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I. Abstract 
This paper reports scattering of micro-spheres from the potential well created 

by optical tweezers. We explain how a trap is created and the forces involved. We 
present measurements of two-dimensional scattering, which allow the potential well to 
be characterized. We show that the results provide much more information than 
anticipated and that they even allow the development of a model that will predict future 
scattering behavior. We examine in detail how to determine and change the relative 
positions of the horizontal measurement plane and the laser focus so as to observe 
three-dimensional scattering.   

II. Introduction 

A. History 

Optical tweezers, also called laser tweezers, were first devised by A. Ashkin1 at Bell 
Telephone Laboratories in 1970. He used the radiation pressure of light to create a trap. To 
accomplish this, Ashkin used a focused laser beam to accelerate micron- sized translucent 
spheres suspended in liquids and gas, thus avoiding the perturbing thermal effects. At the time, 
Ashkin surmised that it would also be possible to use this technique to accelerate and trap 
atoms and molecules. In 1978, Ashkin achieved atom trapping by resonance radiation pressure. 

In the 1980’s scientists discovered that this technique could be used to manipulate microscopic 
biological specimens such as viruses, bacteria1, DNA2 and sperm cells3. This technique has 
proved to be an important tool for the manipulation of cells in microbiology. In the 1990’s 
optical tweezers proved to be useful for the measurement of small forces such as the force 
generation of organelle transport1.  

B. Theory overview 

 Laser tweezers rely on the radiation pressure of light. Light carries a momentum per 
photon p = h / λ, where h is Planck’s constant and λ is the wavelength. When light passes 
through a translucent object, such as a piece of glass, it bends. This characteristic allows optical 
lenses to create an image at a specific point in space. A good example of this would be the 
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single lens reflex camera, which uses a system of lenses to image to a specially prepared 
medium, which records the incident light for posterity in the form of a photograph.  

When the light bends, its momentum changes. Momentum is conservative, so this 
momentum change has to be made up. Therefore, the object that caused the light to change 
direction undergoes an equal and opposite change in momentum. This momentum change is felt 
as a force over time. Ordinarily, this force is negligible, but on the microscopic scale of a few 
microns, in liquid suspension, it becomes quite important. It can even be used to move small 
dielectric spheres or other translucent objects. The converging rays of light at the laser focus 
create a trap: transmitting objects are drawn by a restoring force towards the center.  At 
equilibrium, the object rests at the center of the focus.  

C. Purpose of project  

The main thrust of this project is to accurately determine where the camera is imaging 
with respect to the laser trap and to be able to change this relationship. Then we can observe 
three-dimensional scattering, and hence be able to fully characterize the potential well. First, 
however, we must ascertain that we can observe scattering. Then we need to be able to record 
the scattering and analyze the data.  

The final purpose and most important purpose of this project is to show that the 
scattering data can be used to measure the characteristics of the potential well created by laser 
tweezers. Then we can determine the forces within the trap and how they vary.  

Once we have completely characterized the trap for this particular case, we can extend 
this technique to spheres of smaller dimension. Of particular interest is the case in which the 
spheres are of the order of a wavelength. In classical optics, there are two models for light. The 
Mie or ray optics regime applies to objects that are much bigger than the wavelength, while the 
electromagnetic wave regime applies to objects much smaller than a wavelength. The boundary 
between these two models is theoretically perplexing. Studying the case in which the sphere is of 
the order of a wavelength will allow insight into this problem.   

D. Basic Optical Set-up 

 Our experimental apparatus consists of a 675nm, 30mW diode laser, two collimating 
lenses (L1 and L2) to correct the beam and make it more circular in cross section. The beam is 
steered by a mirror M1 to a focusing lens L3. From there, it goes to a dichroic mirror and is 
directed into the microscope body to the objective lens. The dichroic mirror has the special 
property of reflecting only red light incident at an angle of 45°, which allows us to image through 
the objective lens with a digital camera. The microscope has 4 lens magnifications: 3.5x, 10x, 
40x and an oil immersion 100x lens. To adjust the focus we turn a knob, which moves the 
microscope stage up or down in relation to the objective lens. The fine focusing knob is 
graduated in microns and has a range of movement of 251 µm. The coarse focus knob moves 
the microscope stage vertically 1mm for every quarter turn.  
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III. Theory 

A. Conservation of momentum 

As briefly described above, light has momentum per photon equal to h/λ. When the light 
hits a reflective or refractive surface it undergoes a change in momentum. Because momentum of 
the system is conserved, the object receives an equal and opposite change in momentum.  

Light rays “bounce off” of a totally reflecting object. Light obeys the laws of reflection, 
where the angle of incidence is equal to the angle of reflection. This angle is calculated from the 
normal to the surface.  When light bounces off of the surface of an object, it loses momentum 
perpendicular to the surface. By conservation of momentum, the object gains momentum in the 
direction of the normal. Similarly, a fire hose can be used to push a small vehicle on a flat 
surface. The high-pressure jet of water loses momentum upon hitting the vehicle. Consequently, 
the vehicle gains momentum in the initial direction of the water jet: this is felt as a force, which 
causes the vehicle to move.  

Light passing through a translucent object obeys Snell’s law, given by n1sinθ1= n2sinè2, 
where n1 is the is the index of refraction of the first medium, n2 is the index of refraction of the 
second medium, θ1 is the angle of incidence of the light ray and è2 is the angle of refraction of the 
ray in the second medium (fig.1). The index of refraction is given by the ratio of the speed of 
light in a vacuum and the speed of light in the specific medium. 
 

 
Figure 1: Geometry of a ray hitting a sphere. 

 
Laser tweezers harness the momentum of light. When the ray enters a sphere it is 

reflected or refracted causing a change in direction of the incoming ray. This change in direction 
corresponds to a change in momentum. By conservation of momentum, the sphere gets an equal 
and opposite change in momentum. The sphere hence feels a force equal to the change in 
momentum per second. This is a repulsive force in the case of a totally reflecting sphere and a 
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restoring force in the case of the totally transmitting sphere. We will explain how this occurs in 
the next section. 

