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We study the effect of gate-induced electric fields on the properties of semiconductor-
superconductor hybrid nanowires which represent a promising platform for realizing topological
superconductivity and Majorana zero modes. Using a self-consistent Schrödinger-Poisson approach
that describes the semiconductor and the superconductor on equal footing, we are able to access the
strong tunneling regime and identify the impact of an applied gate voltage on the coupling between
semiconductor and superconductor. We discuss how physical parameters such as the induced super-
conducting gap and Landé g-factor in the semiconductor are modified by redistributing the density
of states across the interface upon application of an external gate voltage. Finally, we map out the
topological phase diagram as a function of magnetic field and gate voltage for InAs/Al nanowires.

I. INTRODUCTION

Composite heterostructures provide an opportunity to
realize exotic phases of matter by exploiting the proper-
ties of individual components. A particularly interesting
example involves semiconductor-superconductor hybrid
structures which represent a promising platform for the
realization of topological superconductivity [1–9]. Topo-
logical superconductors support exotic neutral excita-
tions consisting of an equal superposition of an electron
and a hole – Majorana zero-energy modes (MZMs) [10–
12]. Due to the particle-hole symmetry in a supercon-
ductor, such modes appear at zero energy and, thus,
there is no cost to occupy these states. This leads to
a growing degeneracy of the ground state as the number
of MZMs is increased, a hallmark of topological super-
conductors. Theory predicts that exchanging the posi-
tion of MZMs [10, 13] or performing certain non-local
measurements of the charge encoded in a collection of
MZMs [14] leads to a nontrivial transformation within
the degenerate ground-state manifold, and represents a
non-Abelian operation which is independent of the de-
tails of its execution. This property of topological super-
conductors has generated a lot of excitement in the con-
densed matter physics, quantum information, and mate-
rial science communities [15–18] as it opens up the pos-
sibility of Majorana-based topological quantum comput-
ing [6, 9, 19, 20].

Realizing topological superconductivity in the labora-
tory is not an easy task since the originally proposed
models [10, 12] involved spinless p-wave superconduc-
tivity. Electrons in solids have spin- 1

2 and most of the
common superconductors have s-wave pairing which in-
volves electrons with opposite spins. Therefore, quench-
ing spin degeneracy and preserving superconducting pair-
ing is quite non-trivial. One way to overcome the prob-
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lem is to use materials with a strong spin-orbit inter-
action which couples spin and orbital degrees of free-
dom. A number of platforms for realizing MZMs in the
laboratory have been recently proposed [21–48]. The
most promising proposal for realizing MZMs is based
on one-dimensional (1D) semiconductor-superconductor
(SM-SC) hybrid structures [27, 28] and involves a semi-
conductor with strong spin-orbit coupling (such as InAs
or InSb) and an s-wave superconductor (such as Al). In
this proposal, a magnetic field or another time-reversal
breaking perturbation is needed to drive the system into
the spinless topological regime [27, 28]. This proposal
has triggered significant experimental activity [49–69],
and there is a compelling body of experimental evidence
that MZMs have been realized in these systems. For a
very recent example, see Ref. [64] which reports a robust
quantized 2e2/h zero-bias conductance consistent with
the Majorana scenario.

Much of the progress in realizing MZMs with proxim-
itized nanowires is attributed to the material science ad-
vance in fabricating semiconductor-superconductor het-
erostructures. In the first generation of experiments [49–
54] the superconductor was deposited ex-situ which re-
quired removing the native oxide forming on the semi-
conductor’s surface due to air exposure. In the second
generation of experiments the thin aluminum shell [70] is
deposited epitaxially and is thus grown on pristine SM
facets without breaking the vacuum, see Fig. 1. Tunnel-
ing spectroscopy measurements of the induced supercon-
ducting gap [55, 60, 62, 64, 68] in such samples exhibit
a large induced gap (i.e. close to the bulk gap of the
superconductor) which indicates that the improved epi-
taxial interfaces are characterized by a strong hybridiza-
tion of the states in the semiconductor and supercon-
ductor. In this strong tunneling regime, many physical
parameters such as the g-factor and spin-orbit coupling
are strongly renormalized due to the hybridization. In
order to quantitatively understand the hybridization and
its implications on the band structure as well as other
physical properties, one has to consider the band offset
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at the superconductor-semiconductor interface. Depend-
ing on the sign of the band offset one can have either a
Schottky barrier or an accumulation layer [71–74]. Based
on preliminary ARPES studies [75], one finds that the
band offset for epitaxially grown InAs/Al heterostruc-
tures is −(200 − 300)meV supporting the accumulation
layer scenario.

Proper theoretical treatment of the strong coupling
regime is also necessary to understand how external
gates affect the electronic state, and in particular the
topological nature, of SM-SC heterostructures. Further-
more, recent proposals for realizing scalable architec-
tures for topological quantum computation with MZMs
rely on fine electrostatic control [76–80]. Thus, under-
standing the effect of electric fields on the low-energy
properties of the proximitized nanowires is critical both
for the interpretation of the existing Majorana experi-
ments [57, 60, 62, 64, 68] as well as for the optimization
of proposed Majorana devices [9].

In order to understand the physical properties of
the proximitized nanowires, one needs to solve the
electrostatic and quantum-mechanical problems self-
consistently, i.e. perform Schrödinger-Poisson (SP) cal-
culations. Compared to the case of purely semiconduct-
ing heterostructures [81–83], the problem at hand is much
more challenging technically because it involves disparate
materials with very different effective masses, Fermi en-
ergies, g-factors etc. (see Table I). In other words,
the standard numerical tools based on the continuum
mass approximation cannot be applied to semiconductor-
superconductor hydrid systems. Therefore, modeling of
the semiconductor-superconductor hybrid structures re-
quires developing numerical techniques which can effec-
tively take into account different length scales in the
semiconductor and superconductor.

Previous effective models for superconductor-
semiconductor hybrids [84–89] do not properly describe
the experimental system and provide only qualitative
predictions for the electric field dependence. These mod-
els rely on independent phenomenological parameters
such effective masses, spin-orbit couplings, g-factors as
well as tunneling strength between semiconductor and
superconductor. While this approach may be suitable
for the weak tunneling regime, naive extensions of such
models to the strong coupling limit are inadequate. This
is because the electric field applied to the semiconductor
can drastically change the electrons’ confinement, i.e.
push or pull electron density in the semiconductor to or
away from the interface. This in turn strongly affects
physical parameters of the system, including, as we will
see, the tunneling rate, effective spin-orbit coupling,
g-factor as well as induced superconducting gap.

