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Abstract

We consider uniform nuclear matter (or neutron matter) made of equal number of protons
and neutrons ( or simply neutrons) and study collective modes in this medium at zero temper-
ature. Collective modes are fluctuations (i.e. sound waves) that propagate through the nuclear
medium. We examine the propagation of these elementary excitations through this uniform nu-
clear medium and neutron matter using linear and the more realistic non-linear models. We first
derive a set of non-linear equations, linearize them, and analytically solve these linear equations
to study the propagation and velocity of various modes. We then investigate how the zero-sound
disturbance travels in nuclear media by numerically solving the non-linear differential equations
that depict our system. Again we first linearize these differential equations and consider small
oscillations about the equilibrium. Then we solve the full non-linear case. We let the wave
amplitude grow, and observe how this growing amplitude transforms to a shock wave due to the
non-linearities in the system.
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1 INTRODUCTION

We study here the propagation of elementary excitations through uniform nuclear

matter at zero temperature in the approximation that it can be treated as a semi-

classical, relativistic fluid through the use of the “mean-field” theory (MFT)[1]. We

define an irrotational velocity field v = −∇Ψ (here Ψ is the velocity potential)

describing our collective modes, then solve the system of non-linear equations, which

is described by using a nuclear fluid-dynamical model [2, 3]. Collective modes are

elementary excitations about the equilibrium. They are described by allowing the

meson fields and nucleon densities to acquire a time-dependence [2, 4]. The nucleon

motion modifies the source term in the meson field equations producing corresponding

time-dependent changes in the meson fields [2]. The goal is to see how nuclear matter

reacts to these collective excitations. This work is quite applicable to describing

phenomena such as stellar explosions leading to the formation of neutron stars or

high-energy heavy-ion collisions. One can achieve this by applying the “mean-field”

theory approach to a chosen system and solve the equation of state at all temperatures

rather than simply considering T = 0 [5].

The elementary excitations that are of greatest interest to us are generated by what

we call zero sound, which is the fundamental sound wave travelling through nuclear

media. It is different from ordinary sound in that it does not require collisions in a gas

in thermodynamic equilibrium for propagation, and it is the only sound that occurs

at zero temperature. It is a collective mode sustained by the coherent self-consistent

interaction arising from neighboring particles; thus it occurs in a collisionless regime

and is due to quantum mechanical pressure [6].

We will show that once coupled to the scalar meson field, as described by our

models, the zero sound collective mode will no longer exhibit its usual linear behavior

defined by the dispersion relation: w = |k|v . Using three different sets of parameters

determined experimentally, the linear L2, and the non-linear NLC, and Q1, we will
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calculate the group and phase velocities at which these zero sound modes propagate

in nuclear and neutron matter. Once we are satisfied with our results, we will nu-

merically attempt to solve the non-linear equations of the propagating modes and get

expressions for the velocity potential and Fermi momentum of the nuclear matter,

which depict how the wave evolves in time. This we will do by first linearizing these

equations. Then we will actually keep the non-linear terms and see if we can observe

a shock front forming. Since the linear case is a simplified version of the non-linear

problem, it is crucial that we be able to recover the same initial results from both

systems.

2 QHD

We know that the only consistent framework for discussing the relativistic many-body

system is relativistic quantum field theory based on a local Lagrangian density, which

describes the state of our system [7]. Using this approach, we have to specify our

generalized coordinates (fields) and hadronic degrees of freedom, baryons and mesons

to create a simple model of nuclear matter. In analogy with QED, it is convenient

to refer to local relativistic quantum field theories based on hadronic degrees of free-

dom as quantum hadrodynamics (QHD) [1]. QHD can be regarded as a low energy

(long wavelength) effective theory of QCD, since it embodies all the principles and

symmetries of QCD.

2.1 QHD-I

We will start by concentrating on a simplified model of QHD, which contains fields

for baryons

ψ =

(
p

n

)
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and neutral fields for mesons, φ and Vλ. Here φ is a neutral Lorentz scalar field

coupled to the scalar density ψ̄ψ , and Vλ is a neutral Lorentz vector field coupled

to the conserved baryon current ψ̄γµψ [1]. These choices are motivated by several

considerations. First, φ and Vλ provide the smoothest average nuclear interactions

and should describe the dominant features of the bulk properties of nuclear matter.

Second, in the static limit of infinitely heavy baryons sources, these exchanges give

rise to an effective NN interaction of the form

Vstatic =
g2

v

4π

e−mvr

r
− g2

s

4π

e−msr

r
(1)

With the appropriate choice of coupling constants and masses this potential describes

the main features of the NN interaction: a short-range repulsion due to ω-pion ex-

change, and a long-range attraction due to α-pion exchange, which are responsible

for the saturation properties of nuclear matter [8] The Lagrangian density for this

system (with h̄ = c = 1) then is as given in [1]

L = −1

4
FµνF

µν +
1

2
m2

vVµV
µ +

1

2
[∂µφ∂µφ−m2

sφ
2]− 1

3!
Ωφ3

− 1

4!
λφ4 + ψ̄[γµ(i∂µ − gvVµ)− (M − gsφ)]ψ (2)

where 1 F µν is the vector meson field tensor, which is defined by

F µν ≡ ∂µV ν − ∂νV µ (3)

Note that the higher order terms in φ, which represent the scalar self-interaction, make

the Lagrangian in Eq. 2 consistent with renormalization [1]. These self-interaction

terms are not included in the original version of the model, which uses the L2 (linear)

set of parameters. We can now obtain the field equations from the Lagrangian in Eq.

