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Abstract

The resolution of the Gibbs Paradox is still a matter of debate, well over a hundred years
after Gibbs first pointed it out. Resolutions hinge upon concepts of indistinguishability, and
thus seem to involve quantum mechanics. We show, however, that this paradox in truth involves
only observational indistinguishability (unrelated to quantum physics), and that the quantum
mechanical understanding mistakenly treats entropy as a physical property rather than a quan-
tity of observed information. The relation of the Gibbs Paradox to the philosophical question
of Haecceitism is discussed.
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1 Introduction: The Gibbs Paradox

Profound realizations often trace their origins to the most mundane aspects of expe-
rience. Such is the case of the Gibbs Paradox, which seems at first to be of a practical
nature and relatively straightforward, but in the end will open the door to considering
all of physics in a different light.

Imagine an isolated box, which has been partitioned by an impermeable barrier
into two sections. In one section there are n; moles of an ideal gas, and in the other
section there are ny moles of a different ideal gas. The two gases are allowed to be
in thermodynamic contact, so that 77 = T5. For simplicity’s sake we choose V; =V,
and n; = ny (and thus P; = P,). Imagine then the barrier being removed, and the
two gases freely mixing. A new equilibrium is achieved among the n = n; + ny moles

in the volume V = V; + V5. The change in entropy due to this mixing is[1]
AS = Sfinal - Sinitial
= nRInV — (n1RInV] 4+ nyRInVj)
1 V 1 V
= nkfmy -3 (3) -3 (3)]

- nRPnV—%n(g)]

= nRIn2 (1)

Immediately after Gibbs [2] stated this simple result in his seminal work of 1875,

“Equilibrium of Heterogeneous Substances”, he insightfully pointed out:



It is noticeable that the value of this expression does not depend upon the
kinds of gas which are concerned, if the quantities are such as has been
supposed, except that the gases which are mixed must be of different kinds.
If we should bring into contact two masses of the same kind of gas, they

would also mix, but there would be no increase of entropy.

This is the paradox: The mixing of two different gases results in an entropy in-
crease, but the mixing of two identical gases retains its original value of entropy.
The process of mixing two different gases might be exactly the same (down to the
individual motions of each particle) as the mixing of two indistinguishable gases, yet
the two processes are treated as entirely different phenomena. It is equally important
to note (as Gibbs himself stressed) that the degree of similarity of the two gases is
irrelevant. One can imagine two gases being similar or dissimilar to any degree and
in any imaginable manner, but there are only two possible values for such an entropy
of mixing: nRIn2 and 0.

It is widely agreed that the Gibbs Paradox has a profound truth in it somewhere;
a paradox in physics must mean that we are missing some key piece of understand-
ing. Traditionally, quantum mechanics is believed to be that missing piece, and many
authorities (Schrodinger [3], for one) have used quantum mechanics to convincingly
resolve the paradox. Here we attempt to show that the real missing piece of under-

standing is a proper concept of the nature of entropy.

2 Haecceitism and Anti-Haecceitism

In order to approach the Gibbs Paradox, we must start with a child-like question: If
two things that are alike in all ways suddenly trade places, is the world the same or
different? The child might imagine switching two bottles of milk in the supermarket,

both from the same company and stamped with the same date. A physicist might



more elegantly imagine switching two oxygen molecules in the air. Philosopher Duns
Scotus pondered this children’s question in the middle ages, and answered it using
his own common sense: Yes, the world is different if two alike things suddenly trade
places. He attributed to each thing its own “Haecceitas”, its own “thisness”. He
reasoned that even if two things are identical in every way, no two things can both be
“this” thing. This conceptual understanding is known as “Haecceitism”, and it is the
way most of us normally understand the world. The opposite belief that the universe
is unchanged after the switching of identical things is known as “Anti-Haecceitism”.

We grow up thinking the world is Haecceitistic because the things we consider
alike in all ways are in reality not. Of the two seemingly identical bottles of milk in
the supermarket, one may contain a single microorganism that will quickly multiply
and turn the milk rancid. If the child switches the two seemingly identical bottles,
a different customer will go home with rancid milk and the universe will be an un-
mistakably different place. We grow so used to these chaotic happenings it is hard to
imagine two things being truly identical. However, after the child has learned some
modern physics he may wish to return to the question of Haecceitism.

