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Abstract

Anton Zeilinger’s recent work provides an intuitively satisfying account of the foundations
of quantum mechanics motivated by the Copenhagen Interpretation. The current project is to
write a rigorous pedagogical article to illuminate the emerging concept of quantum information
in light of Zeilinger’s proposal. Accepting Zeilinger’s view would amount to a reformulation of
familiar concepts in quantum mechanics in terms of information. The goal of the paper is not
only to clarify and promote Zeilinger’s view, but also to advocate teaching quantum mechanics
in this reorganized way. The paper is meant to be accessible even at an undergraduate level
of physics education. It explicitly illustrate that a spin one-half particle and a Mach-Zehnder
interferometer carry one bit of information. Finally, it describes how these results affect our
understanding of wave-particle duality.
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1 Introduction

The essential measure of success for a physical theory is that it ought to consistently
make predictions that match experimental outcomes. In this sense, Quantum Theory
is extremely successful. Although the wave function formulation of non-relativistic
quantum mechanics developed by Schrodinger is the most widely used formulation,
there are many others. Each may make use of different assumptions, but they all
make exactly the same predictions of experimental results (similar to the many treat-
ments of classical mechanics, such as the Newtonian, Lagrangian, and Hamiltonian
formulations) [1]. These different mathematical formulations of quantum mechanics
are operationally identical; that is, for each formulation physicists interpret certain
parts of the mathematics in such a way as to make correct predictions of the probabil-
ities of future measurements. Because of these operational interpretations, quantum
mechanics works unquestionably well. Nevertheless, these mathematical formulations
house intuitively baffling implications. Daniel Styer and his colleges note: “Quantum
mechanics seems strange to our classical eyes, so we employ mathematics as our sure
guide when intuition fails us. The various formulations of quantum mechanics can
repackage that strangeness, but they cannot eliminate it[1].”

There is a second more conceptual level of interpretation of a physical theory.
This has to do with the implications of the physical theory to our general worldview.
Operationally, this sort of interpretation is irrelevant, even though most formulations
were developed with specific conceptual interpretations in mind. This level of inter-
pretation addresses another criterion for assessing the adequacy of a physical theory:
the theory needs not only to make predictions that agree with the phenomena, but
also ought to provide a satisfactory explanation of these phenomena. Whereas, op-
erationally, the bizarre nature of the quantum world is a brute fact, it is this second
level of interpretation that can suggest a method of dealing with the strangeness of

quantum physics.



There is a host of these interpretations from which to choose. The Copenhagen
Interpretation is historically the most important, since it contains the philosophical
foundations from which the earliest formulations of the theory developed. Since this
interpretation did not have just one leading spokesperson, it is difficult to capture
its essence definitively. However, one important characterization of it seems to be its
ontological minimalism. By ontological, I mean referring to what exists. In scien-
tific contexts, ontological entities are often said to exist in reality independently of
observers. For example, it may be argued that it is the objectivity of science that
gives insight into the nature of what exists in reality. The Copenhagen Interpretation
holds that the physical theory need only express what we know about the results
of experiments, since this is all we observe. It need not make any claims as to the
deeper reality of the physical systems, since this may be beyond our knowledge. Thus,
quantum physics makes epistemological, not ontological claims. This sort of scientific
understanding is crucial in quantum physics where the observer plays such a key role
in the experiment.

Classical physics, on the other hand, retains the luxury of drawing conclusions that
are proudly said to be objective, or independent of the particular observer. It is easy
and safe to extrapolate these conclusions into ontological claims about the reality of
the physical world. In this case, the scientific theory does not assume the additional
burden of explaining the phenomena in ontological terms. It need only justify how
we acquire scientific knowledge (a task for all of science), and ontological explanation
comes along for free.

What then of the mysterious implications of quantum physics which seem to lack
this natural ontological explanation? According to an epistemological doctrine, all
that can be said is that we know quantum systems act in these certain ways under
certain experimental conditions. These sorts of statements are fundamental to the

theory. If these statements make the behavior of quantum systems seem counterin-



tuitive, then it is fundamentally counterintuitive.

This point of view is attractive to many scientists, since it emphasizes the op-
erational success or testability of a physical theory rather than its ontological sig-
nificance, which by the very nature of ontological claims (claims about what exists
independently) may not be testable in principle. However, for those who find intuitive
explanation indispensable, this sort of interpretation may remain unsatisfactory. This
discontent has motivated many to propose other interpretations of quantum mechan-
ics that postulate ontological entities, such as other minds, other worlds, consistent
histories and hidden variables, to name a few|[2].

Anton Zeilinger hopes to alleviate the need for the postulation of these extraneous
ontological entities. He aims to show that when brute quantum strangeness is reduced
to its simplest form, it is actually intuitively appealing. He then uses this reorgani-
zation to provide a richer explanation of quantum phenomena while maintaining the
ontological minimalism of the Copenhagen Interpretation. He does this by proposing
a fundamental conceptual principle of quantum mechanics: “An elementary system
carries one bit of information.” This principle connects the classical notion of the
bit of information (the smallest measure of classical information) with the quantum
concept of an elementary system (the simplest quantum system.) Quantum physics,
in general, only predicts the probabilities of measurement results. Only when the
probability of a result is 100% does the probability appear like a proper classical pre-
diction. The information content for such a measure is one bit. Zeilinger’s principle
states that for an elementary system (such as an electron with respect to its spin)
there is exactly one measurement for which such a classical-looking prediction can
be made (measurement along a certain axis). Zeilinger claims that this fact accounts
for all seemingly counterintuitive phenomena, including two topics this paper will
address: wave-particle duality and the randomness of quantum measurements.

To see how Zeilinger adds intuitive appeal to the skeleton of the Copenhagen



Interpretation, consider a specific issue arising from the interpretational debate: that
of the reality of the wave function. Bohr, one of the founders of the Copenhagen
Interpretation, held that the wave function is a state of the mind describing our
knowledge of the system and that the collapse of the wave function is a lifting of our
veil of ignorance. Again, this is a purely epistemological interpretation. However,
others held that the wave function ought to be interpreted as a description of the
‘real state of nature’. There are numerous ways to interpret this phrase. It could
mean, for example, that the wave function ‘exists,” that it is ‘physical,” or that it is
part of ‘reality.” Each of these possibilities is an ontological claim and carries its own
debatable philosophical baggage.

It may seem reasonable to try to attribute some kind of ‘reality’ to the wave
function, given that claims about objective reality within the realm of classical physics
flow freely. One way to think about these ontological claims is in terms of “elements
of reality,” a term coined by Einstein, Podolsky and Rosen in their famous attack
on the completeness of quantum physics (the details of which are not relevant here)
[3]. According to EPR, an element of reality is a property that can be predicted with
100% certainty without disturbing the system.

It is easy to describe classical properties as elements of reality. Disturbance of a
classical system by observation is so slight that it is generally not a problem. Fur-
thermore, classical systems are strongly deterministic such that complete knowledge
of initial conditions in principle yields complete knowledge of the system’s properties
for future times. Thus, attributing elements of reality to classical physical systems
seems natural. Indeed, EPR’s motivation for developing this concept probably came
from a reversed line of reasoning. It seems as though they asked themselves: What
are the attributes of the things that are certainly real, like classical systems? The
description of element of reality nicely extracts the essence of our natural attitude

towards classical scientific investigation as well as everyday observation.



Attributing elements of reality even to classical systems, while harmless to a
knowledge-based theory, is not strictly necessary. A persistent bent towards a pure
epistemological theory seems like the only reason not to attribute them to classical
systems given the conceptual clarity and natural desire to do so. Nevertheless, the
above definition of ‘element of reality’ is an operational one that characterizes a clas-
sical and well-behaved particle. Thus, the epistemological purist can avoid talk of
ontology altogether by strictly using this operational definition instead of mentioning
‘element of reality’. With this in mind, I’ll keep the ‘element of reality’ terminology
for simplicity.