B. Trapping 

1. When does it occur?  

Trapping occurs when the incident velocity of the sphere is not enough to overcome the 
forces of the trap: consequently, the sphere is pulled into the center of the trap where it rests at 
equilibrium. In this instance, the sum of the forces is zero over the entire sphere. For the trap to 
be effective, the potential well must be deep enough to hold the sphere against perturbing forces 
such as the viscous and thermal forces. The following diagrams illustrate how trapping occurs. 
 

a) Longitudinal trapping 

Parallel rays going in the z direction hitting the sphere are bent or refracted: consequently, they 
converge to a point on the other side of the sphere. The sphere acts like a lens. The component 
of the light’s momentum in the positive z direction is diminished when the rays are bent. Hence 
the ball must receive momentum in order to make up for this loss and conserve momentum. This 
momentum change is felt as a force over time. 
 
 

 
 
 
Sending in diverging rays, we get a rather unexpected result. Consequently, the exiting rays are 
parallel, following the principle of a thin lens. The component of momentum in the negative z 
direction is increased after passing through the ball. Hence, the ball receives momentum in the 
positive z direction in order to conserve momentum. This causes the ball to be pulled towards 
the incoming rays!  
 
 
.  

∆plight(f)∆pball

∆plight (i)

∆∆plight( i) ∆pball

∆plight (f)
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b) Lateral trapping 

For transverse movement, we can model the sphere as a thin lens. As the lens is 
displaced downwards with respect to the incoming parallel rays, the light is bent downwards. 
The light gains a component of momentum in the negative y direction. To make up for this 
change, the lens gains momentum in the opposite direction. This is felt as a force in the positive y 
direction, which will restore the lens to its initial position. 
  

 
In all of these cases, the force felt by the object restores it to the equilibrium position, i.e. the 
focus of the laser beam. 

2. Formalism for forces 

 Formally, we can separate the radiation force into two components defined by A. Ashkin4. The 
gradient force is perpendicular to the direction of the incoming laser beam, while the scattering 
force is in the direction of propagation of the beam. Ashkin gives the following equations of the 
scattering and gradient forces for a parallel incident ray on a sphere: 
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where P is the power of the ray, θ1 is the angle between the incoming beam and the normal to 
the surface, θ2 is the angle that the first transmitted ray makes with the perpendicular to the 
normal (fig.1). The 1n P

c  term is the momentum per second transported by light of power P. R 

and T are the Fresnel coefficients of reflection and transmission, R is the fraction of the light 
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intensity reflected from the surface, T is the fraction of the light intensity transmitted through the 
surface. For polarization perpendicular to the plane of incidence, R and T are given by the 
equations: 
  

                                    

2

! 1 2 2

1 1 2 2

cos cos
cos cos

1
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P P
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n n
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                                                     (1.3) 

 
where n1 and n2 are the indices of refraction. 
 
For polarization parallel to the plane of incidence, R and T are: 

                      

2

2 1 1 2

2 1 1 2

cos cos
cos cos

1

S

S S

n n
R

n n

T R

θ θ
θ θ

 −=  + 

= −
                                                                           (1.4)

 

 
Calculating the forces and the Fresnel coefficients is straightforward for flat surfaces, 

however, it is much more complicated for a sphere: the angles of incidence change as the sphere 
moves through a beam of light. If the light rays are converging, the polarization of the light will 
depend on which surfaces the light is striking.  

C. Scattering 

1. Scattering from an attractive potential 
 

When a ball is scattered from a potential, it changes its direction of motion. This 
direction change depends on where the ball is incident on the potential: to describe this incident 
trajectory, we define the scattering parameter of the ball. The scattering parameter is the 
perpendicular distance b from an axis traveling through the center of the potential (see figure 2). 
The ball is pulled towards the potential when it gets close enough. To visualize such a potential, 
let’s imagine a trampoline with a heavy rock sitting on it. This causes the material to sag and 
create a “potential well”. If we roll a ball near the edge of this dimple, we will observe a 
deflection in the ball’s trajectory as it rolls past and is drawn towards the center of the 
indentation. If the velocity that we give the ball is not sufficient, the ball will become stuck in the 
well: it is “trapped”. If however, the initial trajectory of the ball does not take it close enough to 
the well (i.e. the scattering parameter is too big), there will be no effect: the ball will not be 
deflected. If we can imagine that we remove the rock and still have the indentation in the fabric, 
we can imagine sending the ball through the center regions of the well. The ball will be most 
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deflected for scattering parameters just smaller than the radius of the well. If we send the ball 
through the center of the well there will be no deflection. However, there will be a change in the 
velocity of the ball:  the ball will speed up as it rolls down into the indentation and will slow 
down as it rolls uphill out of the indentation.  

 

2. Scattering in a viscous medium 

In a viscous medium, the objects in motion experience a viscous force, contrary to the 
direction of motion. When an object is scattered, it slows to a stop after deflection (Fig 2). To 
make this more apparent, let’s imagine that we have our trampoline again. The indentation now 
stays in the same place relative to the ground no matter how we move the trampoline parallel to 
the ground. The trampoline fabric is covered with honey, which causes the ball to stick to the 
surface. As we move the trampoline surface with the ball sitting on it such that the ball passes 
through the indentation, we would see the following: the ball will be drawn towards the center of 
the indentation and roll backwards slowly as it re-emerges from the “well”. The honey in this 
example gives us a viscous force. It causes the ball to not move as freely. The balls deflection is 
minimized because the honey cases it to slow to a stop. As it exits the trap, the honey actually 
keeps the ball from rolling all the way back into the trap and getting stuck or trapped. This 
example can be applied to this particular experiment: We have a glass slide, analogous to the 
trampoline surface, which is covered with water (analogous to the honey).  
 

 
 
 
 
 
 
 
 
 

Figure 2: Diagram showing a ball scattering from the trap or attractive potential at an impact parameter b. 
The ball undergoes velocity changes in the x and y directions, Çvx and Çvy , due to the forces of the trap.  

