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Abstract

A continued study of the longitudinal disorder of superconducting vortices in BSCCO (Bi2Sr2
CaCu2O8) started by Christopher Fetsch and Ken Baranowski is presented. The nature of
the temperature dependence of disorder of superconducting vortices is explored. Data using
�SR spectroscopy on BSCCO were analyzed using back-to-back exponential �eld distributions.
These results were compared to �eld distributions arising from disordered pancake vortices.
Brief discussions of superconductivity and muon spin rotation techniques are included. Results
of analysis are presented as well as future steps for analyzing results. The experimental tem-
perature dependence for 25K < T < Tc of a �eld distribution asymmetry parameter is opposite
to that expected from the disordered pancake model. The �eld distribution in this temperature
range has a longer low �eld tail than on the high �eld side.
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1 Introduction

1.1 Overview

The main purpose of this research project is to study superconductors and determine

if there is a connection between the temperature of the superconducting material and

the disorder present in the material. This paper will outline the results obtained from

the experiments. I will begin by giving a brief introduction to superconductors. I will

then move on to describe the equations used and the calculations made. I will �nish

up by discussing the results and what they imply.

1.2 Superconductivity

Superconductors are materials that, below a certain temperature, Tc, pass electric

current at zero resistance. Superconductors are diamagnetic. As a consequence, a

superconductor will expel magnetic ux lines.

There are two important parameters associated with all superconductors, �, the

penetration depth, and �, the coherence length. The variable � is a fundamental

length scale over which local �elds within a material have an appreciable e�ect on the

current at a nearby point, or alternatively the length scale over which the supercon-

ducting electron density varies. Superconductor type is determined by k = �=�, the

Ginzburg Landau parameter. A Type I superconductor has k < 1/
p
2, while a Type

II superconductor has k > 1/
p
2 [1].

Type I superconductors repel a magnetic �eld to a valueHc. For low strength �elds,

Type I superconductors completely repel the magnetic �eld. Then, at some critical

�eld strength, the superconductor suddenly lets all of the magnetic �eld through. So,

a magnetic �eld is completely repelled, up to a critical point, where it is completely

allowed.

Type II superconductors are a little di�erent. Like a Type I, a Type II supercon-
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ductor will completely repel a magnetic �eld up to a certain point, Hc1. However, at

this point, instead of sharply transition to a repelled state, it enters a mixed state.

This mixed state exists up to a certain �eld strength, Hc2, where the superconductor

then allows all magnetic �eld lines, just like the Type I above. It is this mixed state

that we are interested in here. The particular Type II superconductor material we are

interested in here is BSCCO (Bi2Sr2CaCu2O8). BSCCO has a very high Tc (about

92 K) which makes it a superconductor at liquid nitrogen temperatures.

When in the mixed state, the allowed magnetic �eld lines form vortices. These

vortices arrange themselves in an ordered triangle lattice, also called a Flux Line

Lattice (FLL), see Figure 1. These vortices can be treated as either continuous tubes,

like spaghetti, or as stacks of vortex slices, like pancakes.

Figure 1: Flux lines in well annealed Pb (4% In) alloy. [2]

1.3 �SR

The technique that was used in this case was Muon Spin Rotation (�SR). This tech-

nique is used to measure magnetic �eld. Muons are unstable particles which decay

with a mean lifetime of about 2 �s. A muon decays in what is known as a three-body
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decay.

�+ ! e+ + �e + ��� (1)

or

�� ! e� + ��e + �� (2)

What we are interested in here are the emerging positrons from the �+ decay . These

are collected by detectors surrounding the sample. By analyzing which detectors the

positrons trigger, the magnetic �eld can be measured.

The muons themselves are obtained from pions. Pions decay weakly according to

�+ ! �+ + �� (3)

or

�� ! �� + ��� (4)

with an average lifetime of �� = 26 ns. Both of these decays are shown in Figure 2.