More advanced models have been introduced re-
cently [90–93] which treat the effects of an electric field
within some effective models where the superconductor
is taken into account via boundary conditions. This ap-
proach, while being computationally advantageous, does
not take into account the effects arising from the redis-
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FIG. 1. (a) SM-SC heterostructure based on hexagonal
nanowire. 10 nm thick Al layer (blue) is deposited on 2 facets
of InAs (brown) hexagonal wire with a height of 60 nm. The
back gate is shown schematically in gray. (b) Rectangular
geometry of the wire that supports the same number of sub-
bands. The back gate is emulated by a boundary condition
at the bottom.

tribution of the wavefunction between the semiconductor
and the superconductor. In this work, we treat the su-
perconducting (SC) and semiconducting (SM) degrees of
freedom explicitly on the same footing. Using an adap-
tive discretization algorithm for the SM and SC compo-
nents, we develop an effective model which is computa-
tionally tractable and allows us to adequately capture the
effect of the gate-induced electric field on the heterostruc-
ture. Our results allow one to understand and interpret
recent experiments investigating electric field dependence
of the effective parameters [57, 60, 62, 64, 68].

The paper is organized as follows. We begin with a
discussion of the Setup and Methods in Sec. II where
we provide technical details of the Schrödinger-Poisson
approach. In Sec. III we present our results. We first
focus on the limit of zero magnetic field and then discuss
the behavior at finite magnetic fields. We conclude the
section with the discussion of the topological phase dia-
gram. We summarize our results in Sec. IV and discuss
their relevance for current and future experiments.

II. SETUP AND METHODS

We consider the system shown in Fig. 1. The nanowires
used in current experiments typically have a hexagonal
shape as shown in Fig. 1 (a). The cross section of the
wire, which we take to be the (y, z)-plane, consists of
a 10 nm thick Al film (blue) covering 2 facets of InAs
nanowire (orange). The electrostatic environment is con-
trolled by a back-gate (gray). For practical reasons we do
not explicitly treat this gate and the separating dielectric
medium in our calculations, but rather take the gate into
account only as a boundary condition for the potential
in the wire. In order to convert this into the actual volt-
age applied to the gate (which is sample-dependent), the
distance to the gate and the dielectric constant have to
be taken into account. For the devices of interest, the
length of the wire, Lx, is much larger than its transverse
dimensions Ly,z.
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Parameter InAs Al

m∗ 0.026 [94] 1
εr 15.15
W , eV −0.25

gbare −15 [95] 2
α, eV· nm 0.01 [96] 0
εF , eV 0 11.27 [97]
∆0, meV 0 0.34 [97]
Lz, nm 60 10
Ly, nm 52 52

TABLE I. Physical parameters for InAs and Al.

The presence of the Al layer breaks the hexagonal sym-
metry of the nanowire cross section and, as shown in
Fig. 2, causes the formation of an electrostatic potential
that strongly confines the electrons close to the SM/Al
interface. For this reason the hexagonal cross section of
the wire can be well approximated by an effective rect-
angular cross section, as shown in Fig. 1 (b). We will
henceforth refer to the effective wire with rectangular
cross section as the slab model. By choosing Ly for the
slab model to be such that the number of cross sectional
modes is the same as for the hexagonal cross section wire,
the use of the slab model does not cause any significant
loss of accuracy and significantly simplifies the numerical
implementation and solution of the SP problem.

The Hamiltonian for the heterostructure in the normal
state can be written as (~ = 1)

Ĥn = −∂z
[

1

2m∗(z)
∂z

]
+

1

2m∗(z)

(
k̂2
x + k̂2

y

)
(1)

+φ(z)−εF (z)−α(z)
(
k̂xσ̂y−k̂yσ̂x

)
+
µBg

bare(z)B

2
σ̂x,

where the spatially-dependent effective mass m∗(z),
Fermi energy εF (z), spin-orbit coupling strength α(z),
and g factor g(z) are equal to m∗(z) = mSM (m∗(z) =
mSC) for z < 60 nm (z > 60 nm) and similarly for εF (z),

α(z), and g(z); k̂x, k̂y are the momentum operators in the
x and y direction, respectively; φ(z) is the electrostatic
potential, σx,y,z are the Pauli-matrices in spin space, µB
and B are the Bohr magneton and the external magnetic
field, respectively. The values for the material parame-
ters used henceforth are given in Table I.

In this work we investigate bulk properties of the het-
erostructure. Therefore, we assume henceforth that the
nanowire is infinitely long and translationally invariant
along the x direction. This allows one to use as a ba-
sis plane waves along the x direction and to replace the

operator k̂x in (1) by its eigenvalue. In the clean limit
considered here, due to the finite-size quantization in the
y and z directions, the spectrum of the system consists of
effectively 1D subbands. We obtain the eigenvalues and

eigenstates of the resulting Hamiltonian Ĥn(k̂x → kx)
corresponding to these subbands via a mode decomposi-
tion in the y direction and by replacing the derivatives

with respect to z with finite differences using a non-
uniform grid [98] with two different spacings correspond-
ing to the semiconducting and superconducting compo-
nents, respectively. The spacings are chosen such that
dz < π/kF in order to minimize discretization errors.
Using a non-uniform spacing significantly alleviates the
computational cost and allows us to systematically study
the phase diagram of the problem.

In the absence of spin-orbit coupling the discrete
modes along the y direction are

ψα=0
ny

(y) =

√
2

Ly
sin

(
πny
Ly

y

)
(2)

with the different ny ∈ N modes being decoupled. The
spin-orbit coupling term hybridizes them [84]. The cor-
responding matrix elements are

Anyn′
y
(z) =α(z)〈Ψα=0

ny
| d
dy
|Ψα=0
n′
y
〉

=
2α(z)

Ly
(−1 + (−1)ny+n′

y )
nyn

′
y

n2
y − (n′y)2

.

(3)

In the {ψkx,ny,z = eikxxΨα=0
ny

(y)δ(z)} basis the Hamilto-
nian matrix takes the form

H̃n = 〈ψkx,ny,z|Ĥα=0
n |ψkx,ny,z〉+Anyn′

y
(z)⊗ σx. (4)

We treat the s-wave superconductor at the BCS mean-
field level. The Bogoliubov-de-Gennes (BdG) Hamilto-
nian for the system can be written as

H = H̃n ⊗ τ̂z −∆(z)σ̂y ⊗ τ̂y, (5)

where τ̂z, τ̂y are Pauli matrices in Nambu (particle-hole)
space. We include the superconducting pairing only in
the superconductor, i.e. ∆(z) = ∆0 for z > 60 nm, where
∆0 is the SC gap of Al (see Table I), and ∆(z) = 0 for
z < 60nm. In a finite magnetic field, the superconducting
gap in the Al shell is suppressed due to the inclusion of
a finite g-factor for the Al (see Table I). Given that the
Al film is very thin, see Fig. 1, we neglect orbital effects
due to the magnetic field.

