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Abstract 

 This paper describes the design and construction of a high-speed data acquisition 
system interfaced to a personal computer.  This research has involved first hand 
experience with high-speed electronics architecture, chip manufactures and their 
products, circuit board design and fabrication, circuit board construction and testing, 
microprocessor programming, and front-end software programming.  This paper deals 
with the specific issues that arose while trying to adhere to our architectural goals and to 
bring this system from the early conceptual stages to a functioning viable product. It 
follows our progress from the earliest preliminary stages all the way to a successful 
completion, and outlines the further work that might be done refining and increasing the 
speed of our data acquisition board. 
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I. Introduction: 

 Recent development of high-speed chips has been driven by the cell phone and 

computer industries.  The competition between personal computer companies and cell 

phone companies to meet the massive demands of their relative markets has caused 

incredibly fast paced growth in these areas.  Cell phone and computer companies are 

being forced to constantly develop cutting edge technology at very low prices to stay 

competitive in their market place.   

Conversely, the smaller laboratory environments of research and development 

have driven the production of high-speed data acquisition systems.  The companies that 

produce these systems are forced to deal with high overhead costs, a small, specialized 

market, and low demand.  Data acquisition system manufacturers have compensated for 

large overhead and small clientele by elevating their high-speed data acquisition system 

prices to tens of thousands of dollars. As a result of reduced spending, the development 

of high-speed data acquisition boards has been slowed.  

Our research began based on the belief that we could build a high-speed data 

acquisition system for a fraction of the market price by using chips that have already been 

designed for the computer and cell phone industry to suit other purposes.  The only 

element missing was the architecture necessary to combine the chips so that they could 

communicate with each other in the necessary ways. It was our belief that by using the 

latest surface mount soldering techniques and an architecture of our own design that we 

would be able to create a real, operating, lab-worthy system.     

Thus, we developed a specific list of architectural criteria to use as research goals.  

We wanted a simple design, so our ideal architecture should have the fewest number of 
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chips and smallest number of connections possible.  Using only a few chips also would 

help us meet our goal of producing a low cost system. Adaptability is important in the 

lab, so we decided to try to make our data acquisition board one that could easily be 

reprogrammed to work under different operating conditions.   Finally, we wanted an 

architecture that is easily upgradeable with very little turnaround time.  That way we 

could upgrade to the latest chips and keep up with, or even ahead of the state of the art 

data acquisition board manufactures, while still producing our system for a fraction of the 

commercial purchase price. 
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II. Architecture: 

 The main goal of any high-speed data acquisition system linked to a P.C. is to 

gather data at very fast speeds and transfer that data to a P.C. without data loss.  It is 

illustrative to think of our architecture as a high-speed buffer. At each buffering stage our 

system decreases the speed of the data until it is slow enough to transfer to the P.C.  To 

accomplish high-speed data acquisition we needed certain functional components.  

Although these components may be built from many different types of microchips they 

can be categorized as several specific universal functions. 

 Every digital electronic system that records analog data must convert that data to 

digital information. This step requires a component called an analog to digital converter. 

An A/D takes analog voltage levels as an input and samples the voltage level at a certain 

rate.  Each sample is compared to a reference voltage and categorized as a digital number 

proportional to the input’s amplitude at the time of the sample.  To get an accurate picture 

representation of the analog input the A/D sample rate must be very fast.  The purpose of 

a high-speed data acquisition system is to achieve the most accurate representation of the 

input as possible, hence the motivation for faster and faster systems. 

 Every high-speed data acquisition system also needs a microprocessor to handle 

certain functions like controlling the data taking process, performing data manipulation, 

and transferring data to a P.C.  All microprocessors have a set number of lines that can be 

used for data input and output (I/O) as well as lines that can be set to control the digital 

logic built into the system. 

 High-speed data acquisition systems need a method to temporarily store data until 

that data can be retrieved by the processor and sent to the P.C.  There are two primary 
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types of digital memory to choose from: RAM (random access memory) and FIFO (first 

in first out) memory. Each different type of memory has advantages and disadvantages 

that must be weighed against the specific requirements of the system. 

 All high-speed data acquisition systems need an on/off switch, or “trigger,” that 

tells the system when to start taking data and when to stop.  A trigger is usually a system 

of several logic devices and can vary in complexity.  There are two basic types of 

triggers, internal and external. The most complex systems are built with both. 

The following block diagram illustrates the basic way that data flows throughout 

my system.  