P Ppol. pol.µ

µ νµπ++

µ+e+

νe

µν

Figure 2: Illustration of decay of pion to muon, then muon to positron

The way these spin polarized muon beams were produced was by making use of

very low energy pions which have already stopped near the surface of the primary

production target. In the case of negative pions, these would be captured almost

immediately by the target nuclei and the free decay into muons and neutrinos would

not be observed. However, positive pions, now at rest, which remain somewhere
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between the target constituents, decay according to Eq. 3. Positive muons emerging

from the �+ decay with the pions at rest are 100% spin polarised with respect to

their momentum or ight path. Since the spin of the pion is zero, the conservation

of angular momentum requires that the �+ and the �� must also together add up to

zero angular momentum. The helicity of the ��, < � � p > is �xed at H = �1, and
thus the spin of the �� is �xed anti-parallel to its momentum. Since the spin of the

�� is anti-parallel to its momentum, so must the spin of the �+ be anti-parallel to its

momentum. Most of the polarization is retained while leaving the production target.

Electron scattering is mostly forward and there are few larger angle nuclear scattering

events. If muons of approximately a certain momentum direction are collected into a

beam, this beam will show an almost 100% spin polarisation [3].

Using �SR, we can measure the internal magnetic �eld distribution in the mixed

state of the Type II superconductor with a resolution of about 0.1 mT, which is on

the order of the magnetic �elds caused by nuclear dipoles. The advantages of �SR are

that since the muon is a spin-1/2 particle with no quadrupole moment, there are no

splittings due to quadrupolar interactions. The second advantage is that the electric

charge of the muon is +1, so the Knight-shift [4] contribution is greatly reduced

compared to other techniques. This makes the spectrum for �SR easier to relate to

the distribution of local magnetic �elds in the sample [5].

The actual data collection was done at the TRIUMF accelerator, on the campus of

the University of British Columbia. The muons in this experiment were spin-rotated

to have spin up (ŷ). The muons were passed, one at a time, into a region in which a

superconducting magnet produced a �eld parallel to the muon momentum (ẑ). This

caused the muons to precess (in the xy plane). The muons would then decay as

described above. The resulting positrons were then collected by detectors. Figures 3

and 4 are illustrations of the experimental setups, somewhat di�erent from the one

we used, but are illustrative of �SR apparatuses used to collect data. The detectors
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are labeled F, B, U, and D (Front, Back, Up, Down) in Figure 3. Figure 4 only shows

the front and back detectors, however, you can clearly see the Helmholtz coils which

produce the magnetic �eld in the region. The muon beam enters from the right in

Figure 3 and from the left in Figure 4. For more information on the setup for the

data collection, see ref. [6].
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Figure 3: Illustration of experimental setup for data collection
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Figure 4: A second illustration of experimental setup for data collection
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1.4 London Equations

The London Theory is a phenomenological theory [7]. The London equation is derived

by minimizing the free energy associated with the kinetic energy of the superconduct-

ing electrons and the magnetic �eld energy. The London equation itself is:

h� �2Lr2h = �0Æ2(r) (5)

This equation may be solved for one vortex, yielding:

hv(r) =
�0
2��2

K0(
r

�
) (6)

where �0 is the ux quantum and K0 is the zeroth order Bessel function of imaginary

argument.

To calculate the �elds for longitudinally disordered vortices we �rst calculate the

�elds for a regular array, subtract nearby individual ordered vortices, and then add

back in the �elds from nearby disordered pancakes, which are described below.