A. Electrostatics

In order to obtain the electrostatic profile, one has
to solve the SP equations self-consistently. Given that
the BCS mean-field approximation breaks charge conser-
vation this is a non-trivial task, see, e.g., discussion in
Ref. [99]. However, electrostatic screening of a metal is
only weakly modified by the superconductivity with the
small parameter being ∆0/εF � 1. As a consequence, to
obtain the electrostatic potential within this accuracy the
charge density entering the Poisson equation can be cal-
culated neglecting the superconducting pairing, i.e. using
the Hamiltonian Hn(kx) instead of the full Hamiltonian
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FIG. 2. The electrostatic calculation uses Dirichlet boundary
conditions at z = 0 and z = LSM

z , i.e. the top and bottom of
the semiconducting wire. At z = 0, the boundary condition
is given by the gate voltage Vg, while at the interface to the
aluminum it is given by the band offset W (see also Table I).
This leads to an accumulation layer at the interface.

H. The effects of the spin-orbit coupling and Zeeman
terms [91] on the total electron density profile n(z) are
also very small and can be neglected. Thus, to solve
the full problem we follow a two step approach: we first
solve the SP problem in the normal state taking α = 0
and B = 0 to obtain the electrostatic profile. We then
use the obtained electrostatic profile to find the eigenval-
ues and the eigenstates of the system for ∆0 6= 0, α 6= 0,
and different values of B.

The first step consists in solving self-consistently the
Schrödinger equation Hn|Ψ〉 = E|Ψ〉, requiring Ψ to van-
ish at the boundaries of the system, [100] and the Poisson
equation

∂2
zφ(z) = −n(z)

ε0εr
, (6)

where n(z) = (2πLy)−1
∑
ny,E[Ψ]<=0

∫
dkx

∣∣Ψkx,ny (z)
∣∣2,

εr is the relative dielectric constant of the SM, see Tab. I,
and ε0 is the vacuum dielectric constant. The setup for
the Poisson equation is shown in Fig. 2. At z = LSM

z the
boundary condition for φ(z) is given by the band offset W
between the SM and the SC. The boundary condition at
z = 0 is set by the back gate. The coupled Schrödinger-
Poisson equations are solved iteratively until convergence
is achieved, using Anderson’s mixing algorithm [101].

B. Band structure

The calculated electrostatic profile φ(z) is inserted
into the full Hamiltonian H to obtain the band struc-
ture {ε(n)(kx)} and the corresponding eigenstates of the
nanowire. Since the chemical potential is included in
the Hamiltonian, the effective Fermi energy for each
band is set simply by the bottom of the band. We

can find the Fermi momentum in each band, k
(n)
F , by

solving ε(n)(k
(n)
F ) = 0. The Fermi velocity is given by

vnF = dε(n)

dk(n) |k(n)=k
(n)
F

. In addition, from the eigenstates at

k = kF we extract how strongly different subbands are
coupled to the superconductor, which we define through
the weight of the corresponding state in the supercon-
ductor

WSC = 1−
∑
ny,σ

∫ LSM
z

0

|Ψ(kF )|2dz (7)

We define the gap as the minimum of the energy of

the first excited state: Eg = minkx |ε
(n)
BDG(kx)|. At zero

magnetic field, Eg gives an estimate for the induced gap
∆ = Eg(B = 0).

III. RESULTS

In this section we discuss the results of our numerical
simulations. We first discuss only the electrostatic prob-
lem for both a model of a hexagonal wire and the slab
model introduced above. We then investigate the nature
of the electronic states in a limit of strong coupling be-
tween the semiconductor and superconductor and discuss
their superconducting properties at zero magnetic field.
Then we study properties of the hybrid nanowires in a
finite magnetic field and obtain estimates for the effective
g-factor in the hybrid structure. Finally, we present the
topological phase diagram and compare it with previous
results [84, 102].

A. Electrostatics and density distribution

1. Hexagonal cross section

In order to obtain the correct number of subbands for a
given gate configuration for the wire with the hexagonal
cross section it is sufficient to solve the SP problem using
the Thomas Fermi approximation and simply requiring
the wave function to vanish at the boundaries of the cross
section. The solution of the full SP problem is computa-
tionally expensive due to the shape of the cross section
and unnecessary for the purpose of simply estimating the
number of cross sectional modes. We perform this cal-
culation in COMSOL and obtain eigenstates using the
Kwant package [103].

Our results are summarized in Fig. 3, where we show
the density for all occupied modes below the Fermi en-
ergy. This calculation does not explicitly treat the alu-
minum shell; instead, it assumes that the only effect of
the presence of the Al layer is to induce a band offset.
We set this band offset to W = −0.25 eV [75], see Ta-
ble I. The approximations used to obtain the results of
Fig 3 cause quantitative inaccuracies for the local density
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ba

FIG. 3. (a) Electronic density in the cross-sectional cut of
the nanowire for Vg = 0 obtained the Thomas Fermi approx-
imation. (b) Square modulus of eigenstates of the wire in the
normal state at B = 0 with energies −0.096, −0.068, −0.052,
−0.023, −0.021, and −0.006 eV for panels 1 to 6 respectively.

of states (LDOS) and the carrier density profile. How-
ever, these results are sufficiently accurate to estimate
the number of electronic cross-sectional modes below the
Fermi energy for a given Vg. In addition, the results
of Fig. 3 (a) show the qualitatively correct result that
for Vg ≤ 0 most of the charge density is localized at
the semiconductor (SM)-superconductor (SC) interface
due to the strong band offset between the InAs and Al.
This fact means that for the slab model, the thickness of
the SM wire in the z direction does not affect the elec-
tronic properties in a significant way as long as it is few
times larger than the confinement length in the z direc-
tion (∼ 20 nm). The effective width Ly of the slab model
can then be fixed by requiring the number of subbands
to be equal to the number of cross-sectional modes ob-
tained from the hexagonal calculation, as long as Ly is
also larger than the confinement length in the z direc-
tion. For Vg = 0 the hexagonal cross section results show
that there are six modes, see Fig. 3 (b). From this we
obtain that for the slab model Ly = 52 nm, larger than
the confinement length for Vg = 0. In the remainder all
the results are obtained using the effective slab model
with Ly = 52 nm width and LSM

z = 60 nm thickness for

the SM and L
(SC)
z = 10 nm for Al, as shown in Table I.

