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Abstract

This thesis analyzes the constraints that are imposed from laser focusing on the trapped ion

implementation of a quantum computer. We give the foundations for quantum computation,

the Shor algorithm, and the ion trap. A new model for the fields of a tightly focused laser is

developed, as well as approximations for near-focus and far-from-focus regions. These fields are

then examined in the context of the ion trap.
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1 Introduction

For nearly a century Quantum Mechanics has been used to describe interactions

at the atomic level with unprecedented precision. Some consider it to be the best

physical theory that we know of. Recently it has been realized that the mechanics

that govern quantum mechanical systems can be used to solve fundamentally difficult

mathematical problems, such as integer factorization, in few steps relative to classical

methods, and excitement in this ability has generated an entirely new field of study.

The development of the field of Quantum Computation began in 1980, when Be-

nioff discovered that the evolution of a quantum mechanical Hamiltonian could be

used to realize any Turing machine [1], suggesting that such a process is at least

as powerful as this classical computational model [2]. Feynman suggested that a

quantum computer could be more powerful than a Turing machine [3], and Deutsch

actually proved this in 1985.

Deutsch does this by taking the Church-Turing principle, which can be written as

“Every function which would naturally be regarded as computable can be computed

by a Turing machine,” and incorporating physics in it. His new formulation is called

the Strong Version of the Church-Turing principle, which reads “Every finitely re-

alizable physical system can be perfectly simulated by a universal model computing

machine operating by finite means.” He then shows that the Turing machine does

not satisfy this principle, and that a quantum theory for computation does [4].

A quantum computer essentially takes advantage of quantum mechanical super-

positions and interference effects that are a result of the unique way in which proba-

bilities are calculated from a wavefunction. The power of such a computer is demon-

strated by a quantum algorithm discovered by Shor in 1994 to factor large integers in

exponentially fewer steps than any known classical one [5]. While this is only one of a

few useful quantum algorithms that we know of, it is plausible that equally powerful

ones exist, which could revolutionize certain aspects of information processing.
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While the theory supporting a quantum computer has been well developed, the

actual building of a physical device is far behind. To give a sense of this, in Decem-

ber 2001 IBM’s Almaden Research Center used 1018 molecules in a nuclear magnetic

resonance quantum computing experiment in order to factor the number 15.1 The

difficulty lies in being able to coherently control several quantum mechanical systems

over relatively long time scales, which is experimentally difficult due to thermody-

namic effects from the environment.

One of the more reasonable approaches to build a quantum computer was proposed

by Cirac and Zoller in 1995, and it is their implementation that the majority of this

thesis is concerned with [6]. Their proposal uses a chain of ions contained in a linear

Paul trap and cooled to their ground state of motion, with lasers target individual

ions in order to carry out a computation. The high spatial localization of these ions

makes this possible.

In order for this process to work, the laser must be tightly focused and cause a

transition in a single ion without affecting the electronic state of neighboring ions.

To insure this, the fields that describe the laser must be accurately known up to the

dimensions of the trap. However, the typical Gaussian approximation to a laser beam

does not provide this knowledge on the edges of the laser beam.

This thesis will develop a method for accurately describing these fields, and will

give suggestions on how to target the ions. We will begin by giving an overview of

quantum computation and the ion trap.

1http://www.research.ibm.com/resources/news/20011219 quantum.shtml
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2 Fundamentals

2.1 Classical Binary Fundamentals
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Figure 1: Some basic binary logic gates. Bits A and B represent the input bits, with C and D being

the corresponding output bits. For example, if A = 0 and B = 1, then the output of the AND gate

would be C = 0. Notice in the AND and XOR gates that the computation flows one way; the input

cannot always be determined from the output.

Before we define the elements of quantum computation, it is useful to recall basics

from a more familiar device, the modern digital computer. Terms such as ‘bits’,

‘registers’, ‘gates’, and ‘algorithms’ will have intuitive quantum analogues.

A bit is a fundamental unit of binary information which can assume one of two

discrete values, usually denoted as 0 or 1. In TTL logic, for example, the voltage on

a wire between ground and +.8V is considered a 0, whereas a voltage greater than

+2.0V is considered a 1. By grouping many bits in an ordered array we create a

register. If the register has L bits, it can represent up to 2L different numbers.

A gate takes an input array of bits and produces an output of bits. Some common

binary gates are shown in Fig. 1 with truth tables for their inputs and outputs.
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Notice that we can count the number of different inputs exactly and determine their

individual outputs exactly, as shown in the truth tables.

An algorithm is essentially the same as a gate, but usually takes a larger input

array to produce an output. Because the digital computer is a deterministic machine,

the algorithm’s input and output can be written down as a truth table. Combinations

of the AND and NOT gates (and, implicitly, the COPY gate) can be put together to

realize any such algorithm.

2.2 The ‘qubit’

The ‘qubit’ is the fundamental unit of quantum information. Keeping the classical

bit in mind, suppose we choose an orthogonal basis {|0〉, |1〉} and make the following

definition:

qubit ≡ a|0〉 + b|1〉, (1)

in which a and b are complex numbers satisfying the normalization condition |a|2 +

|b|2 = 1. A measurement would yield the state |0〉 with probability |a|2, or the state

|1〉 with probability |b|2. Thus while the classical bit can only be 0 or 1 at an instant

in time, the qubit can be both. If a = 0 or b = 0, the qubit can be represented by a

classical bit.2

Keeping with the classical analogy, we can build a register of L qubits by ordering

them such that the total state of the register Ψ reads

|Ψ〉 = (a1|0〉1 + b1|1〉1) ⊗ (a2|0〉2 + b2|1〉2) ⊗ . . .⊗ (aL|0〉1 + bL|1〉L). (2)

The symbol ⊗ stands for ‘combined with’, and since the qubit states are independent,

2This is ignoring an overall phase, which is not important
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this is simply multiplication. Notice that the expansion of Eq. 2 contains states

ranging from |0〉1|0〉2 . . . |0〉L to |1〉1|1〉2 . . . |1〉L, each of which can be identified with

the binary numbers ranging from 0 to 2L − 1. For example, if we let x = 5, then

|x〉 ≡ |5〉 ≡ |1〉1|0〉2|1〉3 ≡ |101〉. If we denote cx as the certain combination of the

complex numbers ai and bi that multiplies state |x〉, then the total state is equivalent

to

|Ψ〉 =
2L−1
∑

x=0

cx|x〉. (3)

The measurement of every qubit would necessarily yield only one of the eigenvec-

tors of |Ψ〉. Since the ai’s and bi’s were originally normalized,

2L−1
∑

x=0

|cx|2 = 1. (4)

This new basis set {|x〉}is referred to as the computational basis, which will usually

only span at most a 2 qubit subspace.