IV. Criteria for observation of scattering 

A. Trap characteristics 

1. Power through lens 

If the lens is under-filled, the effective NA rating of the lens will be reduced: the trap 
won’t be as well focused or as intense. If, however, it is overfilled, there will be some power 
loss and the trap won’t be as strong. It is therefore best to just slightly overfill the lens. In that 
interest, we modified the set-up to benefit the power through-put of our lens of choice. We 
removed the doubling telescope assembly, which decreased the beam waist to 2.5mm. The 

b

ball

trap

∆∆vx

∆∆vy
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power jumped from 4mW to 12mW at the objective, a very significant increase. Not only had 
the overfilling been reduced, but the number of surfaces that the beam goes through was 
reduced, which also contributed to the power gain. Each glass surface reflects 4% of the 
incident light. After this, the balls were pulled into the trap with much more alacrity: the trap 
seemed to be stronger.  

2. Lateral dimensions of trap  

The laser beam never actually focuses to a point, but reaches a minimum waist given by 
w0= 0.61 λ/NA. The waist is the radius of a beam and serves as a good indicator of spot size. 
As the numerical aperture gets bigger, the minimum spot size gets smaller. Since the trap is small 
in comparison with the ball size, we can’t get a detailed reading of the characteristics of the trap 
(Fig.10).  
 
lens NA w0 (µµ m) 
10X 0.25 1.65 
40X 0.65 0.63 
100X 1.3 0.32 
Figure 10.  Table showing the lateral dimensions of the trap for three lenses (for λ= 675 nm) 
 
 

B. Viscous drag force  

The viscous drag force in a medium of viscosity η is given by Stokes equation: 

                              
6d b bF r vπη= −  

where rb is the radius of the ball and vb is the velocity of the ball. As the velocity of the ball 
increases, the viscous drag force increases proportionately. The drag force is also proportional 
to the radius of the ball. For a ball of radius 5µm, travelling in water of viscosity η= 10-3 N s / 
m2 at a velocity of 54 µm/sec, the drag force is 5 pN. We know that  

                          b
d b b

dv
F m a m

dt
= =  

where a is the acceleration of the ball due to drag force. Solving this for vb, we get the equation: 

                            0 terminal

t

bv v e vτ
−

= +  

 

where the time constant 
6

b

b

m
r

τ
πη

=  

Because the ball has a small mass (mb= 5.5 × 10-10 g), τ is very small: τ = 5.8×10-6 seconds. 
This is instantaneous compared to the time between video frames of 3.3×10-2 seconds. This 
means that the any velocity greater than the terminal velocity damps out instantaneously. Hence, 
the ball is always at terminal velocity if it is moving relative to the fluid. This fact has far reaching 
implications.  

We must remember that the ball is at rest in the reference frame of the stage until it falls 
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under the influence of the trap whereupon it moves relative to the fluid, which is at rest in the 
reference frame of the stage.. Since the ball can never move faster than terminal velocity if it is 
moving relative to the fluid, the viscous drag force must always exactly oppose the forces of the 
trap. Hence Ftrap = Fd, and we can write:  

 

terminal6trap bF r vπη=   

 
or to put it another way, 
 

terminal
b

trap

m
F v

τ
=  

The viscous force plays a crucial role in the measurement of the forces of the trap as will 
be seen below. 

C.  Technical considerations 

 One thing that we need to take into consideration is the fact that the video recorder 
captures at 30 frames per second. This means that the ball can’t be moving too fast because 
some important data will be lost between frames.  
 Pixel resolution is limited by the translation process from the video cassette to the avi 
file: any resolution higher than 120x160 results in more than 10% of the frames being dropped in 
the translation. 

 Also we are moving the stage laterally by hand: the velocity variation shouldn’t be too 
great over the small distances we are moving the ball (approx. 100µm). However on 
examination of the data, we found that the stage underwent a short hesitation defined by de-
acceleration followed by an acceleration: a possible explanation could be an imperfection in the 
gearing of the translation mechanism, such as a worn gear tooth (see figure 14). 

One other consideration is the tendency of the spheres to stick to surfaces. David 
Leichtman also mentioned this problem. To characterize scattering in three dimensions, we need 
a sphere floating freely in the body of the solution. That way we can look above and below the 
scattering candidate. Once the spheres reach the bottom, they have a tendency to stick. We 
found that by agitating the slide or turning it upside down for a few minutes, we could bring the 
balls back into free suspension.  When the slide had been left alone for a few days we found 
that some water had evaporated and that most of the spheres were stuck. We rectified this 
problem by using an eye-dropper tip to dislodge the spheres (any hard, pointed object will 
suffice).  
 
 
 

V. Exploring the third dimension 

A. Determining and changing the relative positions of the laser spot 
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and the measurement plane 

1. Using the slide reflection 

 In order to characterize trapping in three dimensions, we first need to understand how 
our apparatus works in three dimensions, namely how to determine the relative positions of the 
digital camera focus plane and the laser trap focus. This is important because we want to be 
able to move the camera focus plane above and below the laser spot: by doing this, we can 
examine scattering as it occurs above and below the trap. If the camera focus plane is above the 
trap and we see a ball come into focus as it enters the trap we will know that it got deflected 
upward by the trap forces. By studying the deflection, we can characterize the forces of the trap 
in the longitudinal direction. Previous work did not explore this problem in depth.  

To make these measurements, we employed a 1.2mm thick glass slide placed on the 
microscope stage. We then looked for the reflection of the laser spot off the top and bottom 
surfaces of the slide imaged to the camera.  Moving the microscope stage up or down using the 
micron-graduated knob, we could focus the camera on the top or bottom surface of the slide 
(marked with a grease pencil). Ray tracing diagrams indicated that we would have to take into 
account the fact that the laser spot was being reflected.  

2. Zero point 

  We call the position at which the laser spot is in the same horizontal plane as the CCD 
camera focus the “zero point”: this is when the laser spot and the slide surface are 
simultaneously imaged on the t.v. screen. We define L as the distance from the camera to the 
objective and x0 as the distance from the slide surface to the objective (Fig. 3). 
  

