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In this work, we obtain the expression, within the linear response approximation, that allows the
direct calculation of the superfluid weight for strongly inhomogeneous superconductors. Using this
expression, we find that, in general, the correction to the superfluid weight due to the response of
the superconductor’s pairing potential to the perturbing vector potential is important in supercon-
ductors with a strongly inhomogeneous pairing potential. We consider two exemplary cases: the
case when strong inhomogeneities in the pairing potential are induced by a periodic potential, and
the case when superconducting vortices are induced by an external magnetic field. For both cases we
show that the correction to the superfluid weight due to the response of the paring potential to the
perturbing vector potential can be significant, it must be included to obtain quantitatively correct
results, and that for the case when vortices are present the expression of the superfluid weight that
does not include such correction returns qualitatively wrong results.

The Meissner effect is the hallmark signature of su-
perconductivity. It is described by the London equation

Jµ = D
(s)
µνAν where Jµ is the µ component of the charge

current, Aν is the ν component of a static, transverse,

long-wavelength, vector potential, and D
(s)
µν is the su-

perfluid weight tensor. This equation shows that the
superfluid weight quantifies the strength of the Meiss-
ner effect, and therefore the “robustness” of the super-

conducting state. As a consequence D
(s)
µν can be seen

as the key quantity that characterizes a superconduc-

tor [1, 2]. In two dimensions (2D) D
(s)
µν is also the quan-

tity that fixes the critical temperature, TBKT , at which
the Berezinskii-Kosterlitz-Thouless (BKT) [3, 4] transi-
tion, between superconducting and normal phase, takes

place. The essential role D
(s)
µν plays in determining the

crucial properties of superconductors makes its correct
and accurate determination very important.

For an isotropic superconductor with an isolated
parabolic band crossing the Fermi energy in the normal
phase, at zero temperature, we have the conventional

result Tr[D
(s)
µν ]/d = e2n/m∗, where d is the number of

dimensions, e is the electron’s charge, n is the electrons’
density, and m∗ is the effective mass. The realization
of superconducting states in magic-angle twisted bilayer
graphene [5–15], for which the bands are extremely flat
so that m∗ → ∞, has made clear the limitations of
the conventional result. In recent years, more general

expressions for D
(s)
µν accounting for the effect of quan-

tum geometry in multi-band superconductors have been
obtained [16–32]. These formulations show how, in flat-
band systems like twisted bilayer graphene, the contri-

bution to D
(s)
µν arising from the quantum geometry can

be dominant [33–38], a result supported by recent ex-
periments [39–41].

In many cases of interest, the pairing potential ∆ can-
not be assumed to be spatially uniform. This is the case,
for instance, when disorder is present [22, 42–46], or
in the presence of superconducting vortices. The pres-
ence of spatial inhomogeneities mixes the system’s re-
sponse to the longitudinal and transverse components

of an external vector potential, a fact that makes the

calculation of D
(s)
µν more challenging [45]. The reason

is that whereas the BCS mean-field treatment, within
the linear response approximation, returns the correct
response of a superconducting system to a transverse
vector field [1, 2, 47], it is known that it returns an
incorrect, gauge-dependent, response to a longitudinal
vector field [47]. This issue was addressed by several pa-
pers [48–57] that pointed out that for the general case,
gauge invariance is restored by taking into account the
vertex corrections for ∆, the so called collective-mode
contributions, i.e., by including the response of ∆ to the
vector field A. Later works considered the role of such
contributions for specific cases [26, 58–65]. In Ref. [20]

an expression for D
(s)
µν was obtained that showed the

importance of such contributions to restore the inde-
pendence with respect to the position of the orbitals of
the long-wavelength, zero frequency electromagnetic re-
sponse of a superconductor. In this work, we obtain an

expression of D
(s)
µν that allows us to treat in a straight-

forward way also the challenging case when the phase of
∆ varies rapidly in space, as is the case of superconduc-
tors with vortices. To verify the accuracy of our expres-
sion we compare its predictions to the results obtained
by calculating, via a numerical self-consistent approach,
the free energy, F , as a function of the perturbing fieldA

