m, are generally bounded by Eq. 48. The allowed
regions of mg have an upper bound due to the fact that above that region
some \;’s become too large (nonperturbative). Lower bounds are imposed by
requiring the positivity of A; and Ay. my, for all parameter configurations,
is constrained between 140 and 200 GeV, the Standard Model range for a
single Higgs scalar. There are also no parameter configurations that allow
my, > 80GeV.

Allowed values of m, and my4 for different values of tan 3, given that

myo and m,z+ are fixed at 100 GeV, are displayed in Figure 2. For values of

22



tan # < 2.0, the region disappears. For large values of tan [ it is obvious that
m, becomes very small, and m, attains the full Standard Model range (not
exactly, though, as m,o, m,+ # 0). This is not surprising, as tan § — oo
represents the single doublet model.

Allowed values of m, and mg for different values of m,=, with myo =
100GeV and tan 3 = 3, are displayed in Figure 3. For values of m,+ >
150 GeV, there is no allowed mass region. Varying the charged scalar mass
has much the same effect as varying tan 3, in that larger values of m,+ allow
smaller ranges of m,, but larger ranges of m.

Allowed values of m, and my for different values of m,o, with m,= =
100 GeV and tan 8 = 3, are displayed in Figure 4. For values of m,o >
140 GeV, there is no allowed mass region. The allowed region is very in-
sensitive to the psuedoscalar mass, varying only slightly for larger values of
Miyo.

It should be noted here that, with this information Model IT can be
excluded experimentally, if it is assumed to be valid up to the Unification
Scale. If all quarks couple to one Higgs field, then the branching ratio of
B — X,y implies a charged scalar mass which is greater than 165 GeV [2].
This is impossible with vacuum stability constraints imposed on the model.

Unfortunately, no such further constraints can be placed on Model I [1].
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Figure 2: Allowed regions of m, and m, (Gev) for varying values of tan /3
with m,0 = my+ = 100GeV. Values of tan 3 shown here are 2 (black), 3
(red), 5 (blue), 10 (yellow), and 30 (purple).

24

80



200

180 .
=
< 160 -
£

140 + i

120 _—

0 20 40 60
m_eta

Figure 3: Allowed regions of m, and my (Gev) for varying values of m,+ with
myo = 100 GeV and tan 3 = 3. Values of m,= shown here are 30 (blue), 70
(red), 100 (black), 120 (purple), and 150 (yellow).
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Figure 4: Allowed regions of m,, and my (Gev) for varying values of m,o with
my+ = 100 GeV and tan § = 3. Values of m,o shown here are 70 (red), 100
(black), 120 (purple), and 140 (yellow).
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4 Two Higgs Doublet Model III

Model II of the 2HDM allows the all of the quarks to couple to both fields.
This allows the potential to have u2, g, A7 # 0. This also allows all of the
Yukawa couplings to be nonzero. Therefore, there are significantly more
parameters to vary. This tends to have the effect of expanding the allowed
regions of mass space.

In Figures 5 - 7, A\ and A; are varied. The behavior of the allowed regions
is, not surprisingly, quite similar to Models I and II. The main difference is
that the general range of my is expanded to be between 140 and 200 GeV,
and the range of m, is extended to less than 100 GeV.

In Figure 5, the allowed region for the neutral scalars is shown as tan 3
varies. The main feature of the variation is that the allowed region expands
and shifts to lower mg. There are no allowed regions for tan 8 < 1.

In Figure 6, the neutral scalar slice of allowed mass space is given for
varying values of the charged scalar mass. The region exhibits the same
evolution with charged scalar mass as the other models. As before, the
charged mass is constrained to lie below 150 GeV.

In Figure 7, the neutral scalar slice of allowed mass space is given for
varying values of the psuedoscalar mass. The psuedoscalar is, as in the other
models, constrained to be less than 150 GeV. Likewise, the region behaves
as it does in the other models, not a surprising result since we have simply

allowed the parameters more freedom, without having changed the coupling
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strengths.

The data presented in Figure 8 is preliminary. Though there is not much
change expected, the regions could expand slightly as the program continues
to generate more data. Allowing the t quark to couple to the “down” Higgs
field (conventional 2HDM nomenclature), and allowing the b quark to couple
to the “up” Higgs field, it is obvious that the regions in mass space are
greatly expanded. The one notable feature of this data is that there is an
allowed region for tan # = 1, implying that the two fields can have equal
VEVs. Because of the cross-coupling of the quarks, the “up” field need not
dominate to make the t quark significantly heavier. In fact, this specific
region is interesting because it gives an allowed region where m,,, the mass
of the lightest scalar, is greater than 100 GeV, a mass range which has yet
to be experimentally constrained. Thus Model III remains a viable theory

even given current experimental constraints on the lightest scalar.