Electrons orbiting a nucleus are clearly lacking in “thisness”. Quantum mechanical
indistinguishability is perfect indistinguishability, of a different sort than anything
Duns Scotus ever encountered. Switching two identical particles ceases to have any
physical meaning, and if the particles are close enough for their wavefunctions to
overlap, then even the concept of having two particles is hard to reconcile with the
evidence. But the instances when these quantum realities impinge on our everyday
experiences are few. We live blissfully ignorant, using classical common sense. Let us
for a while only consider a classical understanding, and see where it leads.

We have been faced with a choice: Haecceitism or Anti-Haecceitism. It would
seem the world must be either one or the other. If this question is to be answered,

it must be answered empirically; we must ask ourselves, “What can we measure that



would tell us if we live in an Haecceitistic world or an Anti-Haecceitistic world?”

Imagine designing a Newtonian experiment meant to settle the question of Haec-
ceitism. The experiment must involve indistinguishable particles, such as two cue
balls. No matter what experiment we run with these two cue balls, it follows the
same course if the rolls of the two cue balls are reversed. For example, ball A hit-
ting ball B in a particular manner is indistinguishable from ball B hitting ball A in
the same manner. So, Newtonian physics describes a world congruent with Anti-
Haecceitism (because the universe looks the same whether A hits B or B hits A)
but without any proof that Haecceitism is false (because the universe might look the
same, but be different).

Have we reached the end of our enquiry? Consider the difference between the
Haecceitistic pool table and the Anti-Haecceitistic one. There is no measurable dif-
ference between the two, because the cue balls are identical and physics will treat
them identically. The only difference is how many ways the same thing can happen.
Haecceitistically, A could strike B or B could strike A. Anti-Haecceitistically, there
is only one description: one cue ball struck another cue ball. If the only difference
between the two world-views is a difference in the number of possible ways things can
happen, then the only classical branch of physics that might settle our question is
thermodynamics.

Thermodynamics, and entropy in particular, rests on a foundation of counting the
number of ways a certain physical state could exist. Entropy S can be understood
as S = kin(W) where k is Boltzmann’s constant and W is a number of ways. This
number of ways is the number of possible ways that the fundamental units of a
system can satisfy certain macroscopic observations (such as temperature, pressure,
and volume). As an example, if the total energy is the only macroscopic restriction on
a gas, then the particles of that gas can share that energy in a multitude of different

ways, and this number would be called the system’s W, the number of ways. Note



that under normal macroscopic circumstances, W will be inconceivably large. Since
k is of order 1072 and entropy of order 1, the log of W must be of order 10%* and W
will have the same order as 61023, which is indeed quite large.

So it seems that we might be able to test Haecceitism using thermodynamics. We
will simply measure entropy for a variety of circumstances and calculate W. There
are clearly more ways for a system to meet macroscopic criteria in an Haecceitistic
universe than an Anti-Haecceitistic one, and so our empirical W value will tell us

which type of universe we live in.

3 Haecceitistic and Anti-Haecceitistic Counting

In order to derive a theoretical W, we will want to count the number of possible
ways to arrange the particles of a gas. One can completely describe each possible
state for an homogeneous gas as a list of the position and velocity of each particle.
Attempting to visualize this list is quite hard, because a single particle’s information
is a point in six dimensions (three position dimensions and three velocity dimensions),
so the combined state of all N particles would be a point in 6N dimensions. This
6 N-dimensional space is called the I' space (“I'"” stands for “gas”).

All the complexities of gas state counting appear in simpler form for identical,
stationary beads on a straight length of string. As in a gas, no two particles (beads,
in this case) can ever have the same exact set of characteristics. With only one
characteristic (one-dimensional position), we have shrunk our 6 N-dimensional space
down to an N-dimensional one. Assume for a moment that there are only two beads,
and the string is so short it only barely holds the two beads. Now we must count
the number of ways these beads could be on this string. Haecceitistically, there are
two ways: (bead A — bead B) and (bead B — bead A). Anti-Haecceitistically, there

is only one way, because the two beads are identical (see Figure 1). What if the
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Figure 1: Haecceitistic (upper) and Anti-Haecceitistic (lower) possibility spaces for two beads on a
length two string, a length three string, and a length 8 string. Each square denotes a possible state
for the system, the darkened squares denote a state that is not possible. Note that as the number
of availiable spaces approaches infinity (as for an ideal gas) the effect of the impossible states is

negligible.

