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Abstract

In recent experiments it has been shown that the mixing angles θ12 and θ23 for neutrinos,
which parameterize the probability for a neutrino to oscillate, both appear to be nearly maximal.
This evidence has led to many papers concerning possible theoretical models that explain both
the neutrino masses and mixing angles observed. One approach to this problem has been the
seesaw mechanism, which suppresses neutrino masses, in combination with a flavor symmetry.
Another possible approach is the exploitation of possible large extra dimensions. The existence
of extra dimensions is also able to suppress neutrino masses and induce large oscillation prob-
abilities. In this paper it will be examined whether or not combining the techniques of flavor
symmetries and extra dimensions results in physically viable models.
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1 Introduction

Neutrinos are massless in the Standard Model (SM). There is only a left handed

neutrino transforming in a weak SU(2) doublet and there can be no mass term gener-

ated by this state alone. Neutrinos are also one of the most difficult particles to detect,

since they are not charged and only experience the weak force. The difficulty inherent

in observing neutrinos has allowed existing theory, with massless neutrinos, to stand

for many years. Modern experiments are starting to probe this conventional wisdom

and give us reason to re-examine our understanding of neutrino physics. This thesis

will concentrate on the mechanisms of generating neutrino mass and oscillation in the

context of four space-time dimensions and extra dimensions. In four dimensions there

are well-established tools such as the seesaw mechanism and the use of flavor symme-

tries that explain neutrino masses and oscillations patterns. With the introduction

of extra dimensions we can also explain neutrino masses and oscillations without re-

lying on the seesaw mechanism. We will investigate if it is possible to combine flavor

symmetries in the context of extra dimensions to induce phenomenologically viable

results.

Neutrinos are generated by nuclear reactions in the sun (solar neutrinos) and by

cosmic-ray interactions with the atmosphere (atmospheric neutrinos). In the case of

cosmic rays interacting with the atmosphere, charged pions are created as a byproduct

of the event. The pions then decay in the following way:

π+ → µ+νµ, µ+ → e+νe ν̄µ, (1)

and,

π− → µ−ν̄µ, µ− → e−ν̄e νµ. (2)

Therefore we should observe twice as many νµ’s as νe’s. The ratio of the number

of νµ’s to the number of νe’s has been observed to be about .61 of the theoretical

value of 2 [1]. Muon neutrinos appear to be missing from experiments. This suggests
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that some new physics may be affecting the neutrinos since the neutrino production

mechanism in cosmic rays is well-understood.

In the sun there are various nuclear reactions that create neutrinos. The the-

oretical Solar Model predicts the number of neutrinos that should pass through the

earth. As in the case of atmospheric neutrinos, experiments that observe solar neu-

trino fluxes find fewer neutrinos than are expected. Cosmic rays and the sun are

two separate processes generating neutrinos that both yield a deficit of neutrinos.

These two different sources of missing neutrinos suggest that new physics pertaining

to neutrinos is relevant.

This thesis is structured in the following way. In Sec. 2 we will discuss neutrino

oscillation. This is the accepted answer for how the lack of neutrinos in experiments

versus theory can be reconciled. We will discuss neutrino mass in Sec. 3, since neu-

trino mass and oscillation are intertwined. In Sec. 4 we will then discuss how flavor

symmetries can explain the differences between generations in the SM. We will then

proceed to discuss extra dimensions and their effect on four dimensional physics in

Sec. 5. In Sec. 6 we will review current models of neutrino oscillation arising from

extra dimensions. We will then examine in Sec. 7 how flavor physics and extra di-

mensions can be combined to create phenomenologically viable models of neutrino

oscillation. In Sec. 8 we will discuss directions that future research could take and

possible pitfalls of extra dimensional models.

2 Neutrino Oscillation

The most popular mechanism that yields solutions to both the solar and atmo-

spheric neutrino problems is purely quantum mechanical. The idea is that neutrinos

oscillate as they time evolve. The way this happens is that there are two bases out

of the infinite number of bases that span the Hilbert space in which the neutrinos
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evolve. One basis will be called a flavor basis which is defined by interactions, and

the other a mass basis which represents eigenstates of the Hamiltonian operator.

| να 〉 flavor basis | νj 〉 mass eigenstates (3)

Since both bases span the space, one basis is connected to the other by a unitary

transformation,

να =
∑

j

Uα j νj. (4)

For two neutrino flavors, we can write Uα j in terms of a mixing angle θ



νe

νµ


 =




cos θ sin θ

− sin θ cos θ







ν1

ν2


 . (5)

Three flavors of neutrinos requires three angles, θ12, θ13, θ23 and a phase. To simplify

the 3 by 3 case, we ignore the phase. The unitary matrix can then be represented

as the product of three rotation matrices U = R23R13R12 (e.g. Euler rotations in 3

dimensions), and may be parameterized,

cij = cos θij,

sij = sin θij,

U =




c12c13 c13s12 s13

−c23s12 − c12s13s23 c12c23 − s12s13s23 c13s23

s23s12 − c12c23s13 −c12s23 − c23s12s13 c13c23




. (6)