2

∂νF
νµ + m2

vV
µ = gvψ̄γµψ (4)

1The metric used in this study is (1,-1,-1,-1) and our gamma matrices satisfy the following anti-commutation

relation: {γµ, γν} = 2gµν × 1nxn
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(∂µ∂
µ + m2

s)φ +
1

2
Ωφ2 +

1

6
λφ3 = gsψ̄ψ (5)

[γµ(i∂µ − gV Vµ)− (M − gsφ)]ψ = 0 (6)

The first of these field equations is just the relativistic form of Maxwell’s equations,

∂νF
µν = Jµ, with conserved baryon current Bµ ≡ (ρB,B) = ψ̄γµψ as source and a

massive Vµ. The second field equation is the Klein-Gordon equation for the scalar

field with scalar density ψ̄ψ as source with the non-linear couplings included [1, 9].

The last equation is the Dirac equation for the baryon field with the meson fields

entering in a minimal fashion [1, 9].

3 RELATIVISTIC MEAN FIELD THEORY (RMFT)

Since QHD deals with strong baryon sources it cannot be solved perturbatively.

RMFT is an approximate nonperturbative solution that can serve as an initial tool

for studying the system described by the Lagrangian in Eq. 2. Consider a large box of

volume V filled uniformly with B baryons at zero temperature. The baryon number is

conserved, as a result so is the baryon density ρB = B/V , where B =
∫

d3xB0. Now

if one shrinks the box, one naturally observes an increase in the baryon density, which

also causes the source terms on the right-hand side of Eqs. 4 and 5 to get large. As

in the case of QED, when there are many quanta (photons in QED) present, we can

use classical fields and make classical approximations to solve problems. Similarly,

when the source gets strong one can replace the meson fields by classical fields and

the sources by their expectation values [1, 9]. In the limit of large ρB, the following

transformation occurs [1, 9]

φ → 〈φ〉 = φ0 (7)

V µ → 〈V µ〉 = (V0,0) (8)
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Once we approximate the meson fields by the constant classical fields, the Lagrangian

becomes

LMFT =
1

2
m2

vV
2
0 −

1

2
m2

sφ
2
0 −

1

3!
Ωφ3

0 −
1

4!
λφ4

0 + ψ̄[i∂µγµ − gvV0γ0 −M∗]ψ (9)

where the couplings constants gs and gv are the parameters in the theory that are

adjusted to fit the binding energy and density of nuclear matter, and M∗ ≡ M −gsφ0

is the effective mass of the nucleon. The MFT field equations then are

m2
sφ0 +

1

2
Ωφ2

0 −
1

6
λφ3

0 = gs〈ψ̄ψ〉 (10)

V0 =
gv

m2
v

〈ψ†ψ〉 ≡ gv

m2
v

ρB (11)

[iγµ∂
µ − γ0gvV0 + M∗]ψ(x, t) = 0 (12)

Note that if we let the additional nonlinear terms in φ0 go to zero, Eq. 13 yields an

exact expression for the scalar density

φ0 =
gs

m2
s

〈ψ̄ψ〉 ≡ gs

m2
s

ρs (13)

Thus, we have solved the two field equations in terms of the scalar and meson fields.

The third equation is just the free Dirac equation with the energy now shifted by

gvV0 and the baryon mass by gsφ0 due to the presence of the vector and scalar fields,

V0 and φ0. So the new baryon mass is the effective mass M∗ ≡ M − gsφ0 and the

energy is

E = gvV0 ± (p2 + M∗2)1/2 (14)

For uniform nuclear matter, the ground state is obtained by filling the energy levels

up to a Fermi momentum kF with spin-isospin degeneracy of γ = 4 [9]. The energy

density, ε = E/V , pressure p, and baryon density ρB can be obtained after quantizing

the fermion field (meson fields here are classical therefore are not quantized) and

taking the expectation value of the Hamiltonian. Hence, one obtains the following

results (See appendices A and B)

ρB =
γ

(2π)3

∫ kF

0
d3k =

γ

6π2
k3

F (15)
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ε =
g2

v

2m2
v

ρ2
B +

m2
s

2g2
s

(M −M∗)2 +
Ω

6g3
s

(M −M∗)3 +
λ

24g4
s

(M −M∗)4

+
γ

(2π)3

∫ kF

0
d3k(k2 + M∗2)1/2 (16)

p =
g2

v

2m2
v

ρ2
B −

m2
s

2g2
s

(M −M∗)2 − Ω

6g3
s

(M −M∗)3 − λ

24g4
s

(M −M∗)4

+
1

3

γ

(2π)3

∫ kF

0
d3k

k2

(k2 + M∗2)1/2
(17)

Here the density, ρB is the ”normal-ordered” baryon number operator , which counts

the number of baryons minus the number of antibaryons relative to the vacuum, and

becomes the charge operator when coupled to an electric or baryonic field. There is

also a correction term, δH in our Hamiltonian, which is normally called the zero-point

energy. It represents the difference of energy of a filled negative-energy Fermi sea of

baryons with mass M∗ and that of a filled-negative energy Fermi sea of baryons of

mass M [1, 9]. It arises from placing the operators in normal order. The possible

effects of δH are discussed in [4], here we simply neglect this term.