We can now use Zeilinger’s principle to attribute this intuitive description of nature
to quantum systems. A bit of information i¢s an element of reality: it is a certain
measurement result (or property) known without disturbing the system since the
information is based on past experiences of other identically prepared systems. Thus,
the spin of an electron along the correct axis is the element of reality for that system.
The wave function certainly describes our state of knowledge of the system, but may
also describe a real state of nature. The wave function explicitly describes this real
state when it is in an eigenstate of the operator representing the measurement to
which the element of reality corresponds.

It seems that elements of reality are discrete. This makes sense given their con-
nection to information. That the world always answers our yes or no questions with
a yes or no is our evidence that there is a smallest amount of information: the bit.
That an elementary system carries only one bit of information accounts for other
bizarre quantum phenomena. For example, no other measurement of the spin of the
electron can be predicted with certainty because if it could, then the system would
carry more than one bit of information. This and all the conceptually strange results
are packaged into one conceptual principle. This principle has intuitive appeal, given

its connection to classical physics.



Finally, there is no need to postulate extraneous ontological entities. The only new
concept needed is information which is carried in physical systems. It is not a purely
ontological concept since it is connected to the knowledge of the observer. However, a
bit of information, for all practical purposes has all of the elements that are required
for a classical object to have ontological reality. Thus, although those repulsed by
new ontological concepts can maintain the strict mentality of the Copenhagen Inter-
pretation, those who need a firm grasp of what is real in their physical theories can
safely incorporate harmless ‘elements of reality’ into their worldview. This seems to
eliminate the need for those nasty ‘other worlds’ and such that seem like unfair prices

to pay for a little intuitive satisfaction.

1.1 Overview

First, I will describe Zeilinger’s concept of information, showing how it differs from
the more traditional measure of information due to Shannon. This will provide the
framework for a careful treatment of Zeilinger’s principle which connects the classical
bit to the quantum bit (or qubit). Then I will explicitly show that his principle holds
for two examples of elementary systems. The first example considered is a quanton
(an object small enough to exhibit quantum behavior!) of spin one half. The pro-
totypical example of this is the electron. The other elementary system considered is
a Mach-Zehnder Interferometer with respect to the measurements which can reveal
path information or quanton interference. This analysis shows that a qubit can be
represented by a device called a Bloch Sphere which provides a novel way to envi-
sion wave-particle duality. I will conclude by reemphasizing how Zeilinger’s proposal

provides new insight to the classical/quantum divide?.

1Mario Bunge first coined the term gquanton which fits nicely into the particle zoo already containing protons,

mesons, leptons, etc.[4]
2In addition to the references mentioned in the endnotes, I have also found the following sources formative in the

development of my thesis:



2 Information

Although the term “information” comfortably passes through everyday conversations
as if it referred to a concrete entity, the concept eludes a precise definition. Neverthe-
less, our ease in using the term suggests an intuitive understanding of it, and most
dictionary definitions agree that it is some sort of knowledge from observation. There
are different aspects of information to study such as the content of information (what
certain symbols mean), the pragmatic value of information (how useful these symbols
are for the receiver’s purposes) and the amount of information contained in a system.
Physics is concerned with this last aspect of measuring information. Here, ‘system’
refers to both the physical entity as well as certain measurements that may be made
on that entity. I could make many measurements on a coin, for example, its mass,
position, etc. However, for simplicity, I want to talk about measurements with only
two possible outcomes, like how the coin lands when we flip it.

The most well-established way to measure information is due to Shannon and is the
standard measure used in most information theories today. It measures the amount
of uncertainty we have about the result of a measurement and thus the amount of
information gained or produced by performing the measurement. For example, one
bit of information is gained by answering the question, “Did the coin land on heads
or tails?” Psychologically, a bit of Shannon information characterizes the maximum
amount of surprise we feel when we find out the result of a measurement of a simple
system that has only two possible outcomes. (Much more complicated systems can

provide much more information or surprise than just the flip of a coin can.) If we

B. Englert, Fringe Visibility and Which-Way Information: An Inequality. Phys. Rev. Let. 77, 2154 (1996).

U. Fano, Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Rev. of Mod.
Phys. 29, 74-93 (1957).

Schwindt, P., Kwiat, P., and Englert, B. Quantitative Wave-Particle Duality and Non-erasing Quantum Erasure.
Phys. Rev. A 60, 4285 (1999).

von Baeyer, H. In the Beginning was the Bit. New Scientist Magazine, Feb (2001).



flipped a double headed coin, however, the outcome would be neither interesting nor
surprising. On Shannon’s view, no information has been gained.

Alternatively, Zeilinger proposes that information measure not the uncertainty, but
the amount of positive knowledge that we already have about future measurement
results. If I have a fair coin, then I do not know anything about how it will land when
I flip it, so I have no information about the measurement. If I have an unfair coin
which lands on heads more often than on tails, I feel like I have more information than
before, but I still don’t know for sure how the coin will land. So I have more than zero
bits of information, but less than one bit. However, if I have a double headed coin,
then I will always know the answer to the question with certainty, and so I have one
bit of information. For both Shannon and Zeilinger, information is a function of the
probabilities of measurement results. However, Zeilinger’s flips the interpretation of
the measure of information upside down, as shown in Figure 1. Furthermore, although
Zeilinger’s measure looks like a mere flip of Shannon’s, it is mathematically and
conceptually different. Zeilinger claims that this new interpretation of information is
the optimal way to describe quantum systems, whereas some implicit assumptions of

Shannon’s view are inappropriate to account for certain quantum properties.

2.1 Shannon Information

In his 1949 paper, “A Mathematical Theory of Communication,” [5] Shannon expands
upon the work of H. Nyquist and R.V.L. Hartley[6]. Nyquist worked on how to
transport messages efficiently, but did not refer to these messages as “information.”
Hartley first developed a measure of information to describe the number of different
messages that could be produced by a set of n possible symbols. Intuitively, a string
of N symbols ought to contain N times the amount of information that one symbol

contains. To account for this, Hartley defined the amount of information Hy as the
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Figure 1: Information content of a two state measurement vs probability Pt, where P~ = 1 —
PT. This graph shows a conceptual difference between Shannon’s and Zeilinger’s understandings
of information. On Shannon’s view, we gain one bit of information from a two state system when
the probabilities for each possible measurement are 50% each, and we gain no information if the
probabilities are 0 and 1. However, for Zeilinger, if the probabilities are 50/50, then we have no
information about the system, but we do have one bit when the probabilities are 1 and 0. (The
program used to generate this graph does not support the extreme endpoints of the logarithmic

function. )



logarithm of the number of distinguishable messages that can be produced:
Hy(n) =logn™ = Nlogn. (1)

The choice of the base of the logarithm specifies the units used to measure information.
In this paper, the systems considered will always be two state systems. Thus, the
logarithm will always be to the base 2 and the unit will be the bit (short for binary
unit.) This choice allows for the interpretation of information as the number of yes
or no questions necessary to determine the exact sequence of the N symbols.

Hartley assumed that all of the symbols had an equal chance of being used. Shan-
non expanded the concept of information by explicitly including the probabilities of
each possible outcome. Thus, we have probabilities p;, po, ..., p, for each of n differ-
ent possible symbols or of n distinguishable outcomes of an experiment. Shannon’s
measure of information gained from an experiment is

n
H=- lei log pi. (2)
i=
This reduces back to Hartley’s measure when all probabilities are equal (p; = %) and
there is only one symbol produced (N = 1).

To calculate the information gained by tossing a fair coin it is necessary to take into
account the possibility of the coin landing on heads (P = 1) and tails (P~ =1). (I
will use the notation P and P~ instead of p; and p, when there are only two possible
measurement results.) This yields (—% log% — %log %) = 1 bit of information. This is
expected since it only takes one yes or no question to figure out the outcome of a coin
toss. However, to calculate the amount of information gained by tossing three coins
in a row, all eight possible outcomes must be taken into account (HHH, HHT, HTH,
THH, TTH, THT, HTT, TTT). Each outcome has a 1 in 8 chance of occurring. Thus
the information gained is (— 8 % log %) = log 8 = 3 bits. This matches our intuition
that tossing three coins gives three times as much information as tossing one coin.