The �elds for a regular lattice are obtained by using the solution to the London

equation in reciprocal lattice space:

h(G) = B=(1 + �2LG
2) (7)

The real space �elds are:

h(r) =
X
i

h(G)eiG�r (8)

and

Gj � ri = n2� (9)

The nearby regular vortex �elds, which will be subtracted, are obtained from

h(r) =
X
i

hv(r � ri) (10)

The pancake �elds which are then added back in are obtained as described below.
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1.5 Pancake Vortices

The �nal part of the calculation involves the pancake vortices. The model for pan-

cake vortices[8, 9] comes from picturing the sample in alternating layers (along z)

of superconducting material and insulating material. A pancake vortex is a vortex

originating in a given layer (z = 0). The z component of the magnetic �eld for such

a vortex described in spherical coordinates is:

bz(r; z) = �0=(2��r)e
�r=� (11)

Now we get that

b(r) =
X

bz(r � ri;j;k; z � zi;j;k) (12)

Where k is the plane of the vortex, and i and j are the location within that plane. By

combining these three calculations, we can get an accurate picture of the magnetic

�elds. The other important part of modeling using the pancake vortices, is that it

brings in disorder. Each layer of superconducting material has a 2D vortex array at a

certain point. The next layer of superconducting material will also have a vortex array,

but it can wander some from the �rst. The next wanders some from the one before

it, and so forth, until eventually the vortex exits out the other side at a completely

random spot, that has nothing to do with where it started. John Clem [9]gives a

good argument for why we should expect to �nd disorder at higher temperatures. He

shows that the energies required to shift one pancake vortex out of alignment (and

thus create disorder in the entire stack) is so small, that as T goes to Tc, the thermal

energy kBT can strongly disalign a vortex, and thus disrupt the entire stack [9]. What

we are going to try to do with this research is to quantify the disorder as a function

of temperature.
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2 Calculations

2.1 London Calculations

The original set of calculations on actual data was done using FORTRAN programs

developed by Christopher Fetsch [10]. These programs (hxpy.f , hspag.f, and hsum.f)

calculated the total magnetic �eld. The code hpxy.f calculates the �eld from the pan-

cakes nearest the origin. The program hspag.f calculates the near direct lattice �elds.

The routine hsum.f calculates the reciprocal lattice results. These three programs

were used repeatedly in other programs that we created during the various stages of

this project.

The �rst step was to analyze data with the London equations (regular array

with density variations). When this was done, we found that we could �t data for

Y Ba2Cu3O7 (Figure 5) pretty well for the �rst couple of microseconds. To test the

accuracy of this �tting function, we created a fake data generator. This program

generates fake data based on the London equation (Figure 6), so it should be fairly

trivial for the �tting function to match it. The fake data generator was then modi-

�ed to include statistical variation to make it more random. This fake data strongly

resembled the real data we had (Figure 7). After getting this program to work, the

next step was to �t these fake data with the �tting function based on the London

equations.

2.2 Pancake Calculations and Fake Data

Having successfully �t the fake data with the London equation �tting function, we

moved on to the next phase, using Equations 11 and 12 to �t the data. The �rst

step in this process was to write a program that would create fake pancake data. The

ultimate result of this work was a program called longdis. Longdis would read in the

parameters, B (the external magnetic �eld), xlab (the penetration depth), sc (the
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Figure 5: Plot of real data, run 006221, collected at TRIUMF

scaling factor, default 0 the �rst time through), nsh (the number of sheets up and

down that are calculated), npanxy (the number of vortices in the x and y directions

that are calculated), and nave (the number of times the calculation is performed and

averaged). Longdis takes this information and �rst creates an ordered (no wandering

cores) �eld array. It will then ask again for sc and nave. Sc (the scaling factor) is our

measure of disorder. 0 sc is equivalent to no disorder. From this point, the program

will calculate the modi�ed �eld array with the desired disorder, then calculate B-

average and �2 -B. The other important output is the �le that shows the distribution

of the internal B-�eld.

With this program, we calculated the internal B-�elds for the cases where the

applied B-�eld was 70, 1000, and 10000 Gauss, with varying disorder. We then

created a program baver.f which would take in the output �les from longdis.f and

calculate B average, (B - Baverage)
2, (B - Baverage)

3 , and �, where
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Figure 6: Plot of fake data created by fake data generator

� =
((b� baverage)

3)1=3p
(b� baverage)2

(13)

After calculating these results, we created a program to smear the data so that it

would look more realistic. The program smearing.f read in the longdis.f output �les

and smeared them according to the prescription:

dn

dbsm
(b) =

X
b0

exp

��(b� b0)2

2�2

�
dn

db
(b0) (14)

From there, we ran baver.f on the smeared results. With the smeared �les we could

then put together plots of alpha, B-average, (B - Baverage)
2, and (B - Baverage)

3, all

vs. sc.

