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Abstract

We develop a model of electron interference patterns in a partially blocked microwire with a

constant, orthogonal magnetic �eld. We use the semiclassical theory developed by Maslov and

Fedoriuk.
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1 Introduction

The study of semiconductor systems with reduced dimensions has been one of many

ways to understand the transition from classical mechanics to the quantum realm.

One of the main models used in this regime is the semi-classical theory. This theory

in one dimension is the WKB approximation, which was extended to n-dimensions

by Maslov and Fedoriuk [1]. The quantum wave is constructed from classical trajec-

tories as described in Appendix C. The semi-classical theory could give a reasonable

account when a travelling wave travels classically and encounters an obstacle where

quantum e�ects could take place. The work by Kirczenow et. al. [2] veri�ed exper-

imentally that certain quantum e�ects occur in a wire-like cavity when a travelling

electron wave encounters an impenetrable obtruction in a high constant magnetic

�eld perpendicular to the long axis of the wire. More speci�cally, they found that

the conductance does not vary as the magnetic �eld is changed except for a region

between 0:2Tand 0:27T . The paper also states that as the obstruction is changed

in height an additional spurt of conductance will show under certain circumstances,

and when the obstruction is further changed, the conductance will return to normal.

They claim that at high magnetic �elds these e�ects are purely quantum mechanical.

In our model the classical wave travels until it encounters the obstruction. The ob-

struction leaves two small gaps, about 0.2 microns, near the top and buttom of the

microwire. Then there will be a portion of the wave that scatters and a portion that

conducts through. The basic content of the theory [3] states that when an electron

approaches the obstruction or junction most of the electron wave is re
ected while

some is conducted through one of the gaps. The portion of the wave that goes through

is di�racted. Meanwhile the magnetic �eld pulls the scattered electron wave, which

follows classical paths, back towards the junction. If the magnetic �eld is tuned just

right the trajectory will lead the electron through the other gap. Then there are two

paths the electron might follow to get past the obstruction, and one would expect to
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�nd an interference pattern on the other side of the junction . The phase is calculated

using the classical action of the wave on each path while the wave amplitude is the

square root of the classical density. The important assumptions are that the wire

should be large compared to the size of the de Broglie wavelength and that the gaps

between the barrier and the edges of the wire have a small width compared to the

size of the wire.

Our paper describes a theoretical model based on semiclassical theory, which we

hope will explain the interference patterns found by Kirczenow. If successful, this will

also show that the interference patterns, proposed by Kirczenow to be of a purely

quantum nature, can be described by semiclassical methods. Computer simulations

will be done using a straight barrier with di�erent magnetic �elds. Trajectories and

interference patterns will be calculated. These interference patterns will be written

in terms of the conductance. Thus the theory can be related to experiment.

2 Model

The Hamiltonian for an electron in a magnetic �eld is

Hq =
1

2�
(�i�hr� q~a)2 + V; (1)

Here � is the e�ective mass, q is the electron charge, ~a is the vector potential,

and V is the potential energy. It can be shown that a particle moving under this

Hamiltonian satis�es the Lorentz force equation

~F = q( ~E + ~v � ~B) (2)

(See Appendix A). For a particle in potential V a wave function is used with the

phase amplitude A and phase S[4],

2



	(r) = A(r)exp(
i

�h
S(r)): (3)

When this wave function is substituted in the Hamiltonian without magnetic �eld

and the solution is expanded to 1st order in �h one gets

jrS(~R)j2

2�
+ V (~R)� E = 0; (4)

2~rA � ~rS + ~r2SA = 0 (5)

(See Appendix B to get derivation with magnetic �eld). To �nd the classical

trajectories, Hamilton's equations and an equation for S(~R) (see Appendix C) are

used

_pi =
�@H

@qi;

_qi =
@H

@pi;

_S = p � _q =
nX
i=1

pidqi=dt: (6)

The amplitude A comes from the continuity equation, and it can be calculated by

A(~R) = A0
J(0; w0)

J(t; w0)
(7)

where J is the jacobian, which is de�ned as

J(t; w0) =
@q(t; w0)

@(t; w0)
(8)

[5]. q is de�ned as the coordinates in phase space and t,w0 are the generalized

coordinates.