Thus, when N represents the number of repetitions of the experiment (or the length

10



of a string of symbols as in Hartley’s information measure) Shannon also expresses
his measure of information as:
n
H=-N ;pz‘ log pi, (3)
=
which sums only over the possible outcomes of a single experiment.

A similar example is an eight-sided die. There are eight possible outcomes with
equal chances of occurring, so according to Equation 3, there are three bits of infor-
mation gained from tossing the die. It contains the same amount of information as
tossing three coins and requires three yes or no questions to figure out which number
was rolled.

All of the possible outcomes in the above examples have an equal chance of oc-
curring, but in general each distinguishable outcome may have a unique probability.
By explicitly including these probabilities into the measure of information, Shannon
connected the idea of information to uncertainty or missing information. If I have an
urn with 99 black marbles and one white marble and I draw one at random, I have
a pretty good idea which color it will be; I have very little missing information and
thus will gain little information from actually drawing a marble. However, if there
are 50 black and 50 white marbles, I am maximally uncertain as to which color I will
draw. On Shannon’s understanding of information, the more uncertain I am about a
measurement, the more information I gain from actually doing the measurement.

For the urn with 99 black marbles and one white marble, the probability of drawing
a black marble is, of course, 99%. Operationally, this probability is meaningful only
when we repeat the measuring process very many times. 99% of the marbles I draw
should be black, but this may not be the case if I only repeat the drawing, say, 100
times.

For an urn filled with N total marbles with n different colors, if I draw one marble

after another until all the marbles have been drawn, the exact number of possible
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sequences, W, is given by the equation

N!
W = , 4
(Vo) (V)L (Vpa)! W
where py, po, ... ,p, are the probabilities for drawing each different color marble. So

Np, is the number of, say, blue marbles originally in the urn, Npy the number of
red marbles, and so on. However, since these probabilities have meaning only for
large N, the Stirling approximation can be used to find that the number of possible
combinations is W ~ 2. Thus, the information is still interpreted as log W [7].

With the emergence of quantum information, many have naturally attempted to
use Shannon information to describe the information contained in quantum systems.
However, Zeilinger shows that some distinctions between classical and quantum sys-
tems prove fatal for such an attempt. For example, classical and quantum probabili-
ties are not on equal footing. As mentioned at the beginning of the section, physics is
concerned with measuring the information contained in a system, and a given system
refers to specific measurements. On Shannon’s view, the amount of information con-
tained in a system is equal to the amount of uncertainty that will be removed upon
making the relevant measurements. However, knowing everything there is to know
about a system (like its mass, position, etc) includes knowing with certainty the out-
comes of the measurements in question. In this situation all probability is removed
from the system. For example, knowing everything there is to know about a coin
being tossed includes knowing with certainty how the coin will land. The Shannon
uncertainty quantifies how much knowledge about the measurements of interest is
missing. However, even if I know everything there is to know about, say, an electron,
I'in general do not know with certainty the outcome of measuring the spin along some
axis. The probabilities associated with quantum measurements are irreducible. God
does not play dice in the classical world, but He does in the quantum world.

This difference is crucial for bit counting. For a system of three coins (or one

coin tossed three times), the toss of each coin accounts for one of the three bits of
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information contained in the system. If Shannon’s view were applied to quantum
systems, any measurement of, say, the spin of an electron could produce one bit of
Shannon information if there is an equal chance of finding spin up and spin down.
Furthermore, for an electron initially prepared spin up along the z direction, two
consecutive measures of the spin along the x, then y axes can produce two bits of
information. There is nothing to distinguish these two bits from the two bits of
information produced by two flips of a coin. However, quantum mechanics says that
after the y direction measurement, the spin is in a superposition of states with respect
to the x axis. While this gives knowledge about the spin in the y direction, it also
takes away knowledge about spin in the z direction. Shannon’s view of information
does not account for this loss of knowledge. Zeilinger claims that this unfortunate
consequence is a result of some implicit assumptions in Shannon’s theory: that new
observations always increase knowledge and that the order of experiments does not

affect the information content of a system|7].

2.2 Zeilinger’s Measure of Information

Zeilinger addresses this issue by noting that knowing the probabilities of the measure-
ment results for each mutually exclusive measurement exhausts all there is to know
about all relevant measurements. Unlike a coin, where there is only one measure-
ment of interest (how the coin lands when tossed), there are an infinite number of
measurements to be concerned about for the spin of an electron: the measurements
of spin along all axes. Knowing the probabilities of finding spin up and spin down
for three orthogonal directions of the electron accounts for all the knowledge of all
the measurements of spin in the same way that knowing three spatial components
accounts for knowing the exact position of a point in three dimensional space. Thus,
the total information of the system ought to sum over the information for each of

these measurements. Zeilinger, instead of saying that the electron ‘contains’ this in-
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formation, says that the electron ‘carries’ this information. This terminology avoids
the implication that a definite outcome exists prior to measurement, which may be
said about a classical measurement when other properties of that system are known.
What does exist before a measurement is information that is carried by the whole
system. Since it exists before the measurement, it must be independent of which
measurement the scientist chooses to perform.

Zeilinger’s measure of information quantifies the certainty of an experimental re-
sult before the experiment takes place. This avoids the difficulty of the loss of knowl-
edge in quantum systems. Information is again a function of the probabilities of the
possible measurement results, like Shannon’s information. This is convenient since
the mathematical formalism of quantum mechanics predicts just these probabilities.
Zeilinger, like Shannon, interprets probabilities as a statement about measurement
results of large and hypothetical ensembles of identical experiments. The only time
when quantum mechanics appears to predict definite measurement results is when
the probability is equal to 100%. In this situation, Zeilinger’s information shows a
sign of overlap with Shannon information since for Shannon information randomness
can be be eliminated.

Zeilinger’s equation for the information for one measurement of an elementary

system is

1\? 1\?

I(P*,P) =2 [(zﬁ - 5) + (P— - 5) ] (5)
where 2 is the normalization constant for a two-state system and Pt and P~ repre-
sent the probabilities for the two possible outcomes of the experiment (such as the
probabilities for finding spin up and spin down in the electron example.) It is easily
seen that the probabilities for a completely random result (3 and 3) yield a measure
of zero bits of information, whereas the probabilities of a certain result (0 and 1) yield

one bit of information, as expected. While mathematically very different, Figure 2

shows the similarity between Shannon’s and Zeilinger’s measures of information for
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Figure 2: Information content (measured in bits) of a two state measurement vs probability PT,
where P~ = 1—P*. Shannon’s logarithmic measure of information is slightly greater that Zeilinger’s

measure. This graph ignores the flip of Zeilinger’s information content that is shown in Figure 1.

a two state system with probabilities P™ and P~ = 1 — P™, ignoring the flip shown
in Figure 1.

Zeilinger defines the total information contained in a system so that it is indepen-
dent of the choice of measurements. For an electron’s spin, for example, the total
information can be calculated by summing over the individual measures of infor-
mation for any set of three perpendicular directions. In general, the sum over the
information for all mutually exclusive measurements gives the total information for
a system. The knowledge required to calculate this information is the probabilities
for the outcomes of mutually exclusive measurements. When certain knowledge of
the outcome of any one measurement excludes any possibility of making an informed

prediction of the outcome of some other measurement, the two experiments are said
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to be mutually exclusive. For an elementary system, the total information is given
by:

3
Itotal = ZI](I)J+7PJ_)7 (6)

=1

where 7 sums over the measures of information for the three mutually exclusive ex-

periments.

3 Zeilinger’s Fundamental Principle of Quantum Mechanics

Zeilinger notes that using his analysis, the measure of information for an elementary

system is always one. This motivates his fundamental principle:
An elementary system carries one bit of in formation.[8] (7)

An elementary system is also known as a qubit to indicate that it carries the
smallest unit of quantum information. A classical bit must be either a 0 or a 1, but
the information content of a qubit can be in a superposition of these two states®
mathematically described as |¢)) = a|0) + b|1), where [¢) is the superposition state
and |a|? and |b?> are the probabilities for finding it in the pure state |0) or |1),
respectively. Because of this superposition property, qubits have the advantage of
handling tasks such as factoring numbers in exponentially less time than classical
bits[9]. Physicists comfortably speak about qubits, use them in calculations, and are
currently trying to create qubits stable enough to use in a quantum computer (see
Appendix C).