CAMERA

L

x(0)

GLASS SLIDE

Objective lens

 
Fig. 3 The camera at the “zero point” 

3. Case of camera focus plane below laser spot 
 

When we move the camera down, the focus plane is below the laser spot. We no 
longer see the laser spot and the slide surface on the t.v. screen at the same time. As we bring 
the focus in, we see the slide surface followed by the laser spot. At first glance, we would say 
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that the movement of the microscope stage was a straight-forward way to determine distances 
between imaged objects. However, we must take into account the fact that the glass slide acts 
like a plane mirror. The image observed on the t.v. screen is actually the virtual image of the 
laser spot seen in the slide. In the same way, when we look into a bathroom mirror, we see a 
reflected image of ourselves. This image is located behind the mirror, twice the distance from us 
to the mirror surface. The image that we see is situated in virtual space and is called a virtual 
image because it is not physically located behind the mirror surface.  If we were to focus a single 
lens reflex camera at our image in the bathroom mirror, moving the focus from its closest point 
towards infinity, we would first see the cracks on the surface of the mirror followed by the 
image of ourselves (analogous to the image of the laser spot).  

Figure   : A person looking in the bathroom mirror at a distance d from the surface plane of the mirror sees 
his virtual image in the mirror. The virtual image appears to be a distance d behind the plane of the mirror. 
 

To make the analogy as close as possible, let’s imagine that the wall on which the mirror 
is fixed is movable (like the microscope stage). Now suppose we focus on our image in the 
mirror. Keeping the focus fixed, the wall is moved away from us until the surface of the mirror 
comes into focus. We would observe that the distance from ourselves to the mirror was double 
what it originally was (see Figure ?). If we were to approach this casually (barring the fact that 
we know where we are located physically), we might be tempted to say that the distance 
between this person in the mirror and the surface of the mirror was the distance that the wall 
moved: at the initial position of the wall, we saw a person and at the final position we saw the 
surface of the mirror.  However, we know quite well that we were not focused on a real 
physical person situated in real space because this would be physically impossible, not to say 
logically impossible!  

d d

Plane of mirror

Virtual image
Object (person looking in mirror)
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Figure   : A person focusing with a camera on his image in the mirror. He observes his image in the 
viewfinder of the camera. He is situated a distance d from the mirror and an optical distance 2d from his 
virtual image situated in the behind the mirror. The camera is focused to a position in space a distance 2d 
from the lens. We will call the person’s position the “zero point”(this is to make the analogy more apparent 
(see figure  ). 
 

 

d d 

Plane of mirror 

Virtual image Object (person looking in mirror) 
camera 

“zero point” 
d d 

Plane of mirror 

Virtual image Object (person looking in mirror) 
camera 

“zero point” 
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Figure :  At the second position of the wall, the person will observe the surface of the mirror itself through 
the viewfinder of the camera.  To a casual observer the physical distance between the person and the 
surface of the mirror is equal to the distance d traveled by the wall in order to get from the first image (wall 
position 1) to the second image (wall position 2). This is quite obviously false. 

 
Similarly, in our set-up, to go from imaging the laser spot to imaging the slide surface, 

we have to move the slide away from the initial position to twice the original distance from the 
physical position of the laser spot (which is analogous to our physical position in the bathroom 
of the previous example). The initial position of the slide is situated halfway between the real 
position of the laser spot and the camera focus plane The position of the laser spot never 
changes: at the “zero point” the top surface of the slide is located in the same horizontal plane as 
the laser spot (see fig. 3). In other words, using the slide reflection, the observed distance xi

L 
between the spot and the slide surface is half the true distance xi

p. Hence, the real distance 
between the focii is in actuality double the measured value (fig.4).  

 

camera

d d
Wall position 1 Wall position 2

d

camera

d d
Wall position 1 Wall position 2

d
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Figure 4: Case in which camera is moved down a distance xi
tv from the “zero point”. 

 

4. Case of camera focus plane above laser spot 

When we move the camera up from its position at the “zero point”, the camera focus 
plane is positioned above the laser spot. Moving the camera focus in from afar, we see the laser 
spot followed by the slide surface. This time, the spot observed on the t.v. screen is the actual 
spot reflected up off the surface of the glass. In this case, the image of the spot only becomes 
visible when the reflected spot is physically in the same plane as the camera focus. This occurs 
when top surface of the slide is positioned halfway between the horizontal camera focus plane 
and the horizontal plane containing the laser spot (fig. 5). Again we find of a factor of two 
difference between the observed distance of the foci and the real distance. The distance of the 
stage xi

L from the “zero point” in order to view the laser spot is half the distance of the stage in 
order to see the slide surface  

 

CAMERA

L

x(0)

x (tv)

Position of top surface of slide in
order to see laser spot

Virtual image of laser spot

x (L)

plane of laser  focus 
and position of slide 
at “0 point”

x (P)
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CAMERA

L

x(0)

x (L)

x (p)

x (tv)

position of slide in order
 to see laser spot

 
 
Figure 5: Case in which camera is moved up a distance xi

tv from the “zero point”. 

B. The thin lens model 

1. Formalism 

Writing down the thin lens equation for the camera focus and the laser focus 1/f 
=1/do+1/di , where f is the focal length, do is the distance lens-object and di is the distance lens-
image, helped us understand the effect of moving the camera on the relative positions of the 
focii. For the surface of the slide to imaged, the thin lens equation is: 

                                                      
0

1 1 1
tv p

i if L x x x
= +

+ +
         (1.3) 

where f  is the focal length of the lens, L is the distance from the objective lens to the camera at 
the “0 point”, the point at which the laser spot and the camera focus occupy the same horizontal 
plane. 0x  is the distance between the lens and the slide surface at the “0 point”, tv

ix  is the 

vertical movement of the camera and p
ix is the measured stage movement from the “0 point” to 

image the surface of the slide.  
 For the laser spot to be imaged, the thin lens equation is: 

                       
0

1 1 1
2tv L

i if L x x x
= +

+ +
                                                 (1.4) 

  
where L

ix  is the movement of the stage from the “0 point” in order to view the laser spot. The 

factor of 2 in front of the L
ix term corrects for the fact that the slide surface acts as a plane 

mirror (figs 2,3).  
Equations 1.3 and 1.4 imply: 
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2 L p
i ix x=                                                                                             (1.5) 

 
which we verify experimentally. 