 

Figure 1. 200 MHz Architecture: Block Diagram of Data Flow 

The A/D receives analog information from an external analog voltage source and 

converts the data to a digital signal.  At the same time the A/D automatically halves the 
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signal speed and sends it into two memory chips to be stored.  When the system receives 

a trigger signal, the memory begins to fill and when it finishes, the memory signals that it 

is done taking data. Once the memory chips are full, the microprocessor reads out the 

data stored in memory, manipulates it, and sends it on to the P.C.     
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III. Chip Selection and Acquisition: 

To choose the proper chips for any electronics device it is necessary to compare 

the exact specifications of many different chips.  Features such as timing, pin layout, 

operation, and power specifications are all considered.  In the past chip manufactures 

published books full of information on microchips.  Each chip was described at great 

length in a data-sheet.  Now manufactures primarily distribute data-sheets through their 

websites and use of the data-sheets is free to the public. Web site distribution benefits the 

consumer because the information is much more current and readily available. Data 

sheets are the primary source material that I used throughout my research. See the 

appendix for a partial example of a data sheet. 

We began the project intending to use two specific chips in our initial design: the 

P.C. interface chip, EZ-USB 8051, and the analog to digital converter, AD9054A.  The 

EZ-USB 8051 can transfer data to a P.C. using a standard computer USB port. USB 

stands for Universal Serial Bus and is a recently created standard for communication with 

a P.C.  One benefit to using the EZ-USB 8051 is that former graduate student Jon Curley 

already designed a board to run it and Dr. Cooke was already familiar with how to 

control and program it.  The other benefit of using the 8051 was that we already owned 

several, so we didn’t have to waste time acquiring them. 

The AD9054A is produced by Analog Devices and can convert data at a 

maximum frequency of 200MHz.  200MHz corresponds to a speed of one sample every 5 

nanoseconds.  The AD9054A has a feature built in called a demultiplexer that halves the 

digital data output rate by sending data synchronously to two different output ports.   
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 First, we began to look for a specific memory chip to store our data in the interim 

time between its digital conversion and eventual computer transfer.  We decided that a 

FIFO would be a better choice than RAM, because a FIFO runs in a cycle.  The major 

benefit to using RAM is that it can recall information in any order, from any data address 

in memory. But, this feature was unnecessary for our system because the purpose of our 

board is to simply record a data stream. On the other hand, a FIFO reads data out of 

memory in the same order that it was written into memory, on a First byte In First byte 

Out basis. The major benefit of using a FIFO is that instead of having to track data 

addresses like with a RAM chip, it is only necessary to cycle the FIFO memory to the 

first data point of interest. Once there, the whole sample can be removed in the correct 

order, at any desired speed.  In our case that speed is dictated by the 8051 

microprocessor. 

I decided on a FIFO made by a company called Cypress.  Cypress produces a few 

models of FIFOs that run at a maximum speed of 100 MHz (CY7C4292) and suit our 

architectural goals well, because they are loaded with special functions, helping reduce 

the need for additional chips. One such function is a programmable flag that can be set to 

signal the microprocessor when the FIFO has taken a specific amount of data.  We 

thought that programmability would simplify our data taking process.  In the end though 

we used the standard full and empty flags built into all FIFOs because programming the 

other flags increased the design overhead by requiring many more input lines. 

Purchasing the FIFOs was difficult because the FIFO we chose turned out to be a 

specialty item.  Chip manufacturers sell microchips through independent distributors, and 

most distributors are looking for big sales. They don’t want to waste their time with small 
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time developers. Even the company policies of the chip manufacturers work against the 

small developer, because these companies have rules that they will only stock a certain 

chip if a minimum number, usually 100 or more, are ordered by the distributor. 

Distributors will only order CY7C4292s if they know they are going to sell the full 

minimum, in this case the minimum was 125.  We only needed 2 or 3 FIFOs and the 

chips cost on the order of $75 to $100 making it impossible for us to order the minimum.  

Thus, we needed to find a distributor that had overstocked our chip when a big order 

came in.  I finally found some CY7C4292s that ran at the 100 MHz speed level and we 

ordered three even though our system only needed two, in case one of them got damaged 

or destroyed during the board assembly process. 

After our difficulty ordering the FIFOs, we added a new chip selection goal to our 

already growing list of architectural criteria: whenever possible look at largely used 

products first, because these products are much easier to obtain.  The rest of the 

microchips that we used in the board design were made by Toshiba and were not nearly 

as difficult to purchase because they are standard digital logic that distributors routinely 

stock. 

