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1 Introduction

1.1 Motivations

In the search for new, exotic particles, physicists are demanding colliders with
increasingly high energies. Their goal is to probe the high energy frontier and produce
new particles with a rest mass greater then the center of mass energy of existing col-
liders. Particle physicists tend to pay less attention to the possibility of undiscovered
light particles because of a theoretical prejudice: “If it’s light enough to be produced,
we would have seen it already.” However, there is also another frontier in particle
physics — light particles that interact weakly. For example, neutrinos exist but are
difficult to detect directly. They can actually pass through light years of lead. Other
possible light particles are axions, which are pseudoscalars that arise in some exten-
sions of the standard model, and millicharged particles, which have tiny couplings
to photons because of their small, fractional electric charge. Examples of theories
or extensions of the standard model which motivate the existence of millicharged
scalar or pseudoscalar particles can be found in Refs. [1-4]. Detection of such weakly
coupled particles at colliders requires a high luminosity incident beam in order to
achieve significant event rates. The photon beam at JLab has a high luminosity of
approximately 103*cm~2s!. Our goal is to determine if weakly interacting particles
coupling only to photons could be observed at JLab while remaining undetected at

other colliders.

1.2 Toy Model

Because JLab has such an intense photon beam, it is particularly sensitive to
scattering processes involving photons. To take advantage of this, we choose to design
a model particle that interacts with photons. Both scalar and pseudoscalar particles
can couple to two photons, but we will consider only the scalar case. Our model

particle, which we call a phi particle, ¢, is a scalar, spin zero boson with zero charge
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Figure 1: Phi-Photon Vertex with particle momenta p, k, and 1

that weakly couples to two photons with a small, dimensionful coupling constant A.
The simplest gauge invariant Lagrangian term that describes this interaction contains
a scalar field, two photon fields, and a dimensionful coupling constant. The interaction

term in our model Lagrangian is therefore:
L=A\PF'"F,, (1)

where @ is the field of the phi particle and F),, is the photon field strength tensor
(0,A, —0,A,). Consequently, our particle only interacts with other particles through
the vertex shown in Fig. 1.  Using the form of the interaction Lagrangian, the
momentum-space representation of this vertex to be used in conjunction with other
Feynman rules is:

vertex = —4i\[p - kg"” — k"'p”] (2)

Here ¢" is the metric tensor.



Figure 2: Phi Production at JLab with particle momenta p, k, 1, q;, and q»

2 Phi Production at JLab

2.1 Production Mechanism

A common type of experiment at Jlab is photoproduction using a photon beam
incident upon a proton target. Therefore, the phi particle can be produced by the
scattering process in Fig. 2. This process involves the photon interacting with a single
quark in the proton, rather than with the entire proton. After the phi particle is
created it will again decay to two photons, producing a potentially identifiable peak
in the diphoton invariant mass spectrum that corresponds to the particle’s mass.

0 — 24, but with a different invariant

This is analogous to the common decay w
mass and mean lifetime. For coupling strengths in which our particle is extremely
long-lived, identification of these peaks will provide a means of separating signal from
background, as we will discuss later.

To determine the phi particle’s detectability, we must first calculate its cross sec-
tion. This represents the effective area per target scattering center that will interact

with the incident photon beam. It depends on the mass of the particles, the coupling

constant, and the beam energy. The cross section is important because the event rate



is the cross section times the beam luminosity. Therefore, it allows us to predict the
phi particle production rate at JLab in terms of various parameters, such as the phi

mass, coupling constant, and beam energy.

2.2 Scattering Amplitude

Cross sections are calculated using Feynman rules which give mathematical meaning
to each line and vertex in scattering diagrams. Using the Feynman rules for scalars
and Quantum Electrodynamics (QED) as well as Eq. (2), the expression for the

scattering amplitude for the process shown in Fig. 2 is:

iM = el(f)(p)(—4i)\) (p- kg™ — k“p”)%ﬂ(t) (42) (1Qey*)u'(q1) (3)

Here the eg’)(p) is the polarization vector of the incoming photon; r ranges from
one to two for the two polarization states. The next term is the phi particle-photon
vertex, and then the photon propagator. The v and u are the momentum space spinor
wavefunctions for the incoming and outgoing quarks, and they surround the quark-
photon vertex. Q is the quark charge in units of the positron’s charge. A detailed
explanation of Feynman rules and how to use them can be found in Ref. [5].

When determining the squared amplitude, it is important to average over initial
spin and polarization states and sum over final spin and polarization states. This is
because we assume unpolarized incident states, and it does not matter what the spin
and polarization of the final states are if we are simply counting phi particles. The

squared amplitude is therefore:

Ty e = 2Bk - Bk ) )
—(-k)p-q)(k-q)+E(p-q)(p-e)] (4)

2.3 Kinematics

Because the squared amplitude depends only on Lorentz invariant quantities, it

can be evaluated in any reference frame. We choose the center of momentum (COM)
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Figure 3: Center Of Momentum Frame Kinematics

frame to simplify calculations. The differential cross section can be re-expressed in
terms of lab-frame variables later. It does not matter that various colliders have
different beam energies because the cross section is invariant under Lorentz boosts
along the beam direction. This is because the cross section is an area in the x-y
plane perpendicular to the beam direction, but a boost along the beam direction only
causes a Lorentz contraction in the z direction. The kinematics in the COM frame is
shown in Fig. 3 and the particle momenta (see Fig. 2) evaluated in the COM frame
are:

p=(E, 0, 0, E) (5)

@ = (yE*+m2, 0,0, —E) (6)

I=(/12+m3, 0, l;sind, Iscosb) (7)

go = (M, 0, —lysinf, —lscosh) (8)

kz(M—E, 0, lpsinb, lycosf — E) 9)

Here m, is the quark mass, my is the phi mass, and 0 is angle between [ and the
beam direction in the COM frame. k is the momentum transfer shown in Fig. 2. Note

that the three-momentum /4 is not another variable parameter, but is determined by

conservation of energy.