and then D
(s)
µν as the second derivative of F with respect

to A: Dµν
s = (1/V )d2F/dAµdAν , where V is the sys-

tem’s volume. We do this for two important exemplary
cases: the case when strong inhomogeneities in ∆ are
induced by a periodic superlattice potential applied to
a 2D superconductor, and the case when superconduct-
ing vortices are induced by an external magnetic field
perpendicular to a 2D superconductor. In both cases we
find that the results obtained by numerically calculat-
ing the second derivative with respect to A of the free
energy are the same as the ones obtained using the de-
rived expression, but can be significantly different from

the ones obtained using the expressions for D
(s)
µν avail-

able in the literature that do not take into account the
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presence of inhomogeneities. For the case when vortices

are present, the expression of D
(s)
µν that does not include

the response of ∆ to A returns a qualitatively wrong re-

sult – it erroneously predicts a finite value of D
(s)
µν even

for an infinite 2D array of unpinned vortices, in contrast
to the expression that we present, that correctly returns
Dµν

s = 0 for this situation [66–68].

We describe the superconducting state using a
Bogoliubov-de Gennes (BdG) effective mean field
Hamiltonian ĤBdG. Given that the goal of this work
is to obtain the correct response of inhomogeneous su-
perconductors to an external vector field, and not the
identification of the many-body ground state, the use
of the BdG approach is very pragmatic: it allows the
modeling of any superconducting state taking as inputs
from experiments the values of the parameters entering
the model. For concreteness, we consider a supercon-
ductor with s-wave pairing originating from an on-site
attractive interaction of strength U > 0. For such a
system

ĤBdG =−
∑
jlσ

tℓjc
†
j+βℓ

j ,σ
cj,σ −

∑
jσ

1

2
(µ− Vj)c

†
j,σcj,σ

−
∑
j

[
∆jc

†
j,↑c

†
j,↓ −

|∆j |2

2U

]
+H.c. (1)

where the subscript j is shorthand for the position vec-
tor rj , σ =↑, ↓ is the spin index, tℓj is the hopping am-

plitude at position rj along the bond βℓ
j , c

†
j,σ (cj,σ) is

the creation (annihilation) operator for an electron at
position rj with spin σ, µ is the chemical potential, Vj
is an applied potential, and ∆j is the pairing potential
at position rj obtained from the self-consistent equation
∆j = U⟨cj,↓cj,↑⟩, where the angle brackets denote equi-
librium expectation values at temperature T . In gen-
eral, the lattice can have a basis and so rj = Ri + bm,
where {Ri} are the position vectors that identify the
lattice and bm are the vectors for the positions of the
basis elements within the primitive cell. βℓ

j are bond
vectors that connect sites within, and between, primi-
tive cells, making the expression of ĤBdG, Eq. (1), very
general. In the remainder, the primitive cell is chosen
so that ∆(rj) = ∆(rj +Ri), and therefore, when ∆ is
inhomogeneous, can be much larger than the crystal’s
primitive cell.

D
(s)
µν relates the strength of the charge current Ĵ to a

static, transverse, vector field A with zero parallel mo-
mentum q∥, and perpendicular momentum q⊥ → 0 [1]:

⟨Ĵµ⟩ = D
(s)
µνAν(q∥ = 0,q⊥ → 0, ω = 0), where ⟨Ĵµ⟩ is

the expectation value of the µ component of the current,

and ω the frequency of the field A. D
(s)
µν can therefore

be obtained by calculating the linear response of Ĵ to
a transverse vector field A. For a tight-binding model,
the presence of the field A can effectively be taken into
account by introducing a Peierls phase for the hopping

parameters: tℓj → tℓje
iA·βℓ

j . In addition, it can induce a
change in the pairing field that, as we will show, cannot
be neglected for inhomogeneous superconductors. Tak-
ing this into account, as was done in Ref. [20], using
Ĵµ = −δĤBdG/δAµ, we find:

Ĵµ(rj) =
∑
ℓ,σ

(
i(βℓ

j)µ t
ℓ
je

iA(rj ,t)·βℓ
jc†

j+βℓ
j ,σ
cj,σ +H.c.

)
+

∑
j′

[
δ∆j′

δAµ(rj)
c†j′,↑c

†
j′,↓ −

1

2U

δ|∆j′ |2

δAµ(rj)
+H.c.