While searching the web we found another product that seemed like it would help 

streamline our architecture called the USBSIMMS board. The USBSIMMS is a pre-

manufactured board that combines our EZ-USB 8051 microprocessor with external RAM 

and EEPROM memory and provides output connections via a 30 pin SIMMS socket.  

At the time we had hardwired circuitry into our design that was very similar to the 

USBSIMMS board.  But, we began to consider using the USBSIMMS instead, because a 

pre-manufactured board would greatly simplify our building and testing phases. By 
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purchasing the USBSIMMS board, instead of building one ourselves, we knew that we 

had a product that worked right out of the box. We didn’t have to waste time building it 

and we knew that the USBSIMMS’ half of our circuitry was 100% reliable, allowing us 

to narrow our focus if problems arose in testing.  

Another benefit of using the USBSIMMS is that in addition to the 

microprocessor, the USBSIMMS also contains built in onboard memory. The onboard 

memory makes our board much more powerful, allowing it to do more onboard data 

processing before transporting that data to the computer.  In essence it makes the brain of 

our system much larger.    

Therefore, the USBSIMMS board became a motherboard to control our data 

acquisition system circuitry as a daughterboard. Since our circuitry is not hardwired 

together as a single unit, our design is more versatile and inexpensive over the long run. 

For example, in the motherboard/daughterboard case, if the USBSIMMS fails a new 

USBSIMMS easily replaces it. Conversely if the daughter board fails (even during 

construction) the daughterboard can be replaced.  The separation of the motherboard and 

daughterboard is possible because the motherboard and daughterboard communicate at 

the slow rate of 1-4 MHz through 20 parallel lines configured into a custom bus. 

 

      

Figure 2: USBSIMM Board removed from the Daughterboard 

8051 

Onboard memory 

Standard Computer 
USB Output Jack 
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Just like any other electronics product today, the USBSIMMS has a data sheet.  It 

seemed at first glance that the USBSIMMS board would not work easily with our 

architecture, because it only has 20 I/O (input output) lines to work with.  The raw 

USB8051 has 24 accessible I/O lines but the USBSIMMS uses four of these to control 

the onboard SIMMS memory chip. At this stage our architecture relied on 23 I/O lines 

and the loss of four lines prevented us from using the USBSIMMS board. So we decided 

to reduce the number of I/O lines our system sent to the 8051.  

The current architecture at that time required 16 I/O lines for data input leaving 

only four control lines if we used the USBSIMMS. We needed seven control lines. To 

attempt to make the current architecture work with the USBSIMMS board we 

investigated the possibility of using a multiplexer.  A multiplexer is a digital logic chip 

that switches simultaneously and quickly, connecting either of two input sources to its 

output lines.  When a multiplexer is employed with proper timing, the number of lines 

can be reduced while still retaining complete data flow. 

   

Figure 3a. Multiplexer State 1: Unswitched 
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Figure 3b. Multiplexer State 2: Switched  

 

Using a multiplexer would halve the number of data lines being dumped into the 

USBSIMMS to 8, leaving 12 lines for control, thus allowing us to use the USBSIMMS 

board in our design.  But, using a multiplexer is contrary to our design goal of reducing 

our system to the least number of chips because the addition of the multiplexer adds chips 

and complicates the system. Using a multiplexer means we have to carefully control the 

timing of the multiplexer, in addition to all of the other components in our system, to 

ensure that no data is lost.  

Throughout the project, sticking points like the question of whether or not to use a 

multiplexer, led to major changes in the architecture.  The CY7C4292 has a feature called 

tri-state output mode.  Tri-state output allows the user to tie the output lines of tri-state 

chips together without causing the chip to malfunction.  In effect this feature allows us to 

tie two or more FIFO’s data output lines together without a multiplexer.  The main 

difficulty with tri-state output is that only one chip at a time may be enabled to read out 

data or data loss is caused.  Using the tri-state feature allows us to use the USBSIMMS 

board and is a great solution in terms of our architectural goals because it reduces the 

number of chips in our system by 1 and the number of lines by 8.   
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Figure 4: First Flow Diagram to Clarify Operational Procedure and Evaluate  

Data Line Usage   

To make the final decision on whether or not to use the USBSIMMS board, I 

developed an operational flow chart.  Each box on the flow chart contains a short 

description of the action performed at that step as well as a numerical label.  The 

numerical label corresponded to a matching number on another sheet followed by a 

detailed description of what pins on the FIFO we need to manipulate to make the system 

perform each specific function.  Using this technique I was able to see if our plan 

exceeded the 20 available control and I/O lines. From this flow chart we determined that 

we could step through our architectural plan and do everything that we intended using 
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fewer then 20 I/O control pins from the USB SIMMS if we used the tri-state output 

feature. 