Zeilinger’s achievement is to connect the realm of quantum information to classical
information by showing the relationship between the physical system of the qubit and
the bit. Although the qubit is a complex and mysterious container of information,

somewhere in it is just a classical bit. That is, there is one and only one measurement

3The debate over the meaning of superposition is as intense as the debate over the reality of the wave function.

However, whatever ‘superposition’ means, it still has an undisputed operational definition.
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in the quantum system where the result can be predicted with certainty. This special
measurement may change with time or may change after some other experiment
is performed, but there is always one bit carried in the elementary system. An
elementary system is so simple that there is no other hidden information in the
system that can help us predict any other measurement results with certainty. It
carries the absolute least amount of information that nature will allow. If we ask a
yes or no question, we always get a yes or no answer: we never experience ourselves in
a superposition of yes and no. Although this seems obvious starting with a classical
perspective, it seems strange starting with a quantum perspective where systems are
always in superpositions of certain states. Thus, the fact that information is quantized
can help not only to understand some strange aspects of quantum mechanics, but also

help to understand why the classical world is the way it is.

4 Spin One-Half Quanton

The clearest example of an elementary system is a spin one-half quanton, such as an
electron. Feynman repeatedly emphasizes that the case of the spin one-half particle
is mathematically identical to the cases of all two state systems®. Thus, the analysis

in this section can be used as a guide for other elementary quantum systems.

4.1 Information Content of the System

Here, using Zeilinger’s interpretation of information, I will show explicitly that the

spin of an electron carries exactly one bit of information. The simplest case occurs

4In the Feynman Lectures on Physics[10], Feynman states on page 10-17, “So if we can solve the electron
problem ¢n general, we have solved all two-state problems,” and “In the next chapter we will look some more into
the mathematical techniques for handling the important case of a spin one-half particle — and, therefore, for handling
two-state systems in general.” Also, on page 11-9: “We only wished to make the point that all systems of two states

can be made analogous a spin one-half object precessing in a magnetic field.”
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Figure 3: The vector, indicating the direction of the prepared spin, is labeled by two parameters, 6

and ¢.

when an ensemble of electrons is prepared to be spin up along some direction® (call
it the z direction). Then the probability of measuring and finding that electron with
spin up in the z direction again is 100%, so that the information with respect to this
measurement is I, = 1 bit. Furthermore, for all measurements of spin in orthogonal
directions (including the z and y directions), the results will be completely random.
The information content for measurements in these directions are: I, = I, = 0 bits.
Thus, the electron carries one bit of total information.

More generally, the electron carries one bit of information regardless of the direc-
tion in which its spin has been prepared. Feynman computed the probability that an
electron will have its spin up or down along a certain axis, given that the electron
was prepared with its spin up along some arbitrary direction labelled by the polar
coordinates f and ¢, as in Figure 3[10]. The probability depends only on the angle

2, which is the angle between the initial direction and the axis of interest. These

5This can be done by directing a bunch of electrons through a Stern Gerlach apparatus set up at the appropriate

angle and discarding the spin-down electrons.
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Figure 4: The law of cosines for spherical trigonometry relates the angles of the wedge of a sphere.

probabilities are:

Q Q
Pt =cos? | = and P~ =sin? (= ). (8)
2 2

According to Figure 3, 2,, which is the angle between the axis of the prepared spin

and the z axis, is just @, so the probabilities to find the spin up and spin down along

P = cos? (g) and P, = sin® (g) : 9)

To find 2 with respect to the other two axes, we invoke the law of cosines for

the 2z axis are:

spherical trigonometry:
cosy = cos « cos 3 + sin « sin 3 cos ¢, (10)

where v, «,  and c are indicated in Figure 4. To find €2,, the angle between the

prepared spin and the x axis, we use v = Q,, a = ¢, 6 =90° — 0 and ¢ = 90°. Then,
cos {2, = cos ¢sinf. (11)

Thus, according to Equation 8, the probabilities for finding spin up and down along

the x axis are:

1 1 1 1
Pl = 5t icosqbsinﬁ and P = 5 Ecos¢sin0. (12)

For the y axis, we use v = (), @ = 90° — ¢, 8 = 90° — 0, and ¢ = 90°. Therefore,

cos ), = sin ¢siné, (13)
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so the probabilities are:

1 1 1 1
P = 3 + ) sin ¢ sin § and P, = 575 sin ¢ sin 6. (14)

Thus, from Equation 5, the information content for the measurements of spin along

the z,y, and z axes are:
I, = cos® ¢sin’ 0, I, = sin® ¢ sin” 6, and I, = cos®#. (15)

The summation of these measures yields one bit of information for the spin one half

quanton:

3
Lot =Y 1; (P, P7) = 1. (16)

7j=1
4.2 The Qubit Interpretation

We can represent the information that a qubit carries by a unit vector fixed to and
pointing away from the origin (see Figure 5). All possible positions of this vector trace
out a sphere of unit radius. This is known as the Bloch Sphere[11]. The sphere lies
in three-dimensional “information space.” The two states of any measurement of the
system correspond to two opposite points on the sphere. Any three orthogonal axes
represent mutually complementary experiments, each with two possible outcomes.
The projection of the unit vector onto any axis indicates the information content
with respect to that axis. Three such projections onto any set of three mutually com-
plementary axes is sufficient to calculate the total information of the system. Since
there is only one bit, all other axes not aligned with the vector represent measure-
ments with some element of necessary randomness. Axes perpendicular to the vector
represent the measures that are maximally and necessarily random.

The three spatial dimensions of the electron correspond directly to the three di-
mensions of information space in the Bloch sphere. The direction in which the spin
was prepared corresponds to the direction of the unit vector in the Bloch sphere.

Thus, the electron is the clearest example of an elementary system as a qubit.
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Figure 5: All possible positions of a unit vector trace out the Bloch Sphere in three-dimensional
information space. The vector represents a bit of information. It is pointing in direction that

indicates a certain measurement with 100% probability of some result.

5 Wave-Particle Duality

In 1806, Young demonstrated the interference of light with his double slit experiment.
Since then, modifications of his experiment have been used to show that individual
quantons display both wave behavior and particle behavior. It is important to note
that wave and particle “behavior” (or wave and particle “nature”) refers to the out-
comes of specific experimental conditions. That is, certain experimental conditions
show evidence of interference which is said to be the mark of wave behavior, and
other experimental conditions reveal evidence of the path taken by the quanton trav-
elled (often called “Which Way knowledge’) which is said to be the mark of particle
behavior.

Wave and particle behavior are said to be complementary aspects of the same
quantum system, because when the experiment reveals evidence of complete interfer-

ence, there can be no Which Way knowledge, and vise versa. In 1979, Wooters and
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Zurek reported that while the above statement is certainly true, it is also possible
to observe partial interference evidence and have partial Which Way knowledge[12].
Analyzing this topic using Zeilinger’s concept of information for a two state system
shows a refined relationship between wave and particle behavior.

The double slit experiment, however, proves cumbersome for these purposes. This
is because, although there are two distinct states for path information, interference
patterns are observed on a continuous screen®. The double slit experiment may be
easily replaced with a Mach-Zehnder Interferometer made of simple beam splitters.
Output revealing interference of quantons is discrete in the Mach-Zehnder Interfer-
ometer allowing for the convenient analysis of wave particle duality in terms of infor-

madtion.

5.1 The Beam-Splitter

A beam-splitter will transmit part of a classical beam of light and reflect the rest of
it. The physical composition of the beam splitter determines what fractions of the
light are transmitted and reflected. Here, we discuss mainly 50/50 beam-splitters
which split a classical beam of light into two beams of equal intensity. A symmetric
beam splitter is one that has the same effect on light from either direction. Energy
conservation ensures that the two output beams of a symmetric beam-splitter always
have a relative phase difference of § (see Appendix 1). In quantum mechanics, physi-
cists say that the probability wave is split half and half, so that if a single quanton
is shot at a beam splitter and there are two detectors set up to find out if it was
transmitted or reflected, it will end up in each detector 50% of the time. Thus, the

beam splitter is a primitive quantum device that offers a simple way to extract the

61t is possible to treat the double slit experiment as a two state system by setting up detectors only at certain
places within the interference pattern, making it operationally equivalent to a Mach-Zehnder Interferometer treated
below. However, it is much easier to deal with the Mach-Zehnder Interferometer itself, especially since we treat it as

ideal.
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inherent randomness from quantons into physical output’.