From Eq. (4) and the orthonormality of basis vectors we have

〈 να | νj 〉 = Uα j. (7)

We can always express the time dependent neutrino state Ψ with the time evo-

lution operator

| Ψ(t) 〉 = exp (−iHt)| Ψ(0) 〉. (8)
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A set of complete mass eigenstates can be inserted into Eq. (8). Thus a flavor state

at any later time t is

| Ψ(t) 〉 =
∑

j

exp (−i Mj τ) | νj 〉〈 νj |Ψ(0) 〉. (9)

In this expression we can rewrite the Lorentz invariant phase factor, which is in terms

of the mass of the eigenstate Mj, and the time in the frame of the neutrino τ , in terms

of the lab frame

exp (−iMj τ) = exp (−i ( Ej t− pj L )). (10)

The neutrinos that we see will be ultra-relativistic; thus we can make the approxi-

mation of t ≈ L for c = 1. Assuming that the neutrinos are of definite energy E as

in [1], we have pj =
√

E2 −M2
j ≈ E−M2

j /2E. Combining these assumptions we can

rewrite the phase factor Eq. (10) as

exp (−i(M2
j /2E)L). (11)

Using Eqs. (11) and (9) we can rewrite the time expansion of a neutrino wave function

that started in a specific flavor state νl as

| νl(L) 〉 =
∑

j

exp (−iM2
j L/2E) Ul j| νj 〉. (12)

This allows us to write out an expression for the amplitude of a neutrino going from

one flavor state to another

A(νl → νl′) =
∑

j

Ulj U∗
l′j exp (−i

M2
j

2

L

E
). (13)

We can then write the probability for a neutrino of a specific flavor l to oscillate to a

neutrino of flavor l′ as

P (νl → νl′) = |A(νl → νl′)|2. (14)

For the case of two neutrino mixing we arrive at the famous probability formula when

the factors of h̄ and c are inserted

P (νe → νµ) = sin2 2θ sin2[1.27∆M2
21(eV

2)L(km)/E(GeV)] (15)
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and

∆M2
ij ≡ M2

i −M2
j . (16)

One interesting consequence of the amplitude of oscillation expression Eq. (13) is that

if all the masses vanish, the unitarity of U guarantees that

A(νl → νl′) =
∑

j

Ulj U∗
l′j = δl l′ . (17)

This shows that massless neutrinos cannot oscillate. However, if neutrinos oscillate

in the way we have outlined, we must introduce a way to generate their masses.

The evidence for neutrino oscillation is mounting with every recent experimental

result, from SuperKamiokande to SNO. These experiments are not only showing that

neutrinos oscillate, but that certain oscillations are favored. The most recent data

is consistent with the preferred Large Mixing Angle (LMA) solution to the solar

neutrino problem [2, 3, 4].

sin2 2θ23 ≥ .88

.25 ≤ tan2 θ12 ≤ .63

sin2 2θ13 ≤ .1− .3 (18)

This data shows us that two mixing angles appear to be very large while θ13 is

relatively small. This case represents nearly bimaximal neutrino mixing.

3 Seesaw Mechanism and Neutrino Oscillations in 4-d

If neutrinos have mass there must be an additional field introduced to give rise to

a mass term. Before we discuss how to generate this mass term we will review the

bounds on neutrino mass, and how mass terms are generated in the standard model.
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3.1 Neutrino Mass Bounds

Solutions to the solar and atmospheric neutrino problems and subsequent experiments

give bounds for the squared mass differences of neutrinos Eq. (16). For the solar

neutrino solutions the squared mass difference is [1]

2× 10−5eV2 < ∆m2
12 < 1× 10−4eV2.

For the atmospheric neutrino solutions the squared mass difference is

5× 10−4eV2 < ∆m2
23 < 6× 10−3eV2.

Direct searches [1] looking at tritium beta decay can also place an upper bound on

the νe mass at

mνe < 3 eV

Neutrinos are known to be extremely abundant in the universe. Therefore due to

this abundance there is a cosmological bound on their mass. Experiments that also

focus on the non-observation of neutrinoless double beta decay also put a bound on

neutrino masses, specifically that the electron neutrino has to be less than O(eV).

Taking into account the various bounds on neutrino masses we find that neutrino

masses all have to be no more than O(eV), but well below the weak scale,∼ 246 GeV.

3.2 Standard Model Mass Terms

Fermion masses are generated by Dirac mass terms of the following form,

mψ̄LψR + h.c. (19)

while terms such as the following vanish,

ψ̄LψL = ψ̄RψR = 0. (20)
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The SM left-handed fermions occur in SU(2) doublets whereas the right-handed

fermions transform as singlets, except there is no right-handed neutrino:



ui

di




L

, uiR, diR,




ei

νi




L

, eiR. (21)

The particle labels represent the spinors and i represents the generation index. The

problem with mass terms of Eq. (19) is that they break gauge invariance. Therefore

the fermions of the SM can not have mass terms such as in Eq. (19). The actual mass

term in the SM is generated by the introduction of the Higgs field. The Higgs scalar

φ transforms as a SU(2) doublet. Therefore the Yukawa interaction term fφl̄LlR

is gauge invariant, where f is the Yukawa coupling. When the gauge symmetry is

spontaneously broken by φ obtaining a vacuum expectation value (VEV) the fermion

term obtains a mass

fφl̄LlR → f〈φ〉l̄LlR, (22)

where

f〈φ〉

plays the role of the mass m. Neutrino mass can not be generated in this manner in

the SM since there is no right-handed neutrino.