 We also tested the USBSIMMS it in the lab because the 8051 built into 

USBSIMMS is a slightly newer version of the EZ-USB 8051 then we had used in the 

past. We needed to make sure that the new 8051 actually works the same way as our old 

8051’s because later in the project, we knew that our bank of accumulated programming 

knowledge would be important and we wanted to make sure our old programs still 

worked reliably with the new version.   
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IV. Board Design 

 The first steps to board design began during the chip selection phase. To get an 

idea of how the chips I chose fit together as well as to figure out how to obtain the 

smallest distance between chips, I photocopied and enlarged the pin diagrams of the fast 

buffering components (A/D and FIFOs) and taped them to a white board. The lines were 

connected using wipe board marker so that mistakes could be corrected and so that 

revisions could be made.   

To design our board, we used the CAD (Computer Assisted Design) program 

Express PCB. Express PCB was written by Engineering Express, who also produce 

customized double-sided surface mount electronics boards. Express PCB was developed 

so that small-scale electronics enthusiasts and academic institutions could easily and 

cheaply design surface mount prototyping boards.  Express PCB is free, however it 

comes with limited design features. For example, it has no simulation features, so we had 

to be very careful to avoid system-timing mistakes. Another limitation of the Express 

PCB program is that it does not contain nearly as many preprogrammed state of the art 

microchip pad designs as most professional CAD programs do.  Express PCB’s 

limitations coupled with a steep learning curve caused our original board design to 

contain several unintentional errors.  In one case, the wrong pin spacing was originally 

used for the FIFOs because Express PCB did not have the proper spacing available as a 

built in feature.   

The CY7C4292’s pin spacing is much smaller then the pad programmed into 

Express PCB.  In the end it was necessary to design a custom pad.  In fact we were not 

even sure that Express PCB’s resolution would allow lines to be drawn as close together 
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as our FIFO’s pad required. The pins on the CY7C4292 FIFO are spaced .5mm apart 

with 16 pins to a side, and the program’s minimum line spacing seemed slightly too big 

to even custom draw a FIFO pad for our CY7C4292.   

We decided to try to correct for Express PCB’s seeming lack of precision by 

making a correction every 3 pins to the line spacing. This way all the pins would be a 

little off, but the line spacing error would only compound over 3 pins instead of 16.  Still, 

some uncertainty remained about whether or not this fix would work when it came time 

to solder the chips to the board. If too much inherent error still remained, it might cause 

solder bridges.  A solder bridge is a tiny solder connection that unintentionally forms 

during soldering and attaches two pins together. After getting to know the program better, 

I finally found a solution.  

Originally we were trying to lay down lines for the FIFO pad using the program’s 

grid spacing feature and we were only able to be sure that the line precision was correct 

to one tenth of an inch. In Express PCB I discovered a way to preset line spacing rather 

than grid spacing. The preset line spacing feature allows the program to draw parallel 

lines whose distance is set with the precision of up to one thousandth of an inch.  Using 

this discovery I was able to easily draw up a custom pad for the FIFOs that would be used 

to solder them onto on the daughter board with virtually no line spacing error.  

 

 

 

 

 



 19

 

Figure 5: FIFO Pad I designed (left) and the wrong pad (right) 

No built-in SIMM socket pad was included in Express PCB so I designed one 

using the functions I discovered while creating the FIFO pads.   

 

Figure 6: My SIMM Socket Design, Another Customized PAD in Express PCB 
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 The next step in the design process was to develop a trigger for the data 

acquisition board.  Although the concept of an on/off switch is simple, the trigger must be 

carefully developed, otherwise it can cause major problems. For example, unpredictable 

results might occur if the board was triggered while in the process of taking data.   

There are two ways to design a trigger, internal and external.  An external trigger 

relies mainly on external trigger signal generation while an internal trigger depends on an 

internally generated trigger signal. We chose to use an external trigger design because an 

external trigger fits better with current lab needs. However, one drawback to using an 

external trigger is that multiple triggering or missed triggers might occur. To combat this 

problem, we used a flip-flop as a gate to allow or disallow trigger signals.  