2. Slab model

We now switch to the slab model, which explicitly
treats the superconducting Al shell. We self-consistently
solve the coupled Schrödinger-Poisson (SP) equations for
three different values of Vg to obtain the electrostatic po-
tential φ(z) and the density n(z), respectively shown in
panels (a) and (b) of Fig. 4. Since the Al shell is taken to
be metallic with an extremely short screening length, the
electrostatic potential is assumed to be constant through-
out the Al. The dashed line in Fig. 4 (a) shows the
Fermi level in Al. It is worth pointing out that because
∆0 � εF , including the pairing term for the Al makes

only a negligible difference to the electrostatic profile.
For Vg ≤ 0 the electrostatic potential confines the car-

rier density in a layer about 20 nm wide close to the
SM/Al interface, as shown in Fig. 4 (b). For Vg > 0 the
electrostatic potential is below the Fermi energy also on
the gate side. This allows the accumulation of charges
also near the gate, as shown by the result in Fig. 4 (b)
for Vg = 0.2 V .

B. Nature of electronic states in strong-coupling
limit

We now discuss the nature of the electronic states in
the electrostatic environment determined by the gate as
well as the band offset between the semiconducting wire
and the metallic shell. In particular, we will investigate
how strongly states are hybridized between the two ma-
terials depending on the gate voltage.

In the top panels of Fig. 5, we show the electrostatic
profile (cf. Fig. 4) for three values of the gate voltage.
The lower panels show the square of the wave function
|Ψkx=0,ny

(z)|2 for all occupied subbands for the corre-
sponding electrostatic profile. Here we have chosen the
momentum of the band bottom, kx = 0, so that all filled
bands are included. The color scale in Fig. 5 indicates the
weight of the wavefunctions in the superconductor (see
Eqn. (7)). In the top panels, we have also superimposed
horizontal lines showing the energy of the corresponding
subbands; furthermore, the intensity of the lines shows
the square magnitude of the wave functions, and in the
semiconducting part the color scale indicates again the
weight in the superconductor.

For the case of Vg = 0 (middle column of panels), we
find 9 hybridized subbands, some of which are mostly
localized in the SM whereas the others have large weight
in the superconductor [104].

For Vg < 0 the electrostatic potential confines the wave
function in the SM to a very narrow region close to the
SM/Al interface. Such confinement favors a strong hy-
bridization of the SM and Al eigenstates, thus giving rise

0 20 40 60
z, nm

−0.2

−0.1

0.0

0.1

φ
(z

),
eV

0 20 40 60
z, nm

0

1 · 1024

2 · 1024

3 · 1024

4 · 1024
n

(z
),

m
−3

a b Vg = -0.15 V

Vg = 0.0 V

Vg = 0.2 V

FIG. 4. (a) Electrostatic potential profile φ(z) and (b) elec-
tronic density n(z) in the semiconducting part of the system
obtained from a self-consistent Schrödinger-Poisson calcula-
tion for three representative values of the gate voltage.
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0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
WSC

0 20 40 60
z, nm

0.00

0.05

0.10

|Ψ
k
x
,k
y
=

0
(z

)|2

−0.2

−0.1

0.0

E
,

eV

Vg= -0.15 V

a

d

0 20 40 60
z, nm

Vg= 0.00 V

b

e

0 20 40 60
z, nm

Vg= 0.20 V

c

f

FIG. 5. Eigenstates of the Hamiltonian (4) at kx = 0 for
Vg = −0.15V, Vg = 0V, and Vg = 0.2V. The top panel shows
the electrostatic potential for reference purposes, with hori-
zontal lines denoting the bottom of each band below the Fermi
energy. The color scale indicates the weight in the supercon-
ductor, and in the semiconducting part, the intensity indi-
cates the square modulus of the eigenstate. The lower panel
shows the eigenfunctions explicitly with the same color cod-
ing.

−0.10

−0.05

0.00

0.05

ε(
k

),
eV

0.0 0.1 0.2 0.3
kx, nm−1

−1

0

1

ε(
k
)B

D
G

∆
0

0.0

0.1

0.2

0.3

0.4

0.5

W
S
C

FIG. 6. Top: band structure in the normal state at Vg =
−0.15 V. Color indicates the weight of the state in the su-
perconductor. Hybridization between states is seen by the
changing color of the subbands. Bottom: band structure of
the system in the superconducting state. The induced gap
in each subband depends on the hybridization to the super-
conductor. It can clearly be seen that bands with stronger
hybridization (red colors) are characterized by a larger in-
duced gap. Here we used the same parameters as in Fig. 5(a)
and (d).

to states which have large weight in both the SM and Al.
Such large hybridization is prevented in the absence of
the confining electrostatic potential due to the large mis-
match between the Fermi velocities of the two materials.
The strong confining potential due to the band offset is
therefore critical for the hybridization of the SM and Al
states.

For Vg > 0, we see in Fig. 5 (c) that a number of
subbands closer to the Fermi energy appear which are not
confined to the interface, and instead have appreciable
weight throughout the SM. These states have very small
Wsc. Their contribution to the density can also be seen
in panel (b) of Fig. 4 in the peak of the density near the
gate.

While one might naively expect that the lowest bands
are most confined to the interface and thus hybridize
most strongly, this is not reflected in the data shown in
Fig. 5. To further elucidate which bands most strongly
hybridize with the superconductor, we show the full band
structure at Vg = −0.15 V in the top panel of Fig. 6.
Here, color again indicates the weight of the state in the
SC; however, in contrast to Fig. 5, we do not just con-
sider kx = 0. We observe that hybridization with the
superconductor may depend strongly on kx, and in this
case is generally strongest at large kx.

C. Superconducting properties at B = 0

We now turn our attention to the situation where the
Al shell is in the superconducting state. The value of

WSC at k
(n)
F correlates well with the magnitude of the

induced superconducting gap ∆ind for a given subband.
From the discussion of the previous subsection, we can
then immediately conclude that different subbands will
have different values of ∆ind. This is illustrated in the
lower panel of Fig. 6, in which the subbands are shown for
the case when ∆0 6= 0, for energies of the order of ∆0. We
see that bands with smaller WSC (shown as more blue)
also have smaller ∆ind. The smallest value of ∆ind is
what fixes the superconducting gap for the SM-SC hybrid
nanowire. This again emphasizes the importance of the
strong confining potential to increase the hybridization
between the two materials and thus a large induced gap.