2. Measurements of slide surface and laser spot positions 
 

For different camera positions, we took measurements of the absolute stage movement 
from the “zero point” position in order to image the laser spot and to image the top surface of 
the slide.  As before, for each camera position xi

tv, we define xi
L as the distance from the “zero 

point” to image the laser spot and xi
p as the distance from the “zero point” to image the top 

surface of the slide. At the “zero point” both laser spot and t.v. focus are at the top surface of 
the slide. These measurements gave us a relationship between the camera focus movement and 
the laser spot focus movement, that, in fact, as predicted, the camera focus always moved twice 
that of the laser spot due to the reflection off of the slide (Figs. 6,7). Again, the real position of 
the trap without the slide is twice the distance measured.   
 
 
x(L) (microns) x(p) (microns) 

-28.5 -54.5 
-27 -50 

-20.5 -41 
-13 -28 

-6.5 -17.5 
0 0 
4 7 

10.5 19.5 
18 29.5 
23 38 

 

Figure 6: Stage movement xp
i to view the slide surface vs. stage movement xL

i to view the laser spot for the 
10X lens. Notice that the relationship tallies with our prediction (1.5) within experimental error. 
 
 
x(L) (microns) x(p) (microns) 

-3 -5.25 
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0.75 0.25 
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1 3 
1.75 4.25 

 
 
 

Figure 7: Stage movement xp
i to view and to view the slide surface vs. stage movement xL

i to view the laser 
spot for the 40X lens. Notice that the relationship tallies with our prediction (1.5) within experimental error. 
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C. Observe scattering in 3-d? 

1. Characteristics of the lenses 

As the focal length of the lens decreases (i.e. magnification increases), the range of stage 
movement decreases with camera movement. Hence at higher magnifications, the vertical range 
of motion is reduced. One concern that this brings up is whether the camera focus can be 
moved beyond the vertical limits of the trap. The Raleigh range, a measure of tightness of focus, 
gives us a reasonable idea of the longitudinal dimensions of the trap. In order to examine 
scattering in three dimensions, we wish to be able to move our camera image plane above and 
below the trap. We found that the 10X and 40X lenses obeyed the thin lens equation. The 
relationship between the camera position and the corresponding slide position is linear for small 
changes (fig. 8). This linear approximation gives us the following equation:  

            
2

0p tv
i i

x f
x x

f
 −≈  
 

 

 
 

. 

Figure 8: Measured values showing the how camera focus plane movement affects the focusing range. The 
camera’s range of 7cm allows the focus plane position to change by 20µm. The plate position measurement 
error is ± 1µm. 

2. Raleigh range 

The Raleigh range is defined as the distance from the where the focused laser beam is 
narrowest with a waist w0 to the point where it is 2w0 (Figure). The Raleigh range z0 is given by 
the equation:  

2
0

0

w
z

π
λ

=                                                                                               (1.7) 

where λ is the wavelength.  
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Figure  : The Raleigh range z0 is the distance for a Gaussian beam to increase from the minimum beam waist 
of w0 to a beam waist of 2w0. (A focused beam never focuses to a point). 
 
The divergence angle of the beam can be approximated by:  

0

0

tan
w
z

θ ≈                                                                (1.8) 

Using these expressions and that at for small angle θ, tanθ ≈ sinθ we can write: 
2

0 2( )
n

z
NA
λ

π
≈                                                                      (1.9) 

 
   where NA = n sinu is the numerical aperture of the microscope objective. n is the index of 
refraction of the medium and u is the half-angle of the focused cone of light (see figure ). The 
Raleigh range will change for different indices of refraction.  

Figure : The numerical aperture (NA) is a measure of a lens’s ability to resolve two points separated by a 
certain distance: the bigger the NA, the smaller the distance between two just resolvable points. If the 
diameter of a beam entering a lens is less than the lens diameter we say that the lens is under-filled: the 
maximum half angle u of the focused cone of light is reduced.  
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Figure   : a) Under filling the lens means that the waist of the incoming beam wbeam is smaller than the radius 
of the of the lens Rlens. This has the effect of reducing the effective NA by reducing the maximum half angle 
of the focused rays u a. b) Overfilling the lens means that the beam waist wbeam is bigger than the radius of 
the lens Rlens: some of the beam does not even go through the lens resulting in power loss of the focused 
beam. The half angle of the focused cone of light ub is the maximum allowed by the radius of the lens: hence 
the NA is the maximum allowed in a medium refractive index n. 

 
lens NA f (mm) z0 (µµm) max. xi

p (µµm) 
10X 0.25 16 5.75 ± 175 
40X 0.65 4 0.85 ± 10    * 
100X 1.3 1.6 0.22 ± 1 
 
Figure 9: Table showing calculated Raleigh range z0 and the range of movement about the laser spot xi

p for a 

camera movement 
tv

ix  of  ± 35 mm (we assume that the 100X lens obeys the thin lens equation). We are 

using a combined refractive index of  n=1.3 of the glass cover-slide and the solution to get the Raleigh 
range. 
* measured value (see fig. 8) 

 

3. Choosing a lens 
 

From the table (fig. 9), we can see that we should be able to observe scattering beyond 
the limits of the trap in the longitudinal direction for all the lenses and that in fact, the dimensions 
of the spheres are significantly greater than those of the trap. The best lens for our purposes 
seems to be the 40x lens because it allows a greater range of travel in the vertical direction while 
still allowing trapping and scattering to be observed.  

b) Overfilling lensa) Under-filling lens

R(lens)

W(beam)
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au
bu



 21

 

 
 
 

Figure  :  Ray tracing diagram showing a single ray from the laser going through the glass cover-slide (n2= 
1.5) into the water solution (n3 = 1.33) in which the balls are suspended. The first medium is air (n1 = 1). For 
the 40X lens, Snell’s law gives θ1 = 40.5°,  θ2 = 25.7° and θ3 = 29.3°.  
 