beads fill up less of the string? Let’s say there is a third spot on the string, and
that now each of the two beads can either be at position 1, 2, or 3. Now there
are six Haecceitistic possibilities and three Anti-Haecceitistic possibilities. A pattern
quickly emerges: no matter how many spaces are on the string, there are always half
as many Anti-Haecceitistic possibilities. It turns out that this factor of one-half is a
manifestation of the number of beads. For two beads there are half as many Anti-
Haecceitistic possibilities; for three beads there are one-sixth as many; for four beads
one twenty-fourth as many; and so on. Thus, we have found that the number of
Anti-Haecceitistic possibilities is the number of Haecceitistic possibilities multiplied
1

by a factor of 57 where N is the number of particles. This could have been guessed at



the outset, because N! is the number of permutations of the particles, and whether to

count permutations or not is the only difference between the two methods of counting.

4 Haecceitistic and Anti-Haecceitistic Thermodynamics
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Figure 2: Haecceitistic and Anti-Haecceitistic pos-

sibilities for two beads in four spaces.

Either Haecceitistic or Anti-Haecceitistic
counting can be used equally well to de-
rive many aspects of thermodynamics,
including the exact change in entropy
of most processes. To see this, imag-
ine a string with only enough room for
four beads. On the string are two beads,
which can be placed in those four spaces.
As one can see in figure 2, each possible

Anti-Haecceitistic state has two analo-

gous Haecceitistic states. By analogous,

we mean that the measurable properties would be the same. Imagine that a scientist

is trying to measure the entropy change of a certain process on this string. Take, for

example, the process of initially having both beads to the right of center and then

removing that restriction and allowing them to be in any of the four spaces. Looking

at the diagram, we see that the initial Haecceitistic W would be 2, and the final W

would be 12. Anti-Haecceitistically, the initial W would be 1, and the final W would

be 6. For any such process, the ratio (here, 1:6) is the same for either method of

counting. The Haecceitistic possibilities are more numerous by a factor of 2 (which

is N!), but by the same logic each Anti-Haecceitistic possibility corresponds to 2

Haecceitistic possibilities. It is ratios like the 1:6 ratio here that produce measurable

effects of entropy, leaving the question of Haecceitism as yet untested.



Huggett[4], among others[5][6], emphasizes the applicability of both methods of
counting. As in the bead example, the correct ratio of ordered to disordered states
for a gas, however one defines order, can be derived using either counting scheme.
Huggett offers the following mathematical explanation of this point, showing that the
probability of a particular microscopic measurement is the same according to either
method. “Frequency” here is the proportion of the possibilities that have a certain
exact set of observable characteristics.

N!

Total Haecceitistic States
N!

N!(Total Anti— Haecceitistic States)
1

Total Anti— Haecceitistic States

= Anti— Haecceitistic Frequency

Haecceitistic Frequency =

Put another way, the Haecceitistic I space is N! times larger than the Anti-Haecceitistic
space, but each observable state fills the same proportion of either space. Thus far,
thermodynamics seems to work equally well in a Haecceitistic world as in an Anti-
Haecceitistic one. Is thermodynamics silent on the issue then, after all, just as New-
tonian physics was? Let us develop our thermodynamic theories one step further.

We want to have a formula that uses the macroscopic observables to define an
entropy value. A standard choice of macroscopic variables will result in a formula
as S = S(T,V,N) where T is temperature, V is volume, and N is the number of
particles in the gas. The correct equation can be derived empirically, and for ideal

gases is called the Sackur-Tetrode equation:

3 N /27h?\ 3
§ = 5Nk = Nkin| 7 ()| )

where m is the mass of a single particle. Now we will try to derive this equation start-
ing with our simple counting considerations. Such derivations have been published

many times; here we outline the argument given by Huang[7].



Start with a system of N particles. Say we were thinking about these particles
according to their energies, grouping together all the particles with a particular energy.
Now imagine energy “bins”, that group together many of these particular energies (for
bin Bj, let us call the number of energies in the bin g;). So, if there are n; particles in
a bin that contains g; energy values, there are (g;)™ ways for the particles to occupy
that bin. One can easily see this by realizing that there are g; ways for one particle
to occupy the bin, g; ways for the second particle to occupy the bin, and so on for all
the n; particles.

