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Abstract

The thalamus is a major hub of communication in the mammalian brain. It relays all sensory input (except
olfactory) from the sensory organs to the cortex and also oversees the transfer of information between
areas of the cortex. However, it is unknown how the thalamus modifies the information it transfers. The
dorsal lateral geniculate nucleus (dALGN), a visually-responsive nucleus of the thalamus, receives information
from the retina and projects it on to primary visual cortex. Relay neurons of the dLGN (thalamocortical
neurons) are connected in a feedback loop to inhibitory neurons of the perigeniculate nucleus (reticular
neurons). Here we investigate the possible consequences of this feedback loop using a mathematical model
of thalamocortical and reticular neuron firing rates. We quantify the influence of reticular inhibition and
retinal stimulus envelope frequency on the transmission properties of a thalamocortical-reticular neuron pair.
We find that reticular inhibition frequently causes high-pass filtering and phase-advancing of the transferred

signal.
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1 Introduction

1.1 The Thalamus

The mammalian thalamus is a small region of the brain located below the corpus callosum
(see Fig. 1). The nervous tissue that carries sensory information from each sensory organ to
the higher brain is called the sense’s ‘pathway’. The thalamus is at the center of all sensory
organ pathways, except olfactory. Accordingly, it relays information from the sensory organs
to the proper cortical areas. It also performs intracortical information transfer, relaying

signals from one cortical area to another.

Corpus callosum
Larteral vertncle (body)

Caudate nucious {body) o
-

FIGURE 52

Figure 1: Human brain with thalamus [3].

One of the sensory pathways is the primary visual pathway. In mammals, this pathway
extends from the retinal ganglion cells (RGC) to the primary visual cortex (V1), passing
through the dorsal lateral geniculate nucleus (ALGN) of the thalamus. Within the dLGN,
thalamocortical (TC) neurons receive the retinal signals and relay this information on to
V1. This process is called retinogeniculate transmission. The TC neurons also receive input

from other sources including local interneurons, subcortical areas, striate cortex and reticular
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Figure 2: A diagram of the TC-RE feedback loop.

(RE) neurons of the perigeniculate nucleus (PGN) [1]. Of all these non-retinal inputs, the
inhibitory input from RE is one of the strongest [9]. In addition, the RE neurons receive an
excitatory input (an axon-collateral) associated with the TC—cortex projection (see Fig. 2).
Thus, the TC neurons are in a negative feedback loop with the RE neurons. Even though
the RE inhibiton appears to have an influential role in retinogeniculate transmission, the
effect has never been quantified [8]. The focus of this research was to determine the effect
of RE cell inhibition on the transmission properties of the TC-RE network, where RGC cell

activity is considered as the ‘input’, and TC cell activity the output.

1.2 Neural Behavior

An action potential is the only fluctuation in neural membrane potential that can propagate
over large distances [1]. Because subthreshold fluctuations dissipate over short distances
(< 1mm) [1], the primary vehicle for information transfer between neurons is the action
potential. An action potential is a rapid depolarization of a neural membrane that, in many
cases, originates in the cell soma and propagates down the axon to synapses. Once this
wave of depolarization reaches the synapses, the voltage change causes axonal vesicles of the
presynaptic cell to fuse with the cell membrane and release small signalling molecules known

as neurotransmitters. These neurotransmitters then bind to receptors located on the den-



drites of the postsynaptic neuron. When a neurotransmitter binds to a receptor, ion channels
in the post-synaptic neuron’s membrane change state thus affecting the flux of certain ions
through the membrane. ‘Excitatory’ neurotransmitters cause the post-synaptic neuron’s
membrane to depolarize, sometimes generating an action potential. Conversely, ‘inhibitory’
neurotransmitters cause the post-synaptic cell to hyperpolarize, making the production of
an action potential less likely. ‘Excitatory’ and ‘inhibitory’ neurons can be identified by the
type of neurotransmitter secreted and their influence on down-stream neurons.

For certain types of sensory neurons, the specific timing of action potentials has been
demonstrated to be functionally important [9]. However, for many neurons it is the change
in the time-averaged firing frequency of incoming action potentials, not the precise spike times
of every action potential, that is of primary physiological significance. There is no evidence
to date that indicates that precise spike timing is functionally important to retinogeniculate

transmission.

1.3 Mathematical Models of Neural Responses

Hodgkin-Huxley Model

The Hodgkin-Huxley (HH) model of the squid giant axon was the first succesful math-
ematical model of the membrane excitability responsible for action potential propagation.
Created by Hodgkin and Huxley in the 1950’s, this model simulates the dynamics of a cell’s
membrane potential by numerically integrating four differential equations [4]. Three ODEs
determine the dynamics of gating variables for two membrane conductances (Eqs. 2-4). The
fourth equation represents the balance of applied, membrane, and capacitive currents (Eq.

1). The Hodgkin-Huxley equations are:

dv

C% = Tupp = GNaeM’ BV = Viva) — gr,n*(V = Vi) — g (V = V) (1)
dn
dt = a(V)1=n)—=B.(V)n (2)
dm
dt = an(V)(1=m) = Bn(V)m (3)



= (V)= h) = (V) 4)
where, C is the membrane capacitance, V' is the membrane potential, I,,, is an applied
current, gyg, is the conductance of the sodium ion current, gg, is the conductance of the
potassium ion current, g;, is the conductance of the leakage current (leaking to extracellular
regions), Vg, Vk and Vi are the reversal potentials of their respective currents, and m,
n, and h are gating variables of the ion currents. The speed and voltage at which the ion
currents open and close are determined by the o and [ variables.

Although the equations and parameters of the HH model were chosen to represent mem-

brane excitability of the squid giant axon, HH-style modeling of neuronal membranes has

become a traditional approach in computational neuroscience [9)].

Integrate-and-Fire Models

Integrate-and-Fire (IF) models are similar to HH style models in that they involve a cur-
rent balance equation. However, rather than expicitly modeling action potential-generating
currents, the event times of instantaneous spikes are determined by the membrane potential
reaching a specified threshold value, Vy. When spikes occur, the membrane potential is reset
to a specified voltage, V,es;- After an absolute refractory period the membrane potential
can integrate subsequent input and eventually spike again [6].

The integrate-and-fire equations are

dV
O% = Lapp

V(ti) = ‘/:9 — V(t+) = V:reset .

- gleak:(v - Weak) (5)

Notice that if there were no threshold for spiking the steady-state voltage, Vsg, would be
given by:
VSS = Vieak + Iapp/gleak .

Setting Vss > V) we see that the IF model neuron spikes repetitively when

Iapp > gleak(‘/@ - ‘/leak) -



Between spike events the membrane potential relaxes exponentially from V,.,; toward Vg,
V(t) = Vis + (Vreset — Vos)e ™™,

where 7 is the relaxation time-constant of the membrane potential. Setting V(0) = Veser
and V(T) = Vj in this expression one can derive the current-frequency relation

Vo — Vss H_l
—T1ln

‘/;'eset - VSS

In order to realistically apply IF-style modeling to a pair of interacting neurons, consider
the consequences of adding an inhibitory synaptic conductance to Eq. 5 such as the GABA

receptor-mediated synaptic conductance of TC cells that is activated by RE cell spiking,

dVv
Cd—t = Iapp - gleak(v - VZeak) - gG(V - VG) . (6)

In this case the synaptic conductance, gg, changes in reaction to incoming action potentials.
It is composed of two factors, a dynamic variable, s, and a proportionality constant, G,

with units of ms - uS/em? that indicates the synaptic strength.
o y
9c = Gasa

For physiological accuracy the time course of the gating variable s after a spike evolves

according to a function of the form,
s(t) = ote™™

known to computational neuroscientists as an a-function. Such a function can be generated
by integrating a second-order differential equation or by integrating two, coupled first-order

differential equations such as,

1 dsg
- = 5% 7
and
1 ds? .
o di = 6% ®)

and incrementing s& by 1 every time the presynaptic neuron fires, that is,

sE(t7) — sg(th) +1



The IF model is considerably more minimal than the HH model since it outputs uniform,
generic action potentials. However, for some applications this may be acceptable or even
preferred. Recall that our primary goal for a model is the accurate production of the fre-
quency of action potentials in a TC-RE network, and thus an IF model is a good starting

point.

Firing Rate Models

Just as the IF model did away with certain ionic conductances and simplified the action
potenial, firing-rate (FR) models do away with individual action potentials entirely. Instead,
it is the frequency of output action potentials, i.e., the cell’s ‘firing rate’, that the FR model
calculates. An FR model can be derived from either the HH or IF models. For example,

notice that Eq. 6 can be written without I,,, as,

dV
Cgp = ~9ess(V = Vegg) 9)

where

Voo — 9LV + 96Va

eff ———
Geff
and
Geff = 9L + 9a -

According to the IF model requirements, when V reaches the threshold voltage, Vj, an
action potential is created and the voltage is set back down to Vs instantaneously. So if
the voltage reaches Vj at ty and again at ¢ (t; > ty) then V(t§) = Vyeser and V(t7) =V
For the next step in the derivation, we must first make an important assumption regarding
the time-scale of the synaptic gating variable, s;. We assume that the value of s changes
slowly enough over one typical action potential period that it is essentially constant. This
assumption means that V.;; and g.rs are also essentially constant over one action potential

period. When V,¢; > Vj, an action potential is fired regularly every T milliseconds and we



can integrate Eq. 9 over one period, T,

/V"Veff d(V = Vers) _ —Yess /T it
‘/reset_veff V - ‘/eff C 0
n (M) _ T94s g
V:reset - V;sz C

and since the firing-rate, f, is the inverse of the period,

V;sz - ‘/reset>>_l
=|(7In| ———— 10
d ( ( Verr = Vo 10)
where both f and Vs, are functions of the value of the synaptic gating variable, s, and

T = C/geff .