Figure 7 (a) shows the evolution of the DOS with Vg.
For Vg < −0.6 V all subbands in the SM hybridize very
strongly with the Al subbands and, thus, have a large
induced SC gap. As a result, there are no subgap states
below ε ≈ 0.6∆0. As Vg increases and the electrostatic
potential becomes less confining, additional SM subbands
become occupied for certain threshold values of Vg. As
shown in Figure 7 (a), the number of subbands jumps at
Vg ≈ (−0.6,−0.45,−0.15,−0.06, 0.03) V. In some cases
the additional subbands have a smaller value of WSC

resulting in a decrease of ∆ind. From Fig. 7 (b) we can
see that this happens for the Vg threshold values of -0.6
and -0.06 V. For Vg > 0, as shown in Fig. 5 (d), some of
the subbands have states that are not localized close to
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FIG. 7. Characterization of the superconducting state at B = 0, i.e. in the trivial s-wave superconducting phase, as a function
of the gate voltage Vg: (a) Density of states, (b) induced gap (black) and weight in the superconductor (green), (c) Fermi
energy, (d) Fermi momentum, (e) Fermi velocity and (f) SC coherence length. The discontinuities correspond to transitions
where bands are driven below the chemical potential and thus become occupied (for an illustration, consider the transition
between panels (a) and (c) of Fig. 8). In panel (b), the correspondence between the magnitude of the induced gap and the
hybridization between SM and SC (as measured by the WSC) is clearly shown. In panels (c) and (d), all bands are shown in
grey, while the occupied band closest to the Fermi energy is highlighted in black.

the SM-SC interface and for which WSC is negligible. In
this situation ∆ind → 0, and the system becomes gapless.

The evolution of ∆ind with Vg is shown in Fig. 7 (b),
together with the evolution of WSC . From this figure we
see that for Vg < −0.6 V, ∆ind ≈ 0.75∆0. Furthermore,
these results indicate that the evolution of the nanowire’s
superconducting gap with Vg can be quite non-trivial and
is closely related to WSC . In order to have ∆ind ∼ ∆0,
strong confining potentials (Vg < −0.6 V) are necessary.
Conversely, in the case of a positive gate voltage, there
are occupied states in the SM (see right panels of Fig. 5)
which are far away from the SC and, as a result, are
weakly proximitized.

Figures 7 (c)-(f) show the evolution of εF , kF , vF , and
ξ with Vg for the subband with the smallest induced su-
perconducting gap, which determines ∆ind for the sys-
tem. For a fixed number of subbands, as Vg increases
εF , kF and vF grow, see Fig. 7 (c)-(e). Using the values
of vF , and ∆ind one can estimate the coherence length
ξ = vF /∆ind. From Fig. 7 (b) we see that change in
Vg preserving the number of occupied subbands leads
to small changes in ∆ind. Thus, the variations of ξ are
mostly due to the changes in vF , see Fig. 7 (f). We see

that, as long as the number of subbands is constant, ξ
grows with Vg and follows vF . The discontinuities in εF ,
kF , vF , and ξ appear when the number of occupied sub-
bands changes, see Fig. 7 (a)-(f).

D. Superconducting properties at finite magnetic
fields

We now study how the properties of the SM-SC
nanowire depend on the presence of the external mag-
netic field B aligned along the longitudinal direction of
the wire. As discussed in Sec. II, in our treatment the
magnetic field enters only via the Zeeman term. For
B ∼ 1 T, orbital effect of the applied magnetic field is
small since the SC is only 10 nm thick and in the regime
of interest the wave functions in the SM are confined to
the SM-SC interface within 20 nm range.

We start by investigating Zeeman splitting for the
nanowire with multi-subband occupancy. The corre-
sponding band structure is shown in Fig. 8 (a). Let’s
consider the gate voltage such that the highest occupied
subband (shown in blue color) has small Fermi energy.
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ba

c d

FIG. 8. Illustration of typical band structures, and the two
different scenarios for the topological phase transition from an
even to an odd number of occupied spin-subbands. The left
two panels (a) and (c) show the situation without magnetic
field, B = 0, where a subband is slightly below ((a), one
spin-degenerate Fermi point) or above the chemical potential
((c), no Fermi points). Upon turning on a finite field that
exceeds the distance from the bottom of these subbands to
the chemical potential, the corresponding panel on the right
is obtained, where an odd number of spin-split subbands is
occupied.

The application of a magnetic field splits the subband
and, at some critical field Bc, drives the minority sub-
band across the Fermi level (provided Bc is less than the
critical field of the superconductor). This is illustrated in
Fig. 8 (b). At this point, the majority subband becomes
the highest occupied band, and, thus, many properties
such as the Fermi energy, Fermi velocity and Fermi mo-
mentum change discontinuously.

Another scenario corresponds to Fig. 8 (c), where a
band is just above the chemical potential. In this case,
the gap of the system is determined by the lower occupied
subband (shown in green). An increasing magnetic field
splits the lowest unoccupied band (shown in red) and
eventually it becomes occupied.

In both these cases, we end up with an odd number
of occupied subbands at large enough magnetic fields
and, thus, the nanowire can be driven into the topolog-
ical regime. However, the evolution of the gap with the
magnetic field is drastically different in these two cases.
This can seen in Fig. 9 which shows the evolution with
magnetic field of the spectral gap Eg, effective Fermi en-
ergy for the highest occupied subband, and correspond-
ing kF , vF , and ξ for different gate voltages close to
the the threshold value Vg,t = −0.427 V. This threshold
value, corresponding to the gray curves in Fig. 9, corre-
sponds to the gate voltage at which the relevant subband
has exactly zero effective Fermi energy. As B increases
from zero the gap Eg decreases and eventually vanishes
at B = Bc corresponding to the topological phase transi-
tion. For B > Bc, the nanowire is driven into the spinless
regime with p-wave pairing potential. The p-wave gap
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FIG. 9. The evolution of the system parameters as a function
of a magnetic field B. Estimates for the (a) gap, (b) absolute
value of the effective Fermi level of the subband |ε(kx = 0)|
(where kx = 0 is the location of the band bottom), (c) Fermi
momentum, (d) Fermi velocity and (e) coherence length as
a function of magnetic field. Colors correspond to different
gate voltages: for blue lines, the gate voltage is more positive,
leading to a situation as sketched in the upper two panels of
Fig. 8. Red lines, on the other hand, have a more strongly
negative gate voltage, thus leading to the situation of the two
lower panels in Fig. 8. Gray color corresponds to the threshold
value Vg = −0.427 V, at which the subband is characterized
by a vanishing effective chemical potential.

exhibits a non-monotonic dependence on the magnetic
field, and eventually vanishes because s-wave supercon-
ductor becomes normal. For our parameters this occurs
at BSC = 5.8 T. Note that we do not take into account
orbital effects here so in practice ∆0 may vanish before
that.