It is useful to use a matrix representation of qubits. A single qubit is then written

as

a|0〉 + b|1〉 ≡







a

b






. (5)
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An array of L qubits in the computational basis is written as

2L−1
∑

x=0

cx|x〉 ≡



















c1

c2
...

c2L−1



















. (6)

As an example, suppose we have 2 qubits q1 and q2, independently prepared such

that q1 =
√

3
4
|0〉 −

√

1
4
|1〉 and q2 =

√

1
6
|0〉 + i

√

5
6
|1〉. The total state |Ψ〉 of this

system would be

|Ψ〉 = (

√

3

4
|0〉 −

√

1

4
|1〉)(

√

1

6
|0〉 + i

√

5

6
|1〉) (7)

=

√

1

8
|0〉|0〉 + i

√

5

8
|0〉|1〉 −

√

1

24
|1〉|0〉 − i

√

5

24
|1〉|1〉 (8)

=

√

1

8
|00〉 + i

√

5

8
|01〉 −

√

1

24
|10〉 − i

√

5

24
|11〉 (9)

≡



















√

1
8

i
√

5
8

−
√

1
24

−i
√

5
24



















. (10)

The equality in Eq. 10 is in the basis {|00〉, |01〉, |10〉, |11〉}.

At this point we can see the enormous complexity involved: classically the state of

a register of 300 qubits would require 2300 −1 ≈ 2∗1090 complex numbers to describe

completely, since each qubit has 2 complex numbers attributed to it and an overall

phase can be factored out. Even if we could store a complex number for every particle

in the universe, it would be impossible to classically store this state.
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2.3 Quantum Logic

In digital electronics the ‘NAND’ gate is called ‘universal’, meaning that any digital

circuit can be constructed entirely of NAND gates. In view of the Stong Version of

the Church-Turing principle, however, true universal gates must be the components

needed to build a universal computer, which must be quantum mechanical in nature.

To reiterate, a universal computer is a single machine that can perform any physically

possible computation [7]. Since a Turing machine can perfectly emulate any digital

circuit, but does not satify the above principle, then none of the components of the

circuit could be universal. A quantum computer, however, is a universal computer.

A quantum computation can be defined as a series of unitary transformations

on a quantum mechanical state followed by an experimental measurement. This

measurement collapses a subspace of the wavefunction and yields information about

the computation. A particularly useful unitary operator is U = e−iHt/~, found by the

formal integration of the Schrödinger equation with a Hamiltonian H.

If we adopt the matrix representation for a single qubit, as in Eq. 5, then any

unitary transformation3 U(2) on this qubit is called a 1-qubit gate. Any such matrix

can be written as a product of four fundamental 1-qubit gates:

U(2) = V1V2V3V4, (11)

where
3A matix U is unitary if and only if U∗ = U−1.

7



V1 =







eiδ 0

0 eiδ






(12)

V2 =







eiα/2 0

0 e−iα/2






(13)

V3 =







cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)






(14)

V3 =







eiβ/2 0

0 e−iβ/2






, (15)

in which δ, α, θ, and β are real [8]. If we take θ = π/2, α = π, β = 0, and δ = −π,

then Eq. 11 is called the Hadamard gate:

R =
1√
2







1 1

1 −1






. (16)

Thus R acting on the eigenvectors {|0〉, |1〉} would give

R|0〉 =
1√
2
(|0〉 + |1〉) (17)

R|1〉 =
1√
2
(|0〉 − |1〉). (18)

Now consider L qubits, with U being a 2L−1 dimensional unitary matrix. Deutsch

has shown that any such transformation can be reduced to a product of unitary

matrices, one spanning a 2 qubit subspace, the others being single qubit gates, which

are often referred to as rotations. Such 2 qubit gates are universal gates [7].
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One of the most intuitive universal gates is the ‘Controlled-Not’ or CNOT gate.

In the computational basis {|00〉, |01〉, |10〉, |11〉} it is written as

CNOT =



















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















, (19)

or more compactly

CNOT : |C〉|T 〉 = |C〉|T ⊕ C〉, (20)

in which C ε {0, 1} is the control, T ε {0, 1} is the target, and ⊕ denotes addition

modulo 2. The target’s eigenstate is flipped if and only if the control’s eigenstate is

|1〉. Notice that this process is reversible; the input can be entirely determined from

the output. If both qubits are in a pure eigenstate, then the CNOT gate is simply a

classical XOR gate.

C

T

C

CT

Figure 2: |C〉 represents the Control qubit, |T 〉 represents the target qubit. The wires (horizontal

lines) contain the state of each qubit. Notice that the computation may proceed in either direction:

this is a reversible gate.

For example, if |Ψ〉 = 1√
2
(|00〉 + |10〉), then CNOT|Ψ〉 = 1√

2
(|00〉 + |11〉). Notice
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that this operation effectively entangles the two qubits. Originally, Ψ was in a fac-

torable product state 1√
2
(|0〉 + |1〉)(|0〉). After the CNOT gate is applied, Ψ cannot

be factored, thus measurement of one qubit necessarily changes the state of the other

qubit. This is what is meant by entanglement. A conceptual diagram is given in

Fig. 2.

Thus, in principle, we only need a CNOT gate and the rotation operators to

build any multi-qubit quantum gate. If we choose δ, α, θ, and β in (11) to be

irrational multiples of π, then we only require 4 1-bit gates, since any rotation can

be approximated with arbitrary accuracy by iterating the gate a certain number of

times. Thus only 5 gates are needed to perform any computation to any desired

accuracy.

Notice the absence of a quantum mechanical COPY gate. It turns out that, in

general, a qubit cannot be copied. A simple proof is given by Wooters and Zurek [9].

2.4 Deutsch’s Problem

R R

R Uf

0

1

Measure

Figure 3: A quantum circuit that solves Deutsch’s problem. The first qubit is initially set to |0〉,

while the second is set to |1〉.

Deutsch’s problem shows how a quantum computation is performed. Suppose we

have a black box Uf that computes the function f : {0, 1} −→ {0, 1} through the

operation

10



Uf : |a〉|b〉 = |a〉|b⊕ f(a)〉, (21)

in which a, b ε {0, 1}. The ⊕ operation is simply XOR. In words, if f(a) = 0, then

|b〉 is left unchanged. If f(a) = 1, then b is flipped in |b〉.