5 Conclusion

As of now, this is the extent of my results. The process of determining
the allowed regions becomes computationally much more complex and time-
consuming with additional parameters. Due to a lack of powerful computing
resources, the process of generating data has been slow. Still to be determined
are the mass space bounds imposed on m,o and m,+ when the Yukawa cross-

coupling stregths are allowed to vary, and finally the considerations of the
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full model, including 3 # 0.

It should be noted that a large amount of computational time was devoted
to reproducing the results of Nie and Sher (1999) [8]. My results and the
results of that paper differ significantly, most notably in the lower bounds on
my,. Further computations (varying other parameters) have been performed
on the assumption that my data for Models I and IT are correct. It should also
be noted, however, that though the regions in m,, and m, space are expanded,
the data do not suggest a modification to the upper bounds previously places
on m,o and m,= and the lower bound previously placed on tan (3.

As for the data currently being computed, it is obvious that the regions in
my, and mg space will be significantly expanded in Model III as compared to
Models I and II. The upper bounds on m,0 and m,+ will most likely be higher,
and it is already evident that the lower bound on tan § is smaller. With the
addition of pu2 # 0, the regions of mass space will be expanded upward,
possibly with no upper bound. Unfortunately, there are no experimental
constraints on the charged scalar mass that would help to rule out this model
(under the assumption that it is valid up to the Unification Scale).

For future computations, it will be necessary to find ways to speed up the
runtime of the program. Optimization, apart from normal computational
rearrangements and the like, might be achieved by looking at ways to find
the allowed parameter space by random starting places and probing (Monte

Carlo) or other such methods. Also, more advantage could be taken of the
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fact that it is much faster to find points that are not in the allowed region

than those that are. The C++ code used is given as an appendix.
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Figure 5: Allowed regions of m, and m, (Gev) for varying values of tan /3
with m,0 = m,z = 100GeV, allowing that A6, A7 # 0. Values of tan 3
shown here are 1.5 (yellow), 2.0 (red), 3.0 (black), and 5.0 (blue).
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Figure 6: Allowed regions of m, and m, (Gev) for varying values of m,=
with myo = 100GeV and tan 8 = 3, allowing that A6, A7 # 0. Values of
my+ shown here are 50 (yellow), 100 (black), 130 (red), and 150 (blue).
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Figure 7: Allowed regions of m,, and my (Gev) for varying values of m,o with
my+ = 100GeV and tan 3 = 3, allowing that A6, A7 # 0. Values of m,p
shown here are 50 (yellow), 100 (black), 130 (red), and 150 (blue).
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Figure 8: Allowed regions of m, and m, (Gev) for varying values of tan /3
with m,0 = my+ = 100 GeV, allowing that A6, A7 # 0, and hy, hiy # 0.
Values of tan # shown here are 1 (black), 2 (red), 3 (blue), and 5 (yellow).
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A C++4 code for determining mass bounds
in the 2HDM

The C++ code presented here is for determining bounds on the allowed
regions in mass space for m, and mg given initial values for m,po, m,+ and
tan 3. The code can be easily generalized for all Models of the 2HDM, as
models I and IT can be considered special cases of the full Model III.

#include <fstream.h>
#include <math.h>
#include <stdio.h>
#include <string.h>

// Global Initial Values for Program

// Scaling Variables
double t_step_size = 00.05;

double t = 00.00;
double t_final = 32.00;
double m_cc = 100.0;
double m_nc = 100.0;

double tanbeta
char *filename
ofstream outfile;
ofstream outfile2;
ofstream outfile3;
ifstream infile;

010.0;
"htb10.0.dat";

// RGE Variables

double lambda_1_0 0.00;
double lambda_1_f 1.01;
double lambda_1_step = 0.01;
double lambda_2_0 = 00;
double lambda_2_f = 81;
double lambda_2_step = 0.02;

0.
0.
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double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

double

lambda_3_0 = -0.50;
lambda_3_f = 0.71;
lambda_3_step = 0.02;
lambda_6_0 = -0.40;
lambda_6_f = 0.41;
lambda_6_step = 0.03;
lambda_7_0 = -0.40;
lambda_7_f = 0.41;
lambda_7_step = 0.03;
mu_3_squared_0 = 0.00;
mu_3_squared_f = 0.01;
mu_3_squared_step = 0.01;
h_ 2_t_0 =0.00;

h 2_t_f = 0.51;

h_2_t_step = 0.10;

h_1.b_0 = 0.00;

h_1_b_f = 0.51;

h_1_b_step = 0.10;

g_c_0 = sqrt (M_PI*4%0.113);
g_prime_0 = sqrt(M_PI*4/(129%0.77));
g_0 = sqrt (M_PIx4/(129%0.23));

M_SQRT3 = 1.732050808;

// Stability Condition Variables

double
double
double

sigma = 247.0;
m_t = 175.0;
m_b = 004.7;

// Globals for all functions to use

double
double
double
double
double
double

lambda_1;
lambda_2;
lambda_3;
lambda_4;
lambda_5;
lambda_6;
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double
double
double
double
double
double
double
double
double
double
double

lambda_7;
mu_3_squared;

|
|
..