The wave function of the electron wave is found by adding all the wavefunctions

due to the di�erent trajectories at the end of the wire where the current is to be

measured. This point will be just far enough away from the obstruction to make sure
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the trajectories that re
ect back to the entrance do not reach the measured segment.

What is needed for the wavefunction determination is the amplitude and the phase

at the measured place.

Figure 1: A set of trajectories of an electron wave function going through a wire

3 Simulation

The magnetic �eld needs to be perpendicular to the two dimensional wire. Hence a

vector potential that satis�es such a condition would be ~a = B0xj. The trajectories

of an electron travelling in a wire with an obstruction and a magnetic �eld were

calculated using a computer simulation. A preliminary understanding of what is

going on is done by calculating the transmission amplitude with sample magnetic

�eld strengths applied. We take arbitrary parameters just to show that interference

patterns are possible. The wire has width of 2, the charge is 1 and the mass is 1.

The magnetic �eld is also 1. Finally the obstruction has a width of 1.6 centered at 0.

The initial conditions are y=0 and px = 1,py = 0, and x = 0::2R. R is the cyclotron

radius calculated from qB = mv
R
. Some trajectories passing through the wire would
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Figure 2: Three main families of trajectories by the electron

look like Figure 1.

In this hypothetical situation, where the wire is the height of the Landau orbits,

three main families of trajectories passing through the obstruction are present as

shown in Figure 2.

One mode goes right through the lower gap, not touching the obstruction. A

second bounces o� the obstruction on the left and circles forwards till the electron

goes through the other gap. A third mode bounces o� both sides of the obstruction

creating shapes between the other two modes. The wave amplitude and phase are

calculated at the end of the trajectory. The sum of partial wavefunctions calculated

from the amplitude and phase is the total wave-function. Then the conductance

would be proportional to the square of the wavefunction. The magnetic �eld will

be changed, which will create di�erent eigenvalues. A new conductance will then

be calculated. Thus a variation in conductance can be observed as the magnetic

�eld changes. Once interference patterns are shown, parameters that simulate the

experiments of Kirczenow et al. will be placed. Hopefully the qualitative results of

the experiment will be duplicated.
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Table 1: Transition amplitudes as function of magnetic �eld

Magnetic Field Proportional to Transmission Amplitude

1.400 2.32

1.200 0.101

1.100 0.04129

1.007 40.186

1.006 62.99

1.005 75.71

1.004 86.4

1.003 86.84

1.001 83.20

1.000 85.41

0.900 8.91

0.800 8.04

4 Results

The Transmission amplitude changed as the magnetic �eld changed(See Table 1)

From the table there may be some hint of interference patterns since the Tran-

sission amplitude goes increases and decreases at some points. Unfortunately the

conductance goes up instead of down around the cyclotron frequency, which was not

what was found experimentally. Also interference patterns are not at all obvious. A

plot of the conductance as a function of magnetic �eld is shown.

5 Conclusions

The wavefunctions were calculated for di�erent magnetic �elds, but no notable inter-

ference patterns were found. There was not enough information to tell whether the
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Figure 3: Conductance as a function of magnetic �eld in arbitrary units

semiclassical model compared well with experiment. If anything, it seems that the

semiclassical model did not agree with experiment. The model should be improved

by adding the hermite polynomials, and adding phase changes due to boundary con-

ditions. Also there were only about 10-30 trajectories going through the obstruction

out of about 2000 trajectories. These may not have been enough trajectories. Maybe

the step size of the initial x-coordinate should be made smaller.
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A Appendix

We show the proof for the x component only since for the other components the proof

is done the same way.