5.2 The Mach-Zehnder Interferometer

A Mach-Zehnder Interferometer® is a construction of two identical symmetric beam-
splitters and two perfectly reflecting mirrors as shown in Figure 6. Like the double slit
experiment, this device demonstrates the interference of light or quantons. Instead
of analyzing entire interference patterns from a projection screen, as in the double
slit experiment, the Mach-Zehnder interferometer has only two possible output arms,
making data analysis much easier to handle. Evidence of constructive and destructive

interference can be detected from the data collected from just these two places.

5.2.1 Classical Light

In a Mach-Zehnder interferometer, a beam of laser light is split by the first beam-
splitter into two paths. Both of these beams are reflected back by perfect mirrors
to the second beam-splitter where each beam is again split into a reflected and a
transmitted beam. The final two output beams of light have contributions from both
paths of the interferometer, so that interference is possible. The beam that exits out
of the “asymmetric” output arm is composed of one beam that is reflected twice and
one that is transmitted twice. Both beams that exit from the “symmetric” output
arm have been reflected once and transmitted once.

Consider an ideal Mach-Zehnder Interferometer constructed with two identical

7Zeilinger’s group has recently employed a beam splitter to build a true random number generator. Classical
computers using algorithms to generate ”pseudo-random” numbers. However, since the beam-splitter is a quantum
system, the production of the number is an irreducibly random process, as discussed in the introduction. A description

of Zeilinger’s device can be found at http://quantum.univie.ac.at/index.shtml.

8We assume that the interferometer is ideal: the optical devices are lossless and work perfectly and the internal
paths are exactly the same. This takes us far from experimental practicalities. Experimentally, nobody worries about
making the lengths of the paths exactly equal, for example. However, these simplifications are helpful for clarifying

how the interferometer works.
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Figure 6: The Mach Zehnder Interferometer for classical light: Laser light is incident upon a sym-
metric 50/50 beam splitter which splits the light into two paths. Each beam is reflected back to a
second beam splitter, which again splits each beam into a reflected and transmitted beam. Thus,
both outgoing beams are composed of two beams each so that interference is possible. The beam
exiting from the “symmetric” output arm is composed of two beams of light that have both been
transmitted once and reflected once, whereas the beam exiting from the “asymmetric” output arm
is composed of one beam that has been transmitted twice and one that has been reflected twice.
The electric fields are written using the convention that a reflected beam picks up no phase shift

and the electric field of a transmitted beam picks up a phase shift of 7.
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50/50 symmetric beam splitters. Assume, for simplicity, that the length of the two
paths inside the interferometer are equal and that the phase shifts due to the two
mirrors are equal (¢n1 = daro). Also, let the phase of the initial light from the source
be 0 so that the initial electric field is just Fy. Let ¢7 and ¢r be the phase shifts due
to transmission and reflection of a beam splitter respectively. Then, the electric field

of the light transmitted through B, into path 1 is:

1 .
B, = —¢"TE,, (17)

V2

and the field for the light reflected into path 2 is:

1 .
By, = ﬁe”’REO. (18)

The field for the beam leaving the symmetric output arm is a superposition of two

waves:

1 1 . ) 1 1 . ) )
Es= —= | —=€REy | 97 4 —= | —=e“TE, | €% = Epe!97+9r), 19
SN (ﬁ 0) V2 (ﬁ 0 0 (19)

Thus, the intensity of this beam must be equal to I, the intensity of the initial beam:
Is = |Es|* = I. (20)
The field for the asymmetric output arm is:

1 1 . - 1 1 . - 1 : .
Ey=——=|-—"=€e"Ey | 9" + —= | —=€"TE} | €97 = —E, (%7 +e2%7) . (21

The intensity of this beam must vanish since all of the intensity exits out of the

symmetric output arm:

Ii=|Eal’ = iEo (2 + g HoT9R) 1 e*iQ("bT"z’R)) = iEo [2+ 2cos2 (¢r — ér)] = 0,
(22)
so that —1 = cos (2 (¢r — ¢r)) and, thus ¢y — ¢r = 7. (This is derived in general for
any symmetric beam splitter in Appendix 1.)

We can now write down the electric fields in each part of the interferometer using

the convention mentioned in Appendix 1, where ¢ = 0 and ¢ = 7 (as in Figure
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6). Half of the light is transmitted into Path 1 with an electric field of iy, and
the other half is reflected into Path 2 with an electric field of %EO. The symmetric
output arm is a combination of the reflected light from Path 1 and the transmitted

light from Path 2:

Eg = (%z : %) Eo + (\% : %2) Eo = iFE,. (23)

The asymmetric output arm is composed of the reflected light from Path 2 and the

transmitted light from Path 1:

B, = (% . %) By + (% . %) By =0. (21)

This confirms that when the two paths are exactly equal there is complete construc-
tive interference in the symmetric output arm and complete destructive interference
in the asymmetric output arm.

A unique feature of the Mach-Zehnder Interferometer is that the intensities of the
two output waves (at S and A) as a function of the phase difference between in the
two paths of the interferometer are always offset by 7. The total phase of one of the
beams of light inside the interferometer can be altered by changing one of the path
lengths. As the phase is slowly altered, the intensity of the symmetric beam decreases
and the intensity of the asymmetric beam increases until all of the light exits out of
the asymmetric output arm at a phase change of 5. This reverses as the phase change
continues to increase (as seen is Figure 7).

If the phase difference between paths 1 and 2 is held at zero and the reflection
and transmission coefficients vary instead, the intensities of the output beams also
change. In general, the intensity of light from the symmetric output arm is 4 (RT)2,
where R and T are the reflection and transmission coefficients, respectively. Since
energy is conserved, the intensity for the asymmetric output arm is 1 — 4 (RT)Q. At
the extreme, when the beam splitters are replaced by glass plates or perfect mirrors,

all of the intensity exits out of the asymmetric output arm.
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Figure 7: The intensities of the beams exiting out of the symmetric output arm (red) and the
asymmetric output arm (green) as a function of the phase difference between the two paths inside
the interferometer. The angle ¢ is plotted in units of . The intensity is plotted in units of the

initial beam’s intensity, Io.
5.2.2 Quantum Light

Since classical light is analogous to quantum probability waves, the analysis of the
Mach-Zehnder interferometer may be extended to quantons, in particular, to photons
which are quantized bits of light. If a quanton is sent into a Mach Zehnder Interfer-
ometer as described above with equal path lengths, it will exit out of the symmetric
output arm 100% of the time. Dirac notation is a clear and convenient way to ex-
press this explicitly, showing wave functions as superpositions of states. For example,
Feynman[10] writes the state describing a double slit experiment using Dirac notation,

invoking what he calls the second general principle of quantum mechanics:

When a particle can reach a given state by two possible routes, the total
amplitude for the process is the sum of the amplitudes for the two routes

considered separately. In our new notation (Dirac notation) we write that
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‘S>both holes open. ‘S>through1 + |S>through2 ' (25)

Likewise, the state of a quanton can be in a superposition of two possible paths

through the interferometer that has 50/50 beam splitters:

) =5 (D +12), (26)
expressed in the basis states |1) and |2) which refer to paths 1 and 2 of the interfer-
ometer. (This state is normalized, unlike Feynman’s.)

To calculate the probability that the initial state will evolve into some final state
using Dirac notation, we take the square of the amplitude of the inner product of the
initial state with the final state. We calculate the probability that the quanton will
exit out of the symmetric or asymmetric output arm as a function of two parameters
introduced in the system. The first is an adjustable phase shifter, such as the one
described above. The second variable controls the amount of Which Way marking

available in the system.