The challenge is to determine whether f(0) = f(1) in a single use of the black

box, a task that would require 2 accesses to the box classically. The quantum circuit

solving this problem in a single access of the box is shown in Fig. 3, which makes

use of the Hadamard gate in Eq. 17. The first qubit is initially set to |0〉, while the

second is set to |1〉. Following the computation from left to right,

|0〉|1〉 −→ (R|0〉)(R|1〉) =
1

2
(|0〉 + |1〉)(|0〉 − |1〉) (22)

−→ U
1

2
(|0〉 + |1〉)(|0〉 − |1〉) (23)

= U
1

2
(|0〉|0〉 + |1〉|0〉 − |0〉|1〉 − |1〉|1〉) (24)

=
1

2
(|0〉|f(0)〉 + |1〉|f(1)〉 (25)

−|0〉|¬f(0)〉 − |1〉|¬f(1)〉 (26)

=
1

2
((−1)f(0)|0〉 + (−1)f(1)|1〉)(|0〉 − |1〉) (27)

−→ 1

2
((−1)f(0)

R|0〉 + (−1)f(1)
R|1〉)(|0〉 − |1〉 (28)

=
1

2
[((−1)f(0) + (−1)f(1))|0〉 (29)

+((−1)f(0) − (−1)f(1))|1〉] 1√
2
(|0〉 − |1〉) (30)

−→ (measurement)
1√
2
(|0〉 − |1〉). (31)

Thus if f(0) = f(1), then a measurement of the first qubit would yield the state |0〉

with 100% probability. If f(0) 6= f(1), the same measurement would yield the state

|1〉 with 100% probability. A single access of the box has solved the problem exactly.
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Now that we understand the elements of a quantum computation, we are prepared

to discuss a more complex quantum circuit and algorithm.
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3 The Shor Algorithm

Given an integer N , how does one find its prime decomposition? We will define the

size of a number as dlog2Ne, the number of bits required to store N .4 One approach

would be to divide N by the primes 2, 3, 5, . . . until a factor is found. While this

method will work, it is not practical, for as the size of N becomes larger the number

of divisions required grows exponentially.5 The following definition is made to clarify

the situation:

We say that an algorithm is efficient if the number of steps required grows

slower than a fixed polynomial of its input size.

Currently no efficient classical algorithm had been discovered to factor large in-

tegers. Consequently number factorization is the basis for RSA (Rivest, Shamir,

Adleman) encryption, the most popular method for securing communications over

the internet [10].

We will need some number theory in order to understand a better way to factor

large integers.

3.1 Some Number Theory

Suppose we are given an integerN composed of at least 2 prime factors. Let us assume

that N is odd and is not a prime power, since there exist efficient classical algorithms

for factoring in those cases. Choose an integer X 6= 1 such that gcd(X,N) = 1,

where gcd is the greatest common divisor function (Note that Euler’s algorithm can

compute this function efficiently). Now consider the function

g(a) = Xa mod N. (32)

4dxe denotes the least integer greater than x.
5To make this clear, let the size S = log2N . If we multiply the size by a number α, then αS = α log2N =

log2Nα ≡ log2N
′, thus the new number considered N ′ is exponentially larger than the previous number N .
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Euler’s theorem shows that there exists a least power r(6= 0) of X such that

Xr ≡ 1 mod N. (33)

This r is called the order of g, and since integer multiples of r leave Eq. 33 invariant

it is also called the period of g. In the case that r is even, we may subtract 1 from

both sides of Eq. 33 and factor, yielding

(Xr/2 − 1)(Xr/2 + 1) ≡ 0 mod N. (34)

This implies that N divides the left hand side of Eq. 34. It is impossible for N to

divide (Xr/2 − 1), since that would imply that the order of g equals r/2 6= r. So, if N

does not divide (Xr/2 + 1), then both of the terms in Eq. 34 must contain all of the

factors of N . One then simply computes gcd(Xr/2 ± 1, N) to find the factors of N .

Thus in order to insure nontrivial factors of N in this process we must choose an

X with even order such that Xr/2 6= 1 mod N . Fortunately, the probability P of this

happening (which is equivalent to the probability of choosing a ‘good’ X) is always

at least 1/2:

P ≥ 1 − 1

2k−1
, (35)

in which k is the number of unique prime factors of N [11].

Therefore the problem of factorization can be reduced to finding the order of g.

No classical algorithm has been discovered to do this efficiently, although no one has

proven that such an algorithm does not exist. However, a quantum algorithm does

exist to compute r efficiently, which uses the so-called Quantum Fourier Transform.
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3.2 The Quantum Fourier Transform

The quantum fourier transform is an essential element in the Shor algorithm. Suppose

we have L qubits, on which we want to perform the transform. By writing the total

state of these qubits in the computational basis, as in Eq. 3, and setting q = 2L, the

transform is

QFTq|x〉 =
1√
q

q−1
∑

y=0

e2πi
xy

q |y〉. (36)

To make this clear, suppose we want to perform this transform on 2 qubits, where

the total state reads Ψ = |1〉|0〉. This is equivalent to |2〉 in the computational basis6.

Therefore

QFT4|10〉 =
1

2

3
∑

y=0

e2πi
y

4 |y〉 (37)

=
1

2
(|0〉 − |1〉 + |2〉 − |3〉) (38)

≡ 1

2
(|00〉 − |01〉 + |10〉 − |11〉) (39)

=
1

2
(|0〉 + |1〉)(|0〉 − |1〉). (40)

Completely enumerating the transformations for 2 qubits,

QFT4|00〉 =
1

2
(|00〉 + |01〉 + |10〉 + |11〉) (41)

QFT4|01〉 =
1

2
(|00〉 + i|01〉 − |10〉 − i|11〉) (42)

QFT4|10〉 =
1

2
(|00〉 − |01〉 + |10〉 − |11〉) (43)

QFT4|11〉 =
1

2
(|00〉 − i|01〉 − |10〉 + i|11〉). (44)

6Ψ = |x〉 = |1〉|0〉 ≡ |2〉 since 01 in binary is 2 in base 10.
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Now consider the sequence of gates R2, S2,1, R1 starting from the right, where Ri

is the Hadamard gate in Eq. 17 acting on the ith qubit, and S1,0|11〉 → i|11〉, leaving

the other combinations the same. This sequence acting on the state |0〉1|1〉2 is

R1|0〉1|1〉2 =
1√
2
(|0〉 + |1〉)|1〉 (45)

=
1√
2
(|01〉 + |11〉) (46)

↙

S2,1
1√
2
(|01〉 + |11〉) =

1√
2
(|01〉 + i|11〉) (47)

↙

R2
1√
2
(|01〉 + i|11〉) =

1

2
(|00〉 − |01〉 + i|10〉 − i|11〉). (48)

Eq. 48 looks similar to Eq.42, but they are not quite the same. Notice that by

reversing the order of the qubits in Eq. 48, the final state becomes

1

2
(|00〉 − |01〉 + i|10〉 − i|11〉) 7−→ 1

2
(|00〉 + i|01〉 − |10〉 − i|11〉), (49)

which is precisely Eq.42, the quantum fourier transform of |0〉|1〉. Shor proved that

this process can be extended to operating on L qubits using the sequence

(RL)(SL−1,LRL−1)(SL−2,LSL−2,L−1RL−2) . . . (S1,LS1,L−1 . . . S1,3S1,2R1), (50)

operating from right to left, and finally reversing the order of the qubits [5]. The

operator Sm,n is given by
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Sm,n =



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiπ/2
n−m



















, (51)

which simply changes the phase of the total state containing |1〉m|1〉n. Notice that

there are L instances of R, and L(L− 1)/2 instances of S, for a total of L(L+ 1)/2

operations. Thus the quantum fourier transform acting on L qubits can be reduced

to L(L + 1)/2 operations, each acting on 1 and 2 qubit subspaces. The following

algorithm can be made efficient because of this polynomial scaling in the number of

operations as L increases.