Since fP"¢ indicates how often an action potential is fired by a presynaptic neuron, it can
take the place of the incrementing condition on s¢ in Equation 7. To install fP"¢ into the
equation, it’s value is multiplied by the incrementing parameter, in this case 1, and added

to Eq. 7,
1 dsg
(6 7¢! dt

= f"° — sg (11)
Equation 8 remains the same. The two s-equations (Egs. 11 and 8) along with the firing-
rate equation (Eq. 10) comprise the full FR model for a neuron with a self-inhibiting GABA
synapse. This derivation and model will be referred to later as we form a model for the more

complex TC-RE system.

1.4 Research Accomplishments

As part of my senior project I have developed a mathematical model of a single TC-RE
neuron pair that includes an excitatory RGC signal to the TC neurons. I have driven the
model with realistic retinal ganglion cell signals and determined values for two parameters
in the model. The RGC input is the retinal conductance, here assumed to be of the form,

127 Frett

Gret = Gret + 1Gret€ I varied the RGC input conductance envelope frequency, Fi.,

and measured the transmission properties (amplitude and phase shift) of the TC output.



My primary results are numerical simulations, but I also attempted to confirm these results
with an analytical approximation in a limited parameter regime where the firing frequency

is a linear function of the synaptic gating variable.



2 Model Derivation

I chose to use a firing rate model for our computational experiments due to its high com-
putational efficiency. I wanted an efficient model because future research may involve the

simultaneous simulation of many neuron pairs.

2.1 Model Development

To derive the FR model for the TC neuron, we begin with the IF current-balance equation,

v
di

o leak(vTc %eakz) gret(vTc - V;"et) - gG(VTC - VG) (12)

The right side includes a retinal conductance, g,¢(t), a dynamic GABAergic synaptic con-
ductance, gg(ultimately a function of the RE neuron firing rate, f£F), and a constant leakage

conductance, gL% . Following the methods presented in the previous section, Eq. 12 simplifies

to,
dvTe
C—= = —0ef;(V'C = Vi) (13)

where

VTC’ _ gleak%eak +gret‘/ret+gGVG

eff —

9eft

9eft = Yioar + Gret + 9o

and

9c = Gase -

Integrating Eq. 13 over one period, T, we find the firing-rate of the TC neuron, f7¢,

\% yre
F7 (gret 96) = ( In (ff—)) (14
Vegg —Va©
where
=C / Ge f Ii



Equation 14 is the FR equation for the TC neuron. In the case of the RE neuron, the initial

IF current-balance equation is,

v

O = oV V)

dt

and the final FR equation follows similarly,

VRE _ VRE
RE _ RE eff reset
[ (ga) = (T In (W

Clg%

gl}:fk: +gA )

_ gEBVIEY + g4V

where,
SRE
9eff =
and
Ve =

9e3

(15)

In this model, TC neurons receive excitatory input from the RGC through the retinal

conductance, ¢,.;. When the TC neurons fire action potentials they are received by both the

RE neurons and V1 of the cortex. The RE neurons receive the TC input through excitatory

AMPA receptors. When RE neurons fire, the TC neurons are inhibited through GABA

receptors (See Fig. 2). Thus, synaptic gating variables evolve according to,

1 dsh
A dt
1 dsh
A dt

1 dsg
(6 7¢ dt
1 dsh
(6 7¢ dt

= /705

- -9

o - s

¢ = 56

(16)

(17)

(18)

(19)

Eqs. 14, 15, 16-19 compose the FR model of the RE-TC interaction used in the simulations

presented later.
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Figure 3: Example of the oscillatory driving retinal conductance used in TC-RE network simulations. In

this case the DC amplitude is 5.0 uS/cm?, the AC amplitude is 1.5 uS/cm? and the frequency is 0.05 Hz.
2.2 Retinal Input to the TC-RE Network

Drifting gratings have been commonly used for visual stimulus in neurophysiological experi-
ments for decades [5]. For that reason, we chose a functional form for the retinal conductance,

gret, similar to the firing rate of RGCs under a drifting grating stimulus,

gret(t) = Ogret + lgreteiwt (20)

where,

w = 27 Frey,

i = /=1, %g,; is the base conductance amplitude, or DC amplitude, ®g,.; is the modulating
conductance amplitude, or AC amplitude, and F,; is the frequency of oscillation (see Figure

3).
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3 Numerical Analysis of Firing-Rate Model

3.1 The Numerical Test

The firing-rate model is a nonlinear system of ordinary differential equations that cannot
be solved analytically, so to produce simulation results I used the numerical differential
equation solver XPP (X Phase Plane), written by Bard Ermentrout [2]. This program was
run interactively after constructing an ASCII input file defining the ordinary differential
equations to be integrated. To perform parameter studies, XPP was run repetively in a non-

interactive mode. File handling and parameter substitutions were performed using BASH

scripts running on a LINUX operating system.
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Figure 4: Simulation results produced by an interactive XPP run of the firing-rate model. Top-left: Responses
with and without RE cell inhibition of the TC cell. Bottom-left: Response of the RE cell ‘follow’ the TC cell
activity. Top-right: The 1 Hz oscillatory retinal input, gre;- Bottom-right: The TC-response as a function
of retinal conductance in the absence of inhibition from RE cells, referred to as a conductance—firing-rate,

or grei-f1C, relation. Parameters: °g,..; = 0.04 uS, gt = 0.04 uS, Fye; = 1 Hz, and as in Table 1.
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Figure 4 contains plots produced by using XPP interactively. The system’s oscillatory
input signal (g,e) is plotted in the top-right pane. The responses of the TC and RE neurons
are clearly oscillating at the same frequency as g, During the initial half-pulse (0 >
t > 0.5 sec) the neuron responses are under the influence of ‘transient’ effects. Transient
fluctuations occur as the system adjusts from user-defined initial conditions to the system’s
periodic steady state. In this case, the effect only lasts for part of a period, but at higher
F.; frequencies, the effects can last many periods.

Though oscillating in unison, the neuron responses differ in the timing of pulse onsets and
peaks. Predictably, the onset of RE pulses is after the onset of TC pulses. The amplitude
and shape of the TC response changes dramatically when inhibition is applied. The change
in amplitude is due to the general action potential-suppressing effect of inhibition, but the
shape change is not so easily understood. It results from the RE response offset, and is
discussed later. The bottom-right pane of Fig. 4 shows how f7¢ responds to the retinal
conductance value, g,.;, when inhibition is not present. As you can see, the neuron does
not respond until a certain conductance is reached (gret ~ 0.026 uS/cm?). Once above the
critical conductance, the firing-rate starts at 0 Hz, moves through a short, almost vertical
rise and then relaxes to a trajectory that appears to be linear. The ability for this neuron to

fire at infinitely small rates makes it a ‘type 1’ neuron. (‘Type 2’ neurons jump to a finite

firing rate as soon as the critical conductance is reached).

3.2 Parameter Determination

Because the synaptic conductances g4, g¢ and g, are difficult to determine directly from
experimental literature, reasonable values were selected, based on the physiologically rea-
sonable firing-rates they produce, before performing the parameter studies. The background
firing rate of TC cells is 30-40 Hz and 10-20 Hz for RE cells [8, 9]. These background firing

rates result from spontaneous retinal activity occuring when there is no visual stimulus (e.g.

a gray, monochrome wall). The values of f7¢ and f%¥ can range from 0 Hz to well above the

13



background rates, but it is convenient to fit the parameters to these spontaneous frequencies.
First I chose g, to produce the background f7¢ value (g,¢; ~ 0.032 uS/cm?). Subsequently,
ga and gg were chosen to produce the backgroud fEE value (G4 = 0.85 ms - uS/cm? and
Gg = 0.10 ms - uS/em?). Values of all other parameters used in the model were taken from

Smith et al. 2001 and Smith et al. 2000 and can be found in the Table 1 (see Appendix).
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Figure 5: The response of the TC-RE network with four different frequencies of the sinusoidal retinal input,
Fyret. As in Fig. 4 responses with and without inhibition are plotted. Notice the maximum TC cell firing

rate is dependent on F,.;. Parameters: %g,.; = 0.04 uS, 1g.et = 0.04 uS, and as in Table 1 (see Appendix).

3.3 Numerical Analysis

The primary goal of my research was to determine how RE inhibition modifies the TC firing
rate over a range of F; frequencies. In Fig. 5, the response of the model TC cell is plotted for

four values of F,.;. As expected, we find that the TC cell firing-rate is reduced by the presence

14



of inhibitory feedback from RE cells (compare solid and dotted lines) using input conduc-

tances identical to Fig. 4. Though the amplitude of the input remains constant throughout

the figure, these calculations show that the TC firing rate is dependent on the retinal input
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Figure 6: Bode plots summarizing the transmis-
sion properties of the TC-RE model. Top: Fourier
fundemental, F;. Bottom: The phase of the
Fourier fundemental, P;. Notice the ‘high-pass’
character of TC cell response in the presence of
RE cell inhibition. Both phase advance and phase
delay are observed, depending on the frequency.
Parameters: %g,.; = 0.04 uS, 1gre; = 0.04 uS, and

as in Table 1.

envelope frequency, F,e; (compare F,..; = 1.0 Hz
and F,.; = 3.5 Hz). Interestingly, the peak TC
firing rate shifts backward in time for all four
plotted F;.; values under the influence of inhi-
bition. This phenomenon, known as phase ad-
vance, has also been observed in FR models that
include hyperpolarizing adaption currents [7].
To view the variations in f7¢ over a large
range of F,.; values, I wrote a BASH script en-
titled ‘full_FR_ext5’. This script runs a set of
XPP simulations in which Fj.; is varied loga-
rithmically over the range 0.01 Hz - 100 Hz for a
total of 37 trials. Data is not kept from the first
few periods since ‘transient’ effects can change
the results early in a simulation. The script en-
sures that once each simulation has passed its
transient period, an integer number of cycles
is calculated and saved before the simulation
ends. More than one cycle of data is saved to
reduce variations caused by subharmonics that
were sometimes observed for large F,.; values.
For each F,.; value the TC cell response (f7)

was averaged and a discrete Fourier transform

(DFT) was performed using an awk script that returns the real-valued amplitude of the first
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two Fourier coefficients (Fy and F7) and the phase (P;) of the Fourier fundemental, F;. These

values measure the most important features of each simulation results. The Fj value is the

DC amplitude of the TC cell firing-rate, the F; value is the AC amplitude, and P; is the

phase of the TC cell firing-rate with respect to the retinal input, g.(t). Plots summarizing

these measures — Fy, F; and P; — as a function of frequency, F,.; are called Bode plots.