]
(2)

To first order in A we have

Ĵµ = ĴKp
µ + T̂K

µνA
ν + Ĵ∆p

µ + T̂∆
µνA

ν (3)

where ĴKp
µ , T̂K

µνA
ν are the paramagnetic and diamag-

netic currents, respectively, arising from the kinetic en-
ergy part of the BdG Hamiltonian, and Ĵ∆p

µ , T̂∆
µνA

ν

the paramagnetic and diamagnetic currents due to the
change of ∆j induced by A. T̂∆

µνA
ν does not contribute

to ⟨Ĵµ⟩ and to D
(s)
µν (see SM) and so we can neglect it.

Ĵ∆p
µ is given by the second line of Eq. (2) by evaluating

the variational derivatives at A = 0. Ĵ∆p
µ also does not

contribute to ⟨Ĵµ⟩, but it does contribute to D
(s)
µν . As

we show below, its contribution to D
(s)
µν is critical when

∆ is not homogeneous.
To obtain the current response to a vector field with

vanishing momentum q, it is convenient to express the
current in momentum space. By performing the Fourier
transform with respect to Ri we can write

cRi+bm,σ =
1√
Nc

∑
k

cmσ(k)e
ik·bmeik·Ri . (4)

where cmσ(k) (c
†
mσ(k)) is the creation (annihilation) op-

erator for an electron in the state |kmσ⟩ with momen-
tum k, orbital m, and spin σ. The operator c(k)m,σ is
defined apart from an overall phase factor. In writing
Eq. (4) we have chosen this overall phase factor to be
eik·bm , given that this choice allows us to write the full
paramagnetic current operator, in momentum space, in
the limit q → 0, in the compact form:

Ĵp
µ(q → 0) =

1

Nc

∑
kmm′

ψ†
m(k)Imm′µ(k)ψm′(k) + C (5)

where Nc is the number of unit cells, ψ†
m(k) =

(c†m↑(k), c
†
m↓(k)), C is a constant, and

Imm′;µ(k) =

 ∂Hmm′
∂kµ

∣∣
k

δ∆m

δAµ

∣∣
0
δmm′

δ∆∗
m

δAµ

∣∣
0
δmm′ −∂H∗

mm′
∂kµ

∣∣
−k

 (6)

with {Hmm′(k)} the matrix elements, in the basis
{|kmσ⟩}, of the normal state Hamiltonian, Ĥ, and
δ∆m/δAµ

∣∣
0
≡ δ∆m/δAµ(q → 0)|A=0.
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By setting the off-diagonal terms in Imm′;µ(k) equal
to 0 we obtain the matrix IKmm′;µ(k) that, when inserted

in Eq. (5), returns the expression of ĴKp
µ in the limit

q → 0, ω = 0. For the operator T̂K
µνA

ν we obtain

T̂K
µν(q)=−

∑
m,ℓ,σ,k

(βℓ
m)µ(β

ℓ
m)ν

Nc

×
[
tℓme

−ik·βℓ
mc†

m+βℓ
m,σ

(k)cmσ(k + q)

+ tℓ∗me
i(k+q)·βℓ

mc†mσ(k)cm+βℓ
m,σ(k + q)

]
. (7)

The superfluid weight is given by the sum of the para-
magnetic current response Πµν(q → 0, ω = 0) and the

expectation value of the operator T̂K
µν :

D(s)
µν = Πµν(q → 0, ω = 0) + ⟨T̂K

µν⟩. (8)

We have

Πµν(q, 0) =
i

Nc

∫ ∞

0

dt⟨[ĴK,p
µ (q, t), Ĵp

ν (−q, 0)]⟩ (9)

Notice that by replacing in Eq. (9) Ĵp
ν (−q, 0) with

ĴK,p
ν (−q, 0) we recover the expression of Π that neglects

the effect on ∆ of A. In the limit q → 0, ω = 0 we find:

Πµν(q → 0, 0) =
1

Nc

∑
k,ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)

⟨ϕa(k)|IKµ (k)|ϕb(k)⟩⟨ϕb(k)|Iν(k)|ϕa(k)⟩ (10)

where nF is the Fermi-Dirac function, and {Ea},
{|ϕa(k)⟩} are the eigenvalues, eigenvectors, respectively,
of ĤBdG. A key aspect of the expression for Π given by
Eq. (10) is that the matrix Iν(k), Eq. (6), in Nambu
space, has non-zero off diagonal elements δ∆m/δAµ

∣∣
0
.