3.3 Neutrino Mass and the Seesaw Mechanism

To generate neutrino mass we must first introduce a right-handed neutrino into

our theory beyond the SM, which allows us to write a mass term. The mass terms

will obtain a mass of the order of the VEV of the Higgs. For the case of electroweak

symmetry breaking, this VEV gives the neutrino a mass that is the order of the weak

scale, which is much too high. Therefore beyond just introducing a right-handed

neutrino, we must introduce it in such a way that the observed neutrinos are light

enough. This is accomplished by the seesaw mechanism.
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First we must consider the effects of introducing the right-handed neutrino NR.

We make this neutrino carry no charge under any SM groups:

SU( 3 ) × SU( 2 ) × U( 1 ). (23)

This particle can have a direct mass term

MN̄C
R NR, (24)

where C is the charge conjugation operator, which sends particle to antiparticle.

This type of mass term is called a Majorana mass and violates lepton number, unlike

Eq. (19). This mass can be as large as we want since gauge invariance is not broken.

The right-handed neutrino can also have a Dirac mass

〈φ〉ψ̄LNR = mν̄LNR (25)

where φ is the Higgs field. If we were to write down our interaction terms in terms

of a basis of νL and NR, when we diagonalize the matrix we obtain our observable

masses 


0 m

m M


 →




m2/M 0

0 M


 . (26)

When we set M to be very high, since we have never seen right-handed neutrinos,

this naturally gives us the very suppressed mass of the left-handed neutrinos we see.

This is a simple two dimensional version of the seesaw mechanism, but the principle

remains the same for larger numbers of neutrinos. A more formal way of writing out

the seesaw mechanism only in terms of the Dirac and Majorana mass matrices is

MLL ≈ MLRM−1
RRM †

LR. (27)

The idea behind the seesaw from a Feynman diagram point of view is that we have

Dirac type neutrinos that exchange a heavy right-handed neutrino and we integrate

out the heavy neutrino. There are two vertices which are at the Dirac mass scale and

a propagator of the heavy mass scale, yielding m2/M as in Eq. (26). The mass m
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is naturally the order of the weak scale, and M can be of order the Grand Unified

Theory (GUT) scale. We then obtain, for m ∼ 102 GeV and M ∼ 1014 GeV, light

neutrinos with mass ∼ 10−1 eV. Putting M at the GUT scale is natural to do since

in either SU(5) or SO(10) GUTs we can introduce the right-handed neutrinos as

singlets.

4 Flavor Physics

The SM is arranged into three nearly identical generations. The only difference

among the generations is that each is successively heavier than the previous one. For

the leptons the generations are arranged as



νe

e







νµ

µ







ντ

τ


 . (28)

The SM tells us how each of these doublets transform, but does not tell us anything

about the relation of one generation to the others. This is because all the SM groups

act within each generation.

In the SM the Yukawa couplings of Section 3.2 are free parameters that are

adjustable to give the specific masses observed. What would be more predictive

is a theory that related the generations and predicted the observed masses. The

way to accomplish this is to have a symmetry Gf that acts horizontally across the

generations, which restricts the forms of the Yukawa couplings. When the symmetry

is broken specific patterns of masses and mixing angles for the fermions are fixed. T

4.1 U( 2) Flavor Physics

his basic idea of explaining the origins between the different “flavors”/generations

is called flavor physics. One successful model of flavor physics is Gf = U( 2). In

this model [5, 6, 7] the matter fields are placed in 2⊕ 1 representations. This leaves

9



the heaviest generation as an invariant, thus separating this model from others such

as SU( 3)[8]. Writing the generations of matter fields in terms of tensors we have

F a⊕F 3 where a is a U( 2) index and F is QL, UC
R , DC

R , LL, or EC
R which are the fields

for left-handed and right-handed quarks and leptons. The following flavon fields (our

flavor carrying fields) are introduced φa, Sab and Aab where φ is a U( 2) doublet, and

S ( A) is a symmetric (anti-symmetric) U( 2) triplet (singlet). We can write out the

Yukawa couplings in terms of these flavons as follows:

1

Mf




Sab ⊕ Aab φa

φa 1


 . (29)

The U( 2) symmetry is then broken in the following way to obtain fermion masses

and mixing angles

U( 2)
ε→ U( 1)

ε′→ nothing. (30)

The symmetry is broken by our flavon fields obtaining a VEV, and in this way we can

parameterize the breaking in terms of a small dimensionless quantity 〈 flavon 〉/Mf .