When given the same input parameters as
Figs. 4 and 5, the BASH script full_FR_ext5 pro-
duces the Bode plots shown in Fig. 6. The F}
behavior can be described as a high-pass filter
whose transition is mediated by a band-pass fil-
ter (see upper pane of Fig 6). The high-pass fil-
ter allows signals of F,..; >10 Hz to pass with a
greater AC amplitude than those of F,.; <1 Hz.
The band-pass filter allows signals with Fj..; val-
ues near 6 Hz to pass with greater AC amplitudes
than any other signals, allowing signals at 6 Hz
the strongest transmission. The behavior of the
phase over F,.; shows an increase of P;, a phase
advance, that rapidly abates at F..; ~ 4 Hz, en-
tering a short period of phase delay (see lower
pane of Fig 6).

All the numerical results reported thus far
have the same input conductance values, °g,¢ =
0.04 S and '¢,s = 0.04 uS. These values re-
sult in TC cell firing rate (f7¢) with DC am-
plitude Fy =~ 40 Hz and AC amplitude, 60 Hz

TC Firing Freq vs Input Retinal Conductan

N
o

150

100

TC Firing Frequency (Hz)
o
o

502 004 0.6
Retinal Conductance, g(1S)

0.0¢

Figure 7: The effect of large AC amplitude (A)
compared to small AC amplitude (B). Each ar-
row shows the range of g, for that set of param-
eters. Filled circles indicate the °g,..; values. In
the case of A, %g,e; = 0.04 1S, g, = 0.04 S,
while in the case of B, %g,e; = 0.05 uS, gt =
0.005 pS. In the first parameter regime, the large
AC amplitude causes the TC firing rate to reach
zero. However, when the AC amplitude is small,
the TC firing rate remains in the linear region of

fTC. (Other parameters as in Table 1.)

< F; < 90 Hz. Figure 7 plots the g,e-f7¢ relation seen in Fig. 4, highlighting the re-

16



gions the TC response covers under two sets of retinal conductance values. It is impor-
tant to notice that the value of 'g,., = 0.04 uS is large in the sense that '¢,e; > %gres
or 'gre; ~ %o implies f7¢ will reach 0 Hz, passing through a highly non-linear re-
gion of the g,u-fT¢ relation (case A in Fig. 7). Conversely, if g,y << %gpes, the
TC cell firing rate will be non-zero throughout the stimulus cycle, remaining in the lin-
ear region of the g,..-f1 relation (case B in Fig. 7). In Fig. 7 case A clearly passes
through the nonlinear region of the f7' response, while in case B f7¢ values remain non-zero

and within the linear region.

In Figure 8, where °g,o; = 0.05 S and lg,.; =

TC Response (FP) 0.005 pS, we can see how the network responds to

g R a smaller ¢, amplitude. This parameter set is
§ T ] identical to that of case B in Fig. 7. Interestingly,
E B the Bode plots are very similar in quality to those
%ls of Fig. 6 even though the f7¢ response no longer
12_ travels through the non-linear region of the g,¢-

o fTC curve. The phase change, P;, does not vary
?ms from one !g,.; amplitude to the next, except that
g ::j the peak is about 0.07 cycles when '¢,.; = 0.04 S
io.oz and 0.10 cycles when lg,., = 0.005 uS. The F}
of response is affected more noticeably by a differ-

ent 'g,e;. The smaller g, of Fig. 8 produces a

greater relative leap in F; amplitude when com-

Figure 8: Bode plots for a parameter set idential

paring the high and low steps of the high-pass fil-

: 0 — 1 —
to case B of Fig. 7, Tgrer = 0.05 48, “gret = {01 Thg F, amplitude increases 100% while Fig.

0.005 uS. The upper plot is of the Fy variableand ¢ 1 w0 a1 increase in F; of about 30%. Similarly,

the lower plot is of the phase. (Other parameters the band-pass filter causes a greater relative am-

as in Table 1.) plitude change for the smaller 'g,., value. The
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F.¢; value at which the high-pass transition and band-pass filter occur is also approximately

the same between the two !g,.; values.
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4 Linearization Approximation of Firing-Rate Model

4.1 Linearization

The firing-rate model described above is complex and non-linear, but it can be simplified by
noticing that the dependence of f7¢ on g,.; becomes linear as g,.; is increased (bottom-right
plot of Fig. 4). If the retinal input (°g,e;, 'gre:) is such that the system is in this ‘linear
regime’ (e.g. case B. of Fig. 7), we can make analytical predictions about retinogeniculate
transmission. As with the numerical analysis, the input is a constant-frequency sine-wave
with a positive mean (see Fig. 3) but to be in the linear regime we restrict consideration to
the case where °g,o; >> 1¢,... Our objective is to derive the system’s transmission properties
(Fy, Fi, Py) from an analytical calculation of f7¢. That is, we wish to obtain formulas for
Fy, Fy and P in terms of F,..; using the fact that in the linear regime the frequency of the
output will be identical to the input frequency (Fit).

First, I derive the general linearized system. This process begins by linearizing the equa-
tions for f7¢ and fR¥ with respect to g,, sz and s%. A first-order Taylor expansion of the

equations about a set point (gres, ga, ga) gives:

TC - _ _ TC(- - re ofre
Jiin (Gret + 0Gret, ga +69c) = [ (Gret, 9a) + Ogret + dgc (21)
0
Gret Gret g 9a Gret gc
RE RE afRE
Jiin (Ga+9g4) = [*(ga) + 9on 0ga (22)
gA

where g = 9¢ — Ja, and similarly for g4 and g,;.

Next, Egs. 21 and 22 are rearranged to emphasize the linearity of these new equations:

i = ko + k1St 4 kLS grer (23)

R R RS (24)

lin

where ko, k7, and kg are constants (I=inhibitory input, E=excitatory input) given by

afTC
HE = 5 (25)
G lgg
afTC
ch — 26
" agret gret ( )
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~ ~ a TC ~ a TC _

kgc = fTC(gretagG)_ af Gret — af ga (27)
gTEt Jret,9G gG Oret 9G
kgiE _ afRE
agA ga
o RE
ket = fT(ga) + é{ 74
ga ga

Each of the partial derivatives above has been calculated and is a function of the parameters

of the original firing-rate model and the chosen set point (see Appendix). Using Egs. 23

and 24 and substituting for f7¢ and f®¥ in Eqs. 16-19 gives the linearized dynamics of the
synaptic gating variables:
s% —ay 0 0 auk¥c 4 aa(kTC + kLC grer)
d | s% ar  —as 0 0 s% 0
% T B 0 kRE x * RE
s& acgky” —oag 0 S agky
i s% | i 0 0 ag  —ag || s& ] 0 ]

Substituting a solution of this system into Eqs. 23 and 24 yields a solution of the linearized
firing-rate model. Next, we perform linear systems analysis and assume that all the synaptic
variables and the resulting firing rates include both an AC and DC component similar to

the retinal input (Eq. 20). Thus, Egs. 23 and 24 take the form,
fiin i € = ko O kT OOl + s ) + ki (Cgres + ' grere™)

0 rRE RE zwt _ RE RE (0 Yy 1y zwt
lin + lin € - kO +k ( + )
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and the dynamics of the synaptic gating variables is given by,

0.z 1.z jiwt
S4 1+ "s,€
d 08?44-18‘?46”7:
0.z 1.z piwt
Sg + sge

OSZé + lsléezwt

—aiy
A
0
0

0
agkgE

0

0

0
0

87

agk§E

0

&Ak?c
0
0

(oY) [kgc + kgc (Ogret + lgreteth)]

Osﬁ_i_lsieiwt
08%’44-18‘?46%”
0.z 1.z iwt
s+ sge

OSyG + ls%ezwt

(28)

Taking the time derivative on the LHS of Eq. 28, this linear system can be separated into

two independent systems, one whose terms involve ¢! and is oscillatory and the other which

is not (the AC and DC systems, respectively). The DC system is,

0 ¢TC
lin
0 ¢fRE
lin
where,
052 —ay 0
0% a4 —0y
0.z RE
Sé 0 oacky
0.Y
| 5G| i 0 0

Y TC 0
SG’ + kE Oret

= KTC 4 4TC0

= KO
0 aqkf® - 052
0 0 0s%
ag 0 05%,
[67¢] —OQqg i OS%

(),/A(kgc + kgc

ng§E

After dropping the factors of e that affect every term, the AC system is,

1p7C

1 rRE

L TC 1y TC 1
in = ki~ sgt kg gret

RE 1 Yy
lin kg™ “sa
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where,

W

ag

18?4
182:14
lszé

18%

0

Notice that the transmission properties of the network that are of interest (Fy, Fi, P)

are easily written in terms of the AC and DC components of the TC cell firing rate, that is,

Fo
Fy

Py

‘0 TC
lin

| fin |

1eTC
A lin

where |z| is the complex modulus of z and /z is the complex argument or angle of z. In order

to calculate these response measures analytically in the linear regime, the solutions of the

AC and DC synaptic dynamics were derived using the symbolic computer algebra toolbox

of Matlab.