To obtain the expression of δ∆m/δAµ

∣∣
0
we need to

calculate the response of ∆ to an external vector poten-
tial A. We note that one can treat A as a parameter in
the mean field calculation and use the finite difference
approximation to determine δ∆m/δAµ

∣∣
0
(see the SM).

This approach requires knowledge of the self-consistent
solution for ∆ at finite A as well as A = 0. The lin-
ear response expression of δ∆m/δAµ

∣∣
0
requires only the

solution at A = 0, and is given by:

δ∆m

δAµ

∣∣∣∣
0

=
i

Nc
lim
q→0

∫ ∞

0

dt⟨[∆̂m(q, t), Ĵp
µ(−q, 0)]⟩ (11)

where ∆̂m(q) = U
∑

k cm↓(−k)cm↑(k+ q). Notice that
Eq. (11) is equivalent to the inclusion of the anoma-
lous components of the vertex corrections [47, 69], the
relevant components for the mean-field treatment con-
sidered (see also the discussion on vertex corrections
in the SM). The vertex corrections guarantee that the
expectation value of the full current operator satisfies
the Ward identities, and therefore charge conservation,

even when ∆ is not homogeneous leading to mixing of
responses to transverse and longitudinal vector fields.

Equation (11) leads to a linear equation for
δ∆m/δAµ

∣∣
0
of the form

K

δ∆
(R)
µ

δ∆
(I)
µ

=

(
C

(R)
µ

C
(I)
µ

)
; K =

(
K

(R)
+ −K

(I)
−

K
(I)
+ K

(R)
−

)
(12)

where δ∆(R) and δ∆(I) are the real and imaginary parts

of the vector with components {δ∆m/δAµ

∣∣
0
}, C(R)

µ and

C
(I)
µ are the real and imaginary parts of the vector with

components

(Cµ)m =
1

Nc

∑
k,ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)

⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕb(k)|IKµ (k)|ϕa(k)⟩ (13)

and K
(R/I)
± = A(R/I) ± B(R/I) with A(R/I), B(R/I) the

real/imaginary parts of matrices with elements

Amm′ =
−1

Nc

∑
k,ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)

⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm
′

b (k)|τ+|ϕm
′

a (k)⟩ − 1

U
δmm′

(14)

Bmm′ =
−1

Nc

∑
k,ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)

⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm
′

b (k)|τ−|ϕm
′

a (k)⟩. (15)

In Eqs. (13)-(15), |ϕma (k)⟩ is the component of |ϕa(k)⟩
on orbital m and the τ ’s are Pauli matrices in particle-
hole space. Näıvely δ∆m/δAµ

∣∣
0
can be obtained by in-

verting Eq. (12). However, the square matrixK is singu-
lar, it has rank one less than its dimension. This reflects
the fact that the vector ∆m, and therefore δ∆m/δAµ

∣∣
0

is defined apart from an overall phase α (see SM).
δ∆m/δAµ

∣∣
0
, apart from the overall phase α, can be

obtained by calculating the pseudoinverse of K via a
singular value decomposition (see SM).

Equations (8), (10), (12)-(15) allow the calculation

of the full superfluid weight. We can write D
(s)
µν =

D
(s0)
µν + δDs

µν , where D
(s0)
µν is the value of D

(s)
µν obtained

neglecting the correction due to the response of ∆ to A,
and

δD(s)
µν = 2 Re

[∑
m

(Cµ)m
δ∆∗

m

δAν

∣∣∣∣
0

]
(16)

is the correction due to the changes in the pairing po-
tential induced by A. We note that our result may
be obtained using vertex corrections [47, 51], which

we also discuss in the SM. The correction δD
(s)
µν given

by Eq. (16) is gauge invariant (see SM). To check

that the inclusion of the correction δD
(s)
µν returns the
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FIG. 1. (a) (1/2)Tr(D
(s)
µν ) as a function of V0 without (red

points) and with (blue points) the correction from the re-
sponse of ∆ for a 2D superconductor with ten 12 × 12 unit
cells in both the x and y directions (Nc = 100), t = 1,
µ = −3.5, and U = 3.4. The yellow crosses show the val-
ues obtained by using the second derivative of the free en-
ergy. Inset: color plot showing the spatial profile of |∆j | for
V0 = 0.5. The dashed red box represents one unit cell. (b)
Same as (a) for the case of a superconductor with a vortex
lattice induced a magnetic field Bz = Φ0/144a