Mf represents the highest scale at which our theory is well defined. The following

pattern of VEVs is consistent with Eq. (30):

〈φ〉
Mf

=




0

ε


 ,

〈S〉
Mf

=




0 0

0 ε


 ,

〈A〉
Mf

=




0 ε′

−ε′ 0


 . (31)

Combining the VEVs of Eq. (31) with the decomposition of the Yukawa textures into

flavons, we can obtain the form of our Yukawa textures. As an example, for the down

type quarks, this texture is

YD ∼




0 ε′ 0

−ε′ ε ε

0 ε 1




. (32)

With ε ≈ .02 and ε′ ≈ .004 it has been shown that U( 2) can reproduce all of the

charged fermion masses and mixing angles. One can not underestimate the power of
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such a model in its predictive ability. Instead of 12 small, free parameters in the SM

we can obtain them all from the choice of 2 small parameters.

The U( 2) model has also been extended into predicting neutrino masses and

mixing angles [9]. The basic idea is to introduce a set of 3 right-handed neutrinos that

transform under a 2 ⊕ 1 representation under U( 2). The Dirac and Majorana mass

matrices are then constructed in the same way as any other Yukawa texture, and then

seesawed using Eq. (27). It has been successfully shown that with simple extensions

of U( 2) [10] nearly bimaximal mixing can be achieved, this paper is included in

Appendix 8.

5 Extra Dimensions and Kaluza-Klein Excitations

The concept of extra dimensions has been around for many years. Kaluza-Klein

theory was originally intended as a unification of gravity and electromagnetism by

the introduction of a fifth dimension. Albeit the theory was not successful, many

tools from it have been re-applied in modern particle physics. String theory also

requires the existence of many extra spatial dimensions. Therefore investigating the

phenomenology of extra dimensions at lower energy scales has become a major interest

over the past decade.

The extension of our four-dimensional world by adding extra dimensions has

come in many shapes and sizes. There have been extensions using flat extra spatial

dimensions [11, 12], as well as, using warped extra dimensions [13, 14]. It has also been

suggested that these extra dimensions can be actually quite large even O(mm) [15].

Large extra dimension serve to lower the Planck scale. By using Gauss’s law we have

Mpl = 2 × 1018 GeV related to the fundamental (4+n)-dimensional scale and the

volume of the extra dimension, Vn, by

M2
pl = Mn+2Vn. (33)
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This allows us to escape the desert that we normally have between the weak scale

and the Planck scale.

5.1 Kaluza-Klein Excitations

The introduction of extra dimensions not only lowers the Planck Scale by the

geometry of the extra dimensions; it also effects other physics such as lowering the

GUT scale [11, 12] and, as we will see, suppressing neutrino masses [16, 17]. The

theories examined in this paper deal only with flat extra dimensions.

In adding δ extra space-time dimensions of radius R, we now have to extend our

fields from the usual four dimensional coordinates x ≡ (x0, x1, x2, x3) to also include

the extra dimensional coordinates y ≡ (y1, y2, . . . , yδ). The full coordinates will be

denoted x = (x,y) For the sake of simplicity we will only consider δ = 1; however,

the extension to larger δ is straightforward. When compactifying the extra dimension

on a circle it is required that our complex field Φ(x) be periodic under

y → y + 2π R. (34)

With this assumption we can expand Φ(x) in terms of the Fourier modes of the extra

dimension

Φ(x) =
∞∑

n=−∞
Φ(n)(x) exp(iny/R). (35)

The fields that depend on only the four dimensional coordinates Φ(n)(x) are called

the Kaluza-Klein (KK) modes. The mass of each KK modes is

m2
n ≡ m2

0 +
n2

R
. (36)

The term m0 is the mass of the zero-mode. These modes can then be expanded with

the decomposition of our complex field as

Φ(x) = Φ+(x) + iΦ−(x),
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with

Φ+(x) =
∞∑

n=0

[Φ(n)(x) + Φ(−n)(x)] cos(ny/R),

and

Φ−(x) =
∞∑

n=1

[Φ(n)(x)− Φ(−n)(x)] sin(ny/R). (37)

Only the Φ+ terms would survive if Φ were real. We can make a stricter restriction

on the fields if we choose to compactify on a Z2 orbifold instead of a circle. In this

case we identify

y → −y, (38)

and the odd and even modes tranforms as,

Φ−(x,−y) = −Φ−(x, y)

Φ+(x,−y) = Φ+(x, y). (39)

This type of orbifold compactification allows us to easily distinguish between

Φ+ and Φ−. Orbifolds also allow us to construct viable theories with chiral fermions,

while circles do not. The next logical question is now that there are infinitely many

KK modes with the introduction of the extra dimensions, why aren’t these modes

observed and what does the infinite tower of modes do to the SM. We do not want

the SM fermions to have KK excitations that could be observed, thus the we place

them at fixed points on the orbifold. Orbifold fixing of the SM particles allows only

particles that are pure singlets under the SM to propagate into the bulk, which is

what we call the extra dimensions. Concepts such as compactifying on an orbifold

and fixing particles on the orbifold sound ad hoc, but there is a reason why they

become natural to do. Orbifolds and orbifold fixed points are natural principles in

string theory; if the motivation is to imbed the idea of extra dimensions into string

theory these techniques follow logically.
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6 Neutrino Oscillations in Extra Dimensions

Once extra dimensions are introduced we lose a very important tool in neutrino

oscillation physics, namely the usual seesaw mechanism. The main idea from the

seesaw was that we could generate the small neutrino masses by integrating out

heavier particles. This gave us the relationship that mν ∼ m2/M , where M is some

high scale . We assume the mass m to be at the scale of electroweak breaking, i.e.,

around a TeV. Then to obtain the small neutrino masses we had to place M at the

order of the GUT scale. In extra dimensions the Planck scale is suppressed by the

volume factor of Eq. (33). If the size of the extra dimensions is large, for instance

O(mm), the Planck scale is O(TeV). When we lose the higher energy scale we become

powerless to suppress the neutrino masses by the usual m/M factor. Therefore, we

require a new mechanism to suppress the neutrino masses in the presence of extra

dimensions.