One other thing to keep in mind is the enormous size of the ball compared to all dimensions of 
the trap (see discussion above). Figure   shows that we need to consider the fact that parts of 
the ball will intersect the focused beam before it enters the focus itself. This has for effect of 
increasing the apparent lateral size of the trap. Using geometry we can determine the distance 
that the ball is from the center when its edges are tangential to the outermost rays.  
1) The right triangles ABD and AOB are similar.  
2) Hence angles �ABD and �AOB are equal. We will call this angle θ3 (for the 40X lens θ3 = 
29.3° see above).  
3) cos(AOB) = cos(θ3) = R/OB 
4) Hence OB = R/ cos(θ3) = 5.73 µm.  
5) Since R = 5µm, the edge of the ball is 0.73µm from the center of the focus. The apparent 
lateral radius of the trap is 0.73 µm (compared to 0.63µm) 
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Figure  : Diagram showing the ball and the beam focus (we are approximating the focus as a point compared 
to the ball size). Shown is the effective Raleigh range z0 = 0.85 µm to scale with the ball of radius R =5µm. 
This diagram also illustrates that the ball should enter the focused beam before it actually enters the focus 
itself (at point B). This has for effect of making the apparent beam waist larger.  

VII. Experimental methods 

A. Equipment and set-up details 

 The apparatus consists of a Leitz Wetzlar microsope body with 4 lenses: 3.5X, 10X, 
40X and a 100X oil immersion lens which image to a digital camera. The camera is a 
Schumberger CCD camera connected with BNC cables to a t.v. monitor. The laser is situated 
40mm away from the first collimating lens L1.  The collimating lenses L1 and L2 are positioned 
70mm apart. The focusing lens is positioned approximately 260mm from the dichroic mirror. 
The focusing lens has a focal length of 160mm. Thus, at the “zero point”, camera is situated 
approximately 100mm from the dichroic mirror. The beam waist is approximately 2.5mm, which 
allows the 40X lens to be slightly overfilled. At the “zero point” for the 40X lens the camera-
objective distance L is approximately 190mm. This makes the beam waist at the objective 
approximately 3mm. The diameter D of the lens we calculate to be 5.2mm. The lens is overfilled 
since the diameter of the beam is around 6mm. 
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Figure 11: the experimental set-up 
 

B. Taking measurements 

In preparation for our scattering experiment, we fill a glass well slide with several drops 
of water. We then add a drop of the microsphere solution (Polybead polystyrene 10µm 
microspheres, Polysciences, Inc.). We use a cover slip to seal off the well. This relatively deep 
well (≈ 260 µm) allows us more time for the experiment because the spheres take longer to 
settle to the bottom under the influence of gravity. In order to record the scattering, we use a 
VHS video recorder running in SP mode, giving us a capture rate of 30 frames per second. 
With the tape running, we translate the stage laterally. We make several passes, allowing our 
candidate sphere to pass the trap at various scattering parameters and velocities. We transfer 
the footage to an “.avi” file using  Microsoft AVREC Capture Tool software. We then use an 
Excel macro program written by the author to analyze the data. One thing to keep in mind is that 
the sphere is at rest in the reference frame of the stage until it feels the forces of the potential 
well.  
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 The Excel program allows us to view the scattering footage and measure the position of 
the ball frame by frame. We found the appearance of a deposit on the slide surface very useful 
as a reference point to compare the stage movement to the ball movement. The Excel macro 
gives us the position of the ball in pixels. Therefore we need to translate these measurements 
into microns. We first used the 40X lens to note the position of the ball at each edge of the t.v. 
screen using the stage translation vernier. However we found this to be too imprecise (error ± 
25%). The stage translation vernier is graduated in tenths of a millimeter, while we want to 
measure distances within at least 10 microns.  We achieved better precision with the 3.5X lens. 
This lens has a bigger field of view, which allows a greater distance to be covered, thus 
minimizing the error. With this method we achieved a calibration precision of 3% or better. 
Scaling our result up for the 40X lens, we found that 1 pixel translated to approximately 0.31 
µm. 

VIII. Results 

A. Evidence of Scattering 

The captured video proves that we can observe scattering in two dimensions. We can 
measure the forces of the trap in function of the position of the ball. 

Figure   : A frame showing what we saw on the t.v. monitor: the 10µm ball and the deposit on the well slide 
which served as a reference point since it never moved with respect to the stage.  

 
 
 

Figure  : Captured video sequence showing the scattering event (frames 174-177).  
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B. Data 

1. Measurements 

 Plotting position versus time for the x and y coordinates, we gain a fuller understanding 
of the scattering event. Figure 12 shows the scattering event in the reference frame of the stage 
for both x and y coordinates versus frame number. The frames are spaced at 1/30 second 
increments. The y coordinates of the ball show the abrupt deflection of the ball as it is pulled into 
the trap (frames 174-177). The x coordinates show that the ball slows down once the y forces 
have pulled the ball into the trap. Notice the offset between the y and x velocity changes: the 
velocity loss of the ball in the x direction occurs after the y deflection has taken place 
(frame177). This is a very important feature as far as understanding the behavior of the ball in 
the potential, with implications that will be explained by our model. The ball is pulled into the 
trap where forces in the x direction take precedence (frames 177-181): as the stage continues 
to move past the trap, the viscous forces drag the ball away from the trap and the ball regains 
the velocity of the stage on which it is resting.   
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Figure 12: Scattering in the x and y directions in the reference frame of the stage versus the frame number.  
(We subtracted the x coordinates of the reference from the x coordinates of the ball to eliminate the x 
translation movement of the stage). 

We determined the average velocity in the x direction of the stage by performing a linear 
fit to the data points (Figure 13, in blue). This fit was good with an R2 value of 0.9953 (1 is a 
perfect fit while 0 means that the points fitted have no semblance to a line). This gave us an 
average stage velocity of 1.8 µm/ frame or 54µm /sec. However, when we subtracted the linear 
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approximated values from the measured values, we found some periodic non-random variations 
from the approximation, which seem to suggest that the stage translation was not functioning 
smoothly (Figure 14, in blue). The stage did not move in a linear fashion (see section IV C)). 
For frames 164 –189, the variance of the measured x positions of the reference point from the 
linear approximation of the stage translation was ± 1 µm. This gives an uncertainty in the 
velocity prediction of the stage of ±1.4 µm/frame! This is due to the large non random variations 
in stage movement which are not errors in measurement but are due to a less than perfect 
approximation of the non-linear translation of the stage. In order to ameliorate this 
approximation and get a better measure of the average velocity of the stage we notice that the 
biggest variation from this mean occurs just before the scattering event (frames 168-173): fitting 
a line to frames 173 to 188 we split the variance in half from the previous fit and get a average 
stage velocity of 1.7 µm/frame for this time period. Unfortunately due to time constraints we are 
not able to make the all the graphs reflect the slightly revised initial velocity of the stage and 
hence the ball. To correct for the stage “jitter” and to get a more realistic evaluation of our 
experimental error, we subtract the reference x coordinates from the ball x position, point by 
point, which gives an error of approximately ± 0.4 µm. Assuming comparable errors in the 
measurement of the x coordinates of the stage and the ball, we get an error in the measurement 