Now we take a step back, and think about the set of all bins and the set of all N
particles. For the moment, pretend that each bin (B;) contains only one energy level
instead of many. How many ways are there to put n; particles in energy bin B;? The

Haecceitistic answer is
N choose nq N!
’I’Ll! nl'(N — nl)'

(3)
because there are N choose n; Haecceitistic ways to select the ny particles to be
placed in the energy bin, and since the arrangement “within” the energy doesn’t
matter (either Haecceitistically or Anti-Haecceitistically), we divide by the number
of arrangements the n; particles could have. Now we move on to the next energy bin,
B,, and similarly ask, how many ways are there to put n, particles in energy bin By?

Again Haecceitistically, the answer is

(N — ny) choose (ng) _ (N —m)! (4)

TLQ! nQ!(N—nl —77,2)'

We can clearly see the pattern begin to emerge, and now we can answer the question,
“How many ways are there to place the entire set of bin occupation numbers {n;} in
the entire set of energy bins {B;}?” We multiply all the number of ways for each bin
together:

nl’(N — nl)' TLQ'(N — Ny — ’I’LQ)' ng'(N — Ny —Ng — ’I'Lg)'

Now we stop pretending that each bin only contains one energy value, and taking



into account our initial analysis our answer becomes:

Wy = N T 922 (6)

1
j=1 T

This is the number of ways one can place a set of bin occupation numbers {n,} into a

set of bins { B;} Haecceitistically. The Anti-Haecceitistic answer would be multiplied

by the % factor from before, which would make it

(7)

g;)"
Wiy = 11 =5
j=1 Ty:

Physicists generally follow the same path we have, by arriving first at the Haecceitistic
W, and then dividing by N!. Why bother switching from an Haecceitistic description
to an Anti-Haecceitistic one in the middle of an argument? The answer is that, for
the first time, we have come upon an instance in which it matters which description
we use: only the Anti-Haecceitistic counting method will yield a correct result!

What we have been aiming at all along is the Sackur-Tetrode Equation (eq. 2), or
at least an equation that does not predict differing empirical results. It is a straight-
forward derivation from the Anti-Haecceitistic and Haecceitistic Wyy,; functions in
terms of energy bins to entropy equations of the form S(7,V, N). Because we defined
entropy as proportional to the natural logarithm of W, the discrepency by a factor
N! will show up in our entropy equations as an additive difference of In(N!), which
is very accurately approximated by Nin(N) using the Stirling approximation. That
being said, from the Anti-Haecceitistic W we arrive at

2mmk
h2

S = gNk [1 + ln( )] + gNkln(T) + Nkln(z) (8)

N
which is simply the Sackur-Tetrode result. If we start with the Haecceitistic W, we

will arrive at

3 2mmk 3
S = SNk [1 v ln(%)] + SNKIn(T) + NKin(V) ()
Notice that the two equations have precisely the same dependencies on temperature

and volume. Just as in the example of the beads, either method of counting will give

10



many correct results. The only discrepancy lies in entropy’s dependence upon N, the
number of particles. We haven’t directly considered entropy’s dependence on N until
now. Note that N plays the role of a constant in our bead examples and in Huggett’s
equivalency proof. All that we showed before is that either method of counting will
work if N is a constant of the system][8].

Let us put the theoretical arguments aside, and

try to deduce entropy’s dependence on N empirically.

Imagine the two situations shown in figure 3. A cer-

tain amount of work can be obtained by allowing a

small sample of gas to expand into the available space.

The amount of available work in the system on the

right should clearly be greater, and it turns out that e s .

if both the volume and number of particles is doubled,

the amount of available work will be doubled. This is

simply an empirical fact, that any theory will have to Figure 3: An illustration of ex-
agree with[9]. In such a situation, the work could only tensivity. The entropy change
have arisen from an equivalent increase in entropy, and on the right is twice the entropy
thus the change in entropy (and subsequently the ab- change on the left.

solute entropy of both the initial and final states) is

twice as great in the doubled version.

This type of linear dependence on number at constant number density is called
“extensivity”. It is not at all surprising that the entropy of an ideal gas has this
property. All extensivity means is that if one has a container of gas, then a larger
container will have a proportionally larger entropy, assuming all other things are
equal[10].

Looking back at our two differing equations for entropy, we see that only the Anti-

Haecceitistic version (eq. 8) fits the extensivity criterion. Finally, it seems, we have

11



tested the truth of Haecceitism and come up with a definitive answer: Entropy can
only be correctly described through Anti-Haecceitistic physics. Viewing the world
Haecceitistically will give us the wrong entropy equation.