We were now ready to put together a �tting function for real data. We chose a

back to back exponential frequency distribution. Thus:

Y (t) = � �
X

exp

�
�j ! � !0 j

!Lor R

�
cos(!t+ �)=N (15)
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Figure 7: Plot of fake data created with statistical variation

where N is so as to normalize the sum of the exponential, one uses !L or !R depending

on whether ! is less than !0, � is a phase shift, and � is the original amplitude. We

can de�ne !m = (!L + !R)=2 and d! = !L � !R the change in frequency, !0 as

the original frequency, and � as the phase shift. We cycled real data (T = 98K to

2.5K) through this �tting function. The next program that was created was alphac.f.

Alphac.f read in !m, d!, and !0. It would then calculate !1, !s, !c, and �. By

plotting � vs T, we can get an idea of the temperature dependence of the disorder.

3 Results

One of the most interesting piece of data that we got out of all of our calculations was

the plot of d! vs T(K), Figure 8. What we see in this plot is a long right hand tail

at low temperatures, with a left hand tail appearing at high temperatures. What we

expected to see was just the long right handed tail. This would correspond to a graph
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which started where this one does at low T, then grew like an inverse exponential

curve towards zero.

0 20 40 60 80 100
T(K)

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

dω dω

10000 Oe
BSCCO
Phase fixed.

Figure 8: Plot of d! vs. T(K)

The other interesting information that we pulled out of our back-to-back exponen-

tial �ts is the plot of !m vs. T(K), Figure 9. What makes this Figure so interesting

is that it is not at all what we expected to see. For a regular vortex lattice 1
�2

is

proportional to
p
< (b� �b2) > [11, 12] which in turn is proportional to !m. However

for BCS superconductors and even for YBCO, �(0)2

�(T )2
curves like those of Figure 10 are

obtained. Note that !m(T) is nearly linear.

The rest of our results were fairly normal. Figure 11 shows plots of the B �eld

distribution with �ve di�erent values for the disorder parameter, sc. We can see

the long tail to the right, as predicted by Figure 8, even though these are London-

equation-based �ts. However, there is a fairly obvious lack of a tail on the left hand
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Figure 9: Plot of !m vs. T(K)

side, even though the existence of a small one was predicted in Figure 8. Note, also,

the shifting of line shape as sc goes from 0 to 0.6. The sc = 0 line is very asymmetric,

with a long tail o� to the right. This corresponds to a very regular FLL. The peak

is the center of the vortex, and the tail is the drop-o� around the peak towards the

saddle points between the shown vortex and the surrounding vortices. As the disorder

parameter increases, the line shape becomes more like a spike. The peak becomes

taller and more symmetric as the tail gets chopped o�. This is also to be expected.

As the disorder increases, the location of the vortices becomes more random. So,

instead of having very regularly spaces areas of magnetic �eld, they are spread out

all over the sample, thus making the �eld distribution more uniform.
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Figure 10: Predicted temperature dependence of 1=�2 in various limiting cases [13]

4 Conclusions

There were some things that we did not test due to time restrictions. For example,

we were unable to shed light on the puzzling results from Figures 8 and 9. The next

step in that case would have been for us to go back to our fake data generator and

generate a set of fake data with sc = 0, and a set of fake data with sc = 0.1, while

varying �. Since � is linearly proportional to T, we could then plot � vs. d! and see

if we get the results of Fig 8.

We did not reach our overall goal of quantifying the dependence of disorder on

temperature. We did, however, �nd some interesting results that de�nitely warrant

further investigation.
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Figure 11: This is a series of plots of the B �eld probability distribution with varying disorder

parameters
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