When the flip-flop’s enable line !PR is held low then it switches to its PRESET 

mode and sets its output high. The ! sign in front of the PR line indicates that PR is 

activated when held low, and PR is short for PRESET.  When !PR is asserted high the 

flip-flop is enabled but waiting for a trigger signal.  The flip-flop is able to switch its 

output level to low, but remains set to a high output level.  When a trigger signal arrives 

at the CK pin (short for ClocK), in the form of a low to high TTL clock transition, the 

output line on the flip-flop switches to a low output level.  The output line of the flip-flop 

is connected to the FIFO’s Write Enable line (!WEN), and the FIFOs can only write data 

into memory when Write Enable is asserted low.   Figure 7 illustrates this more 

explicitly.  

 

Figure 7: FIFO Truth Table Conditions for Enabled or Disabled Trigger 

Preset (Disabled) 
Enabled 
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An added bonus of designing the trigger this way is that the control line from the 

USBSIMMS can also act as a hard reset/abort. If at any time during the data taking 

process something goes wrong, the user could ask the program to de-initialize the !PR 

line, and the FIFOs would not be able to write any more data.  

 

Figure 8: Trigger Block Diagram w/ Operational Explanation 

While examining the logic for the trigger, a design problem arose.  Programming 

the FIFO flags involves inputting 8-bit flag numbers to each FIFO.  Sending this number 

to the FIFOs is a problem because it must be sent to the same pins on the FIFO that are 

used for our fast data lines.  To send this number meant interrupting our fast data lines 

with more chips to multiplex the 16 lines together.  The problem with interrupting the fast 

data lines at speeds of 200 MHz is that the high-speed input data could be messed up if 

the multiplexer caused even a short lag.  Plus, adding unnecessary chips runs counter to 

the original design goal of using the fewest chips possible. 
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Rather then use a multiplexer we decided to modify the trigger design. The FIFOs 

run an order of magnitude faster then the 8051 microprocessor, so the time lost by 

allowing them to completely fill is inconsequential.  In fact, both 128K FIFOs fill in just 

over 2 milliseconds. Because the first data written into the FIFO is also the first data 

removed, the last data is discarded making the transfer of the data to the computer more 

efficient.  In essence we completely eliminated the programmable flag use from the 

system in favor of using the simpler full and empty flags. 

 

 

Figure 9: Final Architectural Flow Diagram To Clarify System Operation 
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This solution satisfies our architectural goals because it reduces the number of 

necessary chips and lines, as well as making our system simpler.  When viewing the final 

flow chart it is easy to see that the system is simpler.  Three unnecessary steps are cut out 

of the setup process virtually eliminating it all together, as well as making the data 

capture operation (step 4) much easier to program later during the programming stage of 

the project.  

I made the finishing touches to the first prototype board by shortening line 

lengths.  Large loops can cause noise so I eliminated them by moving small portions of 

the power line to the top surface of the board and connecting the tri-state output lines of 

the FIFOs closer to the FIFOs themselves before feeding them up to the USB socket.  

The “snap to” function in the Express PCB program helped optimize the distances 

between horizontal lines so that the lines were very close together, further shrinking my 

lines.  I also laid more ground plane to reduce the amount of noise that might be present 

in the system due to the high-speed chips.   

After all this, I still detected some last minute problems.  For example, what I 

originally thought was a clock output line from the A/D that could be used to drive the 

FIFOs instead turned out to be an input line on the A/D.  The FIFOs require a clock at 

one half the speed of the A/D to operate, and halving the frequency is usually performed 

by a chip known as a “divide by 2” counter. Fortunately for us, a counter we were using 

at one point in our trigger could also perform this function. In the design program I made 

the minor corrections necessary to accommodate the change.  
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Figure 10: The Mark I Board Design, used to create the first prototype board  
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V. Construction and Testing 

To construct state of the art microchip boards a technique called surface mount 

soldering is necessary.  In the past chips were made in packages that had large pins and 

could be easily soldered onto into place because the pins were placed through holes in the 

circuit board. This design and chips that rely on it are known as thru-hole.  As microchip 

speeds have increased historically they have shrunk in size. The very newest state of the 

art chips are so complicated that they are not even produced in thru-hole form. Instead 

these chips, such as our FIFOs are created in a form called surface mount.  They attach to 

circuit boards that are flat plastic with thin solder traces etched onto it where the chips 

connect.  The chip is laid on top of these traces and the traces are heated, creating a 

physical connection between the pin and the board.  With small chips surface mounting is 

essential because traces can be etched onto the board at much smaller spacing then holes 

can be drilled.  