~E =
1

2�
(~P � q ~A)2 + V

=
1

2�
((Px � qAx)i+ (Py � qAy)j+ (Pz � qAz)k)

2 + V

=
1

2�
[(Px � qAx)

2 + (Py � qAy)
2 + (Pz � qAz)2] + V

Let r� ~A = ~B and ~E = �rV
q
� @A

@t
We then use hamilton equations, which are

de�ned in the model section of the paper, to calculate the velocity. @H
@Px

= Px�qAx

�
= vx

We see that the momentum has a new meaning from the usual one. We also have

�@H

@x
=

Px � qAx

�
(q
@Ax

@x
) +

Py � qAy

�
(q
@Ay

@x
) +

Pz � qAz

�
(q
@Az

@x
)�

@V

@x

=
dPx
dt

From the de�nition of force Fx = �ax. Then

ax =
dvx
dt

= (
dPx
dt

� q
dAx

dt
)

�!
dAx

dt
=

@Ax

@x

dx

dt
+
@Ax

@y

dy

dt
+
@Ax

@z

dz

dt
+
@Ax

@t

Now we can �nd the force using the new found equations from the hamiltonian

equations. First we use the chain rule...

Fx =
1

�
(
dPx
dt

� q
@Ax

@x

dx

dt
� q

@Ax

@y

dy

dt
� q

@Ax

@z

dz

dt
� q

@Ax

@t
)

= q[(
Px � qAx

�
(q
@Ax

@x
) +

Py � qAy

�
(q
@Ay

@x
) +

Pz � qAz

�
(q
@Az

@x
)�

@V

@x
)

� (
@Ax

@x

dx

dt
+
@Ax

@y

dy

dt
+
@Ax

@z

dz

dt
+
@Ax

@t
)]

We now deal with the cross products

r� ~A = (
@

@y
Az �

@

@z
Ay)i+ (

@

@z
Ax �

@

@x
Az)j+ (

@

@x
Ay �

@

@y
Ax)k (9)
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and

(~v � ~B)x = vy(
@

@x
Ay �

@

@y
Ax)� vz(

@

@z
Ax �

@

@x
Az)

For ~v we have

~v =
dx

dt
i+

dy

dt
j +

dz

dt
k

=
Px � qAx

�
i+

Py � qAy

�
j+

Pz � qAz

�
k (10)

So then the force can be written

Fx = q[(vx
@Ax

@x
+ vy

@Ay

@x
+ vz

@Az

@x
�

@V

@x
)� (

@Ax

@x
vx +

@Ax

@y
vy +

@Ax

@z
vz +

@Ax

@t
)]

= q[(vy
@Ay

@x
�

@Ax

@y
vy) + (vz

@Az

@x
�

@Ax

@z
vz)� (

@V

@x
+
@Ax

@t
)]

= q(~v � ~B + qEx)

B Appendix

The Hamilton-Jacobi equation and the continuity equation are derived as approxi-

mations from the Schrodinger equation.

The Hamiltonian is H = 1
2�
(�i�hr� q~a)2 + V where ~a is the vector potential.

Assume that 	 = A(~R)e
i

�h
S(~R) then r	 = (rAe

i

�h
S(~R)+A i

�h
rS)e

i

�h
S(~R) So (�i�hr�

q~a)	 = (�i�h(rA+ i
�h
ArS)�Aq~a)e

i

�h
S(~R) Let B = (�i�h(rA+ i

�h
ArS)�Aq~a) so that

rB = �i�hr2A+r(ArS)�r(Aq~a) Thus from the �rst term of the hamiltonian we

get

(�i�hr� q~a)Be
i

�h
S(~R) = [(�i�h(rB +

i

�h
BrS)� Bq~a)]e

i

�h
S(~R)

= [��h2r2A� i�hr(ArS) + i�hr(Aq~a)� i�hrArS + ArS � rS � Aq~a � rS

+ i�h(rA)q~a� AqrS � ~a+ Aq2j~aj2]e
i

�h
S(~R)

Now the semiclassical approximation works when the action is large compared

to �h, or,equivalently, that the variation of the wave amplitude does not vary much
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compared to wave amplitude. Since �h is small we do a Taylor expansion centered on

this small number. We thus sort in order of �h

For zeroth order 1
2�
[A(rS)2�Aq~a � rS �AqrS �~a+Aq2j~aj2] +AV = AE Hence

if we de�ne ~P = rS then 1
2�
[~P � q~a]2 + V = E

C Appendix

The general procedure for calculating classical trajectories associated with wave func-

tions goes as follows:

1. De�ne an n� 1 dimensional surface in an n dimensional space. This is a surface

of constant phase S(~R).

