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The nature of the interaction driven spontaneously broken-symmetry state in charge neutral
bilayer graphene (BLG) has attracted a lot of interest. Theoretical studies predict various ordered
states as the candidates for the ground state of BLG, in the absence of external fields. Several
experiments have been performed by different groups to identify the nature of the collective ground
state in BLG. However, so far, there is no consensus: some experiments show evidence that suggests
the establishment of a nematic gapless state, while others present results that are more consistent
with the establishment of a fully gapped state. Moreover, even among the experiments that appear
to see a bulk gap, some of the samples are found to be conducting (suggesting existence of gapless
edge states), while others are insulating. Here we explore the hypothesis that disorder might explain
the discrepancy between experiments. We find that the pair-breaking effect due to non-magnetic
short-range disorder varies among the candidate ground states, giving rise to different amounts of
suppression of their mean-field transition temperatures. Our results indicate that BLG can undergo
a transition between different ordered states as a function of the disorder strength providing a simple
and natural scenario to resolve the discrepancy between experimental observations.

AB-stacked bilayer graphene (BLG) [1–4] is formed by
two graphene [5] layers rotated by 60o with respect to
each other and is the simplest multilayer graphene sys-
tem. Its low-energy band structure is characterized by
parabolic conduction and valence bands that touch at
the corners, the K and K ′ points, of the Brillouin zone.
BLG has become a model material to study the possible
instabilities driven by interactions. A number of theoret-
ical works have predicted various spontaneously-broken-
symmetry states as the candidates for the ground state
of BLG near the charge neutrality point in the absence
of external fields [6–16]. The multiple degrees of freedom
in BLG – layer, spin, and valley – give rise to the di-
versity of the candidate orders. In general, the proposed
ordered states can be classified in two groups: (i) gapped
states characterized by the opening of a full gap in the
quasiparticle spectrum, and (ii) nematic states in which
the quadratic band crossing points at which the conduc-
tion and valence bands touch are split into two Dirac
points leaving the quasiparticle spectrum gapless. These
two groups have a different structure with respect to the
layer index: gapped states are layer-polarized while ne-
matic states are not. Depending on the valley and spin
structure different collective states can be identified in
each general group. Gapped states with different spin-
valley structures include the quantum valley Hall (QVH),
quantum anomalous hall (QAH) and quantum spin hall
(QSH) states, as well as a layer antiferromagnet (LAF).
For a further discussion of gapped and nematic states
with different spin-valley structures, see [15]. Within
mean field theory, in the clean limit, the states in each
group have the same transition temperature, TGc,0 for the
gapped states, and TNc,0 for the nematic states.

Several experimental groups have made efforts to as-
certain the nature of the ground state using high-quality

suspended BLG [17–24]. They all find evidence of spon-
taneous symmetry breaking at low temperatures, con-
firming that electron-electron interactions have a strong
effect in this system. However, they reach different con-
clusions on the identity of the ordered state: First, some
experiments show evidence that supports the establish-
ment of a nematic state [19], while others either present
results that are more consistent with the establishment of
a gapped state [20–24] or are consistent with both type of
states [17, 18]; Second, among the experiments support-
ing the establishment of a gapped state, some indicate
that the gapped state comes with conducting edge states
[17, 18, 20, 24] and others indicate that the state is fully
insulating [20–24] e.g. the LAF state. One explanation
that has been proposed for this multitude of conflicting
experimental results is that BLG is highly multi critical
[25], and that different experimental samples fall in the
basin of attraction of different correlated fixed points.

One important and unavoidable factor present in all
materials that has the potential to strongly affect the
formation of a broken symmetry state is disorder, due,
for instance, to charge impurities, adatoms, vacancies,
and ripples. For example, it is well known that the pres-
ence of magnetic impurities in BCS superconductors can
strongly decrease the transition temperature (Tc) [26, 27].
The pair-breaking effect of magnetic impurities in BCS
superconductors can be attributed to the different scat-
tering off the impurities of the time-reversed fermionic
states forming the Cooper pairs. Another example is the
pair-breaking effect of normal impurities on exciton con-
densates [28, 29]. Since the broken-symmetry states in
BLG involve particle hole pairing with different layer-
spin-valley structures, we expect that different pairing
structures could be affected differently by disorder. We
consider only non-magnetic disorder, and do not take into
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account any spin flip scattering.
In this work, we study the effect of disorder on the