5.2.3 Entanglement

We introduce full Which Way marking into a system with initially polarized light by
inserting a polarization rotator into Path 2 of the interferometer. The polarization
rotator turns the polarization by 90° with no loss of intensity. The state of the

quanton can now be described by:

1 e} (e}
) = 75 (11107 +12)[90°) (27)

The polarizations of these photons are now said to be completely entangled with the
Which Way information. This means that if the polarization is measured after the
quanton passes through the entire system, then we know with certainty through which

path of the interferometer the quanton travelled. This “Which Way” knowledge is
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Figure 8: Photons enter the interferometer polarized at 90°. An adjustable polarization rotator

rotates the photons in Path 1 by an angle 8. An adjustable phase shift is inserted into Path 2.

usually said to correspond to particle nature whereas interference is said to corre-
spond to wave nature. If Which Way information is known with certainty, then there
will be no detectable interference effects. Likewise, evidence of perfect interference
(such as photons exiting from the symmetric output arm 100% of the time) excludes
Which Way information. Thus, measurements that reveal Which Way information
and interference information are mutually exclusive. This explains the disappearance
of interference patterns for a fully marked system. However, as long as the paths are
marked, the polarization does not actually have to be measured. As long as mea-
surement is possible, that is, there is the “threat” of measurement, the interference
effects will be absent. This gives rise to the possibility of a quantum erasure, which
can eliminate the possibility of measuring the Which Way information by erasing the
polarization marking and thus regaining evidence of interference.

In the marked Mach-Zehnder system, if the polarization rotator is allowed to be
adjustable, it is possible to observe evidence of partial which way knowledge and

partial interference that was first reported by Wooters and Zurek. Varying the angle
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Figure 9: The intensities of the beams exiting out of the symmetric and asymmetric output arms
as a function of the phase difference between the two paths inside the interferometer when the
polarization is partially entangled with the path information. The angle ¢ is ploted in units of 7.
The intensity plotted in units of Iy. When the path information is fully entangled, this plot becomes

a flat horizontal line at half the initial intensity.

of the polarization rotator can change the polarization from 0° to 90°. A plot of
intensity verses the phase shift, ¢, is shown in Figure 9 for partial entanglement.
When there is full entanglement, there is no interference effects and this plot becomes
a flat horizontal line at half of the initial intensity. This now gives two parameters to
completely describe the system: a phase shift, ¢, and the angle of the polarization,
6. The probability that an interference pattern will emerge can now be calculated in

terms of these two parameters.

5.2.4 Information Content of the System

Using the example of the spin one-half electron, we can show that the information

carried by a Mach-Zehnder Interferometer is equal to one. The initial state of the
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system is:
1

75 D +12). (28)

This means that if detectors are set up in Path 1 and Path 2 and many quantons are

%)

sent into the interferometer, each detector would fire half of the time®. The states

are orthogonal so that:
(11) =(2|12) =1 and (1]2) = (2]1) =0. (29)

We start with only the adjustable phase shift of ¢ in Path 2. To find the probability
that the quanton exits from a certain output arm, we need to write down the state
that is a superposition of the two possible paths that the quanton could take to get
to its destination (using the usual conventions for the phase shifts due to the beam
splitters). The final state of exiting through the symmetric output arm for a given

phase shift ¢ is given by the superposition:

S) = %z (1) +€2)). (30)

The state of exiting from the asymmetric arm is given by:

A) = % (11) (1) + ¢ |2)) = % (— 1) +e#12). (31)

The probability of the initial state |¢)) evolving into the final states |S) and |A) are

given by:
oIS = |( 5 (a1 ) (5 (0 +e*m))| = F I+ e = g 0+ cose),
(32
and
I = | T5 @+ 20) (5 (= e 2))| = -1+ ¢ = 0 - cose,
(33

Thus, as the angle ¢ runs through a cycle of 0 to 2w, the probability of the quanton

exiting out of the symmetric output arm oscillates from 1 to 0 to 1 again, while the

9The probability that the state [¢)) will be found in the pure state |1) or |2) is given by [(1]9)|? = % = |(2]9)]2.
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probability for the asymmetric output arm oscillates from 0 to 1 to 0 as shown in
Figure 7. This is clear evidence of “wave-like” superposition.

Now the polarization marker is introduced. The initial polarization is 90° and a
half wave plate is inserted into path 1 such that the polarization is at an angle 6,

where 6 can vary from 0° to 90°. The initial state can now be described by:

1
Yu) = 7 (1) 16) + 12) [90)) (34)

The relation (#|90) = sin f obeys the boundary conditions (the orthogonality condi-
tions given above) for # = 0° or 90°. The probability of finding this new marked state

in the symmetric output arm is state |S) is given by:

2

PS — |l S)? = \(% (1 (6] + (2 <90\>) (% (1) + ' |2>))
= i‘(0\+(90|ei¢2: %(1+sin9cos¢) (35)

Since probability must be conserved, the probability that the quanton exits out of

the asymmetric output arm is just:

PA=1—-P%=2(1—-sinfcos¢). (36)

N =

If 6 is 90°, then the system is completely unmarked and the interference pattern is
the same as the results above. If # = 0°, then the probability is independent of ¢
(P = 3), and there is no interference.

Three complementary measurements of the Mach-Zehnder Interferometer are anal-
ogous to three orthogonal directions in the electron example. This analogy can be
used to calculate the total information in the Mach-Zehnder Interferometer system.
Given arbitrary values for the two parameters  and ¢, three new sets of values can
be written to correspond to the three general orthogonal directions in the electron
example: 6; = 90°, ¢, = @ +90°% 03 = 0, P = ¢ —90° and 65 = 6 —90°, ¢35 = ¢ — 90°.

Inserting these values into the Mach-Zehnder probability equations yields the proba-
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bilities for three complementary measurements:

1 1 1 1 1 1
PIS’A——:lz—cosgﬁ, PQS’A:—:tgsinﬁsingb, and Pf’A:—:ticosHsingb.

272 2 2
(37)
The information equation then yields:
I, = cos® ¢, I, = sin® #sin® ¢, and I3 = cos® 0sin® ¢. (38)
The sum of these measures of information again yields 1:
3
Ligtar = ZIJ(P]+7 Pj_) =1 (39)

j=1

Thus, both the spin one-half system and the Mach-Zehnder Interferometer system
carry one bit, the smallest amount of information possible. From this it follows that
knowing the result of one measurement with certainty forbids any informed prediction

of the result of a complementary measurement.

5.3 The Qubit Interpretation of Wave-Particle Duality

Mutually exclusive experiments are distinct experiments that can be performed on
one system (or many identically prepared systems). Because they measure distinct
properties, they ask different questions about the system. In the familiar case of the
spin one half electron, each mutually exclusive experiment asks a question about spin
in a certain direction: “What is the spin in the z direction,?” “...in the y direction?”
“...in the z direction?” Since spin only has two states, there are only two answers to
any of these questions.

Suppose I am provided with an unlimited number of electrons all of whose spins
have been measured to be in the same direction. I am then asked in which direction
their spin has been prepared. Since I have no idea which direction it may be, I just
start measuring along different directions and using the measurement results to make

educated guesses as to which direction I should try next. If T find the direction that
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always gives, say, spin up, then I have completed the task. However, there is another
way to almost complete the task. If I know that measuring the spins along, say, the
x and the y axes always yield 50% spin up and 50% spin down, then I know that the
spin must have been prepared either spin up or spin down along the z axis, but I do
not know which.

We know this just because we understand well how an electron’s spin works. But
from Zeilinger’s principle we could have described this in terms of information. A
completely random result for an experiment means that there is no information about
the system with respect to that measurement. But since we know that a two state
quantum system carries one bit of information, the information must lie elsewhere
in the system. Specifically it must lie in a measurement of an orthogonal direction,
otherwise the first measurement would have revealed some tendency towards spin
up or spin down. Completely random results for two different mutually exclusive
measurements (say, measurements along the z and y axes) mean that the information
must be located in the third mutually exclusive measurement. We don’t know what
the content of the information is (whether the spin is up or down) but we do know
that the information is there and that there is an experiment that we can perform to
answer the question, “Is the spin up or down along the z axis?”