2. At each point on the surface construct a vector normal to the surface with

magnitude ~P (~R) where
~P (~R)

2

2�
+ V (~R) = E.

3. A group of points ~P (~R) on the original surface is regarded as a collection of

initial conditions. So we have ~P0 = ~P (~R). We then solve Hamilton's Equations

_pi =
�@H

@qi;

_qi =
@H

@pi;

(11)

with initial conditions ~P (t = 0) = ~P0 and ~R(t = 0) = ~R0:

4. Solve

_S = p � _q =
nX
i=1

pidqi=dt:

Now I claim that ~S(~R) satis�es the �rst hamiltonian equation.

Proof:
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I need to show that

jrS(~R)j =
q
2�(E � V )

We will do better and prove that

rS(~R) =
q
2�(E � V )

Now to use di�erential properties in our space we need uniquely de�ned quantities.

We use the original surface, which has dimensions n�1 and t for the last dimension[5].

We have

S( ~R2) =
Z t2

0
p �

dR2

dt
dt

S( ~R1) =
Z t1

0
p �

dR1

dt
dt

S( ~R2)� S( ~R1) =
Z t2

0
p �

dR2

dt
dt�

Z t1

0
p �

dR1

dt
dt

=
Z t1

0
(p �

dR2

dt
� p �

dR1

dt
)dt+

Z t2

t1

p �
dR2

dt

Since di�erence in paths are small we use the product rule and we have

Z t1

0
�(p �

d~R

dt
)dt =

Z t1

0
[�p �

d~R

dt
+ p �

d�~R

dt
]dt

and

p �
d�~R

dt
= p ��~Rjt10 �

Z t1

0
�~R �

dp

dt
dt

So

Z t1

0
�(p �

d~R

dt
)dt =

Z t1

0
[�p �

d~R

dt
��~R �

dp

dt
]dt

=
Z t1

0
[�p �

@H

@p
��~R

@H

@ ~R
]dt

Since a surface is de�ned such that a change in the Hamiltonian is 0 and R is

perpendicular to the original surface we get

p( ~Rf) � ( ~R3 � ~R1) + p( ~R2) � ( ~R2 � ~R3) = p � ( ~R2 � ~R1)
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where ~R3 is R in the path between the end of ~R1 and ~R2 as R goes along the surface

of constant S.

D Appendix

This appendix contains all the programs used. The program dpodrt.f was used, which

is a publically available numerical integrator.

PROGRAM 1

Main program

c Calculates poincare's orbits for a 2-d magnetic field.

c There are nine neqns to calculate wave amplitudes. This program uses

c dpodrt to integrate Hamilton's equations. Initial conditions

c are mu=1,q=1. The vector potential is a and a_y = B*x where B is

c initial magnitude of magnetic field. Obstruction is added at 5=x,

c and there are walls at y=-1, 1. y(n) are positions x,y, momentum

c in the x and y directions and the action respectively for n=1,2,3,4,5.

c The magnetic field is B=1.00.

c

c MAIN

c

c BEGIN

c

IMPLICIT REAL*8(a-h,o-z)

INTEGER kuest, inc

PARAMETER (neqn=5, nw=100+21*neqn, li=3000, pl=2)
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DIMENSION y(neqn), yp(neqn), work(nw), iwork(5), val(li,pl)

EXTERNAL hamilton, g, g1, g2

OPEN(11,file='traj.d')

OPEN(13,file='jac.d')

OPEN(15,file='trajpass.d')

c Necessary parameters.

relerr = 1.0D-10

abserr = 1.0D-10

reroot = 100*relerr

aeroot = 100*abserr

ord = 0.00001

B0 = 1.00 ! Value of initial magnetic field. Also defined in hamilton.

c kuest =1 says that it passed 5, grail=1 says that it bounced off obstructio

kuest = 0

grail = 0

avt = 0

av = 0

inc = 0

step = 0.1 ! Step size of time increments

c

c Loop for the trajectories where j is the trajectory number.