2 (Φ0 = h/e).
Inset: profile of |∆j | for V0 = 0. The arrows in the inset
show the direction of the vortices’ motion when a perturb-
ing vector potential A along the x direction is applied.

accurate quantitative value of D
(s)
µν , we compare the

results obtained by combining Eqs. (8), (10), (12)-

(15), and the ones obtained using the relation D
(s)
µν =

(1/V )d2F/dAµdAν . The full derivative of F with re-
spect to A indicates that also the dependence of F on
A through ∆ is included. The derivatives d2F/dAµdAν

are calculated numerically for the ground state that is
obtained solving self-consistently the gap equation.
Figure 1 (a) shows the calculated values of

(1/2)Tr(D
(s)
µν ) for a 2D superconductor on a square lat-

tice with lattice constant a = 1 in the presence of the
periodic potential

V (rj) = −V0
2

[
cos
(2π
M
xj

)
+ cos

(2π
M
yj

)]
(17)

with period M . In Eq.(17) rj = (xj , yj). The potential
has the effect of modulating the density of electrons,
as well as the amplitude of the order parameter ∆j ,
thus rendering the superconductor inhomogeneous; see
the inset of Fig. 1 (a). For V0 = 0 the superconduc-
tor is homogenous, in this case (Cµ)j = 0 (see SM)

making δ∆m/δAµ

∣∣
0
= 0 and therefore D

(s)
µν = D

(s0)
µν .

The results show that, indeed, for V0 = 0 D
(s)
µν , shown

by the blue circles, coincides with D
(s0)
µν , shown by the

red circles, and with the value obtained by calculating
d2F/dAµdAν , yellow crosses. However, for V0 ̸= 0 ∆j is
inhomogeneous and so the correction δDs

µν is non negli-

gible makingD
(s)
µν ̸= D

(s0)
µν , as shown in Fig. 1(a). We see

that for V0 ̸= 0 only the value of D
(s)
µν obtained by tak-

ing into account the corrections due to δ∆m/δAµ

∣∣
0
= 0

agrees with the value of D
(s)
µν obtained by calculating

d2F/dAµdAν .

The corrections to D
(s)
µν due to δ∆m/δAµ

∣∣
0
, i.e., Ĵ∆p

µ ,
become qualitatively very important when vortices are
present. A lattice of unpinned vortices was found to
have vanishing superfluid weight [66, 67]. This can be
understood considering that for a vortex lattice in the
(x, y) plane induced by a background magnetic field Bz

in the direction perpendicular to the plane, for a spa-
tially, perturbing, constant, in-plane, vector potential
A, say along the x direction, the vortices respond by
shifting their position along the y direction, as shown

in the inset of Fig. 1 (b), by an amount ∆y = ℏ
e
|A|
Bz

.
Because this translation costs no free energy, given that
it corresponds to the q → 0 Goldstone mode associated
to the translational symmetry spontaneously broken by

the vortex lattice we have D
(s)
µν = 0.

To study the superfluid weight in the presence of vor-
tices, and a pinning periodic potential with period M
of the form given by Eq. (17), we consider the case of a
2D superconductor on a square lattice in the presence
of a perpendicular background magnetic field Bz [70]
(see SM for details). In Fig. 1 (b) we show the results

for D
(s0)
µν , D

(s)
µν obtained taking into account the cor-

rection δDs
µν , and D

(s)
µν obtained by taking the second

derivative of F with respect to A. The results show
that for V0 = 0, even though an unpinned vortex lattice

is present, D
(s0)
µν is finite and quite large (red circles in

the figure), of the same order as for the case of a super-
conducting state with no vortices (see Fig. 1 (a)). This
contrasts with the expectation that superfluid weight

should vanish. The inclusion of the correction δD
(s)
µν

leads to D
(s)
µν = 0 (blue circles), the correct value in the

presence of an unpinned vortex lattice, the same value

that we find by calculating D
(s)
µν as the second derivative

of F with respect to A (yellow crosses). This is one of
the key results of the present work: it shows that in the

presence of vortices the correction to D
(s)
µν due to the re-

sponse of ∆j to A is essential to obtain the qualitatively
correct value of the superfluid weight. As V0 increases,

and the vortices start getting pinned, D
(s)
µν also increases

from zero and starts getting closer to the value of D
(s0)
µν .