Thus, the information has some sort an objective character. It is there whether
we know the measurement result or not. Thus, the information is not necessarily
information that we have. In Zeilinger’s words, it is information carried by the
system.

In the double slit experiment for light of a given wavelength, I could set up a
photon detector at a maximum peak of the interference fringes and one at the next
minimum peak. Call this experimental setup A. If I then ask the question, “When a
photon is detected in experimental setup A, which detector will measure it?” there

are two possible answers. However, I will know with certainty that the detector
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set up at the maximum peak will always detect the photon when one is in fact
detected (assuming the interference is perfect). I could set up another experiment
by shifting both detectors over so that they were both exactly between a maximum
and a minimum peak. Call this experimental setup B. Then when I ask the different
question: “When a photon is detected in experimental setup B, which detector will
measure it?” I don’t know the answer until I perform the experiment and detect a
photon in one of the detectors. I do know that the answer to the question will be
completely random. Thus, these two measurements are mutually exclusive.

A better way to experimentally realize these two mutually exclusive measurements
is with a Mach-Zehnder interferometer. Experimental setup A is now the ideal Mach-
Zehnder interferometer where the lengths of the two paths are exactly equal. The
question that this experiment asks is, “In experimental setup A, from which output
arm does the photon leave?” 1 know with certainty that the answer will be the
symmetric output arm. I also know that if one of the paths were half a wavelength
longer than the other, then all the photons would exit out of the asymmetric output
arm. However, if one of the paths were just a fourth of a wavelength longer than the
other (the same as putting a 7 phase shift into the ideal system), then half of the
photons would exit out of the symmetric output arm and half out of the asymmetric.
This is the new experimental setup B, and I can ask the question, “In experimental
setup B, from which output arm does the photon leave?”

The third mutually exclusive experiment asks, “Which path did the photon take
through the interferometer?” If the answer to this question is known, then the exit
path of the photon and thus the answers to the first two questions will always be
random. There are, however, many experimental ways to ask this question and to
extract which way information (I used polarization markers, but it is also possible to
use very gentle detectors set up in paths 1 and 2 to find Which Way information.)

What I can conclude immediately, by analogy with the electron example, is that
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if I find that the answers to the first two questions are random, then there must be
which path information available somewhere in the system. I don’t even need to know
which path the photon took to know that there is which path information available
somewhere.

What can be concluded about wave-particle duality from these mutually exclusive
measurements? First, it is important to note that the terminology is misleading. Clas-
sically, when two beams of orthogonally polarized light do not interfere, the beams
themselves are not acting like particles, they are acting like waves that just are not
mixing. Quantum mechanics says that quantons can always be described as deBroglie
waves. This means that each quanton is always associated with a probabilistic distri-
bution. However, when there is no interference in the interferometer, the probabilistic
behavior that the quanton displays is the same behvior that a classical particle would
display if it bounced off the beam splitter half of the time and traveled through the
beam splitter half of the time. So it is safe to call them ‘particles’, even though the
description of the quanton as a deBroglie wave never goes away.

On the other hand, quantons are, of course, quantized. For example, photons are
discrete bundles of energy. There is no wavelike distribution of the photon when it
hits a detector. Knowing that interference is occuring requires the observation of
many of these discrete particle-like quantons in the detectors. Thus, exhibiting the
‘wave nature’ referred to in interferometry experiments does not exclude all particle
aspects of the quanton, and vise versa. Keeping this in mind, better descriptions
of ‘particle nature’ and ‘wave nature’ are ‘Which Way information’ and ‘interference
information,” even though the wave-particle description is more traditional®C.

In the experiment described, € can be interpreted as the mixing angle, where 0°
forbids mixing and 90° allows for total mixing. The phase difference between the two

waves is described by the angle ¢. As above, the total system is described with the

10Below, I will write ‘wave nature’ and ‘particle nature’ to indicate the specific wave and particle properties relevant

to interferometry experiments. These can always be replaced by their information equivalents.
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probability formula derived above, P™ = 1 (1 4 sinfcos ¢). If I observe that if the
measurement results for the first two experiments both turn out to be random (that
is, if ¢ = 0, then Pt = % and if ¢ = 7, then P™~ = %), then it follows from the
probability formula that # must be 0° and thus there is no mixing so there can be no
interference information. But if # = 0°, then there is definite Which Way information
available (or traditionally, the quantons display ‘particle nature.”)

The abstract representation of a qubit gives a novel way to envision what is tra-
ditionally referred to as wave-particle duality. This duality is normally described
linearly, with wave nature at one extreme and particle nature at the other. The be-
havior of the quanton lies somewhere in between. The qubit representation by means
of a Bloch Sphere takes into account an important continuous property of the wave,
its phase, which can vary from 0 to 360°. Pure ‘particle behavior’ corresponds to
the arrow pointing to one of the two poles of the sphere, whereas ‘wave behavior’
corresponds to the arrow aligned towards the equator (depending on its phase.) Any
other alignment represents a combination of wave and particle behavior. The Bloch
sphere clearly shows that these types of ‘wave’ and ‘particle’ behaviors are really
just different manifestations of information, just as in the spin one-half example. By
asking different questions (performing different experiments by choosing the angles

and @), the experimenter chooses the type of information she would like to have.

6 Conclusions

A final perspective for discussing the fundamental nature of information comes from
Heisenberg’s description of the Copenhagen Interpretation[13]. He claims that quan-
tum physics begins with a paradox: “It starts from the fact that we describe our
experiments in the terms of classical physics and at the same time from the knowl-

edge that these concepts do not fit nature accurately. The tension between these two
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starting points is the root of the statistical character of quantum theory.” Things in
our classical world do not seem to have the strange characteristics that we describe
quantum systems to have. That is, classical objects always have definite properties
and are never in superpositions of states. Also, because of quantum theory’s irre-
ducible statistical nature, quantum physics does not live up to classical standards.
The conflict between classical and quantum physics is well maintained through de-
bates concerning the so-called measurement problem.

This paradox is fundamental to the Copenhagen Interpretation. Its two starting
points motivate two different fundamental questions of quantum mechanics. Wheeler
asked the first question: “How come the quantum?”[14] and Zurek responded with the
question “How come the classical?”[15] Zeilinger’s contribution to this discussion is to
show the connection between the two opposing views by introducing one fundamental
concept, the bit of information. This becomes the starting point for both classical
and quantum physics. Classical physics can be built from solid bits of information
using tools at least similar to Shannon’s classical information theory. A classical
object can be exhaustively described by experimentally verifiable statements with
definite truth values: i.e., bits of information. On the other hand, any non-classical
aspect of quantum mechanics can be explained directly by Zeilinger’s fundamental
principle. That an elementary system carries only one bit of information explains why
certain quantum measurements are irreducibly random and why quantum systems
seem to exhibit counterintuitive wave-particle duality. Thus, the separation of the
two distinct starting points, which is the crux of Heisenberg’s paradox, has been
eliminated, leaving just one starting point.

Zeilinger’s principle, however, does not aim to deny all ambiguity. He has in-
troduced a concept of information, which is readily and comfortably used in many
contemporary domains, as fundamental. However, the assertion that a physical sys-

tem carries a bit of information is itself enigmatic. The carrying of information seems
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to imply a physical characteristic of the system. Zeilinger indeed refers to some sort of
property that remains with the system regardless of what measurement is performed
on it. However, the concept of information only makes sense in relation to observa-
tions of experimental outcomes. Thus, Zeilinger’s principle remains on the border of
subjectivity and objectivity.

This addresses the same issues that Heisenberg’s paradox emphasizes. Heisenberg

asserted:

There is no use in discussing what could be done if we were beings other
than what we are. At this point we have to realize, as von Weizsacker has
put it, that “Nature is earlier than man, but man is earlier than natural

” The first part of the sentence justifies classical physics, with its

science.
ideal of complete objectivity. The second part tells us why we cannot escape
the paradox of quantum theory, namely, the necessity of using the classical

concepts.