The way neutrino mass is suppressed with extra dimensions starts with intro-

ducing a neutrino into the bulk instead of introducing a right-handed neutrino in

four-dimensions as we did before. The coupling between the extra neutrinos, liv-

ing only in the bulk, and the ordinary left-handed neutrinos that are confined to

the brane, our four dimensional world, is volume suppressed by the extra dimensions.

This suppressed coupling then generates the small masses of the brane neutrinos when

you calculate the eigenvalues of a neutrino mass matrix that includes both brane and

bulk neutrinos. This “new” seesaw has been formulated in a few different ways, such

as in the choice of basis and lepton number violation. It has also been shown and

will be demonstrated in this thesis, that not only does the “new” seesaw suppress

neutrino masses it can also generate large neutrino oscillation probabilities.
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6.1 Dienes-Dudas-Gherghetta Model

In the Dienes-Dudas-Gherghetta model, only one neutrino is introduced into the

bulk which consists of only one extra dimension. On the brane, three left handed

neutrinos are introduced corresponding to their flavor eigenstates νi (i = 1, 2, 3).

Each of these three neutrinos has its own unique Majorana mass mi on the brane.

These left-handed neutrinos are flavor diagonal, which means that there is no mixing

among the brane neutrinos if we were restricted to only these three neutrinos. The

role that the Majorana mass terms play on the brane is simply to distinguish the

three flavors. In this model there is no interpretation of the scale or origin of these

masses; they are just taken as input parameters.

The bulk neutrino is introduced as a five-dimensional Dirac fermion Ψ, which

can be decomposed into two, two component Weyl spinors Ψ = (ψ, χ̄)T . The Dirac

fermion in this model contains no flavor indices, which means it is flavor neutral for

all processes. When the fifth dimension is taken to be compactified on a Z2 orbifold,

it is natural to take one the Weyl spinors to be even under the Z2 action and the other

to be odd. In the case of this model, ψ is even under the Z2 action, i.e., y → −y while

χ is odd. The left-handed neutrinos are restricted to the brane at the orbifold fixed

point y = 0, where χ vanishes on the brane. The brane/bulk coupling is then only

between νi and ψ. In the Dienes model this brane/bulk coupling is taken to be flavor-

universal, i.e., one coupling for all three brane neutrinos. In simple extensions[18]

there can be also a coupling for each flavor. From these assumptions the Lagrangian

has the following form:

Lbrane =
∫

d4x
3∑

i=1

{ ν̄iiσ̄
µDµνi + mi(νiνi + h.c.) }

Lbulk =
∫

d4x dy Ms{ ψ̄iσ̄µ∂µψ + χ̄iσ̄µ∂µχ− iψ∂yχ̄ + iχ̄∂yψ }

Lcoupling =
∫

d4x
3∑

i=1

( m̂νiψ |y=0 + h.c. ). (40)
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In the above Lagrangian Ms is taken to be the mass scale of the higher fundamental

theory. A basis is then chosen such that the mass matrix for the bulk will be diagonal.

This entails making linear combinations of the spinors of the five dimensional field Ψ,

thus for n > 0 we will have N (n) ≡ (ψ(n)+χ(n))/
√

2 and M (n) ≡ (ψ(n)−χ(n))/
√

2. The

full Lagrangian (40) is then written in terms of the five dimensional field Ψ expanded

in terms of its Kaluza-Klein excitations:

ψ(x, y) =
1√

2π R

∞∑

n=0

ψ(n)(x) cos(ny/R)

χ(x, y) =
1√

2π R

∞∑

n=1

χ(n)(x) sin(ny/R). (41)

The five dimensional Lagrangian (40) is then compactified by integrating over the

fifth dimension and the result obtained is the following:

L =
∫

d4x {
3∑

i=1

{ ν̄iiσ̄
µDµνi + ψ̄(0)iσ̄µ∂µψ

(0) +
∞∑

n=1

N̄ (n)iσ̄µ∂µN
(n) + M̄ (n)iσ̄µ∂µM

(n)

+ {
3∑

i=1

miνiνi +
1

2

∞∑

i=1

[(
n

R
)N (n)N (n) − (

n

R
)M (n)M (n))]

+ m
3∑

i=1

νi (ψ(0) +
∞∑

n=1

N (n) +
∞∑

n=1

M (n) + h.c.}} (42)

The new coupling m ≡ m̂/
√

2πMsR is the volume suppressed brane/bulk coupling

that results from the rescaling of the Kaluza-Klein modes of ψ and χ. When we

choose a basis as follows

N T ≡ (ν1, ν2, ν3, ψ
(0), N (1),M (1), N (2),M (2), . . .), (43)

the mass terms in the compactified Lagrangian (42) take the form of 1
2
(N TMN+h.c.)