3.3 Algorithm

QFT QFT

X   mod N

Φ1

Φ2
Φ1

Measure

Measure

Figure 4: A graphical representation of the Shor algorithm. Register Φ1 is initially set to 0.

The Shor Algorithm requires two registers of qubits: Φ1 and Φ2. The first register

Φ1 has L = d2 log2Ne qubits. As before, we take q = 2L. The second register Φ2

must have at least dlog2Ne qubits.

Initially we set Φ1 = |0〉|0〉 . . . |0〉L. Then we apply the QFTq gate to this register,

which is equivalent to applying the Ri gate to each qubit. Now the register is in an
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equal superposition of all the possible binary numbers it can store. The next step is

to set Φ2 = XΦ1 mod N , and perform a measurement on this register.

This measurement will always return an eigenstate of the computational basis of

Φ2, call it C. This number must then be of the form C = X l mod N , and since

1 ≡ Xmr mod N with m being a positive integer less than M = b(q − l)/rc, it must

also be equivalent to

C = X l+mr mod N. (52)

Thus Φ1 must contain numbers of the form l+mr, a smaller subset of its previous

contents. Without loss of generality, let us assume that r divides q. Application of

the next QFTq gate will help us extract r.

QFTq : |Φ1〉 =
1√
r

r−1
∑

m=0

e2πi
lm
r |mq

r
〉. (53)

Finally we measure |Φ1〉, which will yield an integer multiple of q/r. This multiple has

a high probability (1− 1/ log2 r) of having no common factors with r. Since we know

q and C, r can be determined from a series of irreducible fractions [11]. Referring to

Section 3.1 one can then find a nontrivial factor of N .
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4 The Ion Trap

z = 0

z

a0

z

γ
Ion

� � ���

Laser

γ

Figure 5: The laser targets the ion in the center of the diagram. At the center of the string, a0 is

given by Eq. 56, otherwise it is larger, and must be calculated.

4.1 Introduction

In 1995 Cirac and Zoller proposed a scheme to implement CNOT , QFT , and 1-qubit

quantum gates using a string of cold trapped ions [6]. Their idea is to use two energy

eigenstates of an ion as a single qubit. The center of mass (COM) mode of the string

provides a phonon which serves as a ‘bus qubit’ to convey an interaction between

any two ions. Two types of laser pulses are needed: One changes the internal state

of an ion as a single qubit rotation, while the other couples an ion’s internal state

with a COM phonon. This requires one to be able to individually target an ion with

a laser and induce a transition without affecting the internal quantum states of the

neighboring ions. The situation is depicted in Fig. 5.
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4.2 Ion Spacing

Consider a string of L ions, each of mass m, charge Ze, in a linear Paul trap [12], [13].

They are tightly bound in the x and y directions and weakly bound by a harmonic

potential in the z direction with angular frequency ωz. Thus considering only the

harmonic potential and Coulomb interaction, the potential energy of the chain is

V =
L
∑

m=1

1

2
mω2

zzm(t)2 +
N
∑

n,m=1
m6=n

Z2e2

8πε0

1

|zn(t) − zm(t)| . (54)

If we assume that z(t)m ≈ z
(0)
m +q(t), where z

(0)
m is the equilibrium position of the mth

ion and qm(t) is a small displacement, then the equilibrium positions can be solved

by using

(

∂V

∂zm

)

zm=z
(0)
m

= 0. (55)

This will lead to L coupled equations, which can be solved numerically. We define a0

as the minimum spacing of ions, which occurs at the center of the trap. This spacing

has been calculated by James [14], and is approximated by:

a0 =

(

Z2e2

4πε0mω2
z

)1/3
2.018

L0.559
. (56)

Ion λ(µm) ωz/2π(kHz) a0 for 10 ions (µm) a0 for 100 ions (µm)

Beryllium 9 .313 452 6.9 1.9

Calcium 40 .397 63 88.3 24.3

Table 1: Minumum spacings a0 are given for select ions in 2 proposed schemes [15].
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Some proposed ions with their transition wavelengths and trap frequencies are

shown in Table 1. Note that the spacing can be increased by lowering the trap

frequency. While this may seem advantageous, the result would be a slower quantum

computer.

4.3 Ion-Laser Interaction

|g>

|e >

|e >

0

1

Energy Levels in an ion

δ

Harmonic Trap

Energy Levels

Figure 6: Energy levels within an ion. Levels |g〉 and |e0〉 will be our |0〉 and |1〉 qubit eigenstates,

respectively. The third level is used only to change the relative phase of the qubit levels; it is never

left populated. The energy levels of the trap, with spacing δ = ωz, are superimposed on the diagram.

We envision a 3 level system within each ion, as shown in Fig. 6. The energy

levels |g〉 and |e0〉 will represent the qubit eigenstates |0〉 and |1〉, respectively. The

third level |e1〉 is coupled only to the state |g〉, and will never be left populated. The

Hamiltonian for a laser focused on the nth ion and coupling the ground state |g〉 to

|eq〉 is

Hn,q =
η√
L

Ω

2

(

|eq〉n〈g|a+ |g〉n〈eq|a†
)

, (57)

in which

η =

√

~

2mωz
k · ẑ. (58)
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The quantity k · ẑ is the component of the laser wave vector along the axis of the

trap, and Ω is the Rabi frequency. For interactions between the qubit levels the laser

is detuned by δ = −ωz, which creates or annihilates a COM phonon. For example,

if the ion is in the |e0〉 state, then a detuned laser pulse would induce stimulated

emission and introduce a phonon. The operators a† and a in Eq. 57 are the creation

and annihilation operators for this phonon. The time evolution of this Hamiltonian

is given by

U l
n,q = exp

(

−iktπ
2
|eq〉n〈g|a+ ikt

π

2
|g〉n〈eq|a†

)

, (59)

in which t = lπ/(Ωη
√
L) is the time that the laser is on. Notice that a COM phonon

is created only in a transition from |e0〉 → |g〉, and is annihilated in the reverse

transition. If we denote the phonon states as |0〉phonon and |1〉phonon, then the operator

in Eq. 59 would cause the following transitions:

U l
n,q|g〉n|0〉phonon = |g〉n|0〉phonon (60)

U l
n,q|g〉n|1〉phonon = cos(lπ/2)|g〉n|1〉phonon − i sin(lπ/2)|el〉n|1〉phonon (61)

U l
n,q|eq〉n|0〉phonon = −i sin(lπ/2)|g〉n|1〉phonon + cos(lπ/2)|eq〉n|1〉phonon. (62)

Suppose we want to perform a CNOT gate on two ions, with the control qubit

being the mth ion and the target qubit being the nth ion. In the computational basis,

only one of the eigenstates is altered:

U1
m,0U

2
n,1U

1
m,0|e0〉m|e0〉n = −|e0〉m|e0〉n. (63)

To see that this performs a CNOT gate, consider the state |±〉 = 1√
2
(|g〉 ± |e0〉).