But then, there is a nagging strangeness to our arguments. Haecceitism seemed to
be untested by Newtonian physics. Isn’t thermodynamics just a statistical description
of Newtonian physics? Is it reasonable that thermodynamics could answer such a
basic question where Newtonian physics fails us?

Schrédinger|[3], along with the great majority of twentieth century physicists, an-
swers that yes, it is both reasonable and remarkable for thermodynamics to give us a
physical truth that was lacking in the Newtonian realm. The reason, they say, is that
Newtonian physics lies squarely in the classical realm whereas thermodynamics lies
rightfully in the quantum mechanical realm. The non-extensivity of the Haecceitistic
entropy equation (eq. 9) was taken by Schrodinger as “just the point in which the
classical point of view pitiably fails ...” After explaining the premise of the Gibbs
Paradox, he goes on, “The modern view solves this paradox by declaring that in the
second case [the mixing of similar gases| there is no real diffusion, because exchange

7

between the particles is not a real event ...” Perhaps following his lead, Huang

(p.154) lays out the canonical opinion:

It is not possible to understand classically why we must divide ...by N!
to obtain the correct counting of states. The reason is inherently quantum
mechanical. Quantum mechanically, atoms are inherently indistinguishable
in the following sense: A state of the gas is described by an N-particle wave
function, which is either symmetric or antisymmetric with respect to the
interchange of any two particles. A permutation of the particles can at most
change the wave function by a sign, and it does not produce a new state of
the system. Hence we should divide ...by N!. ...It is something we must

append to classical mechanics in order to get the right answers.
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The holes in this explanation are not obvious, and Schrédinger’s understanding has
been the common belief among physicists ever since quantum mechanics entered the
stage. According to this common opinion, the Anti-Haecceitistic nature of thermo-
dynamics is an expression of the quantum mechanical nature of gas particles. Since
both quantum mechanics and thermodynamics are fundamentally Anti-Haecceitistic,
and both are methods for describing the same set of particles, it is very difficult to
escape the assumption that one Anti-Haecceitism leads to the other. This would be
a very interesting fact. It would mean that quantum mechanics has a much more ob-
vious effect than usually recognized, as Miinster[11] wrote, “Classical statistics thus
leads to a contradiction with experience even in the range in which quantum effects
in the proper sense can be completely neglected.” Also, it would mean that the first
hint of quantum mechanics actually appeared in the mid-nineteenth century, in the
very foundations of thermodynamics as laid by Boltzmann and Gibbs. This flawed
belief is still widely held and widely published to this day (see for example Emch and
Liu (2002) [12]), and so the second half of this paper is dedicated to disproving this

unfortunately canonical claim.

5 A Tale of Different Perspectives

Imagine two scientists, Scientist A and Scientist B. They both study a certain ideal
gas, called “¢”. In the course of his research, Scientist B stumbles upon two materials
that relate to ¢ in a strange way: If he makes a thin sheet of one of the materials,
some of the ¢ particles can pass through, but others cannot. And if he makes a thin
sheet of the other material, only the left-over ¢ particles can pass through. Thus,
these new materials show Scientist B that there are two types of ¢ (call them ¢; and
¢2). He can calculate the entropy of mixing ¢; and ¢y by using the new materials to

construct a reversible mixing process first envisioned by t’Hoff, as in figure 4. The
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two different membranes act as pistons to gradually allow the gases to mix. (This
reversible mixing apparatus is called a “van’t Hoff vessel”, after Jacobus van’t Hoff,
the first Nobel laureate in chemistry[13].) The work L produced through the moving

of a single piston is

v v
1 Vs 5 AV i ln(V/Q) s RTIn(2) (10)

where P, is the partial pressure of gas ¢;. When this expression is added to the
work availiable from the second membrane, the total work becomes N RT'In2. Using
the relation AS = L/T we arrive at the entropy change, which is the same value as
we found earlier in the Gibbs Paradox.

Now imagine the world from Scientist

A’s point of view. She has no special

b1 b2

—— e— materials with which to manipulate the

two gases, and remains ignorant of the

mixed nature of her usual samples. If

01 Or+Pal P Scientist B sends her two samples, one

of pure ¢; and one of pure ¢, she has no

way of recognizing that they are two dif-

ferent gases. Consequently, if she mixes

] b + o the two, she will have no way of recogniz-
— 1 2

ing any change in entropy, because there

will be no way of producing work with-
Figure 4: A reversible mixing process. out the special materials.