broken-symmetry states in BLG near the charge neutral-
ity point in the absence of external fields. Within mean
field theory, in the clean limit, the transition temperature
of the gapped states is higher than that of nematic states.
However, we find that this scenario can be modified when
the presence of disorder is taken into account. Consid-
ering non-magnetic short-range disorder, we find that in
the presence of disorder that causes intravalley scattering
only, the transition temperature of gapped states is sup-
pressed more than the transition temperature of nematic
states. Thus, within mean field theory, our result indi-
cates that below a critical strength of disorder the system
is prone to be in a gapped phase while above the critical
disorder strength the nematic phase is favored, Fig. 1. In
addition, we find that non-magnetic disorder producing
inter valley scattering also contributes to the suppression
of Tc for the valley unpolarized gapped states but does
not affect Tc for the valley polarized gapped states. Since
valley polarized gapped states have co-propagating edge
modes in the two valleys (which cannot be gapped out in
the absence of magnetic disorder), while valley unpolar-
ized gapped states have counter propagating edge modes
(which can be gapped out in the presence of inter valley
scattering), our results on the effect of inter valley dis-
order could also be part of the explanation of why some
experiments see conducting states with a bulk gap while
others see insulating gapped states.

The mean-field Hamiltonian (Ĥ) that describes a
broken-symmetry state of BLG can be written as: Ĥ =
Ĥ0 + ∆̂ + V̂ where

Ĥ0(k)=

[
ĥ(k) 0

0 ĥ∗(−k)

]
; ĥ(k)=

[
0 εke

−i2θk

εke
i2θk 0

]
,

(1)
V̂ is the non-magnetic disorder potential, k = (kx, ky),
θk = arctan(ky/kx), and εk ≡ ~2k2

2m∗ with m∗ ≈ 0.03me.
Ĥ0 is degenerate in spin space, and ĥ is a 2 × 2 matrix
in layer space. The two groups of candidate orders are
distinguished by the structure in layer-space of the or-
der parameter: ∆̂ = ∆Gσ̂z for the gapped states and
∆̂ = ∆N σ̂x for the nematic states (without loss of gen-
erality we have chosen the complex nematic order pa-
rameter ∆N to be real), where σ̂’s are Pauli matrices
acting on the layer space. Taking into account the val-
ley degree of freedom, we have ∆̂ = ∆Gσ̂z τ̂0 (∆N σ̂xτ̂0)
for the gapped (nematic) valley-independent states, and
∆̂ = ∆Gσ̂z τ̂z (∆N σ̂xτ̂z) for the gapped (nematic) valley-
polarized states, where τ̂ ’s are Pauli matrices acting on
the valley space. The disorder potential can be written
in the general form V̂ = Û + Ŵ , with Û ∼ Uσδσσ′ τ̂0
and Ŵ ∼Wσδσσ′(τ̂x+ iτ̂y)/2 +h.c., where Uσ (Wσ, W ∗σ )
is the intravalley (intervalley) disorder potential in layer
σ. The influence of disorder is taken into account using
the self-consistent Born approximation. After averaging

0 nUnUc

Tc
Gapped
States

Nematic
States

Tc,0
G

Tc,0
N

Figure 1: (Color online) Schematic illustration of the transi-
tion between the gapped phase and the nematic phase tuned
by the strength of the intravalley disorder nU . Below a crit-
ical strength, nc

U , the gapped phase is favored, but above it
the nematic phase becomes dominant.

over disorder realizations, the effect of disorder is cap-
tured by the self-energy matrix Σ̂ that renormalizes the
quasiparticle wave function and the pairing vertex of the
condensate.

We first consider the case in which disorder-induced
valley-flip scattering processes are negligible, i.e., Ŵ =
0. In this case, our discussion can be simplified to the
2 × 2 layer space since intravalley scattering does not
lift the degeneracy between ground states that differ in
valley structure. The key information is contained in the
Green’s function, Ĝ, determined by

Ĝ(k, iωn) =
[
iωnσ̂0 − ĥ(k)− ∆̂− Σ̂(k, iωn)

]−1
, (2)

where ωn = (2n + 1)πT are the Matsubara frequencies,
T is the temperature, and

Σσσ′(k, iωn) = nU

ˆ
d2p

(2π)2
Uσ,k−pGσσ′(p, iωn)Uσ′,p−k

(3)
is the disorder-averaged self-energy. Here nU is the con-
centration of the randomly-distributed intravalley scat-
tering centers. It is reasonable to assume nU to be the
same in the two layers.