DO 200 j= 1,2000

c

c Initial values

c

t = 0.
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inc = 0

y(1) = 0.001*(j+1) ! x coordinate

y(2) = 0. ! y coordinate

y(3) = 1. ! momentum in x direction

y(4) = B0*y(1) ! momentum in y direction

y(5) = 1. ! initial value of action

coor = 0.001*(j+1) !x coordinate

coor1 = 0.001*(j+1) + ord !x coordinate used to calculate the amplitude.

tout = 0.1 ! time step for integration.

c

c

c Integration of each trajectory where i is the step number.

103 CONTINUE

DO 110 i=1,400

inc = inc + 1

c preval gives value of the x value at one step earlier in time

preval = y(1)

IF (y(1) .lt. -0.1) GO TO 140 ! Trajectory must move forwards

iflag = 1

CALL dpodrt(hamilton,neqn,y,t,tout,relerr,abserr,

* iflag,work,iwork,g,reroot,aeroot)

104 CONTINUE

IF ((iflag .eq. 2 .or. iflag .eq. 7) .and. y(1)

* .ge. 7.999) THEN ! This is where trajectory reaches end of wire

val(inc,1) = y(1)

val(inc,2) = y(2)

x0 = y(1)
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y0 = y(2)

GO TO 120

ENDIF

IF (iflag .ne. 2 .and. iflag .ne. 7) THEN

WRITE (11, 108) iflag, y(1), y(2), y(3), y(4)

GO TO 120

ENDIF

c

c Electron hits a boundary

c

IF(iflag .eq. 7) THEN

c

WRITE (11,105) t, y(1), y(2), y(3), y(4), iflag

val(inc,1) = y(1)

val(inc,2) = y(2)

iflag = 1

c Kuest counts the number of passing through abstruction.

c If kuest is 1 or greater then it is a passed trajectory.

IF(y(1) .gt. 5.) THEN

kuest = 1

ENDIF

c Boundary condition for obstruction

IF (y(2) .ge. -0.8 .and. y(2) .le. 0.8) THEN

c Bouncing off obstruction?

IF(kuest .ge. 1) THEN

grail = 1
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ENDIF

c

vx = y(3)

y(3) = -vx

ENDIF

c

c Boundary condition for edge of wire

IF (y(2) .lt. -0.8 .or. y(2) .gt. 0.8) THEN

IF(y(2) .gt. -0.999 .and. y(2) .lt. 0.999) THEN

c Counts average number of passages though holes

kuest = kuest + 1

ELSE

vy = y(4) - B0*y(1)

y(4) = -vy + B0*y(1)

ENDIF

ENDIF

tout = tout + 1.0d-01

iflag = 1

c This ensures that electron stays inside wire

CALL dpodrt(hamilton,neqn,y,t,tout,relerr,abserr,

* iflag,work,iwork,g1,reroot,aeroot)

WRITE (11, 105) t, y(1), y(2), y(3), y(4), iflag

tout = tout + step

c

IF(preval .gt. 5. .or. y(1) .lt. 5. .or. (y(2) .lt.

* 1 .and. y(2) .gt. -1)) GOTO 103

c
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ENDIF

c

c Sees whether code fails to see boundary going through obstruction

c and edge of wire. If it does integration goes back in time and

c then forwards with a simpler boundary condition just for edge of wire.

c

IF(preval .lt. 5. .and. y(1) .gt. 5. .and. (y(2) .gt.