10



At JLab, each photon scatters off a quark that is in a proton. We therefore
introduce a new variable, Bjorken x, which is the fraction of the proton’s momentum
that the particular quark carries in the infinite momentum frame. This may seem like
a strange and unrealistic frame to deal with, but because the transverse momentum of
the proton goes to zero in this frame, it allows us to make some useful approximations.
The mass of the quark is then related to the mass of the proton by m, ~ xm, and
the COM energy of the quark-photon interaction, v/§ = E + \/m , is related to
the COM energy of the proton-photon interaction, /s, by § ~ xs. The four-vectors

in Fig. 2 can therefore be re-expressed in terms of s, m,, my , and x.

2.4 Parton versus Proton

In general, the expression for the differential cross section for two particles A and

B scattering to two particles 1 and 2 is:

do _ 1 1]
dQ2 2EA2E3|’UA — UB| (27T)24ECM

\M(pa,pp — p1,p2)|° (10)

Substituting in for all the relevant quantities and integrating over the azimuthal
angle yields the differential cross section, with respect to cosf, for scattering off an
individual quark in a proton. For example, the differential cross section for scattering

off an up quark is shown in Fig. 4 with the parameters my = 1 GeV, A = 107°

GeV~! and Ecy = 4 GeV. We observe that di’)"se grows rapidly as cos  approaches
1. This is because in the m, = 0 limit, k* — 0 as cosf® — 1. Therefore the photon
propagator goes on-shell and the amplitude blows up. In our calculations, m, is small
but finite, so the differential cross section simply gets big, but does not go to infinity,
in this region. However, k? does not go to zero and the photon propagator does not
go on-shell in the m, = 0 limit for cos® = —1, so the plot is asymmetric.

Quantum Chromodynamics (QCD) forbids the existence of isolated quarks be-

cause they are not color neutral. Our target proton actually consists of two ups

and a down quark, as well as any number of virtual up, down, and strange quark-

11
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Figure 4: Plot of a Sample Up Quark Differential Cross Section

antiquark pairs. To find the total differential cross section, we must therefore take
into account all of these different quarks and their distributions within the proton.
This requires knowing the parton distribution functions of the quarks in the proton.
These functions weight each quark differential cross section according to the proba-
bility of scattering off of that particular type of quark in the proton, with a given

momentum fraction x. We use the following numerical approximations for the quark

distribution functions in terms of Bjorken x [6]:

Uy = 2.188% (11)
dy = 1.230750% (12)
Usea = 0.186(1;73”)7 (13)
dyeq = 0.186(1;7@7 (14)
Ssea = 0'0930(1;7@7 (15)

Here u, and d, are for the up and down valence quarks and te,, dgseq, and ss., are

for the up, down, and strange sea quarks. The parton distributions are normalized

12
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Figure 5: Plot of u, (upper line) and ug., (lower line) v. Bjorken x

such that:

1
> / x(parton distribution function);dz = 1 (16)
—~ Jo

An example plot of u, and us., is shown in Fig. 5. Notice that the sea quarks only

contribute significantly at low fractional momenta.

2.5 Total Cross Section

To get the total cross section, we must multiply the quark differential cross
sections by the appropriate parton distribution functions and integrate over cos # and
all possible momentum fractions. The lower bound on x is determined by the fact
that for fixed s, v/§ must be greater than or equal to mg + my in order to create the
two final state particles. The upper bound on x is 1, while cos# ranges from -1 to 1.

The total cross section is therefore:

doy, dd,
= - Uy 2 sea 57 W 2 sea 2 sea 1
’ //d(cose)(“ F Qoea) F o gy (G T 2sea + Zoea) do dleost) - (17)

ddy
d(cos

where d‘fua) is the up quark differential cross section and is the down quark

d(cos 9)

differential cross section.
Because the final expression for the total cross section is extremely large and
complicated, I wrote Maple code in December to numerically do the x integration

and then plot the total differential cross section versus cos @ for specific values of m,

13



Vs A mg  Total Cross Section  color

(GeV) (10°%GeV 1) (GeV) (10 pb)
2.25 1 1 1.75 red
3.25 1 1 13.76 green
4.0 1 1 41.24 yellow
4.0 1 2 2.32 blue

Table 1: Total Cross Sections Generated Numerically Using C++ Code

le-2 A

.1e-34

diffcS(pb)

1le-05 A

08 1

04 06
cos(theta)

Figure 6: Differential Cross Sections v. cos 6 for values of /s, A, and my assumed in
Table 1

and A\. Some examples of these plots are shown in Fig. 6. The area under these
curves give an initial visual estimate for the total cross section. However, Maple is
not particularly effective at numerical work, so C++ code was written to perform the
numerical integrations more efficiently.

Total cross section results for the same values of my, A, and Ecpy = /s as chosen
in Fig. 6 are shown in Table 1. These numbers were generated by a modified version
of the code shown in Appendix F. Note that the strong energy dependence of these

results can be understood qualitatively. Figure 7 shows up quark differential cross

14
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Figure 7: Up Quark Differential Cross Sections for v/§ = 2.25 GeV (red) and V5 =
3.25 GeV (green)
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Figure 8: (u, + 2useq) v. Bjorken x

sections for /s = 2.25 GeV and /s = 3.25 GeV. At cosf = 0, the top plot is only
a factor of 1.6 larger than the bottom. However, by the time cos @ reaches 1 the top
plot is larger than the bottom by a factor of 21. From Figure 7 we estimate the area
under the top curve to be roughly 3 times that under the bottom curve. However, this
only partially accounts for the large difference between the cross sections in rows 1
and 2 of Table 1. Figure 8 shows a plot of u, + 2w, versus the fractional momentum
x. Changing the COM energy also changes the lower limit of x integration. From
this plot it is easy to see that a small change in the lower limit of x integration can
cause a large change in the parton distribution function, and therefore the total cross

section. For /s = 2.25 GeV, the lower limit of x integration is .24, while for \/s =

15



3.25 GeV it is .12. This increases u, + 2us, by a factor of 2.6. Multiplying the cross
section in row 1 by 3 x 2.6 gives a cross section of 13.65 pb, which is quite close to
row 2’s value of 13.76, as it should be.