As Walecka explains in [9] there are only two parameters in this MFT of nuclear

medium and we can fit them to the two properties of nuclear matter that can be

determined experimentally, the binding energy and density. This result yields the

numerical values for the coupling constants gs and gv, and we see that the Lorentz

(relativistic) structure of the interaction provides an additional saturation mechanism

and leads to a new energy scale in the problem. The small nuclear binding energy

(15.75 MeV) arises from the cancellation between the large scalar attraction (-400

MeV) and vector repulsion (350 MeV) [1, 9]. Note that the neutron matter (γ = 2)

is unbound. As the nuclear density increases M decreases, the scalar source becomes

much smaller than the vector source [1, 9], causing the attractive forces to saturate.

We can look at the scalar source more closely with the aid of thermodynamics. At

fixed volume and density, the system minimizes its energy, (∂ε/∂M∗)V,B = 0 . Im-
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posing this condition on Eq. 16 yields

M∗ = M − g2
s

m2
s

ρs +
Ω

2gsm2
s

(M −M∗)2 +
λ

6g2
sm

2
s

(M −M∗)3 (18)

This is the self-consistency equation for the effective mass, M* that can be solved at

each value of kF . Here ρs represents the scalar density and is defined by

ρs =
γ

(2π)3

∫ kF

0
d3k

M∗

(k2 + M∗2)1/2
(19)

The solution of the self-consistency equation yields an effective mass that decreases

as a function of density [1, 9]. The reader must note that even at ordinary densities

where the nuclear matter saturates (roughly 1.4 fm−1), M* is significantly smaller

than M due to the large scalar field gsφ0, which is approximately 400 MeV at that

density.

4 COLLECTIVE MODES

4.1 NUCLEAR MATTER

We wish to study the behavior of collective modes in nuclear matter. Since the

baryon density is large, the energy, pressure densities and fluid velocity field v are

all macroscopic quantities [10]. Thus we can make the approximation that nuclear

matter can be treated as a relativistic uniform isotropic fluid with only irrotational

flow, i.e. ∇×v(x, t) = 0. In other words a hydrodynamic treatment of nuclear matter

is valid and consistent with our model. So, now we can proceed with the following

set of equations

−∂Ψ

∂t
+

1

2
(∇Ψ)2 +

µ

M
= 0 (20)

which is Bernoulli’s equation from fluid mechanics. Here µ is the chemical potential

and is given by

µ =

(
∂ε

∂ρB

)

V

= gV V0 + (k2
F + M∗2)1/2 (21)
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at equilibrium. We also have the continuity equation for the baryon current

∂ρB

∂t
−∇ · (ρB∇Ψ) = 0 (22)

and the full meson field equations in the MFT are now

(22 + mV )V0 = gV ρB (23)

(22 + ms)φ0 +
1

3!
Ωφ3

0 −+
1

4!
λφ4

0 = gsρs (24)

The higher order terms in φ0 in Eq. 24 are not included in the calculations that

involve the L2 set of parameters , which makes use of only the linear terms in the

Lagrangian. The values of ρB and ρs can readily be extracted from Eqs. 15 and 19.

We generate the collective modes by introducing small oscillations about equilib-

rium. To this end, we will expand the dynamical field variables to the first degree

about their equilibrium values. The following transformation then occurs

kF = kF0 + δkF (x, t) (25)

V0 = V0 + δV0(x, t) (26)

φ0 = φ0 + δφ0(x, t) (27)

Ψ = Ψ0 + δΨ(x, t) (28)

Here Ψ is the scalar velocity potential from which we can deduce the vector velocity

field through v(x, t) = −∇Ψ(x, t) [10]. At equilibrium, we define Ψ to be µ0t/M ,

where µ0 is the chemical potential , given in Eq. 21. Now we plug Eqs. 25-28 in

Eqs. 20 through Eq. 24, and expand everything to first order, dropping the higher

order terms. We also impose the following plane wave expansion and normal mode

solutions on equations above.

δΨ(x) = iδΨei(k·x−ωt) (29)

δkF (x) = δkF ei(k·x−ωt) (30)

δφ0(x) = δφ0e
i(k·x−ωt) (31)

δV0(x) = δV0e
i(k·x−ωt) (32)
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Setting γ = 4 for nuclear matter, we obtain the following set of equations

1

M

(
gV δV0 +

kF

EF

δkF − M∗

EF

gsδφ0

)
= ωδΨ (33)

k2δΨ = ω
3δkF

kF

(34)

(k2 + m2
V )δV0 − 2

k2
F

π2
gV δkF = ω2δV0 (35)

(k2 + m2
s)δφ0 − 4gs

(2π)3

[
4πk2

F

M∗

EF

δkF − gsδφ0

∫ kF

0

k2d3k

(k2 + M∗2)3/2

]

+Ωφ0δφ0 +
1

2
λφ2

0δφ0 = ω2δV0 (36)

where EF = (k2
F +M∗2)1/2. Now all the spatial and time dependence of our variables

have been fully incorporated into our equations. Here, ω is the frequency of the

collective modes, which appears as an eigenvalue in these equations. All we have

to do is make these four equations dimensionless and set the determinant of the

coefficients of the fluctuations equal to zero. We then solve the resulting polynomial

at different momenta k in terms of the frequency. Since h̄ = c = 1, all the mass terms,

kF , ω, EF and all the field variables (except δΨ , which has units of 1/[energy] ) can

be given in units of mass. Hence, we can rewrite Eqs. 33 through 36 in terms of

dimensionless quantities and variables. Thus, for the field variables, we have the

following modifications

gV δV0

M
≡ δW0,

gsδφ0

M
≡ δΦ0,

δkF

M
≡ δκF , MδΨ ≡ δΨ (37)