. v

N = N = |

-

o T c |

< 90 0M@OMOQ & & P &

// Function Prototypes

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

d_lambda_1();
d_lambda_2();
d_lambda_3();
d_lambda_4();
d_lambda_5();
d_lambda_6(Q);
d_lambda_7Q);
d_gQ;
d_g_prime();
d_g_cQ;
d_h_1_t(Q);
d_h_2_t(Q);
d_h_1.bQ);
d_h_2.b();
get_part_1();
get_part_2Q);
get_part_a();
get_part_b(Q);
get_part_c();
getV(double x);

int potential_check();
int check_conditions();

// Main processing function
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int main (void) {

int success = 1;
int writeout, firsti;

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
int i;

double
double
double
double
double
double
double
double
double

delta_lambda_1;
delta_lambda_2;
delta_lambda_3;
delta_lambda_4;
delta_lambda_5;
delta_lambda_6;
delta_lambda_7;
delta_g;
delta_g_prime;
delta_g_c;
delta_h_1_t;

delta_h_2_t;

delta_h_1_b;

delta_h_2_b;
part_1;

part_2;

mass_3;

mass_4;

eta, phi;
a,b,c,d,e,temp;

lambda_1_loop;
lambda_2_loop;
lambda_3_loop;
lambda_4_loop;
lambda_5_loop;
lambda_6_loop;
lambda_7_loop;
mu_3_squared_loop;
h_2_t_loop;
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double h_1_b_loop;

double lambda_7_success;
double lambda_6_success;
double lambda_3_success;
double lambda_2_success;
double lambda_1_success;
double h_2_t_success;

double h_1_b_success;

double masses[1600];

char filenameinfo[30];

char filenameerror[30];
strcpy(filenameinfo,filename) ;
strcat(filenameinfo,".nfo");
strcpy(filenameerror,filename) ;
strcat (filenameerror,".err");

outfile3.open(filenameerror) ;
infile.open(filename) ;

for (i=0; i<1600;i+=4) {
masses[i] = 200.0;

masses[i+1] = 400.0;
masses[i+2] = 0.0;
masses[i+3] = 0.0;

}

/* if (infile) {

while (!infile.eof()) {
infile >> eta;

infile >> phi;
infile.ignore(256,’\n’);
i = int(floor(phi))*4;
if (eta < masses[i]) {
masses[i] = eta;
masses[i+1] = phi;
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}

else if (eta > masses[i+2]) {
masses[i+2] = eta;
masses[i+3] = phi;

}

}

infile.close();

}

*/

v_2 = 1/sqrt((tanbeta*tanbeta)+1) ;
v_1 = tanbetaxv_2;
m_cc = m_cc/sigma;
m_CC = M_CC*m_CC;
m_nc = m_nc/sigma;
m_NcC = M_NC*m_Nnc;

// begin big for

lambda_1_success = 0.0;

for (lambda_1_loop = lambda_1_0;
lambda_1_loop < lambda_1_f;

lambda_1_loop += lambda_1_step) {
lambda_2_success = 0.0;

for (lambda_2_loop = lambda_2_0;
lambda_2_loop < lambda_2_f;

lambda_2_loop += lambda_2_step) {

cout << "\nlambda_1 = " << lambda_1_loop;
cout << " lambda_2 = " << lambda_2_loop << endl;
lambda_3_success 0.0;

for (lambda_3_loop = lambda_3_0;
lambda_3_loop < lambda_3_f;

lambda_3_loop += lambda_3_step) {
fprintf (stderr,"-");

lambda_6_success = 0.0;

for (lambda_6_loop = lambda_6_0;
lambda_6_loop < lambda_6_f;

lambda_6_loop += lambda_6_step) {
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h_2_t_success
for (h_2_t_loop 2_t_0;

h_2_t_loop < h_2_t_f;

]
n o

.0;
h

h_2_t_loop += h_2_t_step) {
h_1_b_success = 0.0;
for (h_1_b_loop = h_1_b_0;

h_1_b_loop < h_1_b_f;

h_1_b_loop += h_1_b_step) {
lambda_7_success = 0.0;

for (lambda_7_loop = lambda_7_0;
lambda_7_loop < lambda_7_f;

lambda_7_loop += lambda_7_step) {

for (mu_3_squared_loop = mu_3_squared_0;
mu_3_squared_loop < mu_3_squared_f;
mu_3_squared_loop += mu_3_squared_step) {

lambda_1 = lambda_1_loop;
lambda_2 = lambda_2_loop;
lambda_3 = lambda_3_loop;
lambda_6 = lambda_6_loop;
lambda_7 = lambda_7_loop;

mu_3_squared = mu_3_squared_loop;

a= - ((v_2/v_1)*mu_3_squared)
(lambda_6*v_1*v_2/4.0)
(lambda_7*v_2%v_2xv_2/v_1/4.0) ;
= - ((v_1/v_2)*mu_3_squared)
(lambda_6*v_1xv_1%v_1/v_2/4.0)
(lambda_7*v_2%v_1/4.0);