As another cross-check, we make an order-of magnitude estimate of the cross
section based on the expression for the squared amplitude in Eq. (4). We observe that

the cross section is proportional to 32¢2)?. Assuming that the energy and momentum

1

76z [rom integrating

terms are of order one, we multiply these factors by an additional

over the two-body Lorentz-invariant phase space. Therefore the cross section should

be on the order of 32&"2, or 10~!* GeV~!. This corresponds to 10~5pb, which is the
same order-of-magnitude as the cross sections in Table 1. We are therefore confident
that our C++ code generates cross sections that display the proper E¢,-dependent

behavior and are of the correct order-of-magnitude.

16



3 Constraints on Parameter Space

3.1 Overview

Throughout the calculations described in Section 2, both A and mg remain unde-
termined constants. Consequently, we are free to vary these parameters in order to
change the phi production rate at JLab. However, certain regions in A\-m, param-
eter space can already be excluded by using data from collider and hadronic decay
experiments. We can also isolate interesting regions based on knowledge of how the
phi particle decays. In these sections we will calculate these constraints and, by plot-
ting them simultaneously, we will visually determine the allowed regions of the A-m
plane. We will then calculate phi production rates at JLab for values of A-my in this
parameter space and see whether or not they are potentially large enough for phi to

be detected.

3.2 ete” to v Plus Missing Energy

The first constraint comes from data taken by the L3 Collaboration at LEP,
where they are determining the number of light neutrino species [7]. They produce
neutrinos via the process ete™ — viy. The lowest order Feynman diagrams that
contribute to this process are shown in Fig. 9. Neutrinos have incredibly small cross
sections and long lifetimes so they are not detected directly. Therefore, experimenters
look for electron-positron collisions that produce a single photon plus missing energy.
This missing energy corresponds to the undetected neutrinos.

Another process that can occur at LEP and produce a single photon plus missing
energy is production of the phi particle as shown in Fig. 10. Because the phi has
zero charge, it will not leave a track in the time expansion chamber (TEC) which
looks for charged particles. Also, because it only couples very weakly to photons,
it will not deposit any energy in the electromagnetic calorimeter. Consequently, the

phi particle will remain undetected and its production will leave an identical signal

17
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Figure 9: Lowest Order Contributions to Neutrino Production at LEP

€

Figure 10: Phi Production at LEP with particle momenta qi, qs, k, 1, and p
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to that of neutrino production. However, we know that the cross section for this
method of phi production is small and bounded by the error bars on the cross section
measurements for neutrino production. This is because the cross sections measured
by the L3 collaboration agree within error measurements to predictions based on the
standard model, which we believe correctly describes the physics of how particles
interact. If the cross section for phi production were bigger than the error bars and
caused experimental disagreement with standard model predictions, we would assume
that there was an unknown process creating a single photon plus missing energy. Thus
the phi particle would already have been detected. We therefore constrain the cross
section for phi production to be smaller than the error bars on the cross section for
neutrino production.

The squared amplitude for the scattering in Fig. 10 is:

32e2)\?2
A

|M[* = [mz (p-k)*+(p-k) (p-01) (k- g2) + (p-k) (- ¢2) (k-q1) = k* (0 01) (p-g2)] (18)

The cross section (in picobarns) in terms of the COM energy (in GeV) for a polar

angle between 45° and 135°, which is the same range examined by L3, is:

O
2EL, [r2

cM __ 2
4 me

sz E%’M 1 E%’M 2

\/§+2\/§+3\/§( 4 _me)] (19)

[

Adriani et al.[7] give the experimentally determined cross sections for an electron-
positron collision producing a single photon plus missing energy at various center of
mass energies. We substitute each E¢y, into Eq. (19) to determine the phi production
cross section in terms of A and m,. We then constrain our calculated cross section to
be less then the experimental error bars on their cross section. Specifically, for Ecjs
= 91.25 GeV and o(ete™ — viiy) = 37 pb, the phi production cross section must be
less than 4 pb, which yields the plot for A v. mg shown in Fig. 11.  The allowed
region in parameter space lies below this line. Each value of E¢cjy, gives a slightly
different plot because of the differing error bars, but the one shown above gives the

tightest bound.

19
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Figure 11: Constraint Based on eTe™ Scattering at LEP

3.3 7Y(1S) to v Plus Unseen Particle

The second constraint on A v. my comes from data taken by the CLEO Collabora-
tion at the Cornell Electron Storage Ring(CESR) [8]. They determine the branching
ratio of the decay Y(1S) — 7X to be less than 10~°. Y(1S) is a heavy quark bound
state consisting of a bb pair and X is any particle that experimenters do not see,
either because it is outside the detector’s acceptance or because it is noninteracting.
In any two body decay, the momenta of the decay products are entirely determined
by the particle masses. Experimenters such as those at CLEO therefore search for
monochromatic (single energy) photons. One decay that produces this type of signal
is shown in Fig. 12. This decay is allowed under charge and parity conjugation, as is
shown in Ref. [9]. Because ¢ is not charged and has only an extremely weak coupling
to photons, it will not leave a track in the drift chambers or deposit energy in the
electromagnetic calorimeter. It will simply pass through the detectors unobserved.
The experimentally determined upper limit on BF(Y(1S) — X) is therefore also an

upper limit on BF(Y(1S) — v¢), and can be used to get another bound on A v. my.

20



Figure 12: Y(15) Decay to Photon Plus ¢

The branching fraction of Y(1S) — ¢ is defined by:
(20)

Although this does not seem particularly useful, because in order to calculate I';,; we
need to calculate the decay width for all possible decays of Y (1.5), we can get around
this problem by relating I';,; to a branching ratio that has been well determined
experimentally, such as that for Y(1S) — u"u~. We therefore substitute this in for

|
BF(Y — ptp~)

1—‘tot =

Now, after applying the experimental constraint, we have the simple equation:

I'(Y —v¢)
(Y = ptp)

BF(Y — v¢) = BF(Y — utp™) <107° (22)

and all we need to calculate are two decay widths.