equal to 0.4/ 2 0.3m mµ µ± ≈ ± ( 2 20.3 0.3 0.4+ ≈ ). This error is the size of a pixel.  
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 Figure 13: This plot shows the x positions of the ball and the reference point in the absolute reference 
frame (the reference frame of the laser trap) as a function of frame number. The motion of the ball mirrors the 
motion of the stage until after it is pulled into the trap  (frame177) The ball almost comes to a standstill while 
it is in the trap (frames 177-178). As the ball leaves the trap and the viscous forces take over, the ball regains 
the speed of the stage (frame 182). 

We then calculate the velocities of the ball and stage. Although the trap is small (∼1µm in 
diameter) and the stage velocity is high (1.8µm/frame), the ball size is comparatively big (10µm 
in diameter). Hence, the ball should be in the trap for about 5 frames, which means that we can 
get the forces of the trap during this time. We determine the forces of the trap as a function of 
ball position using the equation ( ) detailed in the discussion on the viscous drag force.   
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Figure 14: Subtracting away the average stage velocity uncovered some nonlinear behavior in the 
movement of the stage (in blue). Frames 167-175 show that this “hesitation” in the stage movement is also 
perpetuated in the movement of the ball: this means that the variation in this area is due to the stage. In red 
is the ball and in blue is the reference point. 

 

2. Analysis 

In order to determine what exactly is going on as the ball goes through the trap, we 
modeled the behavior in Excel and compared the results to the measured data. We solved the x 
and y coordinate positions simultaneously by an iterative formula to be explained below. A 
significant feature in to keep in mind is that the ball feels the y force before the x force. Our 
model accounts for the non-symmetric nature of our position curves. That is to say, the ball 
does not travel all the way through the trap along one coordinate axis: we never see the force 
increase and decrease along the same axis. We maintain that for this particular scattering event, 
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the ball is first pulled laterally to its initial direction of motion into the center of the trap (see 
figure…). 
Figure   :Simplified diagram showing our understanding of the scattering event. In a first phase (a) the ball is 
incident on the trap at an impact parameter that we will call y0. In a second phase (b), the ball is pulled into 
the trap by the attractive y forces. Finally the ball feels the resistive x forces as it is pulled out of the trap (c).  

We derived our model from several key observations and measurements, which are 
crucial to the understanding of the behavior of the ball throughout the scattering event:  

a) The velocity of the ball with respect to the stage and the fluid is always the terminal 
velocity because of the powerful viscous force (see section IV above). 

b) There is a time delay between the times that the y position changes and the x velocity 
changes. 

The model is as follows:  

a) The initial position is 0( )s frame offsetv t t x y y− +  where vs is the stage velocity, tframe is the frame 

number and toffset gives us an offset such that x=0 when the ball is at the center of the trap. 
The scattering parameter, the distance in the y direction from the center of the trap is y0. 

b) The fact that the ball is always at terminal velocity when it is moving relative to the stage 
gives us the force of the trap in the x and y directions:  

       

2

2
0

r

w
trapF kre

−

=  

    where k is the spring constant (a measurement of the strength of the trap), r is the                            

coordinate in cylindrical coordinates ( 2 2r x y= + ) and w0 is the radius of the trap. 

c) The force contributes to the velocity of the ball for the next frame. In the x direction, 
x

x s
b

F
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m
τ= +  

In the y direction,  

       y
y

b

F
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m

τ
=  

d) The new position is 1 i iir r v t+ = + ∆
uur r r

 .  

e) Iterating this gives us a predicted trajectory in the x and y directions. 

f) The parameters are w0, k, y0 and toffset . Varying these allows us to fit the model to the data 
(See figure below). 
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 Figure : The relative sizes of the ball and the trap.  
 
The following figures show the model’s fit to the data.  
 

Figure   : Plot showing the model’s fit to the measured x coordinates of the ball (red points) in the reference 
frame of the trap, plotted versus the frame number (each frame is separated by 1/30 sec). The error in 
measurement is ± 0.3 microns. We could perhaps adjust parameters or even refine the model to better 
account for and fit the data when the ball is in the trap (frames 176-180). We corrected the measured x 
coordinates in order to eliminate the stage jitter by subtracting the coordinates of the reference point and 
adding back the predicted position of the stage.  
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171 -6.30 -6.32 0.03 1.81 
172 -4.49 -4.24 0.22 1.88 
173 -2.61 -2.78 0.59 2.01 
174 -0.60 -0.69 0.39 1.94 
175 1.34 0.77 -1.56 1.25 
176 2.59 1.61 -3.57 0.54 
177 3.12 4.01 -4.04 0.37 
178 3.49 4.23 -3.69 0.50 
179 3.99 4.76 -2.84 0.80 
180 4.79 5.61 -1.57 1.24 
181 6.03 5.83 -0.45 1.64 
182 7.67 8.22 -0.05 1.78 
183 9.46 9.69 0.00 1.80 
184 11.26 10.84 0.00 1.80 
185 13.06 13.23 0.00 1.80 
186 14.86 15.01 0.00 1.80 
187 16.66 16.47 0.00 1.80 
188 18.46 17.93 0.00 1.80 

Figure 16: Table showing the predicted x position, force, velocity of the ball for each frame (frames 170-188). 
For comparison, are the measured x values, which we corrected to account for the stage jitter: we subtracted 
the reference coordinates from the ball position point by point, then added the linear prediction for the stage 
position. 