Thus the two scientists can observe
exactly the same process, down the path of each individual particle, and yet dis-
agree as to the change in entropy. At first one might think that Scientist B has been

able to correctly measure the entropy, whereas Scientist A is ignorant of some im-

portant facts. It is unquestionably true that Scientist B has taken more into account

14



in his experiments. However, imagine a Scientist C, whose research has proceeded
well beyond even Scientist B’s. Scientist C has discovered four more materials that
differentiate ¢ even more finely; the materials can filter ¢; into ¢, and ¢,3 and filter
¢2 into ¢, and ¢og. Changing one’s opinion to say that Scientist C is clearly correct
might now appear as a rush to judgment. What guarantee can one have that the
study has ended with Scientist C, and that no further discoveries await?

Scientist A takes several things into account when calculating the entropy of mixing
¢1 and ¢9. She measures (or at least here we assume she measures) some sort of
“amount” of each gas, the temperatures, the volumes, and maybe the pressures. She
also observes in some way that both samples satisfy the criteria of “¢-ness”; the two
samples are both samples of ¢, not of some other gas. Her measured entropy, then,
is a function of all these things, and can be written as S = S(7T,V, P, N, ¢-ness).
As with all ideal gases, pressure is a function of temperature and volume, so at its
simplest, she could express her function as S = S(T,V, N, ¢-ness).

Scientist B takes all these things into account, plus the added characteristic of
" ¢1-po-ness”. Thus, his entropy function would be as S = S(T,V, N, ¢-ness, ¢1-
¢o-ness). To generalize, Scientist A and Scientist B describe entropy in terms of
different observables and different numbers of observables. No scientist can possibly
find a contradiction in his own work, as long as his observations are restricted to the

observables of his equation.

6 The Nature of Entropy

Now we have reached the heart of the matter. If one understands the true nature
of entropy, it should seem quite reasonable for multiple entropy equations to exist,
each based on its own unique set of variables. There is no “complete” set of variables

that a “perfect” observer would take into account. All that a correct definition of
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entropy requires is 1) a clearly defined set of observables and 2) a description of the
effect variations in those observables have on the “number of ways” W. In this way,
entropy is a measure of the specificity of the observation - “How many states are
possible, knowing what we know?” More precisely, entropy quantifies the amount of
information contained in a given observation. This understanding of entropy is due in
large part to Shannons’s[14] development of information theory in the mid-twentieth
century, but glimpses of the close relation between information and entropy date back
to Boltzmann[14].

For a typical macroscopic sample, there are on the order of 10?® particles. When
making a thermodynamic measurement, one describes the state of these 10?3 pieces
using only a few numbers. Clearly, there is a vast amount of information contained in
the system that is not represented in our description. One could choose the manner
of measurement in such a way that more or less information about the system was
represented, and there is no particular manner of measurement that could be consid-
ered standard in any way. If one chooses, the system could be described using only a
single macroscopic variable, or on the other extreme one could measure a multitude
of characteristics for each individual particle (or any level of precision in between).
The use of an entropy equation is to relate such a set of measurements to an amount
of information.

There is a confusion between two types of information: the information contained
in a system and the information contained in a set of observations. Entropy describes
only the latter, measured, type. There is a great reluctance among physicists to be-
lieve that such a non-physical thing as observation can play such a necessary role in
the descriptions of physics. Scientists like Schrodinger tried to form thermodynamics
around the physical sort of information, that kind which exists with or without hu-
man interference. But framing entropy in the language of information while at the

same time denying the defining importance of observation should itself be a glaring
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disconnect.

This observational understanding of entropy is interesting in several different ways.
First, if entropy measures something about observations themselves, then of course
entropy should be different according to which observables are in use, and of course
there is no “correct” set of observables. Secondly, entropy is no longer in the realm of
physical reality. It remains just as precisely quantifiable as time, space, energy, etc.,
but becomes a measure of something that cannot exist without observation.

This gives us a new perspective on the story of the two scientists. Now they can
both be considered correct, even though they disagree. It is perfectly reasonable for
the two scientists to calculate differing entropy values, because they are observing the
system in different ways, observing different characteristics of the system. If Scientist
A started using the special materials she would also have to start using the equation

that went along with those tools of observation, and that should come as no surprise.