Then these 3 pulses would leave the state |g〉m|±〉n unchanged while transforming the

state |e0〉m|±〉n into |g〉m|∓〉n, which is precisely the controlled-not operation.
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5 Tightly Focused Electromagnetic Beams

To realize the targeting of an ion, we must be able to describe the fields of a tightly

focused laser beam. We begin by reviewing some elementary electromagnetism.

5.1 Basic Electromagnetism

Consider a harmonically varying monochromatic beam propagating in the z direction,

focused on the point where z = 0, and assume the absence of source charges. It follows

from Maxwell’s equations that a vector potential A(r, t) and a scalar potential V

completely describe the beam. We pick the Lorentz gauge

∇ · A(r, t) = −1

c

∂

∂t
V, (64)

which implies that the vector potential must satisfy the wave equation

(

∇2 − 1

c2
∂2

∂t2

)

A(r, t) = 0. (65)

Call the angular frequency of the beam ω. The wavelength λ = 2πc/ω and the wave

number k = ω/c, where c is the speed of light in a vacuum. Since we have assumed

a harmonically varying beam, we can write A(r, t) = A(r)e−iωt in complex notation.

Eq. 65 can then be replaced by the time-independent Helmholtz equation

(

∇2 + k2
)

A(r) = 0, (66)

which, in cylindrical coordinates (r, θ, z), is

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
+ k2

)

A(r, θ, z) = 0. (67)
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The electric and magnetic fields are given by

E(r, t) = −∇V − 1

c

∂

∂t
A(r, t) (68)

B(r, t) = ∇× A(r, t). (69)

By assuming the same harmonic dependence in V as in A and using Eq. 64 we can

write the spatial part of the electric field as

E(r) =
i

k

(

∇(∇ · A(r)) + k2A(r)
)

. (70)

The real time dependent electric and magnetic fields are

E(r, t) = Re{E(r)e−iωt} (71)

B(r, t) = Re{B(r)e−iωt}. (72)

The energy and momentum densities u and p are

u =
ε0
2

(E2 + c2B2) (73)

p = ε0(E × B). (74)

By time averaging these quantities over a cycle the densities become
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u =
ε0
4

(

E(r) · E∗(r) + c2B(r) · B∗(r)
)

(75)

p =
ε0
2
Re{E(r) × B∗(r)}. (76)

The energy flux density is given by the Poynting vector

S =
1

µ0

(E × B) = c2p, (77)

whose time average is simply

S = c2p. (78)

From now on let us refer only to the time averaged quantities, so we relabel the

following: u → u, p → p, S → S. We will also only be concerned with linearly

polarized beams, so in Cartesian coordinates (x, y, z), the spatial part of the vector

potential takes the form

A(r) = A0(ψ, 0, 0), (79)

in which A0 is a constant and ψ = ψ(r). Also, all references to the Poynting vector

and energy and momentum densities will be to the time-averaged forms.

5.2 Paraxial Approximation

The intensity profile of a typical laser beam is approximately Gaussian shaped, so

usually a Gaussian shaped vector potential is sought from Eq. 65. The procedure
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begins by assuming the most rapidly varying z dependence of the vector potential lies

in the factor eikz. If we write a component of the vector potential ψ = G(r, θ, z)eikz,

then Eq. 67 becomes

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
+ 2ik

∂

∂z

)

G(r, θ, z) = 0. (80)

The paraxial approximation assumes that

∣

∣

∣

∣

∂2G

∂z2

∣

∣

∣

∣

� k

∣

∣

∣

∣

∂G

∂z

∣

∣

∣

∣

, (81)

so we can neglect the former term. By assuming axial symmetry, the ∂2G
∂θ2

term is

zero. Thus Eq. 80 is reduced to

(

∂2

∂r2
+

1

r

∂

∂r
+ 2ik

∂

∂z

)

G(r, θ, z) = 0, (82)

which admits the solution

ψ =
b√

b2 + z2
e
− kbr2

2(b2+z2) e
i

(

kz−tan−1( z
b )+ kzr2

2(b2+z2)

)

. (83)

The parameter b is the diffraction length (also called the Rayleigh length), which

is defined to be the distance from the focal point that the area of the beam doubles7.

The waist, or radius of the beam at the focus, is given by

w =

√

2b

k
. (84)

7The edge of the beam at a given z coordinate is defined to be the point where ψ drops to 1/e of it’s value at the

center of the beam
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b

z

z = 0

2 w

Figure 7: A representation for a beam focused at z = 0. The parameter w is the radius of the beam

at the focus, and b is the diffraction length.

These quantities are illustrated in Fig. 7.

Unfortunately the paraxial approximation breaks down when the beam waist is

on the order of a wavelength. Furthermore, the Gaussian profile in Eq. 83 leads to

fields that do not satisfy Maxwell’s equations. This problem was addressed by Lax,

Louisell, and McKnight, who developed a consistent method for expanding solutions

of Eq. 80 in terms of a small parameter, of which the first satisfies the paraxial

approximation [16].

Couture and Belanger later showed that all of these solutions converged to a spher-

ical point source given by

ψ =
e−ikRc

kRc

, (85)

in which Rc =
√

r2 + (z − ib)2 [17]. Although this is a solution to the Helmholtz

equation, it is not physical, for when z = 0 and r = b, the vector potential will

27



diverge. Sheppard and Saghafi resolve this problem by considering a superposition of

incoming and outgoing spherical point sources [18], which can be written as

ψ =
sin(kRc)

kRc

. (86)

We also know exact solutions to the Helmholtz equation that generalize Eq. 86:

ψlm = jl(kR)Plm(cos θc)e
±imθ. (87)

The complex polar angle θc is defined by cos θc = z−ib
R

. With r0 being the location of

the source in the plane perpendicular to the z axis,

R =
√

(r − r0)2 + (z − ib)2. (88)

The jl is the lth spherical Bessel function, and Plm is an associated Legendre polyno-

mial [19]. In fact, Eq. 86 is simply ψ00 = j0(kR) when r0 = 0.

Lekner has examined ψ00 in detail [19], and has shown that it cannot be physically

realizable, because any realistic electromagnetic beam must possess a finite amount

of energy in any finite length of the beam:

∫ z2

z1

dz

∫ ∞

−∞
rdr

∫ π

−π
dθ u <∞. (89)

This requires that each component ψ of the vector potential be normalizable at a

given z coordinate:
∫ ∞

−∞
rdr

∫ π

−π
dθ |ψ|2 <∞. (90)
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The ψ00 source does not satisfy this criteria, and therefore cannot be a component

in a vector potential that yields physical fields, since the following integral diverges

logarithmically:
∫ ∞

−∞
rdr

∫ π

−π
dθ |ψ00|2 −→ ∞. (91)

However, this solution should not be abandoned, for it will still yield physical fields.
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6 The Ring Potential

We will now construct a solution of the Helmholtz equation that satisfies Maxwell’s

equations and yields physical fields. This is done by considering a special distribution

of ψ00 sources (Eq. 86) which is normalizable in the sense of Eq. 90. In cylindrical

coordinates (r, θ, z), a single source ψ00 placed at a point (r0, φ0,−ib) would have an