Notice, however, that even for V0 = 0.5t, the value of

D
(s0)
µν is still about 60% larger than the value given by
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the full expression of D
(s)
µν , value that coincides with the

one obtained by calculating the second derivative of F
with respect to A.

In summary, we have obtained an expression within

linear response theory for the superfluid weight D
(s)
µν

designed for strongly inhomogeneous superconductors.
We find that the corrections due to the response of the
superconducting order parameter to the external vector
potential Aplay a significant role for superconducting
states for which the superconducting pairing is inho-
mogeneous. For the case of a superconducting vortex
lattice with no pinning potential, we find that such cor-
rections are essential to obtain the expected result of
zero superfluid weight, showing the importance of such
corrections for this experimentally very relevant case.
For two-dimensional systems, the results presented show
the importance of the response of the superconduct-
ing order parameter to the external vector potential
A when calculating the critical temperature TBKT for
the Berezinskii-Kosterlitz-Thouless phase transition of
an inhomogeneous superconductor, given the connec-

tion between D
(s)
µν and TBKT .
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Bernevig, and P. Törmä, Physical Review B 106,
014518 (2022), publisher: APS.

[21] J. Herzog-Arbeitman, V. Peri, F. Schindler, S. D. Hu-
ber, and B. A. Bernevig, Physical Review Letters 128,
087002 (2022), publisher: American Physical Society.

[22] A. Lau, S. Peotta, D. Pikulin, E. Rossi, and T. Hyart,
SciPost Physics 13, 086 (2022).
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[24] P. Törmä, Physical Review Letters 131, 240001 (2023).
[25] A. Bouhon, A. Timmel, and R.-J. Slager, arXiv preprint

arXiv:2303.02180 (2023).
[26] M. Tam and S. Peotta, Physical Review Research 6,

013256 (2024).
[27] N. Verma, D. Guerci, and R. Queiroz, Physical Review

Letters 132, 236001 (2024).
[28] D. Kaplan, K. P. Lucht, P. A. Volkov, and J. H. Pixley,

Quantum geometric photocurrents of quasiparticles in
superconductors (2025), arXiv:2502.12265 [cond-mat].

[29] J. Yu, J. Herzog-Arbeitman, and B. A. Bernevig,
Universal Wilson loop Bound of Quantum Geome-
try: $Z 2$ Bound and Physical Consequences (2024),
arXiv:2501.00100 [cond-mat].
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Hamiltonian

Let us suppose our system is defined on a lattice with sites {rj}, where the site/orbital labels are j, and with
bonds described by a set of vectors {βℓ

j} that start at site j, are labelled at each j by the label ℓ, and where

Arg(βℓ
j) ∈ (−π/2, π/2] in 2D. The latter condition is so that we consider “forward hopping” only. We take care

of backward hopping, at the same time as ensuring Hermiticity, by adding the Hermitian conjugate of the forward
hopping terms to the Hamiltonian. If two orbitals reside in the same location, one can unambiguously define βℓ

j via
point-splitting. We include an on-site superconducting pairing, originating from an on-site attractive interaction of
magnitude U > 0. The mean field Hamiltonian is

ĤMF = −
∑
j,ℓ,σ

(
tℓjc

†
j+βℓ

j ,σ
cj,σ +H.c.

)
−
∑
j,σ

(µ− Vj) c
†
j,σcj,σ −

∑
j

(
∆jc

†
j,↑c

†
j,↓ +∆∗

jcj,↓cj,↑ −
|∆j |2

U

)
(18)

where the subscript j is shorthand for the position vector rj , the complex hopping amplitude along bond βℓ
j is tℓj ,

the chemical potential is µ, Vj is an applied potential, and, at zero temperature, ∆j = U⟨cj,↓cj,↑⟩ with the angle
bracket denoting equlibrium expectation values at temperature T . These are the self-consistency equations.
Suppose that the system possesses a translational invariance by vectors a1,a2 (specializing for 2D here). We may

then define unit cells whose locations we specify by Ri = ma1 + na2 with m,n ∈ Z. The position of any orbital
can then be given by

rj = Ri + bm (19)

where bm specifies the location of the orbital within the unit cell. The bonds and the hopping amplitudes then
possess this translational invariance:

βℓ
j+R = βℓ

j (20)

tℓj+R = tℓj (21)

where the subscript j +R is shorthand for rj +Ri. We will also suppose that the solution to the self-consistency
equations possesses this same periodicity:

∆j+R = ∆j (22)
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We thus perform the Fourier transformation

cjσ =
1√
Nc

∑
k

cm,σ(k)e
ik·rj (23)

where m is shorthand for r̃j . Using the basis of Nambu spinors

Ψ̂(k) =



c1,↑(k)
...

cN,↑(k)

c†1,↓(−k)
...

c†N,↓(−k)


(24)

with N the number of sites/orbitals per unit cell, the Hamiltonian (18) can then be cast in Bogoliubov-de Gennes
(BdG) form:

ĤMF =
∑
k

Ψ̂†(k)HBdG(k)Ψ̂(k) +
∑
k

Tr[H(k)] +
|∆j |2

U
(25)

where

HBdG(k) =

(
H(k) −∆
−∆∗ −H∗(−k)

)
(26)

is the BdG Hamiltonian, H(k) is the normal state Hamiltonian, and

∆ =


∆1 0 0 · · · 0
0 ∆2 0 · · · 0
0 0 ∆3 · · · 0
...

...
...

. . .
...

0 0 0 · · · ∆N

 (27)

Current Operator

In this Supplementary Materials, A will refer to a probe electromagnetic potential. The orbital effect of any
background magnetic field is accommodated in the model by the complex hopping amplitudes tℓj . To determine the
current, we must specify how the system couples to an external vector potential A(r, t). We suppose the hopping
part of the Hamiltonian couples via a Peierls substitution

tℓj → exp
(
iϕℓj
)
tℓj (28)

where

ϕℓj =

∫ rj+βℓ
j

rj

A(r, t) · dr (29)

Notice that this change in the hopping amplitudes leads to a change in the groundstate |G⟩ which in general leads
to a change in ∆j . We will compute this change in later sections. We choose the path of integration to be the
straight line connecting rj to rj + βℓ

j given by the vector βℓ
j .

The system only couples to the average value of A(r, t) along the bonds. This is because∫ rj+βℓ
j

rj

A(r, t) · dr = Aℓ
j(t) · βℓ

j (30)

where Aℓ
j(t) denotes the average value of A(r, t) along bond βℓ

j . The current along bond βℓ
j (the current in lattice

models is defined on the bonds) is given by
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Ĵ ℓ
j = −δĤMF

δAℓ
j

=
∑
σ

(
iβℓ

j t
ℓ
je

iϕℓ
jc†

j+βℓ
j ,σ
cj,σ +H.c.

)
+
∑
i

(
δ∆i

δAℓ
j

c†i,↑c
†
i,↓ +

δ∆∗
i

δAℓ
j

ci,↓ci,↑ −
1

U

δ|∆i|2

δAℓ
j

)
(31)

= βℓ
j

∑
σ

(
itℓje

iϕℓ
jc†

j+βℓ
j ,σ
cj,σ +H.c.

)
+ βℓ

j

∑
i

(
δ∆i

δϕℓj
c†i,↑c

†
i,↓ +

δ∆∗
i

δϕℓj
ci,↓ci,↑ −

1

U

δ|∆i|2

δϕℓj

)
(32)

≡ Ĵ ℓK
j + Ĵ ℓ∆

j (33)

The first sum in (32) is denoted Ĵ ℓK
j and is the contribution of the current coming from the kinetic energy. The

second sum, which is the contribution of the current from the pairing potential, is denoted Ĵ ℓ∆
j . The distinction

between these two contributions, which we may call kinetic current and pairing current, respectively, will play an
important role in this SM. We see explicitly that the current is directed along the bonds. We have also taken the
chemical potential to be fixed.

We make a few additional comments on (32):

1. In general, δ∆j/δϕ
ℓ
j′ ̸= 0 for j ̸= j′. For example, when varying ϕℓj , we should at the very least expect the

pairing potential ∆i to respond at the starting and ending sites of the bond βℓ
j .