However, even this is not trivial because T(1S) is a bound state. We cannot
simply write down the scattering amplitude for this process using the Feynman rules
for QED. Since the Y(1s) is a vector meson, we will assume an effective photon-T
interaction of the form (F}, Fy”, and the size of this interaction, ¢, will cancel in the
ratio in Eq. (22). This is the simplest possible gauge-invariant interaction between
the photon and a “massive photon.” This approach should be sufficient for an order

of magnitude estimate of the bounds. The shaded in circle in Fig. 13 represents our
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Figure 13: New Feynman Diagram for Y(1S) — ¢ with particle momenta p, q, k,
and 1

new gauge-invariant vertex. The expression for this vertex in momentum space is:
new vertex = ([p - qg"* — ¢"p”| (23)

The scattering amplitude for this process is then:

. r v v _Z'gua . a « *(s
iM = €e(p-qg"™ — ¢"p ]7(—4M)[q kg — k%)) (24)

and the squared amplitude after evaluating the kinematics in the rest frame of the T
is:

| M[* = 2X°C%(m% — m§) (25)
In general, the decay width for a particle A decaying to two final state particles, each

with three-momentum p' in the COM frame is:

1 [ dQ |1l
ma 3272 ECM

dl' = \M(ma — p1,p2)|? (26)

Therefore the decay width for this process is:

NG (i — )

rr =

(27)

Similarly, the new Feynman diagram for Y(1S) — p*u~ is shown in Fig. 14. The

decay width for this process is:

B e2¢? [m? 8m?2 + m2
PO wt i) = e~ 28)

22
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Figure 14: New Feynman Diagram for T(1S) — p*p~ with particle momenta p, q,
k, and 1

Plugging both decay widths as well as the experimentally measured branching fraction
[10] for Y(15) — ptu~ into Eq. (22) yields:

(.0248)\2 (my —m})? m%

—m2)y Y2 <107° 29
Ta 2m2my +mi 4 ™) - (29)

A plot of A v. my is shown in Fig. 15. Our constraint is therefore that ¢ must live

below this line in parameter space.

3.4 Phi Decay Distance

The third “constraints” are not actually physical bounds on the phi particle’s
existence. Rather, we impose certain requirements in order to help distinguish a
phi particle signal from background. The first requirement is that ¢ must never
decay within existing JLab detectors. Thus we can set up our detector farther away
and eliminate many background peaks in the diphoton invariant mass spectrum that
are due to decays of shorter-lived particles. Also, our experiment can then be run
continuously, independent of and not interfering with the primary experiment at the

time. The second requirement is that ¢ must decay within JLab’s facilities. This
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Figure 16: Phi Decay Process with particle momenta I, p;, and ps

insures that it decays somewhere that we can actually set up a detector.t
The phi particle decays into two photons as shown in Fig. 16. The squared

amplitude for this process is:
|M|? = 320%(py - p2)? (30)

The general decay width for a particle A decaying to two final state particles, each

with three-momentum p' in the COM frame is shown in Eq. (26). The phi particle’s

! For much smaller couplings, one could imagine setting up a detector at a distant site. We don’t
consider this possibility here.
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Figure 17: A v. my Constraints Based on Phi’s Decay Distance for d = 100m (upper)
and d = 1m (lower)

decay width is therefore:
/\2m¢3
2

I' =

(31)

The mean lifetime of the phi particle is simply %, so the distance that the phi particle

travels before it decays is %, or:

. ch2m
o )\2m¢3

d (32)

We make the order-of-magnitude estimates that the phi particle must travel at least
one meter before it decays, so it is well outside existing detectors, but must decay
before it travels 100 meters, so it is within the JLab site where we can set up a detector.
Plotting these constraints in A v. mg parameter space yields the two curves shown
in Fig. 17. The allowed A-my parmeter space lies between the curves. Parameters
in this range also satisfy the previous bounds shown in Figure 11 and Figure 15. We

therefore only need to consider this area in parameter space.

3.5 Light-by-Light Scattering

We now need to know if these calculations are sufficient or if we could achieve even

tighter bounds than those from phi decay by applying more experimental constraints.
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Figure 18: Light-by-Light Scattering via the Phi-Photon Vertex with particle
mo menta P1; P2, k7 qdi, and Qg2

The answer is that in this range we are not likely to get any other constraints on the
model since the coupling is small compared to 2™¢ order QED corrections. To illustrate
this point, consider light-by-light scattering. Because ¢ couples to two photons, it
is a means of scattering light-from-light, as shown in Fig. 18. Ideally, we would
like to calculate the cross section for this process and compare it to an experimental
value. In this diagram, all of the photon lines are external, so these are real, massless
photons. Unfortunately, photon-photon scattering has not yet been done with real
photons, although it has been done with virtual ones [11]. Therefore we have no
experimental cross section for comparison and must turn to theory for assistance.
The QED cross section for real photon-photon scattering involves a number of
Feynman diagrams. However, for our purposes an order-of-magnitude estimate is
sufficient. The lowest order process that contributes to photon-photon scattering in

QED is shown in Fig. 19. The scattering amplitude for this process is approximately:

|~ g [ e 2

Here, the e* and the four y-matrices in the numerator come from the QED vertices,

the p — m’s in the denominator from the fermion propagators, the four €’s from

1
1672

the external photons, and the [ d*p and from the undetermined loop momenta.