The remaining quantities are defined by

M∗

M
≡ χ,

k

M
≡ κ,

ω

M
≡ ε,

mV

M
≡ mV

ms

M
≡ ms,

EF

M
≡ εF ,

kF

M
≡ κF (38)

After substituting in the new dimensionless variables above, Eqs. 33 through 36

become

δW0 +
κF

εF

δκF − χ

εF

δΦ0 = εδΨ (39)
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κ2δΨ = ε
3δκF

κF

(40)

(κ2 + m2
V )δW0 − 2

g2
V

π2
κ2

F δκF = ε2δW0 (41)

(κ2 + m2
s)δΦ0 − 4g2

s

(2π)3

[
4πκ2

F

χ

εF

δκF − δΦ0

∫ κF

0

κ2d3κ

(κ2 + χ2)3/2

]

+
Ω

M
Φ0δΦ0 +

λ

2g2
s

Φ2
0δΦ0 = ε2δΦ0 (42)

where the dimensionless Fermi energy is defined to be, εF = (κ2
F + χ2)1/2

Our remaining task is to solve Eqs. 39-42 for ε. We begin by placing all 4 equations

in a 4x4 matrix, and we set the determinant equal to zero to look for non-trivial

solutions. The result is a sixth degree polynomial in ε (third in ε2), which we solve

at various momenta, κ. As mentioned earlier, to perform these calculations we adopt

3 different sets of parameters fit to the properties of nuclei: L2, where we set λ

and Ω = 0, and NLC and Q1, which are the nonlinear approximations of increasing

sophistication in their fit to nuclear properties. The following table2 displays all the

parameters that change as we go from one set to the other. The QHD effective field

theory approach to nuclear structure gives an excellent description when using these

parameter sets.

Table 1: Dirac-Hartree parameter sets. Note that ms, and Ω are in MeV

Set g2
s g2

V g2
ρ ms Ω λ λ

L2 109.63 190.43 65.23 520 0 0 0.541

NLC 95.11 148.93 74.99 500.8 5000 -200 0.63

Q1 103.61 164.62 77.96 504.6 4570 -197.3 0.63

The gρ is the coupling constant for the isovector ρ meson and comes into play when

we deal with neutron matter, as will be described later in this paper. The remaining

relevant parameters are mV = 782 MeV, M = 939 MeV, and kF = 1.42fm−1. The

reader is encouraged to refer to [1] for a further discussion on these parameters.

2Table adapted from [1, 11]
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Making use of Table 1, we obtain 3 different sets of solutions, which all behave

identically but differ in magnitude, as we will show.

The determinant yields 3 positive roots for each value of κ. They are, in order

from the smallest to largest, the zero sound, and the scalar and vector meson field

modes. Now that we have obtained numerical approximations for the frequencies

of our modes, we can make plots to examine the behavior of ε with respect to κ.

Figures 1,2, and 3 are plots of ε vs. κ in L2, NLC, and Q1 respectively. As we have

emphasized before, the behavior of the modes is identical in all three cases (except

for the slight difference in the amplitudes).

Clearly, the large scalar and vector fields dominate the behavior of the modes

and the additional parameters allow for small adjustments of nuclear properties near

equilibrium [1].

Our main interest is the zero-sound, which is the lowest-lying mode. To demon-

strate the dramatic effect of the of the meson field couplings on the zero sound mode,

we let all the coupling constants (gs and gV ) in Eqs. 39-42 go to 0. The result is

the plot in Figure 4, which indicates that in the absence of couplings the zero sound

exhibits the linear dispersion behavior, ω = |k|v. Combining Eqs 33 and 34 for this

case enables us to come up with an expression for the frequency (therefore velocity)

of zero sound without the couplings, which we can relate to the Fermi velocity by

the following relation. Hence, now we can write down an expression for the Fermi

velocity of the zero sound

ω0 =
kF k√
3MEF

=
vF k√

3
= v0k (43)

Inserting the numerical values and solving for v0 , we get 0.203c for the velocity of

the zero sound without the couplings. Once we have coupling of modes, the scalar

field and zero sound modes interact and the scalar mode disrupts the linear behavior

of the zero sound by pushing it down.

11
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Figure 1: The L2,i.e. linear modes. Here the lowest epsilon mode is the zero sound, which gets

pushed down by the scalar meson field, which in turn gets pushed up, Vph slows down to about

0.376c

The phase and group velocities of the modes can readily be obtained from.

Vphase =
ε

κ
(44)

Vgroup =
∂ε

∂κ
(45)

We see from Figures 1,2,and 3 that the slope of the zero sound mode gets less steep as

values of the wave number, κ get larger, i.e. as κ increases the zero sound slows down.