R (Eq. 88) of the form

R =
√

(r2 + r2
0 − 2rr0 cos(θ − φ0) + (z − ib)2. (92)

Since we require ψ to be cylindrically symmetric, any distribution of ψ00 sources must

also have that same symmetry. One such distribution is a continuous ring of radius

a, which is represented by the following integral:

ψ =

∫ ∞

−∞
r0dr0

∫ π

−π
dφ0 δ(r0 − a)

sin(k
√

(r2 + r2
0 − 2rr0 cos(θ − φ0) + (z − ib)2)

k
√

(r2 + r2
0 − 2rr0 cos(θ − φ0) + (z − ib)2

= a

∫ π

−π
dφ0

sin(k
√

(r2 + a2 − 2ra cos(θ − φ0) + (z − ib)2)

k
√

(r2 + a2 − 2ra cos(θ − φ0) + (z − ib)2
(93)

= a

∫ π

−π
dφ

sin(k
√

(r2 + a2 − 2ra cos(φ) + (z − ib)2)

k
√

(r2 + a2 − 2ra cos(φ) + (z − ib)2
. (94)

Eq. 93 is simply the integration over the delta function δ(r0 − a), and Eq. 94 relabels

φ0 as φ and ignores θ due to cylindrical symmetry. We suppress a, since it is simply

a multiplicative constant, and obtain the final form for the ring:

ψRing =

∫ π

−π
dφ

sin(k
√

(r2 + a2 − 2ra cos(φ) + (z − ib)2)

k
√

(r2 + a2 − 2ra cos(φ) + (z − ib)2
. (95)

The vector potential for this ring, in Cartesian coordinates, is therefore
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ARing = A0(ψRing, 0, 0). (96)

6.1 The Radius of the Ring

Now we will determine the radius a of the ring such that ψRing is normalizable. First,

we asymptotically expand
√

(r2 + a2 − 2ra cos(φ) + (z − ib)2 about r at infinity:

R =
√

(r2 + a2 − 2ra cos(φ) + (z − ib)2 (97)

=
1

r

√

(1 +
a2

r2
− 2a cos(φ)

r
+

(z − ib)2

r2
(98)

∼ r − a cos(φ) + O
(

1

r

)

. (99)

So for large r Eq. 95 asymptotically approaches

ψRing ∼
∫ π

−π
dφ

sin(kr − ka cos(φ))

kr − ka cos(φ)
(100)

∼
∫ π

−π
dφ

sin(kr − ka cos(φ))

kr
(101)

= 2πJ0(ka)
sin(kr)

kr
, (102)

in which J0 is the zeroth order Bessel function of the first kind. We now find that,

by setting ak to be the zero of this Bessel function, that the 1/r behavior of ψRing

vanishes. If ai is any zero of J0, then we choose

a =
ai
k
. (103)
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Figure 8: A comparison of ψRing’s using different ai values (J0(ai) = 0), showing that the smallest

one forms a function most similar to a Gaussian function (Eq. 83) of the same parameters, shown

in black. The plots are done with a waist of 2λ at z = 0. Lighter lines represent higher ai values.

From Fig. 8, we see that the first zero most closely approximates a Gaussian curve

of the same parameters; thus we will pick this zero, which to 20 decimal digits is

2.4048255576957727686.

6.2 Approximating the Ring Potential

Unfortunately the angular integral in Eq. 95 has no simple solution. The approxima-

tion we will now develop is valid as r → ∞ and near the center of the beam.

We first define q to be the terms in R (Eq. 97) that do not depend on cos(φ):

q2 ≡ r2 + a2 + (z − ib)2. (104)

Then R becomes
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R =
√

q2 − 2ra cos(φ). (105)

We define ∆ to be R minus it’s leading order terms in an asymptotic expansion8:

∆ ≡
√

q2 − 2ra cos(φ) − (q − ra cos(φ)

q
). (106)

Now Eq. 95, without the integral, can be written in terms of ∆:

sin(kR)

kR
=

1

2ik

(

eikR

R
− e−ikR

R

)

(107)

=
1

2ik

(

eik(∆+q− ra cos(φ)
q

)

R
− e−ik(∆+q− ra cos(φ)

q
)

R

)

(108)

=
1

2ik

(

eikqe−i
kra cos(φ)

q
eik∆

R
− e−ikqei

kra cos(φ)
q

e−ik∆

R

)

(109)

=
1

2ik

(

eikqe−i
kra cos(φ)

q A− e−ikqei
kra cos(φ)

q B
)

, (110)

where

A ≡ eik∆

R
(111)

B ≡ e−ik∆

R
. (112)

Now we expand A and B asymptotically about q at infinity:

A ∼ 1

q
+
ar cos(φ)

q3
− ia2kr2 cos2(φ)

2q4
+ O

(

1

q5

)

(113)

8
√

q2 − 2ra cos(φ) ∼ q − ra cos(φ)
q

+ O( 1
q3

)
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B ∼ 1

q
+
ar cos(φ)

q3
+
ia2kr2 cos2(φ)

2q4
+ O

(

1

q5

)

. (114)

Notice that Eqs. 113-114 each contain powers of cos(φ). For example, keeping terms

to order 1/q3 we can now integrate Eq. 110 (see Appendix):

∫ π

−π
dφ

sin(kR)

kR
=

∫ π

−π
dφ

1

2ik

(

eikqe−i
kra cos(φ)

q A− e−ikqei
kra cos(φ)

q B
)

(115)

∼= eikq

2ik

∫ π

−π
dφ e−i

kra cos(φ)
q

(

1

q
+
ar cos(φ)

q3

)

(116)

−e
−ikq

2ik

∫ π

−π
dφ ei

kra cos(φ)
q

(

1

q
+
ar cos(φ)

q3

)

=
eikq

2ik

(

2πJ0(kra/q)

q
− 2πiarJ1(kra/q)

q3

)

(117)

−e
−ikq

2ik

(

2πJ0(kra/q)

q
+

2πiarJ1(kra/q)

q3

)

=
2πJ0(kra/q)

kq
sin(kq) − 2πarJ1(kra/q)

kq3
cos(kq). (118)

This procedure is easily generalized to obtain any higher order term. Let us label

ψ
(n)
Ring as the approximation to ψRing keeping n terms in the asymptotic expansion in

Eqs. 113-114. With 3 terms the approximation to ψRing is

ψ
(3)
Ring =

2πJ0

(

kra
q

)

kq
sin(kq)−

2πarJ1

(

kra
q

)

kq3
cos(kq)+

πa2r2
(

J2

(

kra
q

)

− J0

(

kra
q

))

2q4
cos(kq).

(119)

6.3 Large r

Since q ≈ r for large values of r, our asymptotic expansion gets better as r → ∞.