Major electronics manufactures now perform surface mount soldering on the large 

scale with machines called Wave Soldering Stations. These machines place and attach all 

of the components at once with incredible precision. They treat the boards so that solder 

will only stick where it is supposed to and then run liquid solder over the entire board 

attaching all of the pieces at once.  On the other hand, the small time electronics 

enthusiast when prototyping must painstakingly solder each part by hand, using a 

soldering iron to attach the parts and a magnifying glass to be able to see the parts clearly, 

because they are so small. 

We chose to solder our components in an order based on two main criteria, the 

availability/cost of the chip and the difficulty level of soldering the part.  For example the 
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FIFOs have the smallest pin spacing and are the most expensive so we decided to solder 

them last. This method also gave me plenty of easy practice while I geared up to solder 

on the difficult parts. While we were attaching parts we also testing and continuously 

checking for errors that might cause us a lot of trouble if overlooked until later.  

We initially ordered two Mark I prototype boards.  By the time they arrived, we 

had all of the necessary components to start production on the Mark I prototype.  Every 

component on the board requires a 5V power supply so the first step I took was to solder 

into place the power junction used to power the board. I checked with a voltmeter to 

make sure that all of the component’s power lines had power.  They did not. A major 

power line and some secondary power lines had not been run properly.  

Inevitably during prototyping, some layout errors will be caught that were not 

caught prior to production. To save time these errors are corrected manually on the 

prototype and later fixed in the CAD program for future iterations. Our power problem is 

a case in point. 

 Standard procedure for clean power supply calls for double bypass circuitry of 

one 10 microfarad capacitor and multiple 0.1 microfarad capacitors to be placed as near 

as possible to the A/D.   In our initial design I mistakenly had not connected two of the 

.1-microfarad capacitors to ground and had used the 10-microfarad capacitor as a power 

feed rather then power by-pass. We drilled some small holes through the surface of the 

board to run jumpers to ground from the ground plane on the opposite side of the board, 

correcting the problems with the .1-microfarad capacitors.  To correct the power feed 

problem, we jumpered the disconnected power line together and placed the 10-microfarad 

capacitor in a different area on the board. 
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Soldering the clock into place was not difficult because it was designed as a thru-

hole device and only consisted of 4 pins.  A slow 10 MHz clock was selected to make our 

system easier to test and we replaced it on the Mark II board with a much faster clock. 

After soldering the clock, I tested that it was operational by using a scope probe to 

examine the output. It worked perfectly and we saw a good square wave output at 10 

MHz.   

Next we chose to solder on the counter because it has only 16 pins and they only 

cost about a dollar per chip.  Soldering the counter was easy and to test it I checked the 

solder connections for continuity with a voltmeter and then examined the counter’s 

output with one of the lab’s oscilloscopes. We could see that each pin on the counter was 

outputting the correct frequency square wave.  

Soldering the flip-flop (TC74ACT74FN) was also easy but I was concerned about 

testing it, because we needed a more complex setup than was necessary to test the 

counter. We wired up a breadboard so that we could use its built in switches to control 

voltage on several different lines and attached these lines to the lines on our prototype 

board that run to the flip-flop. We asserted the lines to the PRESET levels and checked 

the output. As expected it read High. We enabled the flip-flop and the line still read high. 

Finally, we sent CK a low to high transition from the breadboard and the output made a 

successful transition from high to low. 

The A/D was the first difficult chip that we soldered on. The A/D must be 

powered cleanly so that it digitizes the analog input properly. So, before soldering on the 

actual A/D I had to solder on 11 capacitors to regulate the power supply. At this point I 

made my first soldering mistake.  
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Capacitance is additive. Once soldered onto a circuit board, each component’s 

capacitance cannot be checked individually. I mistakenly soldered on all of the tiny .1-

microfarad capacitors before realizing that the only way to check if they were functional 

was to check that the board capacitance increased .1-microfarad after each was soldered 

into place. After soldering them all on there was no way to verify with any certainty that I 

had successfully attached them all. However the total capacitance did seem to be in the 

right ballpark.  We corrected this error on the Mark II prototype. 