The blue family of curves in Fig. 9 (a) correspond to
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the case when a highest-occupied subband has a small
Fermi energy at zero field (top panels of Fig. 8). In that
case, the gap at zero field is already set by the band
that will eventually be split to give rise to topological su-
perconductivity, and, thus, the gap evolves as a smooth
function for B < Bc. At B = Bc the minority subband
crosses the Fermi level, and the topological gap is opened
in the majority subband. As dicussed above, the proper-
ties of the Fermi points evolve discontinuously across the
transition (panels b,c,d), and the gap increases rapidly
into the topological phase (panel a).

At more negative gate voltages, the situation shown in
Fig. 8 (c) and (d) is realized, corresponding to the red
lines in Fig. 9. Here, the gap at B = 0 is determined
by the next occupied subband. Upon the application
of a magnetic field, the distance between the majority
subband and the chemical potential eventually becomes
smaller than the gap induced in the next-highest sub-
band. This distance thus sets the spectral gap. The dis-
continuity of the gap function can be seen in Fig. 9 (a).
At B > Bc the topological gap is opened in the majority
subband. In this cases, we plot in Fig. 9 the properties of
the Fermi points only for the subbands that eventually
become topological, and thus plot no values below the
topological phase transition.

It is very interesting to notice that the size of the in-
duced superconducting gap for B = 0 does not necessar-
ily correlate with the size of the topological gap. This
can be understood from the fact that the topological gap
for B > Bc is always opened in the same band, whereas
the ∆ind at B = 0 is opened in a different band when
Vg becomes smaller than Vg = −0.427 V. As can be seen
from Fig. 9 (c) the Fermi momentum kF for B > Bc,
which corresponds always to the same band, increases
with Vg. The topological gap increases with kF since the
effective Rashba field is stronger at higher momentum,
allowing the s-wave pairing to induce a larger gap. This
is a very important result because ∆ind at B & Bc sets
a crucial scale for the robustness of a topological qubit
against error sources such as thermal fluctuations, dia-
batic corrections, disorder [99, 105, 106] etc.

E. Effective g-factor

A crucial quantity to characterize the semiconductor-
superconductor system is the effective g-factor of the hy-
brid system. Due to the drastically different g-factors in
the two materials, this will depend intricately on the wave
function hybridization between them. Furthermore, the
g-factor is crucial in enabling a large and robust topo-
logical phase, since a large g-factor is necessary for the
topological phase transition to occur at a magnetic field
well below the critical value at which the Al shell is driven
normal. A large effective g is thus very helpful in achiev-
ing a sufficient separation between these scales.

The effective g-factor can be obtained from studying
the Zeeman splitting of bands at kx = 0, as illustrated in
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FIG. 10. Absolute value of g-factor (left column) and ratio
of the induced gap to the critical magnetic field 2∆/(µBBc)
(right column) as a function of gate voltage in the vicinity of
threshold gate voltage values Vg = −0.07 (a,b), −0.15 (c,d),
−0.45 (e,f), −0.6 (g,h), −2.3 (i,j) at which the number of
subbands change in the system. The red dashed line is the
absolute value of bare semiconductor g-factor |gbareSM |.

Fig. 8. In particular, since at kx = 0 the spin-orbit terms
in the Hamiltonian (4) vanish, the spin-splitting of the
bands at kx = 0 is entirely determined by the Zeeman
term. As the change of the energy levels ε(kx = 0) is
linear with the magnetic field, the absolute value of the

g-factor can be extracted as |g| = 2dε(k=0)
dµBB

. This linear

fit for B < Bc is illustrated in Fig. 9b with dashed lines.
Note that when the gate voltage is such that the closest
subband to the Fermi level is unoccupied (case (c) in
Fig. 8), the slope near the gap-closing is the same as the
one at ε(k = 0), allowing for a reliable extraction of the
g-factor from the tunneling conductance measurements
[68]. This is shown in Fig. 9a by the dashed lines.
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In Fig. 10 we study the dependence of the extracted
g-factor on the applied gate voltage in the vicinity of
the threshold values at which the number of subbands
change (see Fig. 7). As expected, we find every subband
to be characterized by an almost constant g-factor, with
significant changes occuring only at transitions between
bands. When the hybridization between semi- and su-
perconductor is weak, the g-factor is close to the bare
semiconductor value |gbare

SM | = 15. Conversely, when the
voltage is very negative (the value from Fig. 7 is written
in every panel) and the hybridization between semi- and
superconductor is strong the g-factor is almost as small
as the bare superconducting g-factor |gbare

SM | = 2.
Additional information can be extracted from the ra-

tio of the induced gap to the critical field, shown in the
right column of Fig. 10. This quantity is easily accessible
in experiments, and has been used in the experimental
literature as a proxy for the g-factor [68]. Our results
clearly show that unlike the g-factor, this quantity has a
strong dependence on gate voltage over relatively small
gate voltage variations. In particular, a resonant struc-
ture appears with a peak that corresponds to the gate
voltage being tuned to the threshold value at which the
subband crosses the effective chemical potential. Only
at this point does this quantity reaches the values of the
effective g-factor shown in the left column.

Figure 11 (a) shows the value of g for different topo-
logical regions (see also the discussion in Sec. III F). We
see that as Vg becomes more negative the g-factor be-
comes smaller and approaches the value of g in the SC.
As stated above this is due to the fact that as Vg be-
comes more negative the hybridization between SM and
SC states becomes stronger as clearly shown by the evolu-
tion of WSC , see Fig. 11 (b). Larger negative values of Vg
create an electrostatic potential that more strongly con-
fines the SM states at the SM-SC interface. The tighter
confinement results in a stronger hybridization between
SM and SC states. Figure 11 (c) summarizes the im-
portant relation between strength of the hybridization
between SM and SC states and the g-factor by showing
the dependence of |g| on WSC . We see that qualitatively
g scales linearly with WSC .