= mu_3_squared
(lambda_6*v_1*v_1/4.0)
(lambda_7*v_2%v_2/4.0);

o

+ + 0

lambda_5 = -((c*c)-((a-m_nc)*(b-m_nc)));
lambda_5 /= ((v_1*v_1x(b-m_nc))+(2*c*v_1xv_2)+(v_2*v_2*%(a-m_nc)));

temp = -((c*c)-((a-m_cc)*(b-m_cc)));
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temp /= ((v_1*v_1x(b-m_cc))+(2*xcxv_1*xv_2)+(v_2*%v_2*(a-m_cc)));

lambda_4 = (2.0*temp) - lambda_5;

lambda_4_loop = lambda_4;

lambda_5_loop = lambda_5;

h 2.t = h_2_t_loop;

h_1_b =h_1_b_loop;

h_1_t = ((m_t*M_SQRT2/sigma) - (v_2*h_2_t))/v_1;
h_2_b = ((m_b*M_SQRT2/sigma) - (v_1*h_1_b))/v_2;
g =g-0;

g_prime = g_prime_0;

g_c = g_c_0;

success = 1;

t = 0.00;

part_1 = get_part_1();
part_2 = get_part_2();
mass_3 = part_1 + part_2;
mass_4 = part_1 - part_2;

// d
// e

—-(lambda_3+lambda_4+lambda_5)* ((v_2xv_2)/(v_1*xv_1));
-(lambda_3+lambda_4+lambda_5)*((v_1*xv_1)/(v_2%v_2));

if ( (mass_3 < 0) || (mass_4 < 0) ) {

success = 0;

}

// else if ( (lambda_1 < d) || (lambda_2 < e) ) {
// success = 0;

// %

// else if (check_conditions()) {

// success = 0;

// %}

while (t <= t_final && success) {
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// cout << "Current t

delta_lambda_1 =
delta_lambda_2 =
delta_lambda_3 =
delta_lambda_4 =
delta_lambda_5
delta_lambda_6
delta_lambda_7

= " << t << endl;

delta_g = t_step_sizexd_g();

delta_g_prime =

delta_g_c = t_step_size*xd_g_c();

delta_h_
delta_h_
delta_h_
delta_h_

lambda_1
lambda_2
lambda_3
lambda_4
lambda_5
lambda_6
lambda_7

1t
2_t =
1_b

t_step_
t_step_
t_step_

sizexd_h_1_t();

sizexd_h_2_t();

sizexd_h_1_b();

2_b

+ 4+ + + o+
oo

+
+

delta_lambda_1;
delta_lambda_2;
delta_lambda_3;
delta_lambda_4;
delta_lambda_5;
delta_lambda_6;
delta_lambda_7;

t_step_sizexd

g += delta_g;

g_prime += delta_g_prime;

g_c +=d
h_1_t +=
t +
b +
b

+
1]

elta_g_c;
delta_h_1_t;
delta_h_2_t;

delta_h_1_b;

delta_h_2_b;

<< "lambda_1
"lambda_2 = "
"lambda_3 "
"lambda_4

"lambda_5

<< lambda_1
lambda_2 <<
lambda_3 <<
lambda_4 <<
lambda_5 <<

<<
<<
<<
<<
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t_step_size*d_lambda_1(Q);
t_step_size*d_lambda_2(Q);
t_step_size*d_lambda_3();
t_step_size*d_lambda_4(Q);
t_step_size*d_lambda_5();
t_step_size*d_lambda_6() ;
t_step_size*d_lambda_7();

t_step_size*d_g_prime();

<L " n



<< '"lambda_6
<< "lambda_7

" << lambda_6 << " "
" << lambda_7 << " "

<L ”V_l = I K<L V_l <L LI

<L ”V_2 = I K<L V_2 <L LI

<L llh_l_-t = N K<L h_l_t K<L "n u

<L llh_2_-t = 1 <L h_2_t K<L " u

<L llh_l_b = 1 <L h_l_b K<L " u

<< "h_2_b = " << h_2_b << " " << endl;

*/

if (check_conditions()) {
success = 0;

}

t += t_step_size;

}

if (success) {

eta = sqrt(mass_4)*sigma;
sqrt(mass_3) *sigma;

el
=
-
]

i = 4*int(floor(phi));

writeout = 0;

if (eta < masses[i]) {
masses[i] = eta;

masses[i+1] = phi;

writeout = 1;

}

else if (eta > masses[i+2]) {
masses[i+2] = eta;

masses [i+3]
writeout = 1;

}

1]

el
5
=
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firsti =
if (writeout) {
outfile.open(filename) ;

for (i=0;i<1600;i+=4) {

0;

if (masses[i] !'= 200.0)
if (Mfirsti) {
firsti =

}

i;