The solution of the DC system is,

= (ko“ +k1k" + &

= (ko" + k1 kg + k© "gret) /(1 = k7 “k5")

gc Ogret)/(1 - leCkgE)

= (kg + k5Tky ¢ + kgTkE” Ogrer) /(1 — k1 CkE")

= (kg + ki ko + ki kS °grer) /(1 — k7 CkZ")

The solution of the AC system is,

1811'4:

.3 4 _3TCLRE,2 2\-1
2ivcag +w* — k; Tk ajag)
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(@402 + 2icdagw — 4w’ + 2iwaal — dwlasag — 2iwdas — wial
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1 TC 2 2 . 2
Y= — grethy ay(—ag — 2iacw + w”)

2 2 ;2 2 2 : 2 2 . 3 2 2

X (aq0g + 2050w — aqw” + 2iwaaag — dw aaae — 2iw’as — wiag

— 2iwtag + wt — kT CkEE Q% al) !

st = i lgakLCkEEdlag(w —iag)(—ad — 2iagw + w?)
x (040l + 2ic%agw — 4w + 2iwa 0l — dtasag — 2iwias — w?ad
- 2iw’ag +w' — ki ki of0) (34)
1 TCLRE, 2 2 : 2
S?é = gretk kE a0 G( Od — 2iqgw + w )

x (a}ad + 20} agw — o4w? + 2iwa 0l — dlasag — 2iwias — w’ad

- 2idag +wt — kT9kEE Q4 02) !

Substituting these values into Eqs. 29 and 31 gives the final result.

FO = ‘ flzc‘ - |ch+ch 0 +k}TEC OgTet|
Fl — ‘ flzc‘ — |kTC 1 -|—ch lgret‘

P o= /MO = (k7O TS 4 kR Tgrer) -

where k¢ k1O ELC 0g% and lsf, are given in Eqs. 25-27, 35-45, 33 and 34.

4.2 Results

After deriving the linearized model, I used Matlab to numerically determine the resulting
F; and P, values over F.. Figure 9 contains Bode plots of the TC cell response of the
linearized model. As you can see, the response appears to be very similar to those seen in
the numerical modeling (Figs. 6 and 8). The F} response exhibits the behavior of a high-pass
filter mediated by a band-pass filter. The P; response indicates an exponential rise in phase
advancing until peaking out around F;..; ~ 4 Hz and dropping quickly for a brief phase delay

that relaxes back to zero phase change.
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However, for another retinal DC input parameter, °g..; = 0.07 uS, the TC response

behavior is quite different. Figure 10 is a plot of the linearized response when °g,., = 0.07 uS

and 'g,.; = 0.005 pS. While the form of the Fj
response in this parameter regime is the same as
before, it is now much more heavily characterized
as a band-pass filter than a high-pass filter. The
phase response in Fig. 10 is very different from the
response seen in Fig. 9. In Fig. 10, the P; value
increases until it reaches 0.5 cycles then instanta-
neously falls to -0.5 cycles. Actually, this is not an
instantaneous change. The program analyzing the
data displays phase shifts in the smallest amount
of shift possible, so when the phase advances be-
yond 0.5 cycles, the program displays the shift as a
shorter delay rather than a longer advance. What
is truly happening in Fig. 10 is one of two things:
a phase advance that carries through a full cycle,
or, a phase delay that relaxes up to zero, where
the initial P; value is -0.8. The latter is the more
probable case since it ends on zero phase change,
like the previous P; behavior we have seen. Also,
the strong phase advance case never allows P;=0,

which would also be unlike previous Fj behavior.
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Figure 9: Bode plots of the transmission prop-
erties of the linearized TC-RE model. The up-
per plot is of the F; amplitude and the lower
plot is of the phase, P;. These results are an
example of the limited success of the lineariza-
tion. Comparing this case with its numerical
counterpart (Fig. 8) reveals the linearization
for this parameter regime is in strong agree-
ment. Parameters: %g.et = 0.05 uS, gt =

0.005 uS, and as in Table 1.
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the numerical solutions, implies that the linearization was not derived or calculated correctly. Parameters:

0gret = 0.07 S, 1gres = 0.005 uS, and as in Table 1.
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5 Discussion

5.1 Describing the Results

The numerical analysis gave consistent qualitative results across the parameter scheme I
used. As expected, when inhibition is present the Fj transmission feature was reduced.
When the g,.; values are in the linear region of the f7¢ response curve, the reduction of
Fy is independent of F.;. The Bode plots have the same form over a range of retinal input
values. The typical behavior of the F; response as a function of F,.; can be described as a
high-pass filter whose transition is mediated by a band-pass filter (see upper pane of Fig. 6).
A high-pass filter allows signals of F}.; greater than the filter transition value to pass with a
greater AC amplitude than those of F¢; less than the transition value. In the case of Fig. 6
the transition value is about 5 Hz. In Fig. 6 the filter’s minimum value is about 60 Hz and the
maximum is about 80 Hz, but as you can see neither reaches the no-inhibition firing frequency
(~95 Hz). The emergence of high-pass filter behavior is an interesting development. This
type of filter might suggest that the high frequency input components are more important
than the low frequency components for down-stream processes, presumably within the cortex.
A band-pass filter allows signals with Fi..; values near a critical F,.; value to pass with greater
AC amplitudes than other signals, allowing the critical value the strongest response. In Fig.
6, the band-pass filter is active between 1 Hz and 10 Hz, with the greatest influence around
F.et = 6 Hz, its critical value. Interestingly, the ‘action’ of both filters, that is, the location in
F.ei-space for which the filter changes its transmission properties most dramatically, occurs
between 1 and 10 Hz. In other words, both the high-pass filter’s transition value and the
band-pass filter’s critical value fall within 1< F,.; <10 Hz.

The usual behavior of the phase over F,.; is a gradual rise from low frequencies, followed
by a rapid drop, falling slightly below zero, and ending with a relaxation back up to zero,
the same value as the lowest F,.; produced (see lower pane of Fig 6). (The jagged behavior

of the phase at higher F,.; values is a numerical artifact. The actual behavior is a relaxation
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up to zero). The effect of inhibition on P; indicates phase advance for most F.; values.
This means the signal’s peak is phase-shifted to occur sooner than it would have without
inhibition, which can be seen in Fig. 5. The pulses that occur when inhibition is included
are smaller and their peaks are slightly left of the pulses that occur without inhibition. The
phase shift occurs because the inhibition builds up during the initial active phase of the TC
cell response and then suddenly bursts out, dampening the TC firing rate demonstrably.
The burst of inhibition lowers the original peak of the TC signal far enough that it actually
falls below the value for earlier parts of the TC signal. Thus, an earlier section of the TC
signal now becomes the peak.

The phase always reaches its peak value near the same Fi.; as the steepest positive slope of
Fi. In addition, F} reaches its peak value as the phase moves through its steepest negative
slope. These coincidences are notable since they indicate that there may be a causation
between the two transmission measures. Both peaks fall within a region loosely defined as 1
Hz < F,.; < 10 Hz when a4, ag = 0.05 ms™!. The fact that the peaks of P, and F} occur
so close together in F,-space indicates that signals with F,..; values of that region are more
heavily modified by the presence of RE-inhibition than signals with larger or smaller F}.;
values (though F.; > 10 Hz still receives an amplitude boost). This means that F,.; values
in that region appear to be selectively affected by reticular cell inhibition. However, crucial
factors in determining the F,..; range over which the region occurs are the a4 and g values,
which I reduced from their experimentally determined quantities in my models to reduce a

numerical artifact.

5.2 Numerical Results vs. Linearization Results

I performed the linearization of the firing-rate model to test whether the numerical simu-
lations were giving correct results. The linearization is only a valid approximation when
Ygret << %grer and fT¢ does not pass into the non-linear region of the g,q-f7¢ relation

(such as case B in Fig. 7). I made comparisons of the numerical simulations and analyt-
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ical linearization under valid g,.; parameters to try to determine whether the numerical

simulations were correct, though I eventually decided the analytical results were incorrect.

The first comparison is the most successful one,
the numerical simulations of Fig. 8 compared to
the analytical answer of Fig. 9. The retinal in-
put parameters for both these solutions are °g,.; =
0.05 uS and 'g,.; = 0.005 pS. The resulting Bode
plots are nearly identical, not only qualitatively,
but quantitatively as well. The only discrepancy
is a constant difference between the F) values of
about 2 Hz. When 'g,; is changed to 0.01 xS and
0.02 uS, the analytical solution continues to agree
very well with numerical results. The only appar-
ent discrepancy is a slowing increasing prominence
of the band-pass characteristic of the analytical so-
lution, noticed when comparing the relative ampli-
tudes of the filter characteristics.

The next comparison is performed after chang-
ing the DC retinal input parameter to %g,.; =
0.07 S, *gre; remains 0.005 4S. The analytical re-
sults (see Fig. 10) were described in the last sec-
tion. The numerical results are plotted in Fig. 11.
Comparing the two figures reveals obvious differ-

ences between the results. The main contrast be-
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Figure 11: Bode plots of transmission proper-
ties of the TC-RE model. The upper plot is of
the F; amplitude and the lower plot is of the
phase, P;. Comparing these results to the ana-
lytical counterparts (Fig. 10) reveals a definite
lack of agreement between the two analyses.
Parameters: °g,.; = 0.07 uS, 'gre; = 0.005 uS,

and as in Table 1.

tween the F) plots is the greatly emphasized prominence of band-pass filter effects in the

analytical solution. While that difference causes the two plots to appear very different at
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first glance, a closer evaluation reveals that the high-pass filter properties appear to be in
as close agreement as with the last comparison. The P; responses of the numerical and
analytical solutions are only in agreement at large F.;, where both go to zero. The initial,
positive section of P; in Fig. 10 should be considered a delay (subtract 1 from the values),
not an advance, as discussed in the previous section. The long period of phase delaying seen
in the analytical solution does not appear in the numerical results. Phase delays due appear
in the latter, but not until the phase shift is zero in the former. The general, qualitative
shape of the two results do not even agree.