. . . 4 . . . .
Because the integral is essentially ‘fDTp with some g,,’s thrown in, it is of order one.
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Figure 19: Lowest Order Contribution to Photon-Photon Scattering in QED

This means that:

64

and:
2 e? 4
M~ g =@ (35)

We will therefore calculate |M|? for the process in Fig. 18 and compare it to o*.
The scattering amplitude for Fig. 18 is:

. . v v Z « fe uw
iIM] = (—4iN)?*€De 1 - pag™ = Ph) (55— )l - ©29™” — 5 @1V (36)

¢
and:
2 _ 1 (P12 p2)?(q1 - @2)?
|M|? = 256 7 — 2y (37)
Evaluating this in the COM frame:
16\E?
|M|* = o (38)

(E%'M - mé)Q
We choose Ecys to be 3.35 GeV because it is the maximum COM energy at JLab.?
We also choose my to be 0.1 GeV and A to be 7.0x1077 GeV~! because they are in

the allowed region in parameter space. Using these values, Eq. (38) becomes:

|M* = 0.48 x 107 (39)

2The maximum beam energy in the lab frame is 6 GeV, although few photons in the beam
actually have this much energy. For a fixed target experiment, Ecpyr = v/2mrEp, where mr is the
target mass and Ep is the beam energy [12]. Therefore a beam energy of 6 GeV in the lab frame
corresponds to an energy of 3.35 GeV in the COM frame.
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Comparing this to the QED squared amplitude from Eq. (35):

|j\/—[¢|2 —12
———— =0.17x 10 40
|Moep|® (40)

This ratio is extremely small. It demonstrates that any 2"¢ order process involving
the phi particle will be negligible compared to the comparable QED process, so we

will not get any additional constraints in this manner. We therefore conclude our

calculations.

3.6 Event Rates in the Allowed Region

We have just shown four means of getting bounds on the A-m, parameter space
using theory, experimental data, and practical constraints. Additional constraints
can be applied to further reduce the allowed region. Table 2 shows phi production
rates at JLab for values of A and m, in the allowed region for various COM energies.
While a COM energy of 4 GeV is not yet possible at JLab, the beam energy will soon
be upgraded to 9 GeV, so it will be attainable in the future [13]. The mass of ¢ is
also constrained because the COM energy must be great enough to produce the two
final state particles, or /zs > mgy+xm,. With a beam energy of 2.25 GeV, the mass
of the phi particle produced can be at most 1.67 GeV, with Ecy = 3.25 GeV my <
2.85 GeV, and with Ecy = 4.0 GeV my < 4.26 GeV. All of the masses in this table
are well within these limits. All numbers converged to within 1% accuracy except for
the one which is asterisked, which converged to within 5%.

These results, which were generated by the C++ code in Appendix F, behave as
expected with changes in Ecar, A, and mg.®> The squared amplitude, and therefore
the cross section, is proportional to A2. The squared amplitude and individual quark
differential cross sections have little dependence on my for the values in Table 2 since

mg is significantly smaller than the typical energy scale. = However, changing my

3See Section 2.5 for an explanation of the cross section’s dependence on Ecjs. Because the
number of events is simply the ¢ times the beam luminosity times one year, if the results in Table 1
have the right Ec s dependence so do those in Table 2.
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Eveam  Ecm A mg  Events Per Year
(GeV) (GeV) (1078GeV™!) (GeV)

2.23 2.25 70 1 04.89
2.23 2.25 20 3 81
2.23 2.25 8 D .04
5.16 3.25 70 1 140.34
5.16 3.25 20 3 2.05
8.06 4.0 20 3 4.14%*
8.06 4.0 8 D 31
8.06 4.0 4 8 .03

Table 2: Phi Production Rates at JLab in the Allowed Parameter Space

does change o by changing the lower limit of x integration. Fig. 20 plots the parton
distribution functions versus the momentum fraction, x. At small x values, a minute
change in x produces a large change in these functions. Therefore slightly lowering
the limit of x integration by decreasing my greatly increases the cross section. Rows 1

and 2 in Table 2 illustrate the cross sectional dependence on both A\? and m,. Because

702

3075 OF %9, larger than

o is proportional to A?, cross section one should be a factor of
cross section two. For row 2, the lower limit of x integration is .009, while for row one
it is .0016. This increases u, + 2uz, by a factor of 4.65 and d, 4+ 2deq + 25504 by a
factor of 5.36, but we will call them both 5. Recall that the event rate is proportional
to the cross section. Multiplying .81 events, the number of events in row 2, by % X 5

gives 49 events, which is quite close to row 1’s value of 55 events. We therefore believe

that our code works and are confident in the numbers in Table 2.
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Figure 20: u, + 2use, (upper) and d, + 2dgeq + 255eq (lower) v. Bjorken x
4 Conclusions

These results are promising. If a particle such as ours does exist, it is potentially
detectable. Our detector will sit outside those of JLab’s primary experiment without
interfering. Our experiment can therefore run almost continuously, only having to
shut down when the beam is turned off. Consequently, even if we have as small a
production rate as five phi particles a year, we can run for a few years to achieve a
significant number of events.

However, producing enough particles is not the only concern; we must be able to
separate signal from background. When a ¢ decays in our detector, it will produce
two photons. By knowing their energy and momentum, we can recreate the phi’s
invariant mass. Thus, we will look for a peak in the diphoton invariant mass spectrum
corresponding to the mass of the phi particle. The principal background source of
such peaks is pion and heavy meson decay. Fortunately, most heavy mesons that
can decay into two photons that are produced in the interaction region are strongly
interacting [10] and will therefore decay long before reaching our detector. Pions from
cosmic rays pose more of a problem in this respect. However, their decays will appear
randomly and not correlate with the recoil of the target proton. Thus by requiring

both creation of two photons and recoil of the proton, we might be able to eliminate
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background from pion decay. Distinguishing signal from background requires a more
detailed analysis.

Finally, we need to address another issue before talking with experimenters. We
must examine the realism of our model and perhaps modify it. Such modifications
could include adding a different type of interaction term to the Lagrangian or making
phi a pseudoscalar particle. We therefore conclude that after applying a variety of
constraints, it is possible that a weakly interacting particle coupling only to photons
could be detected at JLab while remaining unseen at other colliders such as LEP or

CLEO.
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A Calculation of v¢ — q¢ Differential Cross Sec-

tion

The Feynman diagram for y¢ — g¢¢ is shown in Fig. 2. The expression for the

phi-photon vertex in momentum space is given in Eq. (2). Therefore the scattering

amplitude is:

B . v v —1 va . o s
iM = €7 (p)(—4i\) (p - kg" — kMp”) kgz u®(g2) (1Qer*)ul® (q1)

Contracting up g,q:

M= (_42?—6A) &7 (p)(p - kg™ — k" )u® (g) (1)’ (¢1)

The squared amplitude is:

16@262)\2 T *\7 v v [0} [¢]
MP = TG (kg — ) (p - ke — k)

u® (g2)7,u'® (g1)u® (q)75u™ (go)

Averaging over initial and summing over final spin and polarization states:

4Q%62)2
k4
u® (g2)7,u'® (g1)ul® (q1)75u® (g2)

1 v v (87 (87
ZIMI2 = (—Gua) (0 - kg™ — E"D")(p - kg™® — k*p°)

Applying identities for traces of y-matrices:

1 42N
ME = QT(—gua)(p kg — K'p)(p - kg™ — kp7)

(4910928 + Q18920 — Gup(qr - @2 — mg)]

(41)

(42)

(43)

(44)

(45)

Contracting over indices and eliminating any term with p?> because p?> = 0 for an

external photon:

—320)%e2)\?2

1
4 M} k*
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The four-momenta in the COM frame are:

p=(E, 0,0, E) (47)

@ =(/E2+m2, 0,0, —E) (48)

l= (m, 0, lpsinf, l,cosh) (49)

¢ = (m, 0, —lysinf, —lscosh) (50)
k=(/2+m}—E, 0, l;sind, lycosf — E) (51)

Note that [, is not a variable, but is determined by conservation of energy.
In general, the expression for the differential cross section for two particles A and

B scattering to two particles 1 and 2 is:

do _ 1 1]
dQ2 QEAQEB"UA—UB‘ (27T)24ECM

|M(pa,ps — p1,p2)|° (52)

In this case:

Ei=E (53)

EB:,/EQ—i—mg (54)
‘ | JE? + mg + F (55)
vy —vg|l =
4 B ,/E2—|—mg

pil = ly (56)

And:
Ecy = E+ \/E* +m2 (57)
Substituting in these values and integrating over azimuthal angle yields:

dO’ _ l¢ ‘M‘z

dcosf 321 B( /E2+mg+E)2




B Calculation of e"e~ — v¢ Cross Section

The Feynman diagram for ete™ — ¢ is shown in Fig. 10. Therefore the scattering

amplitude is:

iM = 00 (gy) (ier®)u® (1)~ 22 (—aiN)p - kg™ — KD () (59)

And the squared amplitude is:

9 1662)\2 *(r) —(t) (s) - (8) (t)
\MP* = o e " (p)ealpha™™ () (g2)7u® (1) (g1)y50" (g2)
[p- kg™ — k'p"]lp - kg — k°p”] (60)

Averaging over initial and summing over final spin and polarization states:

E\M\Q 4N

4 i (" ua)lp kg™ = K] [p-kg®® = k*p Itr[( o —me) v (fr+me)ys] (61)

Using the identities for traces of gamma matrices:

1 2 462)‘2 2 v a,@ a, af v 2, v, 0B
JME = (- k)7929" —p- kggk®p” —p - kg* kap” + kpD]

(4)]q15920 + Q10025 — (1 - @2 + M2) g0 5] (62)

Multiplying out and contracting indices:

3262)\2

%|M|2 [m2(p- k) + (p-k)(p-q1) (k- g2)

+(p k)p- @) (k-q1) — K (p-q1)(p- )] (63)

The four-momenta in the COM frame are:

E
¢ = ( ;M 0, 0, g) (64)
E
@=(=5" 0,0, —q) (65)
I=(E' 0, (Ecar — E')sinf, (Ecy — E') cos6) (66)
p=(EcuE', 0, —(Ecar — E')sin®, —(Ecy — E') cos 6) (67)
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k= (Ecm, 0, 0, 0) (68)

Where:
E = %j”’” (69)
And:
0= Pty (10
Substituting these into Eq. 63:
%|M|2 = 3222;2 (Eoym — E')?*[m? + E%TM + ¢*cos 6?] (71)

The general expression for the cross section of two particles A and B scattering to
two particles 1 and 2 is:

do 1 pi]

dQ ~ 2E.2Eglva — vg)| (2w)24ECM|M(pA’pB = rup)l (72
In this case:
By =By = 2 (73)
o4~ 8] = (1)
5] = Ecn — E' (75)
Therefore:
;l_; = 622;\22 (EC(ZZ%_MEI)?’ [m2 + EiM + q*cos 6] (76)

Substituting in e? = 47 and integrating over the entire azimuthal angle:

d E — E"3 E?
c —4a)\2—( oM ) [m§+ ZM

dcosf qFEt

+ ¢*cos 67 (77)

Integrating from 6 = 45° to 135°, or cos ) = % to —\i@:

(ECM — EI)3 ng ECM q

o =4a)? + + 78
Eo V2 2vi T )
Substituting in the expressions for E’ and q:
al? (EE, —m3)® 2m?  E2 1 E?
0= 551 Few — rmy) [+ S (T —m)] (79)
2BCy [Boy 0 V2 2V2 0 3V20 4
4 e
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C Calculation of the ratio of I'(T(1S) — ~¢) to
L(T(LS) = pTu”)

The Feynman diagram for Y(1S) — ~¢ is shown in Fig. 13. The expression for the

effective vertex in momentum space is:
new vertexr = ([p - qg""* — ¢"p”| (80)
Therefore the scattering amplitude is:
iM = €l([p- qg" — q“p"]%(—‘m)[q - kg®® — kg (81)
Contracting up gq:

. s ; v v (s
= =24l = 9l ol = ka1 2)

Therefore the squared amplitude is:

1 6C2A2 (r) *(r)

|M|? = et p-q9" — ¢"p"1lp-a9° — ¢’ p°)a- kgl — kua®)la- kgl — kog?les” el
(83)

Summing over initial and final spin states:

|M|? = %(—gm)[p-qg“”—q“p”] [p-a9% —’v°1la- kg’ — k,a®)lq- kg’ — ksa"](—gpp)
(84)

Contracting up g,s and gg,:

s 16¢2\?2 W o o o 8 B
M* = =>=lp-ag" — ¢"p"llp - ags — a"lla - kgl = kut’lla - kgop — kras]  (85)

Multiplying out and contracting indices:

162?2 2(p-0)° =28 (- q)(p- k)(q- k) +0°P(q-k)* +¢*(p- k)*]  (86)

|M|? =
The four-momenta in the rest frame of the T are:
b= (mTa Oa 07 O) (87)
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q= (mx, 0, 0, 0) (88)

k=(E, 0,0, E) (89)
l=(my—E, 0,0, —F) (90)
Where:
m% —m?
E=-—*L ¢ (91)
Qm'r

Substituting into Eq. (86):

|M|? = 8N\ (my — mg)? (92)

Similarly, the Feynman diagram for Y(1S) — p*u~ is shown in Fig. 14. Therefore

the scattering amplitude is:
M = &)l 0™ — ¢"p') ) 1) ey ) (93)
Contracting up g,q:
iM = Z—geff) [p-qg" — ¢"p”]a® (1) (iey, )v® (k) (94)
Therefore the squared amplitude is:

ﬁ & p-ag" = "pNlp-ag” — ¢’ p1u (1) (ie7, ) (k)0 (k) (ievo )u) (1)

(95)

|M[* =

Multiplying out the spinor wavefunctions:

€2C2 ) *(r v v o o
(M = q4—e,§)e(s()[p-qg“ —¢'"llp- 09" — P12+ mp) v (& —my)ye  (96)

Using the identities for traces of gamma matrices:

62 2 *(r v v 4 o
|M|* = q—C €De;Dp-qg" — ¢"p"llp- a9” — 0% 1lks + ok, — (1 k +m2)gus] (97)

Summing over initial and final spin and polarization states:

2 2
|M|* = qC (=90l - 99" = ¢"P"1lp- 49°" — ¢’P" ko + loky — (- k +mi)gus] (98)
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—62<2 s v o o
M= —7-lp- 99" = d"Plp- a9 = 4uplluko +loky = (- k+m)g0] - (99)

Multiplying out and contracting indices:

e2 2
|M|* = q—§[2(p-q) (¢:1) (p-k)+2(p-q) (p1) (a-k) +2m (p-0)* +¢*p° (I-k+m2) —2¢% (p-1) (p-k)]
(100)
The four-momenta in the rest frame of the Y are:
b= (mT7 07 0’ O) (101)
q=(my, 0, 0, 0) (102)
k= (550, 0, k) (103)
| = (%, 0, 0, —k,) (104)
Where:
2
m
k;“ = TT — mi (105)
Substituting into Eq. (100):
|M|* = €*¢*(m% + 2m?) (106)

In general, the decay width for a particle A decaying to two final state particles, each
with three-momentum p'in the COM frame is:

1 d
gr = - [ 3em 91|
ma 3271'2 ECM

|\ M(my — p1,p2)|? (107)

Because we are taking the ratio of the two decay widths, we only need to worry about
the terms that don’t cancel. In this case, because both decays have the same initial

state, almost everything cancels, and all we are left with is:

P(Y(1S) = y¢) _ |M(Y(S) = v4)[*|py|

T(T(1S) — o)~ IMCT(S) — i) Pl (10%)
Substituting from Egs. (92) and (106):
L(Y(1S) = v9) _ AN*(m3 — mj)? (109)
L(YQAS) = whp™) e’mx (mi + 2m2) mT%f —m2
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D Calculation of Phi’s Decay Distance

The Feynman diagram for ¢ decay is shown in Fig. 16. Therefore the scattering
amplitude is:
iM = (—4i))[py - p2g™ — phpile”) (p1)es (p) (110)
And the squared amplitude is:
[M[? = 16X[p1 - pag™ — php][p1 - p2g®” — p5pI1E") (1)l (p1)es (p2)ef (p2) (111)
Summing over final polarization states:
|M|* = 16)%[py - g™ — Psp!1[p1 - P29 — PSPY)(—Gpa) (—9up) (112)
Multiplying out and contracting indices:
|M|* = 16)% = 32)\%(p; - py)? (113)

The four-momenta in the COM frame are:

I = (mg, 0, 0, 0) (114)
P = (%, 0, psinf, pcos®) (115)
P2 = (%, 0, —psin®, —pcosd) (116)

In general, the decay width for a particle A decaying to two final state particles, each

with three-momentum p' in the COM frame is:

1 1dQem |pi 2
dl' = — M — 117
In this case:
ma :ECM=m¢ (118)
o My
=_° 119
p= (119)
Substituting into Eq. (117):
A2m?
r = ¢ 12
o (120)
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Now find the mean lifetime:

_h_ 121
T r /\2m¢3 ( )
Therefore the decay distance is:
ch2rm
d= —— 122
o (122)
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E Calculation of the Squared Amplitude for Photon-
Photon Scattering

The Feynman diagram for photon-photon scattering via the phi-photon vertex is

shown in Fig. 18. Therefore the scattering amplitude is:

1 T S ; v v 1
M = GL)(p1)6,(,)(p2)(4z)\)[p1 - pag™’ — pgpl]ﬁ
(4iN)]g1 - 20°° — 4507 1eD (q1)es” (o) (123)

And the squared amplitude after averaging over initial and summing over final polar-

1zation states is:

1‘M|2 1 256
4 4k —m3)?
(=9u8) (= 9o ) [P1 - 29" — P50Y][p1 - P29 — P3p]]
(= 9ap) (—95)[01 - ©29°° — 4507 ][ar - 429" — d54] (124)

Multiplying out and contracting over indices:

(pl -p2)2(q1 '(Z2)2
(k= m3)?