For example, in L2 Vph slows down from a speed of roughly 0.6c to 0.376c. Figure

5 displays the group velocity for all three sets of parameters. Clearly the velocities
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Figure 2: The NLC modes. They exhibit the same behavior as in the case of L2, except the zero

sound modes propagates at a smaller velocity as we can tell from the slightly decreased frequencies

at various wavelengths, κ. Vph slows down to about 0.336

belonging to all three sets decrease as the wavenumber gets bigger and decay toward

the zero sound velocity given in Eq. 43, which represents the case in which we set

the coupling constants equal to zero. Looking at Figure 5 closely, we see that the L2

mode predicts the largest values of velocity. The reason for the greater velocity of

zero-sound in L2 than in NLC and Q1 originates from the fact that L2 spawns a stiffer

model of a nucleus than NLC and Q1. We know that the compressibility of nuclear

matter, K is inversely proportional to the speed of the sound waves propagating in

it [10]. The greater velocity in L2 implies a smaller K of nucleus in L2 than NLC
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Figure 3: The Q1 modes. The velocity of the zero sound is greater than that in NLC and smaller

than that in L2, i.e. the linear case. Vph slows down to about 0.349

and Q1. Therefore nuclear medium based on L2 parameters is less compressible, i.e.

stiffer than that of NLC and Q1. The additional small nonlinear terms used in NLC

and Q1 rectify this problem by ”softening” the nuclear medium.

4.2 NEUTRON MATTER

We follow the same recipe for neutron matter. But our γ factor changes from 4 to 2.

More importantly, we have to include a mean field for the isovector ρ meson, b0, which

we need to fit to the nuclear symmetry energy because the repulsive forces in neutron
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Figure 4: The collective modes without the coupling constants. This implies that we turn off the

interaction of the meson fields. As a result we observe entirely a linear behavior for the zero-sound

(the initial dispersion relation), which of course vanishes once we turn the meson fields back on.

matter are otherwise underestimated [1]. As a result, our Lagrangian undergoes a

few modifications and is given in Refs. [1] and [4] as

LMFT =
1

2
m2

vV
2
0 −

1

2
m2

sφ
2
0−

1

3!
Ωφ3

0−
1

4!
λφ4

0+ψ̄[i∂µγµ−gvV0γ0−gρ
1

2
τ3γ0b0−M∗]ψ (46)

Eqs. 39-42 go through the following changes

δW0 − 1

2
δB0 +

κF

εF

δκF − χ

εF

δΦ0 = εδΨ (47)

κ2δΨ = ε
3δκF

κF

(48)

(κ2 + m2
V )δW0 − g2

V

π2
κ2

F δκF = ε2δW0 (49)

(κ2 + m2
s)δΦ0 − 4g2

s

(2π)3

[
2πκ2

F

χ

εF

δκF − δΦ0

4

∫ κF

0

κ2d3κ

(κ2 + χ2)3/2

]

+
Ω

M
Φ0δΦ0 +

λ

2g2
s

Φ2
0δΦ0 = ε2δΦ0 (50)
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Figure 5: The calculated group velocity of the zero-sound collective mode using the different sets of

parameters, L2, NLC, and Q1. Here no coup. means there are no couplings, in other words no coup

is the zero sound velocity obtained in Eq. 43.

Here B0 is the dimensionless ρ meson field and is defined by gρδb0/M ≡ δB0 . In

addition we also have the ρ meson field equation

(ω2 − k2 −m2
ρ)b0 = −gρ

2
ψ̄τ3γ0ψ (51)

where τ3 is the third Pauli isospin matrix, i.e.
(

1 0
0−1

)
. After substituting the dimen-

sionless variables and linearizing, we obtain the additional row meson field equation

(κ2 + m2
ρ)δB0 −

g2
ρ

2π2
κ2

F δκF = ε2δB0 (52)

Now we have a 5x5 matrix whose determinant we must evaluate to study the collective

modes in neutron matter. The determinant gives rise to an 8th degree polynomial
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(fourth order in ε2), so we actually have 4 different branches3 of collective modes,

the zero sound, scalar, isovector, and vector modes as depicted in Figure 6. Now
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Figure 6: The neutron matter collective modes in L2. Note the additional isovector mode, rho

situated right below the vector mode. This new mode spawns a rather interesting change in the

propagation of the zero-sound

after calculating the group velocity of the modes for the neutron matter, we find

that the zero-sound undergoes a peculiar change. Contrary to our expectations based

on results extracted from the nuclear matter study, the zero-sound mode does not

immediately slow down in the neutron matter. Instead its velocity first increases,

then it starts slowing down and eventually just like the modes propagating in nuclear

matter it decays toward the zero sound velocity in absence of the couplings. We

have not yet fully explored the possible cause of this mysterious effect, therefore we