F. Topological phase diagram

Figure 12 (a) shows the topological phase diagram in
the (Vg, B) plane. This is one of the most important
result of this work: it relates the nature of the super-
conducting state of the quasi-1D hybrid nanowire to the
experimentally relevant and tunable quantities – the gate
voltage and the external magnetic field – rather than
more abstract quantities such as the Fermi energy of the
subbands and the Zeeman splitting, which are dependent
on applied electric field. As discussed above, the rela-
tion between Vg and the parameters characterizing the
nanowire band structure, such as the subbands chemi-
cal potential and induced superconducting gap, is highly
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FIG. 11. Gate voltage dependence of (a) the absolute value
of effective g-factor and (b) the weight in superconductor.
Panel (c) relates |g| to the weight in the superconductor WSC .
Dots represent typical values for the highest occupied band
at a given gate voltage. The dashed horizontal values are
the absolute values of the bare g-factor in the semiconductor
(red) and superconductor (green). When the coupling to the
superconductor is weak, as indicated by a small weight of the
wavefunctions in the SC, the g-factor is close to the bare InAs
value. The opposite limit occurs in the strongly hybridized
regime at more negative gate voltages.

non-trivial given the nonlinear nature of the SP prob-
lem and the presence of multiple subbands. For this rea-
son, for example, simplified models in which the subband
chemical potential is assumed to be directly proportional
to Vg in general cannot be used to obtain a reliable phase
diagram in the (Vg, B) plane. Similarly, we have shown
that for the g-factor we cannot take the bare value for
the SM. One qualitative feature that emerges from the
results shown in Fig. 12 (a) is how the shape and size
of the topological regions depend on Vg. We see that
for very large negative Vg the critical magnetic field is
higher than that for small negative values of Vg. This is
due to the fact that the hybridization of the SM’s and
SC’s states is stronger for larger negative Vg and there-
fore the effective magnitude of g is much smaller than
gbare
SM causing an increase of the critical field.

Fig. 12 (b) shows the dependence of the coherence
length in the topological regime ξt, at the maximum of
the topological gap for B > Bc, on the gate voltage. The
coherence length shows a slight decrease with decreas-
ing gate voltage, but it is much less pronounced than
the value at B = 0 shown in Fig. 7 (f). The coherence
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FIG. 12. (a) Topological phase diagram and magnitude of
the spectral gap over a range of gate voltages from zero to
very strongly negative. Clearly, the gap at zero field is largest
for negative gate voltages where hybridization with the Al
shell is strongest. The boundaries of the topological phase
are marked with solid black lines. (b) Coherence length in
the topological phase ξt as a function of gate voltage.

length in the topological is a key quantity for designing
topological qubits which rely on non-locality of MZMs.

We now compare the obtained phase diagram with the
previous studies. In the case when the subband is occu-
pied at B = 0 (the scenario shown in Figs. 8 (a)-(b)), the
critical field Bc can be expressed in terms of εF and ∆
using the equation [27, 28]:

Bc =

√
ε2F + ∆2

|g|
. (8)

To also account for the scenario in which the subband
undergoing the transition is unoccupied at B = 0,
Figs. 8 (c)-(d), we can replace in Eq.(8) εF with ε(k = 0)

Bc =

√
[ε(k = 0)]2 + ∆2

|g|
. (9)

Having obtained the dependence of ε(k = 0), g and
∆ on Vg, one can draw the boundaries in the (Vg, B)
plane of the topological phase diagram using Eq. (9).
These boundaries are shown in green in the left panels of
Fig. 13. We can see that they match exactly the bound-
aries obtained by identifying the value of B, Bc, where
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FIG. 13. Phase diagram, panels (a,c,e), and band struc-
ture, panels (b,d,f) in the vicinity of threshold gate volt-
ages, corresponding to the change in the number of subbands:
Vg = −0.15 (a,b); Vg = −0.6 (c,d); Vg = −2.3 (e,f). Black
dots in the left panels correspond to the numerically calcu-
lated phase boundary. Red and green curves in left panels are
the estimates obtained using the standard relation (9) and the
bare SM’s g-factor for the red curves and the renormalized g-
factor Fig. 10, for the green ones.

the gap is closing ∆ind = 0. We can see that Eq. (9),
equivalent to Eq. (8) for the case when the subband is
occupied, gives the correct boundaries if the renormaliza-
tion of the g-factor is taken into account. On the other
hand, if in Eq. (9) for g we use the bare SM’s g-factor
Eq. (9) gives incorrect boundaries, shown in red in the
left panels of Fig. 13. The boundaries obtained using the
bare SM’s g-factor overestimate the size of the topolog-
ical region, especially when Vg is strongly negative, see
the bottom left panel of Fig. 13. As discussed above,
this is due to the fact that the value of the g-factor, in
the strong coupling regime, is strongly renormalized by
the hybridization between the SM and SC states. The
right panels in Fig. 13 show the band structure of the
SM-SC nanowire close to the Fermi energy when ∆0 → 0
for the appropriate values of Vg. We see that for very
negative values of Vg, bottom panel, the SM states are
very strongly hybridized with the SC states. This result
is consistent with the fact that for this case g is much
smaller than gSM and therefore the topological region
is much smaller that we would have obtained assuming
g = gSM .
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IV. SUMMARY AND CONCLUSIONS

We have studied properties of SM-SC nanowires in the
presence of strong external electric fields. Our method is
based on self-consistent Schrödinger-Poisson calculations
which treat the semiconductor and the superconductor
on equal footing. This approach allows one to take into
account several semiconductor subbands which, we be-
lieve, are present in current experimental devices. We
find that the treatment of the SM and SC at the same
level is necessary to describe the strong-coupling regime
characteristic to the high-quality epitaxial nanowires [56].
Such hybrid nanowires are very promising for the topo-
logical quantum computing applications as they exhibit
large proximity-induced gaps and very low subgap con-
ductance [55, 60, 64].

One of the most important results of our work is to
provide an insight regarding the necessary conditions
for achieving the strong-coupling regime in proximitized
nanowires. We find that one of the key ingredients is the
presence of an accumulation layer at the interface be-
tween the SM and the SC. The presence of an accumu-
lation layer implies a strong confinement of the semicon-
ductor wave function close to the SM-SC interface. With-
out such confinement, the significant mismatch between
the Fermi velocities of SM and SC would significantly re-
duce the induced gap. This conclusion has recently been
supported by angle-resolved photoemission spectroscopy
experiments that have shown that in epitaxial InAs/Al
systems the band offset W is negative and therefore an
electron accumulation layer is present.