For the gapped states, the self-consistency equation for
the order parameter takes the form

∆G = −1

2
ΓST

∑
n

ˆ
d2k

(2π)2
Tr
[
σ̂zĜ(k, iωn)

]
, (4)

where ΓS is the effective coupling and Tr[. . . ] takes the
trace. The disorder renormalized Green’s function can
be written as

ĜG(k, iωn) =

[
iω̃n − ∆̃G −εke−i2θk
−εkei2θk iω̃n + ∆̃G

]−1
, (5)
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where

ω̃n = ωn + nU

ˆ
d2p

(2π)2
|Uk−p|2

ω̃n

ω̃2
n + ε2p + ∆̃2

G

,

∆̃G = ∆G − nU
ˆ

d2p

(2π)2
|Uk−p|2

∆̃G

ω̃2
n + ε2p + ∆̃2

G

. (6)

In the above expressions we have assumed that the disor-
der strength is the same in the two layers, i.e., |Uk−p| ≡
|U1,k−p| = |U2,k−p|. In the case of short-range disorder
potential Uσ,k−p = U , we obtain

ω̃n = ωn +
1

2

(
1

τ2
+

1

τ1

)
ω̃n√

ω̃2
n + ∆̃2

G

,

∆̃G = ∆G −
1

2

(
1

τ2
− 1

τ1

)
∆̃G√

ω̃2
n + ∆̃2

G

, (7)

where 1
τ2

= nUU
2 m∗

2~2 and 1
τ1

= 0. We can therefore see
that for the gapped state the effect of intravalley disorder
is analogous to the effect of magnetic impurities on BCS
superconductivity [26]. From Eq. (4) and (7) the mean-
field critical temperature Tc in the presence of disorder is
given by a universal function in terms of the pair-breaking
parameter δ [26],

ln

[
Tc,0
Tc

]
= ψ

(
1

2
+

δ

2πTc

)
− ψ

(
1

2

)
, (8)

where ψ(z) is the di-gamma function, and Tc,0 is the
transition temperature in the clean limit. For the gapped
phase Tc,0 = TGc,0 with

kBT
G
c,0 =

2

π
γEc exp

[
− 4π~2

ΓSm∗

]
, γ = 1.78, (9)

and Ec a cutoff for the energy range of the interaction.
The value of the pair-breaking parameter δ is δG ≡ 1

τ2
=

nUU
2 m∗

2~2 for the gapped states. When δG/2πTc � 1,
the transition temperature is linearly suppressed and we
have TGc = TGc,0 − π

4 δG.
For the nematic states, the self-consistency equation

for the order parameter takes the form

∆N = −1

2
ΓDT

∑
n

ˆ
d2k

(2π)2
Tr
[
σ̂xĜ(k, iωn)

]
, (10)

where ΓD is the effective inter-layer coupling. The renor-
malized Green’s function after averaging over disorder
can be written as

ĜN (k, iωn) =

[
iω̃n −εke−i2θk − ∆̃N

−εkei2θk − ∆̃N iω̃n

]−1
,

(11)

where

ω̃n = ωn + nU×ˆ
d2p

(2π)2
|Uk−p|2

ω̃n

ω̃2
n + ε2p + ∆̃2

N + 2εp∆̃N cos(2θp)
,

∆̃N = ∆N − nU×ˆ
d2p

(2π)2
U1,k−pU

∗
2,k−p

εpe
−i2θp + ∆̃N

ω̃2
n + ε2p + ∆̃2

N + 2εp∆̃N cos(2θp)
.

(12)

Here again we assumed |U1| = |U2|. In order to discuss
the influence on the phase transition temperature, we
evaluate Eq. (12) in the limit T → Tc, where the order
parameter becomes vanishingly small, ∆N → 0. Assum-
ing short-range disorder, Uσ,k−p = Uσ, to leading order
in ∆N we obtain (for ω̃n > 0),

ω̃n = ωn +
1

2

(
1

τ2
+

1

τ1

)
ω̃n
ω̃n
,

∆̃N = ∆N −
1

2

(
1

τ2
− 1

τ1

)
∆̃N

ω̃n
. (13)

Linearizing Eq. (10) near Tc, we again find that the
transition temperature satisfies Eq. (8), with the pair-
breaking parameter δN = 1/τ2, and that when δN

2πTc
� 1,

the mean-field transition temperature is linearly sup-
pressed: TNc = TNc,0 − π

4 δN . However, we have that both
the clean limit transition temperature and the value of
pair-breaking parameter are different from the ones ob-
tained for the gapped phase. For the nematic phase, the
mean-field transition temperature in the clean limit is
given by

kBT
N
c,0 =

2

π
γEc exp

[
− 8π~2

ΓDm∗

]
. (14)

Notice that, assuming ΓD ≈ ΓS , TNc,0 < TGc,0 due to the
fact that the absolute value of the argument of the ex-
ponent is a factor of 2 larger in Eq. (14) than in Eq. (9).
Equation (12) shows that the renormalized quantity ∆̃N

depends on the correlation property between the dis-
order potentials in the two layers. When the disor-
der potentials in the two layers are perfectly correlated:
U1 = U2 ≡ U , we have 1

τ2
= nUU

2 3m∗

8~2 ,
1
τ1

= nUU
2 m∗

8~2 ,
so that δN = nUU

2 3m∗

8~2 . In this case the relation between
the pair-breaking parameter values in the two phases is
δN = 3

4δG. When the disorder potentials of the two lay-
ers are uncorrelated: Σ12 = Σ21 = 0, then 1

τ2
− 1

τ1
= 0.