3We need only keep the positive roots for propagation of the modes as is usual for continuum mechanics
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cannot really conclude why neutron matter behaves this way, but clearly it must have

something to do with the isovector meson field, ρ

The three meson field equations do not go through any deviation from their original

bearing presented in the previous section. They continue to move faster as they

penetrate regions of higher κ. Notice that they nearly converge at high wavenumbers,

an interesting situation that is not considered in this paper.
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Figure 7: Group velocity in neutron matter in L2: The velocities do not immediately decrease

as in the case of nuclear matter, they first reach a maximum then decrase. D here represents the

velocity of the zero sound without the coupling constants

5 NUMERICAL SOLUTION FOR COLLECTIVE MODES

So far we have analytically studied the propagation of various collective modes in

both nuclear and neutron matter and investigated how the collective modes, espe-

18



cially the zero-sound behave once couplings to the meson fields occur. In this section

we focus on actually numerically solving the non-linear second order differential equa-

tions presented in the beginning of Section 4.1 . The modes move faster as they move

into regions of higher density. This physical fact suggests a non-linearity for finite-

amplitude disturbances. As Walecka and Fetter explain in [12] “sound waves should

propagate faster in a compressed region than in a rarefied one, with the high-density

crests tending to overtake the low-density troughs”. We will show later that a distor-

tion of this nature can ultimately produce a shock front. We will first adopt a linear

approach in one-dimensional geometry (spatial dimension) to evaluate the vector po-

tential and momentum of the collective modes. Then, we will solve the non-linear

differential equations without dropping the higher order terms again in one spatial

dimension. The linear case is an approximation to the actual full non-linear case and

should reproduce similar results when run properly. Ultimately, we hope to observe

the formation of a shock front, which may improve our understanding of how shock

waves form and travel in supernovae and neutron stars.

5.1 SOLUTION FOR THE LINEARIZED NON-LINEAR CASE

We begin our analysis with the following assumption; mV → ∞. The large vector

meson mass implies that the vector meson affects only matter at very short distances.

We have taken this step to simplify the relevant differential equations. So our assump-

tion is more practical than physical, and it is actually necessary to work with finite

mV . [2] is a detailed work that actually treats nuclear matter under RMFT without

the assumptions of infinite vector mass and irrotational flow. Now Eq. 23 reduces to

Eq. 11. By substituting Eq. 11 into Eq. 21, Eq. 20 becomes

−∂Ψ

∂t
+

1

2
(∇Ψ)2 +

1

M

[
g2

V ρB

m2
V

+ (k2
F + M∗2)1/2

]
= 0 (53)
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After inserting Eq. 15 in Eq. 22, Eq. 22 becomes

∂kF

∂t
=

1

3k2
F

∂

∂x

[
k3

F

∂Ψ

∂x

]
(54)

At this stage we switch to dimensionless variables again, that is we reduce everything

to dimensions of mass (where Mx = x and Mt = t). We also set the parameters Ω

and λ to zero for simplicity. We first examine the linearized case. We continue with

the same procedure as before; introduce small oscillations around the equilibrium,

and mutatis mutandis. In other words after inserting Eqs. 25 through 32 we obtain

the following

∂δΨ

∂t
=

C2
V γκ2

F δκF

2π2
+

κF δκF − χδΦ0

εF

(55)

3

κF

∂κF

∂t
= ∇2δΨ (56)

δΦ0 =
C2

s γ

(2π)3

[
4πκ2

F δκF χ

εF

− δΦ0

∫ κF

0

κ2d3κ

(κ2 + M∗2)3/2

]
(57)

where the dimensionless coupling constants Cs and CV are defined as gsM/ms and

gV M/mV respectively. Now we can plug Eq. 57 in Eq. 55 and obtain the following

differential equations

∂δΨ

∂t
=


C2

V γκ2
F

2π2
+

κF

εF

− C2
s γκ2

F χ2

2π2ε2
F

[
1 + C2

s γ
(2π)3

∫ κF
0

κ2d3κ
(κ2+M∗2)3/2

]

 δκF (58)

∂κF

∂t
=

κF

3
∇2δΨ (59)

Thus, we have reduced Eqs. 20 through 24 to the two coupled linear differential

equations given above, which we put in the following simple form

∂δΨ

∂t
= aδκF (60)

∂κF

∂t
= b∇2δΨ (61)

Naturally we look for solutions of the form of sines and cosines. It turns out if we let

δΨ = δΨ0 sin κ(x− vpht) (62)

δκF = δκ0 cos κ(x− vpht) (63)
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we can solve Eqs. 60 and 61. The substitution above yields vph = (ab)1/2. Now, we

are able to procure the numerical value for the phase velocity of this wave travelling

right in 1-D. We make use of Table 1 and evaluate everything at χ = 0.537 and

κF = 0.274, which in turn gives a = 0.7395, b = 0.0913 and vph = 0.2598. The task

at hand is to numerically solve Eqs. 60 and 61 by imposing the periodic boundary

condition, x = x + L with the following initial values

δΨ = δΨ0 sin(κx) (64)

δκF = δκ0 cos(κx) (65)

in which the amplitudes δΨ0 and δκ0 can be related through

δΨ0

δκ0

= −
(

a

b

)1/2 1

κ
(66)

at t=0. Using the conditions stated above, we choose the appropriate time and length

intervals, which we slice into very small pieces [Appendix C]. Then we let Maple and

Mathcad carry out the calculations and plot the desired wave at the desired time for

us. The result is the following two plots.

The conclusion is that once we linearize the equations, we obtain a nice permanent

linear behavior, which we have demonstrated both by solving the system analytically

Eqs. 60 and 61, which yield the Eqs. 64 and 65 as the solutions , by solving it

numerically as shown in Figs. 8 and 9.

5.2 SOLUTION FOR THE FULL NON-LINEAR CASE

This section is allotted to solving the full non-linear equations and investigating their

behavior. Again, we begin our analysis with Eqs. 20 through 24, and proceed with

the same assumptions as in the previous section. Hence, as before we reduce Eqs .20

through 24 to Eqs. 53 and 54. Our goal is to solve the full set of self-consistent non-

linear equations numerically and we are no longer restricted to only small oscillations

about the equilibrium. After reducing everything to the dimensions of mass, i.e.
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Figure 8: The velocity potential with respect to position: Here we have made the wave go

around once. Notice that we numerically reproduce the analytic solution stated in Eq. 64

following the prescription to which we have been adhering from the beginning. Eq.