However, it is important to know how many terms we must keep.
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Notice that (kra/q) → ka as r → ∞. Therefore the first term in Eq. 119 goes to

zero, since ak was chosen to be precisely a zero of J0. Furthermore, all other Bessel

functions in the approximation go to a constant, and sin(kq), cos(kq) oscillate, so we

must look at the r dependence of their coefficients. The second term is shown in

Eq. 118, from which we gather that the r dependence goes like 1/r2. However, the

third term (seen in Eq. 119) also goes as 1/r2. It can be shown that the remaining

terms drop off as 1/rn where n ≥ 3, thus we only need to keep three terms for the

asymptotic expansion to work as r → ∞.

ψRing evaluated at an arbitrary point r:

Approximation r = 102λ r = 103λ r = 104λ r = 105λ

1 Term 0.0860162 −1.26286 × 10−7 −1.17417 × 10−11 −1.17329 × 10−15

2 Terms 0.0907007 −3.859 × 10−7 −2.0046 × 10−9 −1.98716 × 10−11

3 Terms 0.089324 −2.5606 × 10−7 −1.00817 × 10−9 −9.93639 × 10−12

4 Terms 0.0893905 −2.56049 × 10−7 −1.00817 × 10−9 −9.93639 × 10−12

5 Terms 0.0895554 −2.56025 × 10−7 −1.00817 × 10−9 −9.93639 × 10−12

Exact 0.0895243 −2.56025 × 10−7 −1.00816 × 10−9 −9.93639 × 10−12

Table 2: Accuracy of the asymptotic expansion at arbitrary values of r. Approximations are com-

pared to the ‘exact’ numerical integration of ψRing. Other parameters used: w = 2λ, z = 10λ.

These results show that one must use at least 3 terms to accurately model ψRing at large r.

Table 2 gives evidence for this conclusion. The reference ‘Exact’ solution is a

numerical integration of Eq. 95, which begins to fail beyond r = 105λ. Therefore, for

large values of r, we will use Eq. 119 as an accurate representation for ψRing.
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6.4 Small r

Since we have used an asymptotic expansion, one would expect to have a singularity

somewhere. This occurs where q = 0, which is where (kr)2 = (kb)2 − (ka)2 − (kz)2 +

2ik2bz = 1
4
(kw)4 − (ka)2 − (kz)2 +2ik2bz. Since r is always real, the singularity must

be where z = 0 and (kr)2 = 1
4
(kw)4 − (ka)2 ≈ 1

4
(kw)4, or simply when r ≈ b. This

aspect of the approximation allows it to not only be used as r → ∞, but also near

r = 0, so long as the singularity is avoided.

At r = 0, all but the first term in Eq. 119 drop out, for q is most likely non-zero

there.9 Thus we postulate that ψ
(1)
Ring will adequately describe ψRing near r = 0. This

is supported in Figs. 9 -10, which plot the approximations at z = 0 and z = b and

their errors, taken to be the difference between the approximation and numerical

integration of Eq. 95. Only in the case of tight focusing (w = 2λ) does the error seem

to show up, and even then it is minuscule.

9If b = a, however, we could have problems at z = 0. This would only occur in a beam of a waist exactly

√

a1/πλ ∼= 0.87λ, where a1 is the first zero of J0.
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Figure 9: Plots of the first approximation ψ
(1)
Ring at z = 0 and z = b with errors given by the

difference between this approximation and the numerical integration of Eq. 95. These plots suggest

that only the first term in the approximation in Eq. 119 is needed for the region where r is small.
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Figure 10: Similar to Fig. 9, these plots consider a larger waist of 10λ. Notice that the errors are

quite small.
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6.5 Near b
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Figure 11: The behavior of our approximations near the singularity at z = 0, r = b for a beam of

waist 2λ, compared to ψExact, which is a numerical integration of ψRing (Eq. 95). For r < b the

ψ
(1)
Ring solution is used, while ψ

(3)
Ring is used for r > b. The latter approximation becomes quite good

just 2 wavelengths past the singularity.

As outlined above, the approximation fails at z = 0, r = b. Fortunately it fails for

only a small region, roughly a couple wavelengths to either side of b. For a beam of

waist 2λ this can be seen in Fig. 11. If one needed to know the fields in this region, a

simple numerical integration of Eq. 95 would suffice. The parameter b is proportional

to the beam waist squared (Eq. 84), so the singularity region moves into obscurity as

the waist gets larger.

Now, using ψ
(3)
Ring, we can show that ψRing is normalizable. As r → ∞, q → r, and

kra/q → ka = ai. Eq. 119 then goes to a much simpler form:

ψ
(3)
Ring → −2πaJ1(ka)

kr2
cos(kr) +

a2J2(ka)

2r2
cos(kr) (120)

=
1
2
a2
iJ2(ai) − 2πaiJ1(ai)

(kr)2
cos(kr) (121)

∼= −5.27534

(kr)2
cos(kr). (122)
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Since ψRing is finite everywhere, the integral in Eq. 90 converges because
∫

rdr 1/r4 →

0 as r → ∞.

To summarize, our approximation in Eq. 119 is accurate enough to adequately

describe ψRing at all points in space other than a small region about r = b, z =

0. For r < b, only the first term in the expansion is needed. From now on these

approximations will be used for calculations.
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7 Fields
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Figure 12: The electric field at z = 0. Notice that the field is highly polarized in the x direction.

We are now prepared to compute the electric and magnetic fields of a beam given

by ARing (Eq. 79). We will use a tightly focused beam with a waist of 2λ from now

on. Using Eq. 70 and Eq. 69 the Cartesian components of the spatial parts of the
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fields are

Ex = A0
i

k

(

cos2 θ
∂2

∂r2
+

sin2 θ

r

∂

∂r
+ k2

)

ψRing (123)

Ey = A0
i sin 2θ

2k

(

∂2

∂r2
− 1

r

∂

∂r

)

ψRing (124)

Ez = A0 cos θ
∂2

∂r∂z
ψRing (125)

Bx = 0 (126)

By = A0
∂

∂z
ψRing (127)

Bz = −A0 sin θ
∂

∂r
ψRing (128)

The Cartesian components of the Poynting vector are then

Sx =
1

2µ0

Re{EyB∗
z − EzB

∗
y} (129)

Sy = − 1

2µ0

Re{ExB∗
z} (130)

Sz =
1

2µ0

Re{ExB∗
y} (131)
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Figure 13: The z component of the Poynting vector on the plane z = 0. The intensity is highly

symmetric.
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Figure 14: A cross section of the Poynting vector along the plane z = 2λ. Notice in the lower left

plot that the angular component is very small compared to the radial one; the momentum density is

almost entirely cylindrically symmetric. In the lower right plot we see that the momentum density

is strongest at r = 1.05λ, with a value of roughly .7% of that of the z component of the Poynting

vector at z = 2.
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Figure 15: The beam radius of the Gaussian model (Eq. 83) is compared to that found from the

ring model (Eq. 95) for a beam waist w = 2λ. The blue dots indicate the radius where Sr is the

strongest, which correspond to half of the beam radius.

The x and y components at z = 0 of the electric field are shown in Fig. 12. Notice

that the field is highly polarized, just as we specified.