  I soldered the A/D onto the board and preliminarily tested my work using the 

voltmeter to check for continuity and to make sure that I had not created solder bridges 

between pins.  I tested the A/D by looking at its output lines to see if they were making 

transitions when an input signal was applied. The AD9054A requires an input voltage 

range between 2-3 volts so I used a voltage divider and the variable resistance pot on one 

of our breadboards to wire up a makeshift variable voltage supply. Turning the pot 

changed the voltage smoothly between 2 and 3 volts.  I ran a BNC cable from our 

daughter board input to the voltage supply and we set up the lab’s fast scope to watch the 

output lines from the A/D.  Twisting the pot varied the input voltage causing clear 

transitions between high and low on all the output lines of the A/D. Although we couldn’t 

be sure exactly what the numbers the A/D was sending out, it at least appeared 

operational.  

Lastly we soldered on one of the FIFOs.  We only soldered on one because only 

one was necessary to check that the board architecture and timing was working correctly.  

Soldering the FIFOs was the most concerning step in the board construction process 

mainly due to the FIFO’s 0.5mm pin spacing. No one in the lab had ever soldered 
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anything smaller then a 1.2mm pin spacing before, and we were still not sure that it 

would even be possible to solder the FIFOs by hand. With such a small pin spacing 

solder bridges are much more likely to occur and much harder to detect by sight. Plus, we 

weren’t even sure that all of our FIFOs still worked anymore because they had been 

stored since the summer and CMOS chips are very sensitive to static discharge.  

Soldering the FIFO was harder than any of the other logic. Even getting the chip 

into position was difficult.  Because the leads on the board are raised slightly, the chip 

would slip off of the leads and to the side to rest on the plastic board between the leads. 

Flux, which is used to clean the leads so that the solder will stick, also usually helps to 

keep the chip from moving out of position because it is sticky. But in this case, it actually 

made the chip harder to position by making it difficult to slide the chip up onto the pad.  

Several times I was able to get the FIFO in place, only to accidentally push it off the pad 

as I tried to apply pressure to the top of the chip, to keep it from moving while I soldered.  

Finally I secured the chip with top pressure and tacked a few of the non-functioning legs 

to the board.  These legs are called N/C or “no connects” because they don’t connect to 

anything inside the chip, but they remain as part of the standard chip package design.  

Once I had soldered all of the pins, I checked all of the pin connections for 

continuity and found that I had only successfully connected about half of the legs.  I spent 

even more time soldering and testing with the voltmeter until finally it said that all of the 

legs were connected.  However, the FIFO still needed to be tested further because the 

voltmeter could not tell us whether or not the chip was actually operational, and the 

possibility for capacitive coupling, pressure connections, and cold solder joints still 

existed as well. 
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To test the FIFO we decided to program the 8051 microprocessor to control the 

FIFO while we checked that it was operating correctly. Programming the microprocessor 

requires an algorithm describing the functions performed by the microprocessor in clear, 

step-by-step order.  We created an algorithm using our flow chart that described every 

step in order.  At each step we determined what level, either high or low, that each 

control pin must be set to. From the pin settings we created a single binary number. In the 

end our list of numbers was the basis of our algorithm. For each major algorithmic step 

we created a function in the program that sent out the binary numbers that we created.  

We were then able to watch the FIFO’s full flag (!FF) and empty flag (!EF) as indicators 

of whether or not our program worked as anticipated.   

 

 

Figure 11: FIFO Empty and Full Flag Operation 

The truth table in Figure 11 illustrates the different stages of data acquisition and 

the resulting levels of the FIFO’s flag lines. When reset, the FIFO enters the empty state.  

To test that the FIFO was actually reading in data, we checked that the flags had switched 

to either the Partially Full state or the Full State.  In the Mark II version of the prototype, 

we sent the !EF and !FF lines to the USBSIMMS so that we could check their operation 

with the computer instead of with the scope.  

For about five minutes our Mark 1 board operated in a way indicating that it was 

fully functional.  We left the variable voltage supply attached to the board input and were 

successfully reading in data with our board, but the levels we read out of the board didn’t 

seem to make sense. We realized that we had reversed the lines going into the FIFO and 

 Empty     Partially Full     Full 
!EF  !FF      !EF  !FF       !EF !FF 
  0      1          1      1           1     0 
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that we were reading the hex numbers in reverse, so in the microprocessor program, we 

wrote a small function to resort the data.  For Mark II we corrected this problem by 

physically reversing the lines in the design. 

Next we realized another problem.  One of the bits seemed to be sticking so that it 

sometimes read high when it should read low.  We would reset the chip clearing all of the 

memory and then read in data.  If we read in the maximum voltage of three volts then all 

of the lines went high.  However, if we then changed the voltage back to the minimum 

input voltage all of the lines should have returned to the low state, but one would stay 

high consistently. Soon multiple bits were sticking and finally the whole chip just stopped 

working completely. Our conclusion was that one FIFO had gone bad.  In the Mark II 

board this problem never occurred so we never had to fix it. 