53 remains unaltered after these changes. As for Eq. 54, we perform the differentiation

on the right side as before but, this time we do not discard the higher order terms.

So Eq. 54 now is

∂κF

∂t
=

κF

3

∂2ψ

∂x2
+

∂κF

∂x

∂Ψ

∂x
(67)

We now define Ψ = −µ(κ0
F )/M − δΨ(x, t) as before, which merely reflects our choice

of gauge. We also expand the Fermi wavenumber as κF = κ0
F + δκF (x, t), where κ0

F

represents the equilibrium value. So the full set of non-linear equations becomes

∂δΨ

∂t
=

1

2
(∇δΨ)2 + µ(κF )− µ(κ0

F ) (68)
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Figure 9: The Fermi wave-number (proportional to the Fermi momentum and baryon density)

vs.position: Again we nicely approximated the actual solution for δκ given in Eq. 65

∂δκF

∂t
=

κF

3

∂2δψ

∂x2
+

∂δκF

∂x

∂δΨ

∂x
(69)

Here µ is the chemical potential, which for nuclear matter is

µ(κF ) =
C2

V γκ3
F

6π2
+ (κ2

F + χ(κF )2)1/2 (70)

where χ(κF ) is the solution to the dimensionless self-consistent relation in Eqs. 18,

19, given by

1− χ =
C2

s γ

2π3
ρs (71)

ρs =
γ

(2π)3

∫ κF

0
d3κ

χ

(κ2 + χ2)1/2
(72)
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in the case where λ = Ω = 0. We input the same initial conditions as before, and

use the amplitude of the waves, δκF as an adjustable parameter in evaluating the

propagation of the mode. Our Mathcad code manages the rest[Appendix C].

We have previously asserted that the linear approach to solving these non-linear

equations is an accurate approximation to solving the actual non-linear case. Thus,

it is absolutely imperative that we be able to recover the results depicted in Figures 8

and 9 initially. The two curves displayedin Figs 10 and 11 are results to the full non-

linear problem evaluated for one full trip, i.e. the wave has only gone around once.

Here, we assume a small amplitude δκ0 = 0.0001. Note that δψ0 is also expressed in

terms of δκ0 by the use of Eq. 66.
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Figure 10: The velocity potential in the full non-linear case: with a small given amplitude

we observe that the produced wave in this case is identical to the curve in Fig. 10.
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Figure 11: The fermi wave-number (proportional to the Fermi momentum and baryon density)

in the full non-linear case: For small oscillations, we observe an identical behavior to the fermi

wave-number evaluated in section 5.1.

It turns out nonlinearity in hydrodynamic systems changes the form of a finite-

amplitude sound wave [12] and amplifies it drastically. Eventually the wavefront

becomes discontinuous, and the previous description fails. Looking closely at the

plots in Figs 12 and 13 we clearly see that the velocity potential is now shifted up,

which indicates a net flow of velocity in the proper direction. Notice the sharp peaks

of the Fermi momentum, which originate from the fact that at large amplitudes the

top of the wave travels faster than the bottom because the shifted velocity potential

favors one direction over the other. Eventually the momentum ceases to be a single-

valued function. This transition signals the formation of a shock wave as we see in
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Figure 12: The velocity potential in the full non-linear case: Here the amplitude δκ0 = 0.0026,

it is 26 times larger than before. This drastic increase in the amplitude triggers a clear displacement

of the velocity potential which indicates to us that there is a net flow of velocity

Fig. 13. The Figs 12 and 13 are calculated starting from a large initial amplitude

δκ0 = 0.026. The same effect is observed if one starts from a smaller amplitude and

lets the wave propagate for a long time.

Note that our analyses can be applied to neutron matter as well. All one has to

do is to change the γ factor to 2 and incorporate the isovector meson field in Eqs. 53

and 54.
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Figure 13: The Fermi wave-number (proportional to the Fermi momentum, and density)

in the full non-linear case: We see that the wave ,after going around once, begins to transform

into a shock wave. If we let it run a for long time the top will eventually crash just like oceanic

waves travelling to the beach and crashing when they arrive there

6 CONCLUSIONS

In an attempt to study the elementary excitations of nuclear matter, we have investi-

gated the relativistic propagation of zero-sound waves and other collective modes in

the approximation that nuclear matter could be treated as an isotropic and irrota-

tional fluid moving with flow velocity, v. We have calculated the Fermi velocity and

the zero-sound velocity of the nuclear matter and shown that as we move to regions

of greater wave number the group and phase velocities of zero-sound in L2, NLC, and
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Q1 decay toward what we called the zero sound velocity in the absence of the meson

field couplings. We have seen that the linear calculation leads to a model of nuclear

matter that is unrealistically incompressible, which we remedy by using additional

non-linear terms in the MFT lagrangian for NLC and Q1 calculations.