We have investigated the effect of an external electric
field which can be used to modify the confining potential
and, thus, modify properties of electronic states in SM-
SC devices. We find that external electric field can be
used to change the number of subbands in the semicon-
ductor, tunneling rate, induced gap, magnitude of the ef-
fective g factor, coherence length ξ etc. Our results show
that the relation between Vg and the quantities charac-
terizing the electronic state of SM-SC quasi-1D nanowires
is not trivial. The understanding of the interplay of Vg,
number of subbands, and electronic properties is one of
the most important results of our work.

Finally, we have obtained the topological phase dia-
gram as a function of the gate voltage and magnetic
field B. Previous works calculated the topological phase
diagram in terms of phenomenological parameters such
as effective chemical potential. Our work is the first to
present a phase diagram in terms of Vg, the experimen-
tally relevant and tunable quantity, instead of the chemi-
cal potential. We find that in the strong coupling regime
the renormalization of the g factor due to the strong hy-
bridization between the SM’s and the SC’s states can sig-
nificantly modify the topological phase diagram. For typ-
ical setups, the g of the SC is smaller (in absolute value)
than the SM’s g factor, and so the strong hybridization
reduces the g factor causing a decrease in the (Vg, B)
plane of the region where the system is in the topological

phase.

Our work has important implications for current and
future experiments aiming to realize Majorana-based
topological qubits using SM-SC heterostructures as it al-
lows one to optimize Majorana devices by tuning key
parameters, ∆, g, and ξ with gates. Our results show
that in the strong coupling the renormalization of g can
be quite significant increasing the minimal magnetic field
necessary to drive the system into the topological phase.
Thus, there is a sweet spot, and it is beneficial to operate
in the intermediate coupling regime. This is critical infor-
mation to design experiments aimed at realizing MZMs.

Finally, we discuss some limitations of our model. In
this work, we do not take into account effect of disor-
der. There is a large body of papers investigating effect
of the disorder in the semiconductor [31, 107–113] and at
the interface [114] concluding that disorder leads to the
subgap density of states (i.e. states below the induced
gap). However, given the observation of a very small
subgap density of states in recent experiments on high-
quality proximitized nanowires [55, 60, 62, 64], we believe
that the semiconductor, as well as SC-SM interface, are
quite clean. The situation with Al is less clear since the
presence of the native oxide covering Al may lead to sig-
nificant impurity scattering. The effect of the disorder in
the superconductor is two-fold - a) it may relax the con-
straint on momentum conservation and may lead to the
enhancement of the induced SC gap as well as the sup-
pression of the SC coherence length; impurity scattering
should also smear out sharp features in the induced gap
as well as other physical observables; b) impurities in
the SC may induce subgap states [115–118]. Once again
the optimization of the tunneling rate between SM-SC is
very important [115, 118]. Understanding the effects of
the disorder in realistic proximitized nanowires is an in-
teresting open problem. Another limitation of our model
is the lack of orbital effects due to the magnetic field.
Due to the strong geometry dependence of the orbital ef-
fect [93], however, a careful treatment of it needs to go
beyond the slab model discussed here.

Finally, we emphasize that, although in this work we
focused on InAs/Al hybrid nanowires, the Schrödinger-
Poisson approached proposed in this work can be used to
study other heterostructures such as InSb/Al nanowires,
two-dimensional SM-SC heterostructure and the quasi
1D channels created by electrostatic confinement in such
structures.
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[112] İ. Adagideli, M. Wimmer, and A. Teker, Phys. Rev. B
89, 144506 (2014).

[113] S. S. Hegde and S. Vishveshwara, Phys. Rev. B 94,
115166 (2016).

[114] S. Takei, B. M. Fregoso, H.-Y. Hui, A. M. Lobos, and
S. Das Sarma, Phys. Rev. Lett. 110, 186803 (2013).

[115] R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma,
Phys. Rev. B 85, 140513 (2012).

[116] H.-Y. Hui, J. D. Sau, and S. Das Sarma, Phys. Rev. B
92, 174512 (2015).

[117] W. S. Cole, J. D. Sau, and S. Das Sarma, Phys. Rev.
B 94, 140505 (2016).

[118] D. E. Liu, E. Rossi, and R. M. Lutchyn, ArXiv e-prints
(2017), arXiv:1711.04056 [cond-mat.mes-hall].

http://dx.doi.org/10.1145/321296.321305
http://dx.doi.org/10.1103/PhysRevLett.106.127001
http://stacks.iop.org/1367-2630/16/i=6/a=063065
http://dx.doi.org/10.1103/PhysRevB.85.165124
http://dx.doi.org/10.1103/PhysRevB.85.165124
http://arxiv.org/abs/1112.3662
http://arxiv.org/abs/1112.3662
http://dx.doi.org/10.1103/PhysRevB.95.054502
http://dx.doi.org/10.1103/PhysRevB.95.054502
http://arxiv.org/abs/1610.08042
http://dx.doi.org/10.1103/PhysRevB.63.224204
http://dx.doi.org/10.1103/PhysRevB.63.224204
http://dx.doi.org/ 10.1103/PhysRevB.84.144526
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://arxiv.org/abs/1106.3078
http://dx.doi.org/10.1103/PhysRevLett.106.057001
http://dx.doi.org/10.1103/PhysRevLett.106.057001
http://dx.doi.org/10.1103/PhysRevLett.109.146403
http://dx.doi.org/10.1103/PhysRevLett.109.146403
http://dx.doi.org/10.1103/PhysRevB.89.144506
http://dx.doi.org/10.1103/PhysRevB.89.144506
http://dx.doi.org/10.1103/PhysRevB.94.115166
http://dx.doi.org/10.1103/PhysRevB.94.115166
http://dx.doi.org/ 10.1103/PhysRevLett.110.186803
http://dx.doi.org/10.1103/PhysRevB.85.140513
http://dx.doi.org/10.1103/PhysRevB.92.174512
http://dx.doi.org/10.1103/PhysRevB.92.174512
http://dx.doi.org/10.1103/PhysRevB.94.140505
http://dx.doi.org/10.1103/PhysRevB.94.140505
http://arxiv.org/abs/1711.04056

	Effects of gate-induced electric fields on semiconductor Majorana nanowires
	Abstract
	I Introduction
	II Setup and Methods
	A Electrostatics
	B Band structure

	III Results
	A Electrostatics and density distribution
	1 Hexagonal cross section
	2 Slab model

	B Nature of electronic states in strong-coupling limit
	C Superconducting properties at B=0
	D Superconducting properties at finite magnetic fields
	E Effective g-factor
	F Topological phase diagram

	IV Summary and conclusions
	V Acknowledgments
	 References