The Poynting vector is strongest in the direction of propagation, as expected, and is

shown in Fig. 13 The perpendicular components Sx and Sy can easily be transformed

into radial and angular components:

Sr = Sx cos θ + Sy sin θ (132)

Sθ = Sx sin θ − Sy cos θ (133)

As seen in Fig. 14 the radial component is highly symmetric about the z axis. The
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Figure 16: A superposition of Fig. 15 on a contour plot of the values of Sr relative to those of Sz at

the same z coordinate. White indicates higher intensity, which implies that the beam is diverging.

vector field indicates that the beam is diverging, with more of the momentum going

in the radial direction.

The radius of the beam at a given z coordinate is defined to be the value of r

where Sz drops to 1/e2 of its value at r = 0. The Gaussian model (Eq. 83) gives a

compact form for the radius:

BeamRadius(z) = w
√

1 + (z/b)2 (134)

This is compared with our model in Figs. 15-16. Also shown is the peak of Sr, which
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Figure 17: This contour plot shows the value of Sr relative to the value of Sz at the focus. This

value is maximized within a beam waist and within a diffraction length, achieving 1.8% of Sz at the

center of the beam.

is located at a point half of the beam radius at a given z.

Fig. 17 shows us that there is a small region where Sr is particularly strong, around

z = .74b, r = .63λ, with a value of 1.8% of that at the center of the beam. Notice

that Sr is zero on the focal plane z = 0; all of the momentum is in the z direction.

If we let
√

r2 + a2 + (z − ib)2 → r in Sr and Sz, it can be shown that the fields

drop off as 1/r6 and 1/r5, respectively, in the region where r > b. This is where the

Gaussian model (Eq. 83) clearly fails. However, after normalization one realizes that

at r > b the fields have already dropped by e−kb. This can be seen by letting r → 0
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and z → 0 in ψ
(1)
Ring:

|ψ(1)
Ring(r = 0)| = |2π sin(k

√
a2 − b2)√

a2 − b2
| (135)

≈ π

kb
ekb. (136)
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Figure 18: The z component of the Poynting vector on the plane z = 0 beyond r = b = 12.5λ,

compared to Sz at the center of the beam. Even though this field drops off as a polynomial in this

region, it is so small compared to the center that its influences can be ignored.

Even in the tightly focused case when w = 2λ the fields are negligible, as seen in

Fig. 18.
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Figure 19: The geometry of a laser with a beam of waist w focused on an ion at an angle γ to to

the ion trap.

7.1 Application to the Ion Trap

Now we will relate these developments with the ion trap quantum computer. Notice

in Eqs. 57-58 on page 21 that the strength of the interaction between the laser and

an ion is proportional to k · ẑ. Physically this is the momentum along the ion trap’s

axis that is transferred to an ion in order to create or annihilate a phonon, a necessity

for any quantum computation to work.

Suppose that a laser is focused on an ion at the origin, and the angle between the

trap axis and the beam axis is γ, seen in Fig. 19. The geometry of this configuration

tells us that the r and z coordinates associated with another ion of distance a0 away

are

r = a0 sin γ (137)

z = a0 cos γ. (138)
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From Eq. 78, we see that the momentum density is proportional to the Poynting

vector. The angular component of the Poynting vector is negligible, so the momentum

density in the direction of the trap is

pz = p0 (Sr sin γ + Sz cos γ) , (139)

in which p0 is a constant.

Minimum Laser Angle

w=2λ
γ

min

1.56 3 4 5 6 7 8 9 10

a0�������
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π
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����
8

3 π
��������
8

88
o

Figure 20: The minimum acceptable angle that the laser can make with the trap axis in order to

keep pz at the point a0 under 1% of that at the center of the beam. This is plotted for a tight focus

with a waist w = 2λ. Note that it is impossible to achieve this if a0 < 1.56w

Now we will calculate the minimum acceptable angle γmin that the laser can make

with the trap axis. We will define this point by where pz achieves a value of 1% of

that at the targeted ion. Using a tightly focused beam with a waist w = 2λ, we find
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that a neighboring ion could be 2.26 beam waists away from the targeted ion, with a

minimum angle of 45 degrees, and still stay within this 1% threshold. A continuous

set of values is shown in Fig. 20.

Taking the extreme case of Beryllium from Table 1 on page 20, and using Eq. 56,

we find that such a trap could support up to 170 ions with a laser at an angle γ = π/4

and a beam waist of 2λ. Thus it would seem that the constraints on the angle are

minimal in an ion trap quantum computer.
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8 Conclusions

We have shown that, by integrating over a ring, the ψ00 point source in Eq. 86 can be

made normalizable by picking the radius of the ring to be a1/k, where a1 is the first

zero of the Bessel function of the first kind. Since the ψ00 source is a solution to the

Helmholtz equation (Eq. 66) and Maxwell’s equations, our construction ψRing (Eq. 95)

is also a solution. Since the integral in Eq. 95 is intractable, we have developed an

approximation method for vector potential near and far from the focal point.

Within several beam waists our approximation is very similar to the Gaussian. We

find that beyond the diffraction length b, in the radial direction, that the fields drop

off as 1/rn, much slower than a Gaussian. However even for tightly focused beams

the prefactor e−kb, which normalizes the fields to the center of the beam, effectively

eliminates the need to worry about the fields at the edges of the beam (Eq. 136).

In the ion trap quantum computer, it would be possible to focus a laser perpen-

dicular to the ion string slightly off-center in order to get momentum in the direction

of the string, as shown in Fig. 17. However, a 2 degree shift in the laser beam would

give nearly the same momentum density at that point, thus it is advisable to focus

the laser on an angle.

This angle γ, illustrated in Fig. 19, has a limit, because too sharp of an angle

would shine unwanted light onto a neighboring ion, potentially causing an undesirable

transition. However, we have shown that the constraints on γ are quite minimal, and

conclude that tightly focused lasers will impose few limits on future ion trap quantum

computers.

51



A Bessel function integrals

We want to evaluate the integral

I =

∫ π

−π
dφeix cos(φ) cosn(φ). (140)

We know that

∫ π

−π
dφeix cos(φ) = 2πJ0(x). (141)

Notice by taking the nth x derivative of both sides that the integral I is solved:

∂n

∂xn

∫ π

−π
dφeix cos(φ) =

∂n

∂xn
2πJ0(x) (142)

∫ π

−π
dφ

∂n

∂xn
eix cos(φ) =

∂n

∂xn
2πJ0(x) (143)

∫ π

−π
dφeix cos(φ)in cosn(φ) =

∂n

∂xn
2πJ0(x). (144)

It follows that

∫ π

−π
dφe±ix cos(φ) cosn(φ) = 2π(∓i)n ∂

n

∂xn
J0(x). (145)

The first few derivatives of J0(x) are
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∂

∂x
J0(x) = −J1(x) (146)

∂2

∂x2
J0(x) =

1

2
(J2(x) − J0(x)) (147)

∂3

∂x3
J0(x) =

1

4
(3J0(x) − J2(x) + J4(x)) (148)

∂4

∂x4
J0(x) =

1

8
(J2(x) − J0(x)) . (149)
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