{

outfile << masses[i] << " "
<< masses[i+1] << endl;

}
}

for (i=1596;i>-1;i-=4) {
if (masses[i+2] != 0.0)
outfile << masses[i+2] << " "
<< masses[i+3] << endl;

b
b

{

outfile << masses[firsti] << " "
<< masses|[firsti+1] << endl;

outfile.close();
outfile2.open(filenameinfo);

outfile2 << "last lambda_1 = " << lambda_1_loop
<< endl

<< "last lambda_2 = " << lambda_2_loop

<< endl

<< "last lambda_3 = " << lambda_3_loop

<< endl

<< "last lambda_6 = " << lambda_6_loop

<< endl

<< "last lambda_7 = " << lambda_7_loop

<< endl

<< "last h_1. b =" << h_1_b_loop

<< endl

<< "last h_2_t = " << h_2_t_loop

<< endl

<< "last mu_3_squared = " << mu_3_squared_loop
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<< endl;

outfile2.close();

if (lambda_1_loop == lambda_1_0 ||
lambda_1_loop == lambda_1_f ||
lambda_3_loop == lambda_3_0 ||
lambda_3_loop == lambda_3_f ||
lambda_6_loop == lambda_6_0 ||
lambda_6_loop == lambda_6_f ||
lambda_7_loop == lambda_7_0 ||
lambda_7_loop == lambda_7_f ||
h_2_t_loop == h_2_t_f ||
h_1_b_loop == h_1_b_f ||

// mu_3_squared_loop == mu_3_squared_0 ||
// mu_3_squared_loop == mu_3_squared_f ||
// lambda_2_loop == lambda_2_0 ||

lambda_2_loop == lambda_2_f) {
outfile3 << "Range bump: "
<< lambda_1_loop << " "
<< lambda_2_loop << " "
<< lambda_3_loop << " "
<< lambda_6_loop << " "
<< lambda_7_loop << " "
<< h_1_b_loop << " "
<< h_2_t_loop << " "
<< mu_3_squared_loop << endl;

b
b

// cout << "successful value recorded" << endl;
lambda_7_success = lambda_7_loop;
lambda_6_success lambda_6_loop;
lambda_3_success lambda_3_loop;
lambda_2_success lambda_2_loop;
lambda_1_success lambda_1_loop;

h_2_t_success = h_2_t_loop;

h_1_b_success h_1_b_loop;

}
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else {

if (lambda_7_success != 0.0) {
lambda_7_loop += lambda_7_f;
lambda_7_success = 0.0;

}

}

} // end mu_3_squared

} // end lambda_7

if ( (h_1_b_success != 0.0)
1_

0
b_loop) ) {

&% (h_1_b_success != h_
h_1_b_loop += h_1_b_f;
h_1_b_success = 0.0;

}

} // end h_1_Db

if ( (h_2_t_success != 0.0)

&& (h_2_t_success != h_2_t_loop) ) {
h_2_t_loop += h_2_t_f;

h_2_t_success = 0.0;

}

} // end h_2_t

if ( (lambda_6_success != 0.0)

&& (lambda_6_success != lambda_6_loop) ) {
lambda_6_loop += lambda_6_f;
lambda_6_success = 0.0;

}

} // end lambda_6

if ( (lambda_3_success != 0.0)

&% (lambda_3_success != lambda_3_loop) ) {
lambda_3_loop += lambda_3_f;
lambda_3_success = 0.0;

}

} // end lambda_3

if ( (lambda_2_success != 0.0)

&% (lambda_2_success !'= lambda_2_loop) ) {
lambda_2_loop += lambda_2_f;
lambda_2_success = 0.0;
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}

} // end lambda_2

if ( (lambda_1_success != 0.0)

&% (lambda_1_success != lambda_1_loop) ) {
lambda_1_loop += lambda_1_f;
lambda_1_success = 0.0;

}

} // end lambda_1

// end big for

outfile2.open(filenameinfo) ;
outfile2 << "Done" << endl;

outfile.close();
outfile2.close();
outfile3.close();

return O;

} // end main

int check_conditions () {

if ( lambda_5 > 0 ) {

// cout << "Failed at mass 1 = " << mass_1 << endl;
return 1;

}

else if ( (lambda_4+lambda_5) > 0 ) {

// cout << "Failed at mass 1 = " << mass_1 << endl;
return 1;

}

else if ( lambda_1 > 10) {

// cout << "Failed at lambda_1 = " << lambda_1 << endl;
return 1;

}

else if ( lambda_1 < 0 ) {
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// cout << "Failed at
return 1;

}

lambda_1

else if ( lambda_2 > 10 ) {

// cout << "Failed at
return 1;

}

lambda_2

else if ( lambda_2 < 0 ) {

// cout << "Failed at
return 1;

}

else if ( (lambda_3 >
// cout << "Failed at
return 1;

}

else if ( (lambda_4 >
// cout << "Failed at
return 1;