We have also applied the same method to neutron matter with a few modifications

and obtained a 4-branch collective-mode diagram, displaying the zero sound, scalar,

isovector and vector modes, which seem to behave in the same way as the collective

modes in nuclear matter. We have discovered that the velocity of the zero-sound in

neutron matter behaves differently from that in nuclear matter, mainly due to the

coupling with an additional isovector meson field, ρ utilized to improve the symmetry

energy.

After studying the collective modes in nuclear and neutron media, we set out to

solve the actual non-linear differential equations that describe the propagation of the

modes in nuclear matter. Using numerical methods we have solved these equations,

first by linearization then by retaining the higher order terms, i.e. solving the full

set of non-linear equations . From the results acquired above we extrapolated that

the linear version is just an initial model of the non-linear case as we postulated.

We have solved numerically the full coupled self-consistent zero-sound equations and

demonstrated the cresting of the wave. We have thus arrived at the fascinating

conclusion that for an isentropic small-amplitude wave, no matter how small the

initial amplitude the non-linearities dominate the behavior of the propagation and

eventually culminate in the formation of a shock wave.
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APPENDIX

A The Energy of the Nuclear Matter

The Hamiltonian of a system can be extracted through a Legendre transformation:

Πq(∂q/∂t)−(L) where q is an arbitrary field variable. For the system we are studying

we use the following Legendre transformation

H = πψψ̇ + πψ†ψ̇† − L (73)

with conjugate fields defined as

πψ =
∂L

∂(∂ψ/∂t)
= iψ† (74)

πψ† =
∂L

∂(∂ψ†/∂t)
= 0 (75)

Using Shrödinger picture where operators are time independent and state vectors are

time dependent, we expand the baryon field operator in a complete set of solutions

to quantize the baryon field [9]

ψ̂(x) =
1√
V

∑

kλ

[U(kλ)Akλe
ik·x + V(−kλ)B†

kλe
−ik·x] (76)

where V is the volume, U and V are the Dirac spinors corresponding to E+ and

E−, and A†, B†, A and B are creation and destruction operators for baryons and

anti-baryons respectively. These operators obey the equal-time anti-commutation

relations. Using the operators defined above, we can now write down the quantized

Hamiltonian [9]

Ĥ − 〈0|Ĥ|0〉 ≡ ĤMFT + δH (77)

ĤMFT =
∑

kλ

(k2 + M∗2)1/2(A†
kλAkλ + B†

kλBkλ) + gvV0ρ̂B

+(
1

2
m2

sφ
2
0 +

1

3!
Ωφ3

0 +
1

4!
λφ4

0 −
1

2
m2

vV
2
0 )V (78)
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where

δH = −∑

kλ

[(k2 + M∗2)1/2 − (k2 + M2)1/2] (79)

ρ̂B = (A†
kλAkλ −B†

kλBkλ) (80)

B Pressure

The first law of thermodynamics is dE = -pdV with B fixed. Consider [9]

∂ε

∂ρB

=
∂(E/V )

∂V

∂V

∂ρB

=

(−E

V 2
+

1

V

∂E

∂V

) (−V 2

B

)
=

ε

ρB

+
p

ρB

(81)

where

∂V

∂ρB

=
1

B

∂V

∂(1/V )
=
−V 2

B
(82)

So we can then solve for pressure by rewriting Eq. 81, which becomes

p = ρB(∂ε/∂ρB)− ε (83)

Hence, we can now deduce the expression for pressure given in Eq. 17.

C The Numerical Solution to the Linearized Case

In this section we illustrate how to numerically solve the linearized differential equa-

tions given in Eqs. 60 and 61. We define a periodic boundary condition, x = x +

L, and divide this length L into many tiny intervals, ∆x, 150 in this case. We define

total time by τ and also slice the total time into ∆t pieces, 5000 in this case. So we

have the following relations

∆x =
L

M
(84)

∆t =
Lγ

vphN
(85)

The boundary condition implies that x + N∆ x = x .
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These modifications described above transform the differential equation into an n×
m matrix, where n runs from 0 to N - 1, and m from 0 to M - 1. The initial conditions

for the two differential equations can be written as (here we have suppressed the δ’s

for notational brevity)

κ[0,m] = cos(2π
∆x.m

λ
) (86)

ψ[0,m] =
−λ

2π
sin

(
2π

∆x.m

λ

)
(87)

with

κ[n,0] = κ[n,M ] (88)

ψ[n,0] = ψ[n,M ] (89)

Now we can transform the differential equations into matrix elements by

κ[n+1,m] = κ[n,m] +
∆t

∆x2
(ψ[n,m+1] if m ≤ M − 2

+ ψ[n,m−1] if m ≥ 1 − 2ψ[n,m]) (90)

κ[n+1,m] = κ[n,m] +
∆t

∆x2
(ψ[n,0] otherwise + ψ[n,M−1] otherwise − 2ψ[n,m]) (91)

ψ[n+1,m] = ψ[n,m] + ∆κ[n,m] (92)

Hence, we can choose any n, and construct an n× M matrix, and see how the wave

travels to get to the selected time index. Note that the non-linear case uses the

identical initial and boundary conditions as the linear case. But in the non-linear

(solving the full differential equations) we have to include the wave amplitude δκF

as an input parameter in order to amplify the wave . Because we concluded that

the wave keeps building up for the non-linear case, and after it has reached a certain

amplitude a shock wave forms. All we have to do is to apply the recipe described in

this section to Eqs. 68 and 69 and calculate the matrix elements using of course the

additional non-linear terms.
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