After the Mark I board failed, we built the Mark II and for a day, also believed its 

FIFOs were not operating properly. When reading the empty and full flags the FIFO 

seemed to be locked in a state that was not allowed on our FIFO logic diagrams.  The 

FIFO would reset properly but when told to take data, it would enter a state where both 

!EF and !FF lines were low.  We thought that this state was impossible because the FIFO 

could not be completely full and completely empty at the same time.  After carefully 

reviewing the FIFO data sheet, we realized that we made a programming error, causing 

both FIFOs to act improperly.  The !EF flag will only be updated after the FIFO receives 

a read clock (RCLK) pulse, so this state was occurring because we were not updating the 

flags.  Once we added this clock signal into the program we corrected problem and the 

FIFO began to operate in the manner we expected. Our board was running successfully! 
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Figure 12: Mark II Board Design  
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VI. Programming the Front-End: 
 
 A front-end program that runs the data acquisition board is vital to evaluating the 

results of my work. It acts as the supreme acid test by performing all of the operational 

steps at once, just as is necessary in a laboratory experiment.  The data is sent out to the 

computer and the front-end program plots it in graphical form for examination.  

Although, programming the front-end in its full complexity is actually beyond the scope 

of my experiment, I participated in programming a simple front-end to evaluate my 

device.  

 
Figure 13: A Function Generated Sine Wave taken by our Data Acquisition System at 100 MHz 

 
Figure 14 and 15: Sampled Square and Triangle Waves at 100 MHz 
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Figure 16: Zoomed In View of the Square Wave Picture Taken by Our System 
 
 In all of the figures some digital error is visible.  With any digital system a digital 

error of 1 bit is to be expected.  However, when zooming in much farther, as in Figure 16, 

a two-bit error is visible in our system.  As of this point in time we are not sure why. 

Possible causes may include cross talk from the high-speed clock, noise in the power 

supply to the A/D, or noise on the input line.  

  

 

 

 

 

 

 



 35

VII. Conclusion:  

   This project was largely successful. We created an architecture that in future 

projects could easily be modified to work with faster and faster chips as they are 

developed.  Our current design can be quickly modified to produce a new state of the art 

scope using very little extra effort beyond the groundwork that I set up in this project.  

Using our architecture and the dropping prices of chips to our advantage should allow us 

to design data acquisition boards in the future that could be built by subcontractors for 

prices on the order of a few hundred dollars, rather than the tens of thousands of dollars 

that the industry charges for comparable devices. Most importantly however, we have 

proved that prototyping this architecture is possible and the board works just how we 

expected it too. Plus, with a little testing and extra electronics design, this board could 

actually be turned into a working product for our laboratory. 

 Another important result of my project is that in setting the groundwork for my 

architecture, I also helped to lay the groundwork for revision of the digital electronics lab 

curriculum at William and Mary.  My work on understanding the USBSIMMS has shown 

us that it the USBSIMMS board would be a fantastic tool to work with in the lab, and it 

would make a whole range of new experiments accessible to the undergraduate physics 

students here.   

 I have made it very convenient for someone to follow my work by creating a step-

by-step guide to producing my system or one similar to it.  That way, if someone follows 

up my project they will waste much less time getting started because the learning curve 

will be diminished and they will not have to relive every problem I faced during this 

research project.  The elements of every data acquisition system are universal so even in 
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the eventuality that someone were to take a completely different approach with the next 

speed level, they could still learn from my mistakes and incorporate my learning into 

their own ideas. 

As with all experiments, my project could be followed up by another student for 

further research.  Work must be done to test our board and resolve the source of the extra 

bit level noise by examining the power supply and input sources more carefully.  A pre-

amp and internal power supply needs to be added to make our system more robust and 

help reduce noise on the input line while running the board in non-optimum operating 

conditions. Also the front-end programming could be expanded to include more features. 

Testing might also be done on my board to see what its actual maximum speed is before 

timing errors occur. Right now the board runs at 100 MHz, but theoretically it should 

work at up to 200 MHz just by adding a faster clock.  Finally, some future student might 

want to produce a Mark III version of my board that resolves the extra bit error and runs 

at the full 200 MHz.  This Mark III board could then take the place of the lab’s current 

data acquisition board.  
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