16



in which

M =




m1 0 0 m m m m m . . .

0 m2 0 m m m m m . . .

0 0 m3 m m m m m . . .

m m m 0 0 0 0 0 . . .

m m m 0 1/R 0 0 0 . . .

m m m 0 0 −1/R 0 0 . . .

m m m 0 0 0 2/R 0 . . .

m m m 0 0 0 0 −2/R . . .

...
...

...
...

...
...

...
...

. . .




. (44)

Even though the brane neutrinos do not directly mix with themselves, they will

oscillate due to the KK modes. The important thing to note is the uniform coupling

m represents a flavor-neutral theory. Lam [18] extends this model to have flavor-

dependent couplings, i.e., a different coupling for each brane neutrino; however, this

extension does not give an explanation of the origin or strength of the couplings.

7 Extra Dimensional Flavor Restricted Couplings and Neu-

trino Oscillations

The models of neutrino masses describe in Section 4.1 use symmetries to restrict the

form of the Yukawa couplings. When a specific flavor symmetry was used to restrict

the mass matrices in combination with the seesaw mechanism to suppress the neutrino

masses, it gave rise to experimentally allowed patterns of neutrino oscillations and

squared mass ratios. The mass matrices became infinite when extra dimensions were

introduced, but a flavor symmetry could restrict their form in the same way as it

could in four dimensions.
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7.1 Cross Check of the Analytic Solutions Using Numerical Methods

Before analyzing new models a technique had to be developed that would enable us

to look at probabilities of neutrino oscillation for arbitrarily complicated infinite di-

mensional mass matrices. We used a series of computer programs written in MAPLE

to numerically diagonalize and compute Eqs. (13) and (14). Computations are done

for finite matrices, and we look for convergence in the oscillation probabilities as the

matrix grows to large finite sizes. This was necessary since analytically diagonaliz-

ing these matrices is formidable, if not impossible in most cases. In order to check

that the computer code was working properly we tested it on a model proposed by

Dienes [19] for which an analytical solution was possible.

A specific example was chosen from [19] in a test of the computer code. In this

example the mass matrix was of the form of Eq. (44) except for an overall rescaling by

R, the compatification radius, making all parameters dimensionless. The parameters

were chosen to be m = 0.01, m1,2 = 1 ∓ δm/2, δm = 5 × 10−2, and m3 = 5.

Probabilities of ν2 survival were plotted as a function of τ which is defined as

τ ≡ L

2E
. (45)

The analytic result came from Fig. 1 in the Dienes paper [19] and is shown in our

Fig. 1. The results from the computer code were plotted in Fig. 2. As can be

seen from Fig. 1 and Fig. 2, the computer code reproduced the analytic expressions

for probabilities solved in the Dienes paper [19]. The convergence to the Dienes

analytic expression occurred in the first ten Kaluza-Klein modes, i.e. a matrix of

dimension 20 by 20. This enabled us to use the computer code to find the probabilities

using any form of matrix. The only possible problem that presents itself was the

convergence of the numerical solutions for other models. The mass matrices are

infinite dimensional in extra-dimensional theories. The numerical code uses large

finite matrices to approximate the eigenvectors of the infinite dimensional matrices.
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Figure 1: The analytic solution of the probabilities from [19] with the values of m = 0.01, m1,2 =

1∓ δm/2, δm = 5× 10−2, and m3 = 5.

Models with convergent solutions as a function of the size of the matrix will be the only

ones presented in this thesis. Since the most massive particles in our theory should

not effect the low momentum physics, convergent solutions are the only physically

sensible possibilities.
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Figure 2: Numerical method result for calculation of the ν2 survival probability with the values of

m = 0.01, m1,2 = 1∓ δm/2, δm = 5× 10−2, and m3 = 5.

7.2 Prototype Matrices

Using the DDG model [16] as a starting point and making the same extension as

Lam [18] to include flavor dependent couplings , the mass matrix,

M =




m1 0 0 d1 d1 d1 d1 d1 . . .

0 m2 0 d2 d2 d2 d2 d2 . . .

0 0 m3 d3 d3 d3 d3 d3 . . .

d1 d2 d3 0 0 0 0 0 . . .

d1 d2 d3 0 1 0 0 0 . . .

d1 d2 d3 0 0 −1 0 0 . . .

d1 d2 d3 0 0 0 2 0 . . .

d1 d2 d3 0 0 0 0 −2 . . .

...
...

...
...

...
...

...
...

. . .