7 The resolution of the Haecceitistic question

We have now traded in our first conception of entropy as a function of physical pa-
rameters for a second conception of entropy as a function of observations of physical
parameters. This improved understanding will make the Anti-Haecceitism of entropy
seem eminently reasonable. Entropy is still an exclusively Anti-Haecceitistic descrip-
tion, but we have changed what is being described. Instead of Anti-Haecceitistically
describing reality, entropy is Anti-Haecceitistically describing our observations.

In other words, our entropy equations now mean that human observations are
in some way Anti-Haecceitistic. We can see what this means by thinking back to
the example of the two cue balls. We are not able to observe any sort of difference
between ball A hitting ball B and vice-versa. No measurement that we could possibly

make would allow us to know which of those two pssibilities took place. We are able
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to consider the two possibilities, but to say that they are in some way different from
each other would be to make an unevidenced claim.

With the observational nature of entropy in mind, we should stop trying to use
entropy to discover whether switching two identical particles is a real physical event
or not. Entropy will answer questions only about whether something is an observ-
able event or not; the event’s physical reality will have to remain unknown. Anti-
Haecceitism, again, is the belief that switching two identical particles is not a real
change. But entropy seems to not claim anything at all about reality anymore. With
our new understanding, it seems entropy equations claim only that switching two
identical things is simply not an observable change. Of course this is true; this is the
meaning of the word “identical”.

This leaves us with the question of Haecceitism or Anti-Haecceitism unresolved,
then. Thermodynamics uses Anti-Haecceitistic counting, but only makes claims of
our observations, not of the real world. Through studying entropy, we learn nothing
about the basic nature of the world that was not already in our Newtonian under-
standing. Haecceitism is a metaphysical claim, a claim about something that we can

by definition never see.

8 The resolution of the Gibbs Paradox

Now we return to the original paradox that got us started on this train of thought:
Why does the mixing of two different gases result in a change of entropy, whereas the
mixing of two samples of the same gas leaves the entropy unchanged? If we think
of the number of observably different ways, instead of the number of imaginable
ways, the paradox disappears. Whether they are mixed or unmixed, the number of
observably different ways of arranging the particles of two samples of indistinguishable

gases remains the same. The number of observably different ways of arranging the
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particles of two different gases increases when the gases are allowed to mix.
All the complexities of the Gibbs Paradox can

be simplified down to considering two individual

O O ‘ O particles. Imagine setting up the Gibbs Paradox

% where each initial gas sample is composed of only

O-O ‘-O a single particle, as in figure 5. As before, we think
or

of the system as having set “spaces” where no two

O- ‘ particles can occupy the same space. Before mix-

ing, then, the number of ways for either system is

one. After the barrier has been removed, the num-
Figure 5: The simplest Gibbs Paradox. ber of ways for the system of two different gases is

twice the number of ways for the simpler system.
In other words, the number of distinguishable ways to arrange the system remains un-
changed if the samples are observationally the same. The number of distinguishable
ways clearly increases if the samples are observationally different.

But where is the boundary between two particles being “the same” and being
“different”? 'This is really the crux of the paradox. According to Schrodinger’s
understanding, the boundary is a clear-cut physical one: fundamental particles (and
consequently conglomerations such as atoms and molecules) have certain properties,
and these properties are either all precisely the same or at least one property is
different. On the other hand, the observational nature of entropy forces us to place the
boundary between two gases being “the same” or “different” on a solely observational
footing: Two particles are different if a difference is observed; two particles are the
same if no difference is observed.

Just because there is no observed difference, this does not at all mean that there
is no physical difference. In fact, there is room in our observations to miss quite large

differences between particles. Consider the example of isotopes. Observing the dif-
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ference between two isotopes is a relatively difficult task, and was not accomplished
until the twentieth century. But even though isotopes interact chemically in an in-
distinguishable manner, the actual physical difference between two isotopes is of the
same order as the difference between two elements (isotopes differ in neutron num-
ber; elements differ in proton number). Atoms of two different isotopes of the same
element are fundamentally different objects. But if our observations are limited to
purely chemical characteristics, the mixing of a sample of O with O could only
be described as resulting in zero entropy change because no work could be produced
through the mixing. The difference between the two types of particles would play no
role in our chemical observations, and would rightfully be ignored. Notice, though,
that there is a very clear difference between the two and that switching an O par-
ticle with an O'7 particle is a real physical event, just not an observable event in the
present context.