}

else if ( (lambda_5 >
// cout << "Failed at
return 1;

}

else if ( (lambda_6 >
// cout << "Failed at
return 1;

}

else if ( (lambda_7 >
// cout << "Failed at
return 1;

}

lambda_2

10) ) {
lambda_3

10) ) {
lambda_4

10) ) {
lambda_5

10) ) {
lambda_6

10) ) {
lambda_7

else if (!potential_check()) {
// cout << "Failed potential check" << endl;

return 1;

}
else {
return O;

<<

<<

<<

<<

<<

<<

<<

<<

lambda_1

lambda_2

lambda_2

lambda_3

lambda_4

lambda_5

lambda_6

lambda_7

<<

<<

<<

<<

<<

<<

<<

<<

endl;

endl;

endl;

endl;

endl;

endl;

endl;

endl;



}

} // end check_conditions

double d_lambda_1 () {

return ( (1.0/(16.0%(M_PI*M_PI)))*(
// 0

12.0%(lambda_1*lambda_1)

+ 4.0*(lambda_3*lambda_3)

+ 2.0*(lambda_4*lambda_4)

+ 2.0*(lambda_b*lambda_5)

+ 24 .0%(lambda_6*1lambda_6)

+ 4.0x(lambda_3*lambda_4)

- 9.0%(lambda_1*(g*g))

- 3.0*(lambda_1*(g_prime*g_prime))

+ (9.0/4.0) *(g*xg*xg*g)

+ (3.0/2.0)*((g*g) * (g_prime*g_prime))
+ (3.0/4.0)*(g_prime*g_prime*g_prime*g_prime)
+ 12.0%(lambda_1*(h_1_t*h_1_t))

- 12.0x(h_1_t*h_1_t*h_1_t*h_1_t)

+ 12.0%(lambda_1*(h_1_b*h_1_b))

- 12.0x(h_1_b*h_1_bxh_1_bxh_1_b)

) )

} // end d_lambda_1

double d_lambda_2 () {

return ( (1.0/(16.0%(M_PI*M_PI)))*(
// 0
12.0%(lambda_2*lambda_2)
+ 4.0%(lambda_3*lambda_3)
+ 2.0%(lambda_4*lambda_4)
+ 2.0%(lambda_5*lambda_5)
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+
+

24 .0*(lambda_7*lambda_7)
4.0%(lambda_3*1lambda_4)

- 9.0*(lambda_2*(gxg))
3.0*(lambda_2*(g_prime*g_prime))
(9.0/4.0) *(gxgxg*g)
(3.0/2.0)*((g*g) * (g_prime*g_prime))
(3.0/4.0)*(g_prime*xg_prime*g_prime*g_prime)
12.0*%(lambda_2*(h_2_t*h_2_t))
12.0x(h_2_t*h_2_t*h_2_t*h_2_t)
12.0*%(lambda_2*(h_2_b*h_2_b))
12.0%(h_2_b*h_2_b*h_2_b*h_2_b)

+ + +

) )

// end d_lambda_2

double d_lambda_3 () {

return ( (1.0/(16.0%(M_PI*M_PI)))=*(

// 0.0

+ 4+ + + + A+ o+ 4+ D

<+

+ + +

.0x (lambda_3*lambda_3)

.0*(lambda_1*lambda_3)
.0*(lambda_2*lambda_3)
.0x(lambda_4*lambda_4)
.0x(lambda_5*lambda_5)
.0*(lambda_6*1lambda_6)
.0*(lambda_7*lambda_7)
16.0*(lambda_6*lambda_7)
2.0*(lambda_1*lambda_4)
2.0*(lambda_2%lambda_4)
9.0*(lambda_3*(g*g))
3.0*(lambda_3*(g_prime*g_prime))
(9.0/4.0)*(gxgxg*g)
(3.0/2.0)*((g*g) * (g_prime*xg_prime))
(3.0/4.0)*(g_prime*g_prime*g_prime*g_prime)
6.0x(lambda_3*(h_1_t*xh_1_t))
6.0*(lambda_3*(h_2_t*h_2_t))

SR ND NN OO
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12.0*%(h_1_txh_1_t*h_2_t*h_2_t)
6.0%(lambda_3*(h_1_b*h_1_b))
6.0%(lambda_3*(h_2_b*h_2_Db))
12.0%(h_1_b*h_1_b*h_2_b*h_2_b)
)

I+ o+

A

} // end d_lambda_3

double d_lambda_4 () {

return ( (1.0/(16.0%(M_PI*M_PI)))x*(
// 0.0
.0%(lambda_4*lambda_4)
2.0*(lambda_1*lambda_4)
2.0*(lambda_2*lambda_4)
8.0*(lambda_3*lambda_4)
8.0*(lambda_5*lambda_5)
10.0* (lambda_6*1lambda_6)
10.0*(lambda_7*lambda_7)
.0*(lambda_6*lambda_7)
.0% (lambda_4*(g*xg))
.0% (lambda_4* (g_prime*g_prime))
.0%((g*xg) * (g_primexg_prime))
.0%(lambda_4*(h_1_t*h_1_t))
.0%(lambda_4*(h_2_t*h_2_t))
12.0x(h_1_t*h_1_t*h_2_t*h_2_t)
6.0x(lambda_4*(h_1_b*h_1_b))
6.0x(lambda_4*(h_2_b*h_2_b))
12.0%(h_1_bxh_1_bxh_2_b*h_2_b)
);