, (46)
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was examined, where m1,m2, and m3 are dimensionless as before when re-scaled by

the compactification radius R. It can be written down from a Lagrangian with the

same fields and parameters as Eq. (40) with one minor change. We make the Dirac

mass terms flavor dependent and arrive at the uncompactified Lagrangian

Lbrane =
∫

d4x
3∑

i=1

{ ν̄iiσ̄
µDµνi + mi(νiνi + h.c.) }

Lbulk =
∫

d4x dy Ms{ ψ̄iσ̄µ∂µψ + χ̄iσ̄µ∂µχ− iψ∂yχ̄ + iχ̄∂yψ }

Lcoupling =
∫

d4x
3∑

i=1

( d̂iνiψ |y=0 + h.c. ). (47)

Before further discussion of this model a new notation is introduced,

M =




Mbrane Mcoupling

MT
coupling Mbulk


 . (48)

The infinite dimensional mass matrix M is block decomposed into: Mbrane the three

by three brane neutrino mass matrix, Mcoupling which extends from the zero KK mode

to infinity and couples to each of the three brane neutrinos, and Mbulk which comprises

the KK modes mass terms. From these definitions it is trivial to examine Eq. (46)

and Eq. (48) to find the forms of Mbrane, Mcoupling, MKK modes.

The first approach to applying U(2) flavor physics to the infinite dimensional

mass matrix was to let the brane neutrinos transform as a 2⊕ 1. The bulk neutrino

NR transforms as a singlet. This means that we can use the same form of mass matrix

as Eq. (46) with di being restricted by symmetry. Thus this first extension changed

the form of both Mbrane and Mcoupling but left Mbulk unchanged. Mbrane now assumes

a usual U(2) texture,

Mbrane ∼




0 ε′ 0

ε′ ε ε

0 ε 1




. (49)

Mcoupling has the specific form of d1 = ε′, d2 = ε, and d3 = 1. This extension was not

physically viable when the oscillation probability of ν2 was examined with respect to
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these couplings. The way this was ascertained was from the atmospheric neutrino

problem. We know that almost half of the νµ are missing. When we examine Fig. 3

there are no missing νµ for d1 = .004, d2 = .02, and d3 = 1. This model was

also analyzed with a variety of couplings to show that there exists values such that

large oscillation can be found. The results shown in Fig. 3 demonstrate that only

in a stronger coupling limit do oscillations arise in this model. The box in Fig. 3

represents SuperKamiokande data for νµ survival probability which looks at a range

of τ from 0 to 30 and is extracted from [20].
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Figure 3: Numerical method result for calculation of the ν2 survival probability with various cou-

plings and ε = .02 and ε′ = .004 fixed. Run 1 was with couplings of d1 = 0.004, d2 = .02 and

d3 = 1. Run 2 was with couplings of d1 = 0.04, d2 = .02 and d3 = .2. Run 3 was with couplings of

d1 = 0.02, d2 = .02 and d3 = .02. Run 4 was with couplings of d1 = 0.2, d2 = .2 and d3 = .2. The

boxed region represents the allowed region of νµ probability as taken from [20].
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7.3 Two Neutrino Model

To better understand the oscillation probability, a toy model was devised using only

two neutrinos. Instead of introducing only one bulk neutrino Ψ1, a second bulk

neutrino Ψ2 was also added. Letting these two bulk neutrinos transform as a 2̄ and

the brane neutrinos transform as a 2 under U(2), a general form of the mass matrix

was constructed. Choosing the basis as

N T ≡ (ν1, ν2, ψ
(0)
1 , ψ

(0)
2 , N

(1)
1 ,M

(1)
1 , N

(1)
2 ,M

(1)
2 , N

(2)
1 ,M

(2)
1 , N

(2)
2 ,M

(2)
2 , . . .), (50)

with linear combinations of odd and even KK states for both flavors of bulk neutrino,

the mass matrix M takes the form:



0 ε a 0 a a 0 0 a a 0 0 . . .

ε 1 0 a 0 0 a a 0 0 a a . . .

a 0 0 0 0 0 0 0 0 0 0 0 . . .

0 a 0 0 0 0 0 0 0 0 0 0 . . .

a 0 0 0 1 0 0 0 0 0 0 0 . . .

a 0 0 0 0 −1 0 0 0 0 0 0 . . .

0 a 0 0 0 0 1 0 0 0 0 0 . . .

0 a 0 0 0 0 0 −1 0 0 0 0 . . .

a 0 0 0 0 0 0 0 2 0 0 0 . . .

a 0 0 0 0 0 0 0 0 −2 0 0 . . .

0 a 0 0 0 0 0 0 0 0 2 0 . . .

0 a 0 0 0 0 0 0 0 0 0 −2 . . .

...
...

...
...

...
...

...
...

...
...

...
...

. . .




. (51)

For Mbrane a hierarchical pattern was assumed. For Mcoupling we can understand the

form from terms in the Lagrangian. As we said the left-handed neutrinos transform

as a 2, νb, and the bulk neutrinos transform as a 2̄, Ψb. In this case, a is a coupling

of a 2 and 2̄ in a term of the Lagrangian that looks like aν̄bψ
cb

, since only the ψ
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component of the bulk neutrinos couples to the brane neutrinos. This example was

meant only to test other patterns inside of Mcoupling with certain group theoretical

ideas in mind.