Figure 1: Plot showing the measured y position of the scattered ball with the best fit generated by the 
model. We simultaneously fit the x and y coordinates with the model so we could get a better fit by 
adjusting the parameters: then the fit for the x coordinates would suffer) Best fit of model to y coordinates of 
the scattered ball. The error in measurement is approximately G0.5 microns. To get a better fit, we could 
increase the spring constant k, increase the trap size or decrease the scattering parameter y0. In all three 
cases, however, a better fit for the y coordinates results in trapping in the x direction, which is contrary to 
what actually happens (see Appendix A). A possible explanation would be that the trap is asymmetric in the 
x and y directions as found by Paul Larson. 
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number (µµm) (µµm) 
170 4.50 4.34 0.00 0.00 
171 4.50 4.65 -0.02 -0.01 
172 4.49 4.65 -0.22 -0.08 
173 4.41 4.34 -1.00 -0.35 
174 4.06 4.03 -2.64 -0.93 
175 3.13 2.79 -3.65 -1.29 
176 1.84 1.24 -2.54 -0.90 
177 0.94 0.31 -1.22 -0.43 
178 0.51 0 -0.54 -0.19 
179 0.32 0 -0.23 -0.08 
180 0.24 -0.31 -0.08 -0.03 
181 0.21 -0.31 -0.02 -0.01 
182 0.21 0 0.00 0.00 
183 0.21 -0.62 0.00 0.00 
184 0.21 -1.24 0.00 0.00 
185 0.21 -1.24 0.00 0.00 
186 0.21 -1.24 0.00 0.00 
187 0.21 -0.93 0.00 0.00 
188 0.21 -0.93 0.00 0.00 

Figure 17: Table showing the predicted y position, force, velocity of the ball for each frame (frames 170-
188). For comparison, we include the measured y positions.  
 
 

Figure  : Plots showing minimum variations in spring constant parameter k for there to be a significant 
deviation from the x or y fitted curves. The best fit to the data is the solid line. To achieve a significant 
change, we increased k by approximately 5% (dashed line) and decreased k by approximately 11% (dotted 
line). Variations in the spring constant parameter are twice as sensitive when it is being decreased from the 
fitted value than when it is increased from the fitted value. 
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Figure   : Plots showing minimum variation in the trap radius parameter w0 for there to be a significant 
change from the best fit to the x and y coordinates of the ball. The best fit of the model to the data is the 
solid line.  Significant change occurs for a 1.5% increase in w0 (dashed line) and for a 3.3% decrease in w0 
(dotted line). The modeled trajectory is twice as sensitive to decreases in the trap radius than increases in 
this parameter. 
 

Figure   : Plots showing minimum variation in scattering parameter y0 for there to be a significant deviation 
from the best fit to the x or y coordinates of the ball. The solid line is the best simultaneous fit to the x and y 
coordinates of the ball. Significant change occurs for a 7% increase in y0 (dashed line) and for a 2% decrease 
in y0 (dotted line). The model is approximately three times more sensitive to decreasing the scattering 
parameter than to increasing. 
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Figure  : Plots showing minimum variation in the time offset parameter toffset for there to be a significant 
deviation in the curves from the best fit. The line of best fit to the x and y coordinates simultaneously is a 
solid line. Varying this parameter gives us what we would expect. The curves are translated horizontally two 
frames to the left (dotted line) or to the right (dashed line) of the best fit. 
 

IX. Conclusion 
The experiment was much more successful than expected. We had anticipated 

measuring normal scattering, where we can only get one force measurement per scatter event. 
However, the experiment provides us with considerably more information. As the ball moves 
through the trap, we can actually determine the force on the ball for each position of the ball. 
This direct measurement of the forces of the trap was due to the viscous force. The trajectory 
changed much more than normal scattering because there is a strong viscous force: the ball is 
always at terminal velocity, which is the crucial fact that allows us to get the forces in the trap. 
This one scattering event, even marred by stage jitter, allows us to create a model for the forces, 
which can be used to fit to future data and even make predictions about the behavior of the trap 
given certain parameters. 
 

  We have observed and recorded two-dimensional scattering and have conducted the 
investigation into recording three-dimensional scattering. We have measured the forces of the 
trap in function of ball position to an accuracy of approximately 0.5pN in the x direction and 
1pN in the y direction. We have obtained a position resolution of approximately 0.3 microns in 
the x direction and 0.5 microns in the y direction.  

X. Future work 
Now that we have a force model, we can make predictions and verify them 

experimentally. With a method of analysis in place, more data would allow us to gain further 
insight into the characteristics of the trap. For instance, we could try sending the ball through the 
trap along the y  axis to better investigate the y forces. Pursuing this project into further depth, 
we could resolve the position of the ball with better accuracy. First of all, there appears to be a 
non-random error in the measurement of the y coordinates, which contributed to the 
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measurement error. This could be due to one of several possibilities: first of all, on retaking the 
data from the avi file, we found that the y fluctuation of the ball of approximately G0.5 microns 
seemed to disappear. This suggests that it was error in measuring the coordinates. Alternatively, 
this feature could be real, the stage was “jiggling” in the y direction; however, the y coordinates 
of the stage do not seem to have the same fluctuation. Most probably then, it is an error in 
measurement: the reference point has a more pronounced edge that can be used as a “visual 
landmark” from frame to frame. With this in mind it would not be surprising if there were a more 
sizable measurement error in the ball’s coordinates. The pixel size of 0.3 microns is apparently a 
limiting factor in the resolution of the ball’s position. To achieve better position resolution, we 
could imagine transferring the data from the videocassette to a computer image file of higher 
pixel resolution: to avoid dropping frames in translation to the .avi format we could isolate and 
capture only those few frames of interest. Another obvious obstacle to achieving accurate data 
would be the stage translation: with smoother translation, a linear model would give us a much 
better approximation. 

Analysis of further data will allow us to hone our model, we could obtain even more 
accurate force measurements. Taking and analyzing more data would hopefully clear up some of 
the apparently mysterious features in the current data. The strange step features in the y 
coordinates after we are assuming the ball is out of the trap, could be investigated. Varying the 
parameters of the model we can get some interesting features in this region such as oscillations in 
the y direction about the center of the trap. Further study will either refute this feature as an 
anomaly or prove it to be an important and interesting effect.  
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