Likewise, Zeilinger clings to objectivity insofar as science has always been and
remains objective: whereas science is certainly tailored to human understanding, from
a scientific perspective the actual presence of a human observing the measurement
result does not affect the way the experimental apparatus works. However, despite
the classical world’s congeniality towards identifying objectivity with ontology, the
essence of science is embedded in empiricism, not ontology. Using information as
fundamental asserts the correspondence between our scientific knowledge and our
experimental observations as foundational. Thus, the only scientifically significant
facts are those that would make a difference to our observations if they were otherwise.
In fact, one definition of information is “a difference that makes a difference[16].”
Ontological claims rarely fit this category. Whether or not the wave function exists
in space and time makes no difference to the observations we make. However, the

observations we do make dictate what we know. Thus, information is an ideal tool
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for expressing the entirety of our scientific knowledge.

Zeilinger concludes with Heisenberg that the implications of quantum theory do
not justify the abandonment of classical concepts to describe reality, since the ac-
tual practice of science is necessarily described with classical language. Furthermore,
the demand for theories with ontologically extraneous entities that transcend human
experience for the purpose of eliminating any threat of subjectivity is unwarranted.
Given Zeilinger’s position, Heisenberg’s paradox seems unnecessarily extreme. On
Zeilinger’s view, the tension between the opposing elements of the paradox are en-

veloped into a concept that is scientifically, linguistically and intuitively sensible.
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A Phase Difference Between Reflected and Transmitted Beams
for Symmetric Beam Splitters

Here it is shown that the difference in phases of the transmitted and reflected beams
of light (¢r — ¢r) is § for a symmetric lossless beam splitter[17][18][19]. From conser-
vation of energy, the intensity of the initial beam of light must be equal to the sum

of the intensities of the two outgoing beams:
|Bol* = |Eal” + | Es|”. (40)

where Fy, F4 and Eg are the electric fields for the initial beam, the outgoing beam
from the asymmetric arm and the outgoing beam from the symmetric arm, respec-
tively. F4 and Fg are superpositions of the contributions from both paths of the

interferometer, so:

|Eo|” = |Ea1 + Eao|® + |Es1 + Esal*, (41)

where F 41 and F 49 are the electric fields of the beams transmitted from path 1 and
reflected from path 2 towards the asymmetric output arm, respectively. Likewise,
FEg, and Eg9 are the electric fields reflected from path 1 and transmitted from path 2
towards the symmetric output arm. These electric fields may be written explicitly in
terms of the real transmission and reflection amplitudes for each contributing beam

Ay, Ag, S7 and S, and the complex phases ¢4,, ¢4,, ¢s, and ¢g,:

EA1 = E()Aleidml
EAQ = E0A2€i¢A2
E51 = E051€i¢51

E5'2 = E052€i¢52. (42)
Combining these expressions with Equation 41 yields:
1= A% + Ag =+ S% =+ Sg + 2A1A2 COS (¢A1 — ¢A2) + 25152 COS (¢51 — ¢52) (43)
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Since each beam passes through two beam splitters, each amplitude is equal to the

multiple of the two amplitudes of the individual beam splitters. Explicitly,

A = T,T,
A, = R,LR,
S, = T,LR,
S, = R,LT., (44)

where 7', indicates transmission from the left (as seen in Figure 6), R, indicates
g g

reflection from above, and so on. Since the two beam splitters are identical, there is
no distinction made between, say, reflection coefficient for the the first beam splitter
and the reflection coefficient for the second one. For symmetric beam splitters, the
beam is affected in the same way from either side (so if the beam splitter is flipped,
it will work the same.) Thus, R, = R and 1., = T, so that:

(A)* = T

(42)° = R

(51)* = (RT)

(S2)° = (RT)’ (45)
From conservation of energy, 1 = R? + T?. Squaring this equation, we find:
1=T"+ R'+2(RT)* = (A)* + (A2)” + (51)” + (S2)%. (46)
Letting @ = (¢pa1 — dpa2) and = (ds1 — ¢s2), equation 43 becomes:
0=2(TR)*(cosa + cos 3) . (47)

Therefore,
a=p+m. (48)

The total phase of each beam is the addition of the phase due to the length of the

path (@ and % for paths 1 and 2, respectively, where )\ is the wavelength of the
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light and /; and I, are the lengths of paths 1 and 2, respectively), the phase picked

up by the mirror (¢ or ¢ye for the mirror in path 1 or 2), and the phases due to

transmission and reflection from the beam splitters (¢ and ¢):

b = QWTZI + 207 + P

baz = QWTl? +2¢r + Oz

P51 = 27TTZI+¢T+¢R+¢M1

bs2 = QWTZQ + ¢ + Or + P2 (49)

Combining these expressions with Equation 48 gives:

Ga1 — Pa2
27TTZI + 201 + dp1 — (2L/\l2 +2¢r + </5M2>
¢ — PR

¢Ps1— s+

271'11

T+</5T+¢R+</5M1

271'12

—<T+¢T+¢R+¢M2>

g. (50)

Thus, the two outgoing beams of a symmetric beam splitter are always out of phase

by 5. We can then use the convention that the reflected beam picks up no phase and

that the transmitted beam picks up an added phase of 7 or, equivalently, the electric

field picks up a factor of ez = i.
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B Properties of the Mach-Zehnder Interferometer

In general, when the complex transmission and reflection coefficients are given by

Te*r and Re'*® with T, R, ¢ and ¢ real, then:

B, = E Te“r (51)
E, = FEyRe"r (52)
Es = 2TREe¢1+¢r) (53)
Ey = T?Ey e’ + R*Eye?r. (54)

From conservation of energy, |R?| + |T?| = 1, and from Appendix 1, ¢7 — ¢ = .

The intensities are then:

Is = 4I)(TR)? (55)
In = I (T*'+ R'+2(TR)*cos2 (¢r — ¢r))

= Iy[1-4(TR)’| (56)

where I is the intensity of the initial beam of light.
If, however, there is an added phase shift, ¢*, to one of the paths of the interfer-
ometer (which is usually the case, since rarely are the two paths ezactly the same),

then the equations become:

Bs = 3Eoexpi(or+or) (1 +expic") (57)
Iy = %10 (1+ cos ¢°) (58)
E, = %EO expi (2¢r + ¢*) + %EO exp2¢r (59)
I, = %IO (14 cos 207 — 2¢g + ¢*)

= %Io (14 cosm+ ¢*) = %IO (1 —cos¢”). (60)

These are two intensity equations plotted in Figure 7.
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| bit) B |bit ) BB bit)

Figure 10: A ideal Mach Zehnder Interferometer can act as a not gate. The initial bit depends on
which input arm the photon enters. If it enters through the upper arm, it will exit out of the lower

arm, and vice versa. The individual beam splitter is said to be a square root of not gate.

C The Mach Zehnder Interferometer as a Quantum Not Gate

A logical operator takes in one bit and outputs one bit (usually a 0 or a 1). For
the ideal Mach Zehnder Interferometer as a quantum not gate, the one input bit is
described by two modes or states. For example, for the Mach Zehnder Interferometer
in Figure 10, the logical 0 can be encoded as the initial bit by |01) which means that
a photon enters the interferometer from the lower input arm and the upper input arm
is in the vacuum state. Likewise, the logical 1 can be encoded by |10) which means
that a photon enters through the upper input arm and there is no photon in the lower

arm. After the first beam splitter, the state of the system is:

B|01) = % (J01) + 4 [10)) (61)
BI01) = —— (]10) +[01)) (62)

V2

where B is the operator representing the beam splitter’s action on a state.

After the second beam splitter, the state of the system is:

1 1

V2 V2

1

BB|01) = (|01>+z’|10))+i<ﬁ(|10)+i|01))>]
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or

BB|10) = % %(|1o>+¢|o1>)+¢( 2(\o1>+¢|10))>]

= ilo1) (64)

&

So, the interferometer changes the initial state to its opposite state, adding a phase
shift of 7. Thus, the interferometer itself works as a not gate. However, a single beam
splitter acting on the initial state (leaving the state in a superposition of states, as in

Equations 61 and 62) is said to work as a square root of not gate.
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