1
Z\M\Q = 256\ (125)

Because all of the external lines are photons, the four-momenta in the COM frame

are simple:
E E
b1 = (ﬂa Oa O’ CM) (126)
2 2
E E
P2 = ( CM, 0; Oa - CM) (127)
2 2
E E E
@=L 0, “Msing, =M cos ) (128)
2 2 2
E E E
g2 = ( gM, 0, — ;M sin 0, — —M cos 6) (129)
k= (Ecwm, 0, 0, 0) (130)
Substituting into Eq. (125), the final expression for the squared amplitude is:
1 16)*E2
Jup = e (131)
4 (B — m¢)
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F C++ Code to Calculate JLab Production Rates

#include <iostream.h>
#include <fstream.h>
#include <math.h>

float numInt( float, float, float, int);

float Converge( float, float, float);

float Integrand( float, float, float, float, float);
int main()

{

ifstream inFile;
ofstream outFile;

float s;
float lambda;
float m_phi;

inFile.open("tableIn.dat");
outFile.open("tableOut.dat");

//input the requisite numbers:
inFile >> s;
while(!inFile.eof())
{
inFile >> lambda;
inFile >> m_phi;
outFile << "For s= " << s << ", lambda= " << lambda
<< ", and m_phi= " << m_phi
<< " the number of events per year is ";

outFile << Converge(s, lambda, m_phi) << "." << endl;

inFile >> s;

outFile.close();

return O;

}

//*********************************************************
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//numerical integration function:

float numInt( float s, float lambda, float m_phi, int numSteps )
{
const float M_PROTON = .938;
const float CONVERSION = .389379E9;
const float LUMINOSITY = 36.0%24.0%365.25;

float x; //variables of integration
float ct;

float x_stepSize; //size of the rectangles
float ct_stepSize;

float total; //to use in integration
//1loops

float x1; //roots from energy
float x2; //constraint

float lower_x; //lower limit of x
//integration

//find the lower limit of x integration:

x1l = (-(2 * m_phi * M_PROTON - s) + sqrt(pow((2 *
m_phi * M_PROTON - s),2) - 4 * pow (M_PROTON, 2) *
pow(m_phi, 2))) / (2 * pow(M_PROTON ,2));

x2 = (-(2 * m_phi * M_PROTON - s) - sqrt(pow((2 *

m_phi * M_PROTON - s),2) - 4 * pow (M_PROTON, 2) =*
pow(m_phi, 2))) / (2 * pow(M_PROTON ,2));

if (x1 <=1)
lower_x = x1;

else lower_x = x2;

//do the integration:

x_stepSize = (1.0 - lower_x ) / numSteps;
ct_stepSize = 2.0 / numSteps;

total = 0.0;

43



for (int j
{
ct = (-2.0

1; j <= numSteps; j++)

+

(2.0%j-1.0)*ct_stepSize)/2.0;

for (int i = 1; i <= numSteps; i++)
{
x = (2.0*x1lower_x +(2.0%i-1.0) *
x_stepSize)/2.0;

total = total +
Integrand(s, lambda,
m_phi, x, ct)*

CONVERSION*LUMINOSITY*
ct_stepSize * x_stepSize;

return total;

//*********************************************************

//this function makes numInt converge, and is a modified version of
//one found in Numerical Recipes for C:

float Converge( float s, float lambda, float m_phi )
{

const float EPS=.01;

const float J_MAX=1E9;

float ans;

float old_ans = -1E30;

int j = 150;

do { ans = numInt(s, lambda, m_phi, j);

cout << j << ans << endl;

if (fabs(ans-old_ans) < EPS * fabs(old_ans)) return ans;
if (ans==0.0 && old_ans==0.0) return ans;

old_ans = ans;
J = J3*3;

} while( j <= J_MAX );
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return O;

}

//*********************************************************
//this is the integrand:

float Integrand( float s, float lambda, float m_phi, float x,
float ct )

{

const float M_PROTON = .938;

const float PI = 3.14159;

const float e = sqrt(4*PI/137);

float s_hat, m_q, E, 1_phi;

float pdotk, pdotql, pdotq2, kdotql, kdotq2, ksquared;
float upMsquared, downMsquared;

float du, dd;

float u_sea, d_sea, s_sea, u_v, d_v;

float integrand;

s_hat X*S;

m_q = x*M_PROTON;

E = (s_hat - pow(m_q,2))/2/sqrt(s_hat);

1_phi = sqrt(s_hat/4 - pow(m_phi,2)/2 - pow(m_q,2)/2 +
pow(m_phi,4)/4/s_hat + pow(m_q,4)/4/s_hat -

pow (m_phi,2)*pow(m_q,2)/2/s_hat) ;

pdotk = Ex(sqrt(pow(l_phi,2)+pow(m_phi,2))-1_phi*ct);

pdotql = Ex(sqrt(pow(E,2)+pow(m_q,2))+pow(E,2));

pdotq2 = Ex(sqrt(pow(1l_phi,2)+pow(m_q,2))+1_phi*ct);

kdotql = sqrt(pow(E,2)+pow(m_q,2))
* (sqrt (pow(1_phi,2)+pow(m_phi,2))-E)
+ Ex(1_phi*ct-E);

kdotq2 = 2*pow(1l_phi,2) + pow(m_phi,2)
- Ex(sqrt (pow(1l_phi,2)+pow(m_phi,2))+1_phi*ct);

ksquared = pow(m_phi,2)
+ 2xEx(1_phi*ct - sqrt(pow(l_phi,2)+pow(m_phi,2)));
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upMsquared = -32.0%(4.0/9.0)*pow(e,2)*pow(lambda,?2)
* (pow (pdotk,2)*pow(m_q,2) - pdotk*kdotql*pdotq2
- pdotk#*pdotql*kdotq2 + ksquared*pdotql*pdotq2)
/pow(ksquared,?2);

downMsquared = -32.0%(1.0/9.0)*pow(e,2)*pow(lambda,?2)
* (pow(pdotk,2)*pow(m_q,2) - pdotkxkdotql*pdotq2
- pdotk*pdotql*kdotq2 + ksquared*pdotql*pdotq2)
/pow (ksquared,?2) ;

du = upMsquared*1_phi/64/PI/E

/sqrt (pow(E,2)+pow(m_q,2))/sqrt(s_hat);
dd = downMsquared*1_phi/64/PI/E

/sqrt (pow(E,2)+pow(m_q,2))/sqrt (s_hat) ;
u_sea = .186*pow((1-x),7)/x;
d_sea = u_sea;
s_sea = .b*u_sea;

u_v = 2*1.094*pow((1-x),3)/sqrt(x);

d_v

1.125%1.094*pow((1-x) ,4)/sqrt(x);
integrand = (dux(u_v + 2%u_sea) + dd*(d_v + 2*d_sea + 2*s_sea));

return integrand;

}
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