In the limit T → Tc, 1
τ2

= 1
τ1

= nUU
2 m∗

4~2 , and the
pair-breaking parameter becomes δN = nUU

2 m∗

4~2 . In
this case we have the relation δN = 1

2δG. When the
disorder potentials in the two layers are perfectly anti-
correlated: U1 = −U2, in the limit T → Tc, we have
1
τ2

= nUU
2 m∗

8~2 ,
1
τ1

= nUU
2 3m∗

8~2 . Therefore the pair-
breaking parameter becomes δN = nUU

2 m∗

8~2 , so that
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δ/δG correlated uncorrelated anticorrelated
Gapped phase 1 1 1
Nematic phase 3/4 1/2 1/4

Table I: Comparison of the magnitudes of pair-breaking effect
in the gapped and the nematic phase under different interlayer
disorder correlation conditions.

δN = 1
4δG. We summarize the magnitudes of the pair-

breaking effect in the gapped and the nematic phases
for different interlayer disorder correlation conditions in
Table I. Irrespective of the interlayer correlations of dis-
order, the disorder suppression of Tc is weaker in the ne-
matic state than in the gapped state, and thus disorder
can drive a transition from a gapped state to a nematic
state.

Next, we discuss the effect of intervalley disorder, i.e.,
Ŵ 6= 0. Valley-flip processes distinguish between states
with different valley structure. In the following we con-
sider the case in which the two types of disorder po-
tential Û and Ŵ are uncorrelated, |U1| = |U2| ≡ U ,
|W1| = |W2| ≡ |W |, and the density of intervalley scat-
tering centers nW is the same in the two layers. In
the gapped phase, taking into account the presence of
intervalley scattering, for the valley-independent states
(LAF, QVH) the scattering rates in Eq. (7) become:
1
τ2

=
(
nUU

2 + nW |W |2
)
m∗

2~2 ,
1
τ1

= 0, indicating an en-
hancement on the pair-breaking effect characterized by
δG,v =

(
nUU

2 + nW |W |2
)
m∗

2~2 = δG

(
1 + nW |W |2

nUU2

)
. On

the other hand, for the valley-polarized states (QAH,
QSH), we obtain 1

τ2
= nUU

2 m∗

2~2 ,
1
τ1

= nW |W |2 m∗

2~2 , in-
dicating that the pair-breaking effect is unaltered since
the influence of the intervalley disorder only introduces a
non pair-breaking component. Table II summarizes the
effect of intervalley scattering on the different gapped
states. Our results suggest that the valley-independent
states (LAF, QVH) are more likely to appear in samples
with very low disorder while the valley-polarized states
(QAH, QSH) could survive at higher disorder concen-
trations. For the nematic phase we find that if W1 and
W2 are uncorrelated, states with different valley structure
are equally affected and therefore the intervalley disorder
does not favor a specific valley-structure.

In conclusion, we find that in the presence of non-
magnetic short-range intravalley disorder, the resulting
pair-breaking effects have different magnitude in the
gapped and the nematic phase: the transition temper-
ature is suppressed more strongly in the gapped phase
than in the nematic phase. Moreover, we find that in
the nematic phase the pair-breaking effect of the disorder
depends significantly on the interlayer correlation prop-
erties of the disorder: the pair-breaking effect is weaker
in the uncorrelated case than in the perfectly correlated
case, and it is weakest for the case of perfectly anticor-
related disorder. We also find that the presence of inter-

valley-polarized states
(QAH, QSH)

valley-independent states
(LAF, QVH)

δ/δG 1 1 + nW |W |2
nUU2

Table II: Comparison of the magnitudes of pair-breaking ef-
fect between different valley-structured varieties of the gapped
states.

valley disorder enhances the pair-breaking effect of disor-
der for the valley-independent gapped states (which have
counter propagating edge modes that can be gapped out
to give a fully insulating state) but that it merely con-
tributes a non pair-breaking component to the valley-
polarized gapped states (which have co-propagating edge
modes). We therefore postulate that clean BLG might
have a valley-independent gapped ground state (e.g.
LAF or QVH), which does not have protected edge
modes, but that small amounts of inter valley disorder
can drive it into a valley polarized gapped state with
edge modes (e.g. QAH or QSH), and that intra valley
disorder can drive it into a nematic state. Therefore,
our results provide a natural explanation for the discrep-
ancies between the experiments that have recently been
done to assess the nature of the BLG collective ground
state in the absence of external fields.
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