These sorts of differences between the analytical and numerical results are seen as °g,; is
set to larger values, the greater the value, the greater the differences. However, as the first

paragraph discussed, an increase in 'g,.; does not cause major discrepancies to appear.

5.3 Problems and Improvements

The disagreement between analytical and numerical results is clearly a problem. I verified
the numerical results by reading the F; and P; values off of the raw data and comparing it
to the F} and P; values plotted in the Bode plots. This method confirmed the correctness
of the numerical results. Therefore, I believe the error causing the discrepancies lies in the
linearization. Canidates of the error are any of the equation and parameter entries into soft-
ware and the determination of the k-variables, which was performed manually. Rederiving
the k-variables and checking the equation entry into software could solve this problem.

There appears to be a problem in the numerics of the BASH script that causes the P,
values at large Fj.; to accumulate some noise (see Fig. 6). The fact that the P; values are
jagged at large F..; even when there is no inhibition, indicates the likelihood of bad averaging
being the culprit.

Many of the problems I encountered during this research concerned producing acceptable
Bode plots and understanding how unexpected phenomena occuring in the data could create

discrepancies in the plots. There were two particular phenomena of the raw f7¢ data that
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should be kept in mind by anyone reproducing this work. The first is temporal, non-transient
subharmonics in f7¢. It was common to see subharmonics during the transient period of
simulations, but sometimes the subharmonics were permanent. When this occured, I had to
increase the number of cycles sampled per F;.; considerably. Oftentimes the subharmonics
would cycle only after long periods lasting dozens of cycles. Another way to get around the
problem of subharmonics is to increase the a-variable values. The second phenomenon seen
was ultra-rapid f7¢ spiking at low g,¢; values. This occurred frequently when F,.; was small.
While the subharmonics are a physiologically realistic phenomenon, the ultra-rapid spikes are
not, they are numerical artifacts. To avoid them, raise °g,.;, decrease the a-variable values
(which, in turn may lead to stronger subharmonics), or use a small enough dt¢ in numerical
calculations to model the spikes accurately so they will average out without creating an offset
in fT¢. Whenever possible discrepancies appear in the Bode plots it is important to check

the raw XPP data to see if the cause is an unwanted artifact or unexpected dynamics.
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6 Conclusion

The goal of my research was to determine how reticular inhibition affects retinogeniculate
transmission. To accomplish this, I first adapted an integrate-and-fire model of Dr. Smith’s
to the neuron network I am studying and derived a firing-rate model of a TC-RE pair [7].
Next, I determined approximate values for several undefined model parameters by fitting
numerical model results to known firing rates [9]. Then I analyzed the model numerically
using the program XPP and, using a BASH script evaluated the behavior of many XPP
runs, focusing on changes in response measures (Fp, F; and P;) over a range of retinal input
frequencies (Fret)-

The Bode plots, resulting from full_FR_ext5, agree very well with the raw XPP output.
That correlation implies the discrete Fourier transform script is correctly calculating the
transmission properties. Therefore, we have reason to believe that the Bode plots are ac-
curate descriptions of the system defined by the FR model. To further convince myself of
the model’s viability I undertook a more analytical analysis of the FR model. The system
of equations is too complex to solve analytically, so I chose the approximation method of
linearization about a fixed point. The results of the linearization agree strongly with the
numerical results over a limited range of retinal input, however, the two models to do not
agree well enough to consider the linearization successful.

Numerical analysis brought forward some interesting transmission properties of the model.
Among them, the regularity of temporal signal phase-advancing. Also of note was the high-
pass filter characteristic of the amplitude-modifying property (F}) of the network and its
band-pass filter mediator. The close proximity of the F; and P; peaks is of interest because
it implies that retinal ganglion cell signals of a certain F;.; range may be selectively affected
by the reticular cell inhibition when transferred by the thalamocortical cells. The high-
pass filter is the most interesting characteristic of the transmission because it indicates that
incoming signals will have their high frequency components transferred better than the low

frequency components, which implies that the high frequency components may be more
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important for cortical processes.
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Appendix

Firing-Rate Model Parameter Values:

Table 1: Model parameter values [7, 6]

Parameter Value

Ga 0.85 ms-uS/cm?
Gg 0.10 ms-uS/cm?
aa 0.05 ms—1!

ag 0.05 ms™!

C 1 uF/em?

gte 0.03 uS/cm?
gib 0.03 puS/cm?
v,re -65 mV

vaL 65 mV

Ve -35 mV

Ve -35 mV

Vieset -50 mV

Ve -50 mV

Va -85 mV

Va 0mV

Vret 0mV
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Linearization k-variable components:

where,

_ 8fTC 6‘/:3ff afTC aTTC
VIS Bge  OTTC Oga
_ afTC av;ff 8fTC aTTC
B 8‘/;3]“]‘ agret aTTC 8gret
_ a]cRE 61/;?]? a]cRE aTRE
a aVeff 094 OTRE Ogyu
f re ch2 TC [ Vr:gg:t VTC ]
— T
aV;:ff (‘/eff ‘/'I‘eset) (V;sz V )
a‘/eff gljégk(VG - WZ(J,CIC) + gret(VG - V;‘et)
d9c (Gl + Gret + 9c)?
ofre _fTCZZn l‘/;sz ‘/;:gs(izt]
orre (VES if Vi)
orte
-C o re -2
390 (gleak + Gret + gG)
aVéff Gioark Veet = Vi G) + 9a(Veer — V)
agret (gg;ack + Gret + gG)2
or’c
—C o re —2
Odrer (Gicar + Gret + 9c)
OVif 9fae(Va — Vi)
994 (9iax + 9a)?
orhE
—-C RE —2
agA (gleak + gA)

34

(35)

(36)

(44)

(45)



Code of ‘full_FR_ext5’:

# THis script combines data-producing script, ’FR_dyna_dm_alpha’, and

# fourier analysis script, ’four_data_maker’, so that all is done at once

# Now a script section has been added that will draw to 8-frame
# xmgrace plots, one for the inhibited fouriered data, one for the
# uninhibited fouriered data.

# This version (full_FR_ext2) uses the ’freq_to_ttc.awk’ file to determine

the

# trans, total, and cycles for each freq for XPP runs and ’aver_t.awk’
# to average multiple cycle data together.

#H######H Four parameters I might like to vary: T A A

AC_COND=0.005

DC_COND=0.07

G_AMPA=0.85

G_GABA=0.1

ALPHA_AM=0.05

ALPHA_GA=0.05

##### REMOVING ALL FILES IN test_out/raw_FR_data !!!!!!1#####
rm -r “/test_out/raw_FR_data/*

rm -f -r “/test_out/foured/*${AC_COND}_${DC_COND}.dat
rm -f -r “/test_out/aved/*.*

rm ~/test_out/*.log

declare -a TEST_RATE

declare -a WAVE_LENGTH

declare -a TRANS

declare -a DT
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##the following test rates (for the FR) now cover from .01 Hz to 100 Hz wit
h the div_factor of 1000

## The following values are in milliseconds:

##  (TOTAL_TIME is the wave length + transient)

# new test rates (37 in all):

echo "DC conductance = " $DC_COND >> ~/test_out/test.log

echo "AC conductance = " $AC_COND >> “/test_out/test.log

echo "AMPA max conductance = " $G_AMPA >> “/test_out/test.log

echo "GABA max conductance = " $G_GABA >> “/test_out/test.log

echo "AMPA alpha value = " $ALPHA_AM >> “/test_out/test.log

echo "GABA alpha value

" $ALPHA_GA >> ~/test_out/test.log

echo "run# freq tran_t tot_t #cycs" >> “/test_out/test.log

#wave lengths(msec)=( 100000 83333.33 66666.66 50000.0 38461.5 285

71.4 20000.0 16666.66 13333.33 10000 8333.33 6666.66 5000.0 3846

.15 2857.14 2000.0 1666.666 1333.333 1000.0 833.333 666.666 500.0
384.615 285.714 200.0 166.666 133.333 100.0 83.3333 66.6666

50.0 38.4615 28.5714 20.0 16.6666 13.3333 10.0)

TEST_RATE=( .01 .012 .015 .02 .026 .03
5 .05 .060 .075 .10 .12 .15 .2 .26
.35 .5 .6 .75 1.0 1.2 1.5 2.0
2.6 3.5 5.0 6.0 7.5 10 12 15
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20

.45

26 35 50
DT=( 10
4 3
1 1
4 .35 3
.08 .07 .06
#CYCLES=( 1
2 2
2 2
2 2 2
2 2 2

10

60

.05

75 100)
9 9 8 6
2 2 2 1
1 8 .6 55
.28 .23 .2 .15
.035 .03)
1 1 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2)

for t.tnum in 01 234567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36

do

{

FIN=${TEST_RATE[t_num]}
INTER=${DT [t_num] }
#NUM_CYC=1

#${CYCLES [t_num] }

tmpt=( ‘echo " " | “/scripts/freq_to_ttc.awk freq=$FIN‘ )