* 1 .or. y(2) .lt. -1)) THEN

tout = tout - 2*step

iflag = 1

CALL dpodrt(hamilton,neqn,y,t,tout,relerr,abserr,

* iflag,work,iwork,g1,reroot,aeroot)

iflag = 1

tout = tout + step

CALL dpodrt(hamilton,neqn,y,t,tout,relerr,abserr,

* iflag,work,iwork,g2,reroot,aeroot)

WRITE (11,105) t, y(1), y(2), y(3), y(4), iflag

val(inc,1) = y(1)

val(inc,2) = y(2)

GO TO 104

ENDIF

c

IF (y(2) .lt. -1. .or. y(2) .gt. 1) GO TO 120

WRITE (11,105) t, y(1), y(2), y(3), y(4), iflag

val(inc,1) = y(1)

val(inc,2) = y(2)

105 format (1h ,5g14.7 ,i5)
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107 format (1h ,i5, 7g14.7)

108 format (' WARNING. iflag =', i5, ' y=',4g14.7)

tout = tout + step

IF (tout .ge. 50.) go to 120

110 CONTINUE

c

120 CONTINUE

c

c Counts in each adjacent trajectory.

c

c Initial values for adjacent trajectory

y(1) = 0.001*(j+1) + ord

y(2) = 0.

y(3) = 1.

y(4) = B0*y(1)

t = 0.

tout = 0.1

c

c

127 CONTINUE

DO 130 i = 1, 400

preval = y(1)

IF (y(1) .lt. -0.1) GO TO 140

iflag = 1

CALL dpodrt(hamilton,neqn,y,t,tout,relerr,abserr,

* iflag,work,iwork,g,reroot,aeroot)

128 CONTINUE
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IF ((iflag .eq. 2 .or. iflag .eq. 7) .and. y(1)

* .ge. 7.999) THEN

x1 = y(1)

y1 = y(2)

GO TO 140

ENDIF

IF (iflag .ne. 2 .and. iflag .ne. 7) THEN

PRINT *,'WARNING IFLAG = 8'

GO TO 140

ENDIF

IF(iflag .eq. 7) THEN

c

c Boundary condition for abstruction

IF (y(2) .ge. -0.8 .and. y(2) .le. 0.8) THEN

vx = y(3)

y(3) = -vx

ENDIF

c

IF (y(2) .lt. -0.8 .or. y(2) .gt. 0.8) THEN

IF(y(2) .lt. -0.999 .or. y(2) .gt. 0.999) THEN

vy = y(4) - B0*y(1)

y(4) = -vy + B0*y(1)

ENDIF

ENDIF

tout = tout + 1.0d-01

iflag = 1

CALL dpodrt(hamilton,neqn,y,t,tout,relerr,abserr,
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* iflag,work,iwork,g1,reroot,aeroot)

tout = tout +step

c

IF(preval .gt. 5. .or. y(1) .lt. 5. .or. (y(2) .lt.

* 1 .and. y(2) .gt. -1)) GOTO 127

c

ENDIF

c

IF(preval .lt. 5. .and. y(1) .gt. 5. .and. (y(2) .gt. 1

* .or. y(2) .lt. -1)) THEN

tout = tout - 2*step

iflag = 1

CALL dpodrt(hamilton,neqn,y,t,tout,relerr,abserr,

* iflag,work,iwork,g1,reroot,aeroot)

tout = tout + step

iflag = 1

CALL dpodrt(hamilton,neqn,y,t,tout,relerr,abserr,

* iflag,work,iwork,g2,reroot,aeroot)

GO TO 128

ENDIF

c

IF (y(2) .lt. -1. .or. y(2) .gt. 1) GO TO 140

tout = tout + step

IF (tout .ge. 50.) go to 140

c iflag set to 1 for the next trajectory

iflag = 1

c
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130 CONTINUE

140 CONTINUE

c

c Jacobian evaluation

IF (y(1) .ge. 7.999) THEN

delx = (x1-x0)/(coor1 - coor)

dely = (y1-y0)/(coor1 - coor)

ajac = y(3)*dely - (y(4)-B0*y(1))*delx

ampl = 1/SQRT(ABS(ajac))

WRITE (13,107) j,ampl, delx,dely,ajac,y(5), x0, y0

ENDIF

c

c

IF(kuest .ge. 1) THEN

DO 150 dum=1, inc

WRITE (15, 170) val(dum,1), val(dum,2)