As a more exaggerated example consider a large biological molecule such as Hemo-
globin. Each Hemoglobin molecule is composed of 4,516 hydrogen atoms, 2,954 car-
bon atoms, 806 oxygen atoms, 780 nitrogen atoms, 12 sulfur atoms, and 4 iron atoms,
always arranged in exactly the same manner. Each of these elements has several natu-
rally occuring isotopes, which means that even though the atoms of every hemoglobin
molecule are arranged in exactly the same fashion, finding two molecules that are
identical down to the nuclear level would be practically impossible. Roald Hoff-
man calculates that in a drop of blood, which would contain about 10'" hemoglobin
molecules, no two molecules will be truly indistinguishable[15]. But under almost
all circumstances we can easily forget about these unobserved differences. Nuclear
structure is simply not one of the variables that affects our observations of biological
processes. It is a difference between indististinguishable and indistinguished that we
are here emphasizing.

In retrospect, Gibbs seems to have carefully worded his original exposition of the
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paradox in a way that reveals his own understanding of the observational nature of

entropy (emphasis added):

We call the energy and entropy of the [similar] gas-masses when mixed the
same as when they were unmixed, because we do not recognize any difference
in the substance of the two masses. So when gases of different kinds are
mixed, if we ask what changes in external bodies are necessary to bring the
system to its original state, we do not mean a state in which each particle
shall occupy more or less exactly the same position as at some previous
epoch, but only a state which shall be undistinguishable from the previous
one in its sensible properties. It is to states of systems thus incompletely

defined that the problems of thermodynamics relate.

It is not at all surprising to find such a clear explanation in the work of Gibbs. What
is surprising is that the paradox has confused so many for so long despite Gibbs’
correct resolution of it at the paradox’s very inception.

The correct understanding was succinctly phrased in the words of van Kampen,
“The question is not whether they are identical in the eye of God, but merely in the

eye of the beholder.”

9 Conclusion

We have made the argument that entropy is an Anti-Haecceitistic description, and
that after realizing this, the Gibbs Paradox is easily resolved. A deeper truth is that
that any physical theory must be Anti-Haecceitistic. If the claim is made that the
world is a different place upon switching two things, the claim must be supported with
a way to measure that difference. If there is such a way to measure that difference
then the things were, by definition, not identical. If no difference is measured then

the physicist has no right to claim that the world is a different place. Switching to
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statistical descriptions, as in thermodynamics, cannot eliminate such fundamental
truths. In this way, a physical theory is bound by far stricter constraints than our
imaginations. We can easily imagine two identical things being switched, but the fact
that such a thing is unmeasurable makes it unmentionable in a physical description.

Even though all of physics would be more fundamentally and accurately posited
in an Anti-Haecceitistic manner, inserting the non-physical concept of “thisness” will
usually not contradict any observation. However, when calculating an amount of
measured information, such an unmeasured thing as “thisness” must be discarded.
Interpretation of our observations frequently inserts information that was not really
oberved. In a way, we form the observation into a story, giving each piece an identity
and a role to play. This inserted information can help us make sense of what we see
but because it is not actually seen its non-physical nature should come as no surprise.
The unique information-quantifying character of entropy is the reason entropy does
not adhere to our common sense notions of how an observable should behave, and
the reason why the Gibbs Paradox might seem paradoxical. But if the observational,
and therefore Anti-Haecceitistic, nature of physics is fully understood, there is no
paradox.

Entropy differs from all other measures that physicists normally use in that instead
of simply repeating the information of an observation, entropy quantifies the amount
of information observed. Entropy is not information about the system in question;
an entropy value itself tells us nothing about the energy, volume, or chemical com-
position of the system. Entropy describes only our description; it measures only our
measurements. It is a way to numerically answer the question “How much do we
know?”

It is hard to find a person who does not believe that the laws of physics describe
reality, or at least that they are an approximation thereof. It is the common concep-

tion that Newton’s laws describe something of reality quite well, Einstein’s theories
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even better, and so on. What the Gibbs Paradox forces us to consider is that there is
always an impenetrable barrier between reality (as we may imagine it or not) and our
physical descriptions. Physics is a mathematical description of human observation,

nothing more.
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