TRAN=${tmpt [0]}
TOTAL=${tmpt [1]}

NUM_CYC=${tmpt [2]}

echo $t_num $FIN $TRAN $TOTAL $NUM_CYC

echo $t_num " " $FIN "

st_out/test.log

" $TRAN " " $TOTAL " " $NUM_CYC >> ~“/te
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cd ~/XPP/feedback_models/CURRENT_FORMS
#inhibition-included tests:
sed -e{s/_FREQ_IN_/${FIN}/,s/_AC_COND_/${AC_COND}/,s/_DC_COND_/${DC
_COND}/,s/_ALPHA_AM_/${ALPHA_AM}/,s/_ALPHA_GA_/${ALPHA_GA}/} FR_alpha_final
.form > FR_TEST.tmp.ode
sed -e{s/_TOTAL_/${TOTAL}/,s/_TRANSIENT_/${TRAN}/,s/_DT_/${INTER}/,
s/_G_AMPA_/${G_AMPA}/,s/_G_GABA_/${G_GABA}/} FR_TEST.tmp.ode > FR_TEST2.tmp
.ode
xpp FR_TEST2.tmp.ode -silent
mv output.dat ~/test_out/raw_FR_data/out_freq_ ${FIN}_amp_${AC_COND}
_${DC_COND}.dat
#NO inhibition tests:
sed -e{s/_FREQ_IN_/${FIN}/,s/_AC_COND_/${AC_COND}/,s/_DC_COND_/${DC
_COND}/,s/_ALPHA_AM_/${ALPHA_AM}/,s/_ALPHA_GA_/${ALPHA_GA}/} FR_alpha_no_in
hib_final.form > FR_TEST.tmp.ode
sed -e{s/_TOTAL_/${TOTAL}/,s/_TRANSIENT_/${TRAN}/,s/_DT_/${INTER}/,
s/_G_AMPA_/${G_AMPA}/} FR_TEST.tmp.ode > FR_TEST2.tmp.ode
xpp FR_TEST2.tmp.ode -silent
mv output.dat ~/test_out/raw_FR_data/out_no_inhib_freq_${FIN}_amp_$
{AC_COND}_${DC_COND}.dat
#Move and organize files
cd “/test_out/raw_FR_data/
mkdir inhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}
mkdir no_inhib_freq ${FIN}_amp_${AC_COND}_${DC_COND}
# awk the original files to make files with columns of time and TCF, REF,
and RIN

awk ’{ print $1, $6}’ out_freq_${FIN}_amp_${AC_COND}_${DC_COND}.dat>inhib_
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freq_${FIN}_amp_${AC_COND}_${DC_COND}/tc_freq${FIN}.awked.dat

awk ’{ print $1, $7}’ out_freq_${FIN}_amp_${AC_COND}_${DC_COND}.dat
>inhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/re_freq${FIN}.awked.dat

awk ’{ print $1, $8}’ out_freq_${FIN}_amp_${AC_COND}_${DC_COND}.dat
>inhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/ret_in${FIN}.awked.dat

awk ’{ print $1, $6}’ out_no_inhib_freq_${FIN}_amp_${AC_COND}_${DC_
COND}.dat>no_inhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/tc_freq${FIN}.awke
d.dat

awk ’{ print $1, $7}’ out_no_inhib_freq_${FIN}_amp_${AC_COND}_${DC_
COND}.dat>no_inhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/re_freq${FIN}.awke
d.dat

awk ’{ print $1, $8}’ out_no_inhib_freq_${FIN}_amp_${AC_COND}_${DC_
COND}.dat>no_inhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/ret_in${FIN}.awked
.dat
B b b S b B B S S S s S e f e S S S e S S S e T T e B 222 2o B 2 22 2202
H#S Y FOURIER SCRIPT BELOW  ##t##t######dd#t it
B bt f i B e S S S S S e e B S St e e e e T T B B 222 2 B 2 2T 2202
## Now run the data through a fourier awk script and append each output to
a file for
it neuron type
“/scripts/aver_t.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/raw_FR_data/i
nhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/ret_in${FIN}.awked.dat > ~/test_
out/aved/aved_ret_amp_${FIN}.dat
~/scripts/aver_t.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/raw_FR_data/i
nhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/tc_freq${FIN}.awked.dat > ~/test
_out/aved/aved_tc_amp_${FIN}.dat

“/scripts/aver_t.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/raw_FR_data/i
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nhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/re_freq${FIN}.awked.dat > ~/test
_out/aved/aved_re_amp_${FIN}.dat

“/scripts/aver_t.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/raw_FR_data/n
o_inhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/ret_in${FIN}.awked.dat > ~/te
st_out/aved/aved_no_inhib_ret_amp_${FIN}.dat

~/scripts/aver_t.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/raw_FR_data/n
o_inhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/tc_freq${FIN}.awked.dat > ~/t
est_out/aved/aved_no_inhib_tc_amp_${FIN}.dat

~/scripts/aver_t.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/raw_FR_data/n
o_inhib_freq_${FIN}_amp_${AC_COND}_${DC_COND}/re_freq${FIN}.awked.dat > ~/t
est_out/aved/aved_no_inhib_re_amp_${FIN}.dat

NUM_CYC=1 # since the data has already been normalized in the aved_t.awk sc
ript

~/scripts/fourier.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/aved/aved_re

t_amp_${FIN}.dat >> ~/test_out/foured/fed_ret_amp_${AC_COND}_${DC_COND}.dat

“/scripts/fourier.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/aved/aved_tc
_amp_${FIN}.dat >> ~/test_out/foured/fed_tc_amp_${AC_COND}_${DC_COND}.dat
“/scripts/fourier.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/aved/aved_re
_amp_${FIN}.dat >> ~/test_out/foured/fed_re_amp_${AC_COND}_${DC_COND}.dat
“/scripts/fourier.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/aved/aved_no
_inhib_ret_amp_${FIN}.dat >> ~/test_out/foured/fed_no_inhib_ret_amp_${AC_CO
ND}_${DC_COND}.dat

~/scripts/fourier.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/aved/aved_no
_inhib_tc_amp_${FIN}.dat >> “/test_out/foured/fed_no_inhib_tc_amp_${AC_COND
}_${DC_COND}.dat

“/scripts/fourier.awk freq=${FIN} cycles=${NUM_CYC} ~/test_out/aved/aved_no
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_inhib_re_amp_${FIN}.dat >> ~/test_out/foured/fed_no_inhib_re_amp_${AC_COND
}_${DC_COND}.dat

}

done

# REMOVE TEMP ODE FILES FROM .FORMS DIRECTORY:

rm ~/XPP/feedback_models/CURRENT_FORMS/*.ode

#rm ~/XPP/feedback_models/CURRENT_FORMS/output.dat

# split data into files containing a column of time and one value

awk ’{print $1, $2}° ~/test_out/foured/fed_ret_amp_${AC_COND}_${DC_COND}.da
t > “/test_out/foured/ret_FOvsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $3}’ ~/test_out/foured/fed_ret_amp_${AC_COND}_${DC_COND}.da
t > “/test_out/foured/ret_FivsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $4}’ ~/test_out/foured/fed_ret_amp_${AC_COND}_${DC_COND}.da
t > “/test_out/foured/ret_PlvsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $5}’ ~/test_out/foured/fed_ret_amp_${AC_COND}_${DC_COND}.da
t > “/test_out/foured/ret_gammavsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $2}’ ~“/test_out/foured/fed_no_inhib_ret_amp_${AC_COND}_${DC
_COND}.dat > ~/test_out/foured/ret_no_inhib_FOvsFR_amp_${AC_COND}_${DC_COND
}.dat

awk ’{print $1, $3}’ ~/test_out/foured/fed_no_inhib_ret_amp_${AC_COND}_${DC
_COND}.dat > “/test_out/foured/ret_no_inhib_FlvsFR_amp_${AC_COND}_${DC_COND
}.dat

awk ’{print $1, $4}’ ~/test_out/foured/fed_no_inhib_ret_amp_${AC_COND}_${DC
_COND}.dat > ~/test_out/foured/ret_no_inhib_P1lvsFR_amp_${AC_COND}_${DC_COND
}.dat

awk ’{print $1, $5}° ~/test_out/foured/fed_no_inhib_ret_amp_${AC_COND}_${DC

_COND}.dat > “/test_out/foured/ret_no_inhib_gammavsFR_amp_${AC_COND}_${DC_C
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OND}.dat

awk ’{print $1, $2}’ ~/test_out/foured/fed_tc_amp_${AC_COND}_${DC_COND}.dat
> “/test_out/foured/tc_FOvsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $3}’ ~/test_out/foured/fed_tc_amp_${AC_COND}_${DC_COND}.dat
> “/test_out/foured/tc_FlvsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $4}’ ~/test_out/foured/fed_tc_amp_${AC_COND}_${DC_COND}.dat
> ~“/test_out/foured/tc_PlvsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $5}’ ~/test_out/foured/fed_tc_amp_${AC_COND}_${DC_COND}.dat
> “/test_out/foured/tc_gammavsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $2}’ ~/test_out/foured/fed_no_inhib_tc_amp_${AC_COND}_${DC_
COND}.dat > ~/test_out/foured/tc_no_inhib_FOvsFR_amp_${AC_COND}_${DC_COND}.
dat

awk ’{print $1, $3}’ ~“/test_out/foured/fed_no_inhib_tc_amp_${AC_COND}_${DC_
COND}.dat > ~/test_out/foured/tc_no_inhib_F1lvsFR_amp_${AC_COND}_${DC_COND}.

dat

awk ’{print $1, $4}’ ~/test_out/foured/fed_no_inhib_tc_amp_${AC_COND}_${DC_
COND}.dat > ~/test_out/foured/tc_no_inhib_P1lvsFR_amp_${AC_COND}_${DC_COND}.

dat

awk ’{print $1, $5}’ ~“/test_out/foured/fed_no_inhib_tc_amp_${AC_COND}_${DC_
COND}.dat > ~/test_out/foured/tc_no_inhib_gammavsFR_amp_${AC_COND}_${DC_CON