150 CONTINUE

ENDIF

IF(kuest .gt. 1) THEN

av = av + kuest

avt = avt + 1

ENDIF

kuest = 0

grail = 0

170 format (1h ,5g14.7)

200 CONTINUE

c
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av = (av)/(avt)

PRINT *,'number of curvy paths are', avt

PRINT *,'Average number of passages through the '

PRINT *,'holes before getting through is', av

235 FORMAT(a)

c

STOP

c

END

c

c

c This is hamilton equations

c

SUBROUTINE hamilton(t, y, yp)

c

IMPLICIT REAL*8(a-h,o-z)

PARAMETER (neqn = 9, nw = 100+21*neqn)

DIMENSION y(neqn), yp(neqn), work(nw), iwork(5)

c

c magnetic field parameter

B0 = 1.00

c

yp(1) = y(3)

yp(2) = y(4)-B0*y(1)

yp(3) = B0*(y(4)-B0*y(1))

yp(4) = 0.

c
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yp(5) = y(3)*yp(1) + y(4)*yp(2)

c

102 format (1h ,5(g14.7,2x))

RETURN

c

END

c

c This are the boundary conditions used by dpodrt.f

c

FUNCTION g(t, y, yp)

c

IMPLICIT real*8(a-h,o-z)

PARAMETER (neqn = 5, nw = 100+21*neqn)

DIMENSION y(neqn), yp(neqn), work(nw), iwork(5)

c

IF (y(2) .ge. 0.0d0) THEN

g =(y(2) - 1.)*1.0d4

ENDIF

IF (y(2) .lt. 0.0d0) THEN

g =-(y(2) + 1)*1.0d4

ENDIF

IF (y(1) .ge. 4.9) THEN

g = -(y(1) - 5.)*g

ENDIF

IF (y(1) .ge. 7.999) THEN

g = -(y(1) - 8.)*g
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ENDIF

c

c

RETURN

END

c

FUNCTION g1(t, y, yp)

IMPLICIT real*8(a-h,o-z)

PARAMETER (neqn = 5, nw = 100+21*neqn)

DIMENSION y(neqn), yp(neqn), work(nw), iwork(5)

c

IF (y(2) .ge. 0.0d0) THEN

g1 = 1.0d0

ENDIF

c

IF (y(2) .lt. 0.0d0) THEN

g1 = 1.0d0

ENDIF

c

RETURN

END

c

FUNCTION g2(t, y, yp)

IMPLICIT real*8(a-h,o-z)

PARAMETER (neqn = 5, nw = 100+21*neqn)

DIMENSION y(neqn), yp(neqn), work(nw), iwork(5)

c
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IF (y(2) .ge. 0.0d0) THEN

g2 = (y(2) - 1.)*1.0d4

ENDIF

IF (y(2) .lt. 0.0d0) THEN

g2 = -(y(2) + 1)*1.0d4

ENDIF

c

c

RETURN

END

PROGRAM 2

c This program reads data partaining to the wavefunction of the

c semiclassical theory. It gets the amplitude and the phase. The files

c come from finalprog.f. It then calculates the transition coefficient(conduction

c by squaring the wavefunction. The first column of the file is the amplitude, a

c the second column is the action.

c

c MAIN

c

REAL*8 wreal,wim, amp, s, lps

INTEGER iostatus, inc

DIMENSION Amp(3000), S(3000)

OPEN (11,file='mf12.d')

c

c INITIALIZE
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lps = 1666. ! lps is total trajectories which changes as B changes.

inc =0

wreal = 0.

wim = 0.

c

DO WHILE (iostatus .eq. 0)

inc = inc + 1

READ(11,107,iostat=iostatus) j,amp(inc),s(inc),x0,y0,x1,y1

PRINT *,j,amp(inc),s(inc)

wreal = wreal+amp(inc)*cos(s(inc))

wim = wim+amp(inc)*sin(s(inc))

END DO

c

cond = (wreal*wreal + wim*wim)/lps

c

107 FORMAT (1h ,i5, 7g14.7)

c

PRINT *,amp(1),s(1)

PRINT *, 'The conduction is proportional to',cond

c

c

END
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