For the first run a value of a = .004 was chosen, or in U(2) language a ∼ ε′. The

resulting probability was plotted in Fig. 4. This model shows that we can introduce

large mixing with very minimal coupling, however the large oscillation probability is

directly correlated with τ . The behavior of the probability could perhaps be sinusoidal

if examined over a larger range of τ but large τ is unaccessible in experiments. What

would be more interesting would be a larger oscillation probability at a lower value

of τ such as in the SuperKamiokande data referred to earlier.
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Figure 4: Numerical method result for calculation of the ν2 survival probability with the value of

the coupling a = .004.

For the second run, the value of a = .02 was chosen, or in U(2) language a ∼ ε.

This resulted in the probability shown in Fig. 5. This result seemed more physically

interesting due to the maximal oscillation at a lower τ . This was a reasonable result
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Figure 5: Numerical method result for calculation of the ν2 survival probability with the value of

the coupling a = .02.

and phenomenologically useful for looking at a ν survival probability but it does not

comment upon what ν will oscillate to. This could be examined in more detail; but

since there are three brane neutrinos it is prudent to move onto 3 neutrino models,

so as to understand their interplay with the strength and pattern of the couplings.

7.4 Three Neutrino Model Model

In this section we will analyze a possible extension with three bulk neutrinos Ψ1, Ψ2

and Ψ3 and three brane neutrinos ν1, ν2 and ν3. The three bulk neutrinos will trans-

form as a 2̄ ⊕ 1 under U(2) and the three brane neutrinos will transform as a 2 ⊕ 1

under U(2). Choosing the basis of

N T ≡ (ν1, ν2, ν3, ψ
(0)
1 , ψ

(0)
2 , ψ

(0)
3 , N

(1)
1 ,M

(1)
1 , N

(1)
2 ,M

(1)
2 , N

(1)
3 ,M

(1)
3 , . . .), (52)
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we obtain



0 ε′ 0 a 0 0 a a 0 0 0 0 a a 0 0 0 0 . . .

ε′ ε ε 0 a 0 0 0 a a 0 0 0 0 a a 0 0 . . .

0 ε 1 0 0 c 0 0 0 0 c c 0 0 0 0 c c . . .

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

a 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 . . .

a 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 . . .

0 a 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 . . .

0 a 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 . . .

0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 . . .

0 0 c 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 . . .

a 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 . . .

a 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 . . .

0 a 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 . . .

0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 . . .

0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 . . .

0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .




. (53)

The form of the mass matrix can be deduced from the same sort of arguments as in

the two neutrino case. This model was then examined with a variety of choices of

couplings a and b. In this three bulk and brane neutrino model, like in the original

three left-handed neutrino and the one bulk neutrino model, only stronger couplings

demonstrated large oscillation probability. In Fig. 6 one set of couplings is shown

with the SuperKamiokande data for νµ survival probability boxed as taken from [20].

This analysis demonstrates that this type of model can reproduce allowed patterns
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Figure 6: Numerical method result for calculation of the ν2 survival probability with the values of

the couplings: a = .2 and c = .2. The boxed region represents the allowed region of νµ probability

as taken from [20].

in νµ oscillation probability. All matter in the SM comes in sets of three. Therefore

models with three bulk neutrinos may be more natural compared with the minimal

Dienes model.

8 Conclusions

This thesis has demonstrated two key points. First, that the use of numeri-

cal approximations to the infinite dimensional mass matrices, that arise in extra-

dimensional models, converges and coincides with existing analytical solutions. Sec-

ond, that the introduction of a flavor symmetry in the bulk is compatible with large

oscillations in the brane neutrinos.

There are several issues open for one to examine. The first is an understanding

of the probabilities involved in nearly bimaximal neutrino oscillation. A more careful

study with respect to all experimental bounds on neutrino oscillation would have to
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be done to figure out what the exact probabilities are that need to be reproduced

by a model. Another issue that needs to be examined further is the way flavor is

broken in the bulk. The flavons that are introduced are higher dimensional operators

that are suppressed by a flavor scale. In four dimensional scenarios the flavor scale is

normally set at the GUT or Planck scale. As we have already discussed these scales

have been lowered through volume suppression in extra dimensions. This means that

our flavor scale will be suppressed as well and we will have flavor symmetry breaking

at the TeV scale. This creates potentially dangerous problems with flavor changing

processes and for any further investigation the model of flavor breaking would need

to be specified. These problems associated with flavor symmetry breaking in the bulk

have been addressed in [21] but are beyond the scope of this work.

With the numerical techniques developed one can carry out further analysis of

new models with relative ease. The U(2) flavor symmetry has been shown to work well

in four dimensions, reproducing nearly bimaximal neutrino oscillations [10]. Hopefully

with the numerical techniques developed and the early results demonstrated in this

paper, U(2) as flavor symmetry in extra-dimensions will be further investigated to see

whether it can reproduce phenomenologically viable neutrino oscillation probabilities.
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A U(2)-like Flavor Symmetries and Approximate Bimaximal

Neutrino Mixing

The following article was completed during the summer before my senior year. It has

been published in Phys. Rev. D [10] and demonstrates the use of flavor symmetries

to restrict neutrino oscillation probabilities in four dimensions.
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