D}.dat

awk ’{print $1, $2}’ ~/test_out/foured/fed_re_amp_${AC_COND}_${DC_COND}.dat
> “/test_out/foured/re_FOvsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $3}’ ~/test_out/foured/fed_re_amp_${AC_COND}_${DC_COND}.dat
> “/test_out/foured/re_F1lvsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $4}’ ~/test_out/foured/fed_re_amp_${AC_COND}_${DC_COND}.dat

> “/test_out/foured/re_PlvsFR_amp_${AC_COND}_${DC_COND}.dat
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awk ’{print $1, $5}’ ~/test_out/foured/fed_re_amp_${AC_COND}_${DC_COND}.dat

> “/test_out/foured/re_gammavsFR_amp_${AC_COND}_${DC_COND}.dat

awk ’{print $1, $2}’ ~“/test_out/foured/fed_no_inhib_re_amp_${AC_COND}_${DC_

COND}.dat > ~/test_out/foured/re_no_inhib_FOvsFR_amp_${AC_COND}_${DC_COND}.

dat

awk ’{print $1, $3}’ ~/test_out/foured/fed_no_inhib_re_amp_${AC_COND}_${DC_

COND}.dat > ~/test_out/foured/re_no_inhib_F1vsFR_amp_${AC_COND}_${DC_COND}.

dat

awk ’{print $1, $4}’ ~/test_out/foured/fed_no_inhib_re_amp_${AC_COND}_${DC_

COND}.dat > ~/test_out/foured/re_no_inhib_P1vsFR_amp_${AC_COND}_${DC_COND}.

dat

awk ’{print $1, $5}’ ~/test_out/foured/fed_no_inhib_re_amp_${AC_COND}_${DC_

COND}.dat > ~/test_out/foured/re_no_inhib_gammavsFR_amp_${AC_COND}_${DC_CON

D}.dat

it Create xmgrace graphs:

cd ~/test_out/foured/

xmgrace -param ~/xmgr/four_both.par \

—-graph 0 tc_no_inhib_FOvsFR_amp_${AC_COND}_${DC_COND}.dat
C_COND}_${DC_COND}.dat \

-graph 1 re_no_inhib_FOvsFR_amp_${AC_COND}_${DC_COND}.dat
C_COND}_${DC_COND}.dat \

-graph 2 tc_no_inhib_F1vsFR_amp_${AC_COND}_${DC_COND}.dat
C_COND}_${DC_COND}.dat \

-graph 3 re_no_inhib_F1vsFR_amp_${AC_COND}_${DC_COND}.dat
C_COND}_${DC_COND}.dat \

-graph 4 tc_no_inhib_P1lvsFR_amp_${AC_COND}_${DC_COND}.dat
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C_COND}_${DC_COND}.dat \

—graph 5 re_no_inhib_PlvsFR_amp_${AC_COND}_${DC_COND}.dat re_PlvsFR_amp_${A
C_COND}_${DC_COND}.dat \

-graph 6 tc_no_inhib_gammavsFR_amp_${AC_COND}_${DC_COND}.dat tc_gammavsFR_a
mp_${AC_COND}_${DC_COND}.dat \

-graph 7 re_no_inhib_gammavsFR_amp_${AC_COND}_${DC_COND}.dat re_gammavsFR_a

mp_${AC_COND}_${DC_COND}.dat &

xmgrace -param ~/xmgr/tc_2.par \

-graph 0 tc_no_inhib_F1vsFR_amp_${AC_COND}_${DC_COND}.dat tc_FivsFR_amp_${A
C_COND}_${DC_COND}.dat \

-graph 1 tc_no_inhib_P1vsFR_amp_${AC_COND}_${DC_COND}.dat tc_P1lvsFR_amp_${A

C_COND}_${DC_COND}.dat &
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Code of ‘freq_to_ttc.awk’

#! /bin/gawk -f

# Awk script for calculating trans, total and cycles from freq.
# freq is needed on command line

#

# script modified from on of dr. smith’s ttc scripts.

BEGIN {
if (freq<=.1) {TRANSPERIODMIN = 2;}
else {TRANSPERIODMIN = 3;}
TRANSTIMEMIN = 10000;
if (freq<=.5) {RUNPERIODMIN = 1;}
else {RUNPERIODMIN = 4;}
if ((freg>10.0) || (freq<.5)) {RUNTIMEMIN = 4000;}
else {RUNTIMEMIN = 8000;}
}
END {
period = 1.0/freqx1000; # period in ms
trans=TRANSPERIODMIN*period;
while (trans < TRANSTIMEMIN) {
trans += period;
}
cycles=RUNPERIODMIN;
run=cycles*period;
while (run < RUNTIMEMIN) {
cycles += 1;

run=cycles*period;
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}
total = trans+run;

print trans, total, cycles;
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Code of ‘aver_t.awk’

#! /bin/gawk -f

# Awk script

# This script sums all cycles of a certain run into the a histogram
# one period in length.

# freq is needed on command line

# cycles is needed on command line

BEGIN {
i=0;
3=0;

}

{

# read in periodic histogram
htemp[i]=$2;
ttemp[i++]=$1;

}

END {
BINNUM=128;
start_t=ttemp[0];
period = 1.0/freq*1000;
bin_lngth=period/BINNUM;
k=0; #counter to run over all cycles
for (i=1; i<=BINNUM; i++ ) {h[i]=0; norm_vall[il=0;}
# Time-based averaging:
for (j=0; j<cycles; j++)

for (j2=1; j2<=BINNUM; j2++) {

t[j2]=j2*%bin_lngth;
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while ((ttempl[k]<=j2*bin_lngth+j*period+start_t)&&(ttemp[k]!="")) {
h[j2]=h[j2]+htemp[k];
k++;
norm_val[j2]++;
}
}

for (i=1; i<=BINNUM; i++ ) h[i]l=h[i]/norm_val[i];

for (i=1; i<=BINNUM; i++ ) {

print t[il,h[i];

}
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Code of ‘fourier.awk’:

#! /bin/gawk -f
# Awk script for calculating response measures from periodic histogram
# freq is needed on command line

# cycles is needed on command line

BEGIN {
i=0;

}

{

period = 1.0/freq;

# read in periodic histogram
hli++]=$2;
BINNUM=i; # total number of bins, 128
}
END {
TWOPI = 2.0%3.1415927;
# N is total power
N=0;
for (i=0; i<BINNUM; i++) N += h[i]"2;
# a0 is just rate; p0=0 (no phase for rate)
# al is stimulus driven response; pl is phase of this response
for (m=0; m<=1; m++) { # loop through modes 0 and 1
a[m] = 0; blm] = 0;
for (i=0; i<BINNUM; i++) {

a[m] += h[i]l*cos(TWOPI*m*i/BINNUM) ;
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b[m] += h[i]l*sin(TWOPI*m*i/BINNUM) ;

}

r[m] = sqrt(alm]~2+b[m]~2);

plm] = -atan2(b[m],alm])/TWOPI;
}
N = N/cycles™2;
A0 = r[0]/cycles;
A1l = r[1]/cycles;
P1 = p[1];
# OLD IN : if ( N!=0 ) IN = (N-(A0O"2+2%A1°2)/BINNUM)/N ;

if ( N-A0"2/BINNUM !=0 ) IN = (N-(A0~2+2%A1~2)/BINNUM)/(N-A0~2/BINNUM) ;

else IN = 0;

# Output in the following order:

#

#

#

#

Col
$1
$2
$3
$4
$5
$6

Meaning
A0 (DC spikes/sec)
A0 (DC spikes/cycle)
F1=2xA1 (AC spikes/sec)
F1=2xA1 (AC spikes/cycle)
-0.5 < p[1] < 0.5

0<INKI1

# print freq*AO/BINNUM, AO/BINNUM, 2*freq*A1/BINNUM, 2*A1/BINNUM, P1, IN;

# Mult the FO and F1 by 1000 to convert from millisec to sec to be more easil

y comparable to the FR

print freq, AO/BINNUM*1000, 2%A1/BINNUM*1000, P1, IN;
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Code of ‘FR_alpha_final.form’:

#

# TC-RE FR model sln with alpha-fn in s-vars

# (feedback GABA-inhibition (biological model))
#

# This is the .form file to use for param studies

# of the model’s behavoir

#

# parameters to change trial by trial (FR=firing rate)

par Fin=_FREQ_IN_ AC_cond=_AC_COND_ DC_cond=_DC_COND_

par gampa=_G_AMPA_ ggaba=_G_GABA_ alphaampa=_ALPHA_AM_ alphagaba=_ALPHA_GA_

@ total=_TOTAL_,dt=_DT_,trans=_TRANSIENT_,maxstor=1000000,bounds=500
dsgabax/dt=alphagaba* (fre(veffr(geffr(sampay)),taur (geffr(sampay)))-sgabax)
dsgabay/dt=alphagaba* (sgabax-sgabay)
dsampax/dt=alphaampa* (ftc(vefft (gefft(sgabay,gret(t)),gret(t)),taut(gefft(sgabay
,gret (t))))-sampax)

dsampay/dt=alphaampa* (sampax-sampay)

ftc(vefft,taut)=if ((vefft>vthetat)&(((taut*1ln((vefft-vresett)/(vefft-vthetat)))"
(-1))>0))then((taut*1ln((vefft-vresett)/(vefft-vthetat)))~(-1))else(0)
fre(veffr,taur)=if ((veffr>vthetar)&((taur*ln((veffr-vresetr)/(veffr-vthetar))) ~(
-1)))then((taur*1n((veffr-vresetr)/(veffr-vthetar))) ~(-1))else(0)
vefft(gefft,gret)=(glt*vlt+gret*vret+ggaba*sgabay*vgaba)/gefft
veffr(geffr)=(glr*vlr+gampa*sampay*vampa) /geffr

gefft (sgabay,gret)=(glt+gret+ggaba*sgabay)

geffr(sampay)=(glr+gampa*sampay)
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taut (gefft)=c/gefft

taur(geffr)=c/geffr

#ret input for linear tests:

#gret (t)=DC_cond*t

#ret input for drifting grating type tests

# (eq in the form DC_cond+AC_cond*cos (2*pi*FRxt))

gret (t)=if ((DC_cond+AC_cond*(cos (2*pi*Fin/1000%*t)))>0)then(DC_cond+AC_cond* (cos(
2%pixFin/1000%t)))else(0)

aux TCf=ftc(vefft(gefft(sgabay,gret(t)),gret(t)),taut(gefft(sgabay, gret(t))))
aux REf=fre(veffr(geffr(sampay)),taur(geffr(sampay)))

aux RIn=gret(t)

init  sgabax=.0 sampax=.0 sgabay=.0 sampay=.0

par c=1 glt=0.03 glr=0.03

par vlt=-65 vthetat=-35 vresett=-50 vgaba=-85

par vlr=-65 vthetar=-35 vresetr=-50 vampa=0

par vret=0

done
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Code of ‘FR_alpha_no_inhib_final.form’:

#

# TC-RE FR model sln with alpha-fn in s-vars

# Inhibitionless model (since ggaba=0)

# (feedback GABA-inhibition (biological model))

# This is the .form file to use in parameter studies of the
# model’s behavior

#

# parameters to change trial by trial

par Fin=_FREQ_IN_ AC_cond=_AC_COND_ DC_cond=_DC_COND_

par gampa=_G_AMPA_ alphaampa=_ALPHA_AM_ alphagaba=_ALPHA_GA_

par ggaba=0

@ total=_TOTAL_,dt=_DT_,trans=_TRANSIENT_,maxstor=1000000,bounds=500

#i thought i had removed the inhibition before, but couldn’t figure out how i ha
d done it, so i

# changed these sgaba vars so they would always be zero, to make sure inhibiti
on plays no role

dsgabax/dt=0

#was: dsgabax/dt=alphagabax*(fre(veffr(geffr(sampay)),taur(geffr(sampay)))-sgaba
x)

dsgabay/dt=0

#was: dsgabay/dt=alphagaba*(sgabax-sgabay)
dsampax/dt=alphaampa* (ftc(vefft (gefft(sgabay,gret(t)),gret(t)),taut(gefft(sgabay
,gret(t))))-sampax)

dsampay/dt=alphaampa* (sampax-sampay)
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ftc(vefft,taut)=if ((vefft>vthetat)&(((taut*1ln((vefft-vresett)/(vefft-vthetat)))"
(-1))>0))then((taut*1n((vefft-vresett)/(vefft-vthetat))) (-1))else(0)
fre(veffr,taur)=if ((veffr>vthetar)&((taur*ln((veffr-vresetr)/(veffr-vthetar))) ~(
-1)))then((taurxln((veffr-vresetr)/(veffr-vthetar))) ~(-1))else(0)
vefft(gefft,gret)=(glt*xvlt+gret*vret+ggaba*sgabay*vgaba)/gefft
veffr(geffr)=(glr*vlr+gampa*sampay+*vampa)/geffr
gefft(sgabay,gret)=(glt+gret+ggaba*sgabay)

geffr (sampay)=(glr+gampa*sampay)

taut (gefft)=c/gefft

taur (geffr)=c/geffr

#ret input for linear tests:

#gret (t)=DC_cond*t

#ret input for drifting grating type tests

gret (t)=if ((DC_cond+AC_cond* (cos (2xpi*Fin/1000%t)))>0)then(DC_cond+AC_cond* (cos (
2xpi*Fin/1000%*t)))else(0)

aux TCf=ftc(vefft(gefft(sgabay,gret(t)),gret(t)) ,taut(gefft(sgabay, gret(t))))
aux REf=fre(veffr(geffr(sampay)),taur(geffr(sampay)))

aux RIn=gret(t)

init sgabax=.0 sampax=.0 sgabay=.0 sampay=.0

par c=1 glt=0.03 glr=0.03

par vlt=-65 vthetat=-35 vresett=-50 vgaba=-85

par vlr=-65 vthetar=-35 vresetr=-50 vampa=0

par vret=0

done
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Code of ‘total_lin.m’:

% this file derives all necessary equations for the linear analysis
% and performs linear analysis and plots results (12-2-02)

% plotting parameters:

BOTTOM = -3
TOP = 3
NUM = 200

AXLO = 10" (BOTTOM+1); AXHI = 10~ (TOP-1)

syms sAx sAy sGx sGy Gret GretO Gretl omega

Gtcl = 0.03
Vtcl = -65
Vtcreset = -50
Vtctheta = -35
Grel = 0.03
Vrel = -65
Vrereset = -50

Vretheta = -35

VG = -85

VA =0

Vret = 0

gbarGA = .85 Yconstant for now

gbarAM 1

alphaG

0.1

alphaA = 0.1
c=1
% Set set-point vars % check these values before final:

sAx_set = 0.0595
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sAy_set = 0.0595
sGx_set = 0.0925
sGy_set = 0.0925

Gret_set = 0.05

% Set input vars

GretO__ Gret_set

Gretl__ 0.005

fret = logspace(BOTTOM, TOP, NUM)

omega__ = fret*2%pi/1000

% State f-vars

tautc = C/(Gtcl + Gret + gbarGA*sGy)

Vtceff = (GtclxVtcl + Gret*Vret + gbarGA*sGy*VG)/ (Gtcl + Gret + gbarGAxsGy)
taure = C/(Grel + gbarAMxsAy)

Vreeff = (GrelxVrel + gbarAM*sAy*VA)/ (Grel + gbarAM*sAy)

ftc = (tautc*log((Vtceff - Vtcreset)/(Vtceff - Vtctheta))) (-1)

fre = (taurexlog((Vreeff - Vrereset)/(Vreeff - Vretheta))) (-1)

% Determine k-vars

kTCO = subs(ftc, [Gret, sGyl, [Gret_set, sGy_setl)

kTCE = subs(diff(ftc, Gret), [Gret, sGyl], [Gret_set, sGy_set])
kKTCI = subs(diff(ftc, sGy), [Gret, sGyl, [Gret_set, sGy_set])
kREO = subs(fre, sAy, sAy_set)

kREE = subs(diff (fre,sAy), sAy, sAy_set)

% Determine sO and sl vars
% non-time-varying terms:
[ sAx0, sAyO, sGxO, sGy0 ] = solve ( ...
’-—alphaA*sAx0 +alphaA*kTCI*sGyO +alphaA*(kTCO+kTCE*Gret0) = 0°’,

’alphaA*sAx0 -alphaA*sAy0 = 07,
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’alphaG*kREExsAy0 -alphaG*sGx0O +alphaGxkREO = 07,
’alphaG*sGx0 -alphaG*sGy0 = 0’ )

% time-varying terms (those *e” (ikomega*t)):

[ sAx1, sAyl, sGx1l, sGyl 1 = solve ( ...
’—alphaA*sAx1 + alphaA*kTCI*sGyl +alphaA*(kTCE*Gretl) = (-1)~(1/2)*

omega*sAxl 7,

’alphaA*sAxl-alphaA*sAyl = (-1)~(1/2)*omega*sAyl’,
’alphaG*kREE*sAyl-alphaG*sGxl = (-1)~(1/2)*omega*sGxl’,
’alphaG*sGxl-alphaG*sGyl = (-1)~(1/2)*omega*sGyl’ )

% reassign sO and sl vars to be numeric

sAx0_ = subs(subs(sAx0), Gret0, GretO__)
sAy0_ = subs(subs(sAy0), GretO, GretO__)
sGx0_ = subs(subs(sGx0), GretO, GretO__)
sGyO_ = subs(subs(sGy0), GretO, GretO__)
sAx1_ = subs(subs(subs(sAxl), Gretl, Gretl__), omega, omega__)
sAyl_ = subs(subs(subs(sAyl), Gretl, Gretl__), omega, omega__)
sGx1_ = subs(subs(subs(sGx1l), Gretl, Gretl__), omega, omega__)
sGyl_ = subs(subs(subs(sGyl), Gretl, Gretl__), omega, omega__)

% Determine fO and f1 vars

ftc0 = kTCO + kTCI*sGyO_ + kTCExGretO__
ftcl = kTCI*sGyl_ + kTCExGretl__

fre0 = kREO + kREE*sAyO_

frel = kREE*sAyl_

% so finally, the DC, AC, and phase of the output:

abs (ftc0)

DC_amp

abs(ftcl)

AC_amp

phase = angle(ftcl)
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%keep phase from switching to negative (necessary if phase is > 1/2 of a cy
cle):

%for i = 1:NUM

% if phase(i) < -.05

% phase(i) = phase(i) + 2x*pi

% end

hend

hchange phase from radians to cycles:

phase = phase/(2%pi)

% plots:

AC_plot = subplot(2,1,1)

semilogx (fret,AC_amp*1000,’LineWidth’,2)

axis([AXLO AXHI 0 120])

text(107(-1),128,’TC Response (F_1, P_1)’,’Fontsize’,14)

%set (AC_plot,’XTick’,[1e-05 1e-03 1e-01 10 100])
%hxlabel(’’,’FontSize’,12,’VerticalAlignment’, ’bottom’)

ylabel(’F_1, Modulating TC Firing Rate (Hz)’,’FontSize’,12,’HorizontalAlign
ment’,’left’)

phase_plot = subplot(2,1,2)

semilogx (fret,phase,’LineWidth’,2)

axis ([AXLO AXHI -.23 .22])

%text(107(-1),0.125, ’Phase vs Input Frequency’,’Fontsize’,14)

xlabel (’F_{ret} (Hz)’,’FontSize’,12,’VerticalAlignment’,’bottom’)
ylabel(’P_1, Phase Change (cycles)’,’FontSize’,12,’HorizontalAlignment’,’le
ft?)

return
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