+ + + + + + + b

|
DO W W O

~ 4+ + + + 4+ + +

} // end d_lambda_4
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double d_lambda_5 () {

return ( (1.0/(16.0%(M_PI*M_PI)))x*(
// 0.0
.0x(lambda_1*lambda_5)
2.0*(lambda_2*lambda_5)
8.0%*(lambda_3*lambda_5)
12.0* (lambda_4*1lambda_5)
10.0* (lambda_6*1lambda_6)
10.0* (lambda_7*1lambda_7)
.0*(lambda_6*lambda_7)
.0* (lambda_5*(gxg))
.0%(lambda_5* (g_prime*g_prime))
.0*(lambda_5*(h_1_t*h_1_t))
.0*(lambda_5*(h_2_t*h_2_t))
.0%(lambda_5*(h_1_b*h_1_b))
.0%(lambda_5*(h_2_b*h_2_b))

+ 4+ + + 4+ + N

|
~ O O O OO W O

- 4+ + + +

} // end d_lambda_5

double d_lambda_6 () {

return ( (1.0/(16.0%(M_PI*M_PI)))x*(
12.0*(lambda_1*lambda_6)
6.0*(lambda_3+*lambda_6)
8.0*(lambda_4*lambda_6)
10.0%* (lambda_5%*1lambda_6)
6.0*(lambda_3*lambda_7)
4.0%(lambda_4*lambda_7)
2.0*(lambda_5*lambda_7)
- 9.0*(lambda_6*(g*g))
- 3.0*(lambda_6*(g_prime*g_prime))
(9.0/2.0)*(lambda_6*(h_1_t*h_1_t))
+ (9.0/2.0)*(lambda_6*(h_2_t*h_2_t))

+ 4+ + + + +

+

o4



(3.0/2.0)*(lambda_6%(h_1_b*h_1_b))
(3.0/2.0)*(lambda_6%(h_2_b*h_2_b))
).

2

- 4+ +

} // end d_lambda_6

double d_lambda_7 () {

return ( (1.0/(16.0x(M_PI*M_PI)))*(
12.0*(lambda_2*lambda_7)
+ 6.0%(lambda_3*lambda_7)
+ 8.0%(lambda_4*lambda_7)
10.0* (lambda_5*1ambda_7)
6.0*(lambda_3+*lambda_6)
4 .0*(lambda_4*lambda_6)
2.0*(lambda_5*lambda_6)
9.0%(lambda_6* (g*g))
3.0*(lambda_6*(g_prime*xg_prime))
(3.0/2.0)*(lambda_7*(h_1_t*h_1_t))
(3.0/2.0)*(lambda_7*(h_2_t*h_2_t))
(9.0/2.0)*(lambda_7*(h_1_b*h_1_b))
(9.0/2.0)*(lambda_7*(h_2_b*h_2_b))
);

+ + + +

-~ + + + +

} // end d_lambda_7

double d_g () {

return ( (1.0/(16.0x(M_PI*M_PI)))* (
(-3.0)x(gxg*xg) ) );

} // end d_g
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double d_g_prime () {

return ( (1.0/(16.0%(M_PI*M_PI)))x* (
(7.0)*(g_prime*g_primexg_prime) ) );

} // end d_g_prime

double d_g_c O {

return ( (1.0/(16.0x(M_PI*M_PI)))* (
(-7.0)*(g_cxg_c*xg_c) ) );

}
double d_h_ 1.t O {

return ( (h_1_t/(16.0%*(M_PI*M_PI)))* (
(9.0/2.0)*%(h_1_t*xh_1_%)
(1.0/2.0)*(h_1_bxh_1_b)
8.0%(g_cxg_c) - (9.0/4.0)*(g*g)
(17.0/12.0) *(g_prime*g_prime) ) );

+

} // end d_h_1_%

double d_h 2.t () {

return ( (h_2_t/(16.0%(M_PI*M_PI)))* (
(9.0/2.0)%(h_2_t*h_2_t)
(1.0/2.0)*(h_2_t*h_2_t)
8.0x(g_c*xg_c) - (9.0/4.0)*(g*g)
(17.0/12.0)*(g_primexg_prime) ) );

+

} // end d_h_2_t
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double d_h_1.b () {

return ( (h_1_b/(16.0x(M_PI*M_PI)))* (
(9.0/2.0)*(h_1_b*h_1_D)
(1.0/2.0)*(h_1_b*h_1_b)
8.0%(g_c*g_c) - (9.0/4.0)*(g*g)
(6.0/12.0) *(g_prime*g_prime) ) );

+

} // end d_h_1_Db

double d_h_2.b () {

return ( (h_2_b/(16.0x(M_PI*M_PI)))* (
(9.0/2.0)*(h_2_b*h_2_b)
(1.0/2.0)*x(h_2_bxh_2_Db)
8.0%(g_c*g_c) - (9.0/4.0)*(g*g)
(6.0/12.0)*(g_prime*g_prime) ) );

=+

} // end d_h_2_b

double get_part_a () {

return (

lambda_1*(v_1%*v_1)

+ (3.0/4.0)*1lambda_6*(v_1*v_2)

- (1.0/4.0)*1lambda_7*(v_2*v_2x*v_2/v_1)
)

}

double get_part_c () {

return (
(lambda_3+lambda_4+lambda_5)* (v_1%v_2)
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3.0/4.0)*lambda_6*(v_1xv_1)

+ (
+ (3.0/4.0)*lambda_7*(v_2%v_2)
) .

b

}

double get_part_b () {

return (

lambda_2* (v_2*v_2)

- (1.0/4.0)*1lambda_6*(v_1*xv_1xv_1/v_2)
+ (3.0/4.0)*1lambda_7*(v_1%v_2)

)

}

double get_part_1 () {
return ( (get_part_a() + get_part_b()) / 2.0 );

}

double get_part_2 () {

double a = get_part_a();
double b = get_part_b();
double ¢ = get_part_c();

double temp = ((a-b)*(a-b)) + (4.0%c*c);

if (temp < 0) {
return -1;

}
else if (temp == 0.0) {
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return O;

}

else {

return ( sqrt(temp) / 2.0 );
}

}

int potential_check () {

double A,B,r,t,x1,x2,x3,templ,temp2,temp3,V1,V2,V3;

double a = 2*lambda_2;

double b = 3*lambda_7;

double ¢ = 2x(lambda_3+lambda_4+lambda_5);
double d = lambda_6;

if (a == 0) {

if (b == 0) {

x1 = -d/c;

Vi = getV(x1);

if (V1 >=0) {

return 1;

}

else {

return O;

}

}

else {

x1 = (¢ + sqrt((cxc) - 4.0%(b*d)))/(2.0%Db);

x2 = (-¢ - sqrt((c*xc) - 4.0%(bxd)))/(2.0%b);
Vi = getV(x1);
V2 = getV(x2);

if (V1 <= V2) {
if (V1 >=0) {
return 1;
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}

else {
return O;
}

}

else {

if (V2 >= 0) {
return 1;
}

else {
return O;

}
}
}
}

double f = ((3.0%c/a) - ((bxb)/(a*a)))/3.0;
double g = (2.0x((b*b*b)/(a*a*xa)) - 9.0%((b*xc)/(axa))
+ 27.0%(d/a))/27.0;

double h = ((gxg)/4.0) + ((£x£*f)/27.0);

if (h > 0) {

cbrt((-g/2.0) + sqrt(h));
cbrt((-g/2.0) - sqrt(h));
1 = A+B-(b/(3.0%a));

Vi = getV(x1);

if (V1 >= 0) {

return 1;

}

else {

return O;

}

}

else if (h == 0) {

templ = cbrt(-g/2.0);

temp2 = b/(3.0%a);

A=
B =
X
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x1
x2
Vi
V2
if
if

(2.0%templ) - temp2;
-templ - temp2;
getV(x1);

getV(x2);

(V1 <= Vv2) {

(V1 >= 0) {

return 1;

}

else {
return O;

}
}

else {
if (V2 >=0) {
return 1;

}

else {
return O;

}
}
}

else {

r
t

templ
temp2

sqrt ((g*g/4.0) - h);
acos(-g/(2.0%r));
cbrt(r);

t/3.0;

temp3 = b/(3.0%a);

x1 = (2.0%templ*cos(temp2)) - temp3;

x2 = ((-templ)*(cos(temp2) + M_SQRT3*sin(temp2))) - temp3;
x3 = ((-templ)*(cos(temp2) - M_SQRT3*sin(temp2))) - temp3;
V1 = getV(xl);

V2 = getV(x2);

V3 = getV(x3);

if ( (V1 <= V2) && (V1 <= V3) ) {

if (V1 >= 0) {

return 1;

}

61



else {

return O;

}

}

else if ( (V2 <= V1) && (V2 <= V3) ) {
if (V2 >= 0) {
return 1;

}

else {

return O;

}

}

else {

if (v3 >= 0) {
return 1;

}

else {

return O;

}

}

}

}

double getV (double x) {

return ( (lambda_1/2.0) + (lambda_2*x*x*x*x/2.0)
((lambda_3+lambda_4+lambda_5) *x*x)
(lambda_6%x)

(lambda_7*x*x*x) );

+ + +
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