2. The self-consistency equations imply that the average pairing current vanishes
〈
Ĵ ℓ∆
j

〉
≡ 0. Thus the average

current is given by the average kinetic current〈
Ĵ ℓ
j

〉
= βℓ

j

∑
σ

(
itℓje

iϕℓ
j

〈
c†
j+βℓ

j ,σ
cj,σ

〉
+ c.c.

)
=
〈
Ĵ ℓK
j

〉
(34)

However, the pairing current does contribute to current correlations in the system, as we shall see.

If we are only interested in the responses of the system to vector potentials which vary slowly in space compared
to the length of the bonds, we may replace Aℓ

j → A(rj , t), up to negligible error of O
(
|βℓ

j |/λ
)
, where λ is the

characteristic length scale of variations in A(r, t). We can then meaningfully define the current at the lattice sites
by

Ĵµ(rj) = − δĤMF

δAµ(rj)
=
∑
ℓ,σ

(
i(βℓ

j)µ t
ℓ
je

iA(rj ,t)·βℓ
jc†

j+βℓ
j ,σ
cj,σ +H.c.

)
+
∑
j′

(
δ∆j′

δAµ(rj)
c†i,↑c

†
i,↓ +

δ∆∗
j′

δAµ(rj)
ci,↓ci,↑ −

1

U

δ|∆j′ |2

δAµ(rj)

)
≡ ĴK

µ (rj) + Ĵ∆
µ (rj)

(35)

If the system is perturbed by a vector potential of the form Aµ(r, t) = Aµ(q, t)e
−iq·r then the corresponding

coupling is

∑
j,µ

δĤMF

δAµ(rj , t)
Aµ(q, t)e

−iq·rj = −
∑
µ

Aµ(q, t)
∑
j

Ĵµ(rj , t)e
−iq·rj = −

∑
µ

Aµ(q, t)Ĵµ(q, t) (36)

where µ is a spatial index (µ = x, y, . . .). Thus

Ĵµ(q) =
∑
j,ℓ,σ

(
i(βℓ

j)µ t
ℓ
je

iA(rj ,t)·βℓ
jc†

j+βℓ
j ,σ
cj,σ +H.c.

)
e−iq·rj

+
∑
j,j′

(
δ∆j′

δAµ(rj)
c†i,↑c

†
i,↓ +

δ∆∗
j′

δAµ(rj)
ci,↓ci,↑ −

1

U

δ|∆j′ |2

δAµ(rj)

)
e−iq·rj

≡ ĴK
µ (q) + Ĵ∆

µ (q)

(37)
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Paramagnetic Current

It is useful to decompose the current into paramagnetic and diamagnetic components

Ĵµ(q) = Ĵp
µ(q) + T̂µν(q)Aν(q) (38)

where there is an implied sum over ν. Both Ĵp
µ(q) and T̂µν(q) admit further decomposition into kinetic and pairing

contributions, as in the previous section. The kinetic component of the paramagnetic current is

ĴK,p
µ (q) =

∑
j,ℓ,σ

(
i(βℓ

j)µ t
ℓ
jc

†
j+βℓ

j ,σ
cj,σ − i(βℓ

j)µ t
ℓ∗
j c

†
j,σcj+βℓ

j ,σ

)
e−iq·rj (39)

=
i

Nc

∑
m,ℓ,σ

∑
k

(βℓ
m)µ

[
tℓme

−ik·βℓ
mc†

m+βℓ
mσ

(k)cmσ(k + q)− tℓ∗me
i(k+q)·βℓ

mc†mσ(k)cm+βℓ
mσ(k + q)

]
(40)

where we have used (23).
The pairing contribution to the paramagnetic current is

Ĵ∆,p
µ (q) =

∑
j′

∑
j

δ∆j′

δAµ(rj)

∣∣∣∣∣
A=0

e−iq·rj

 c†j′,↑c
†
j′,↓ +

∑
j

δ∆∗
j′

δAµ(rj)

∣∣∣∣∣
A=0

e−iq·rj

 cj′,↓cj′,↑ −

∑
j

1

U

δ|∆j′ |2

δAµ(rj)

∣∣∣∣∣
A=0

e−iq·rj


=
∑
j′

[
δ∆j′

δAµ(q)

∣∣∣∣∣
A=0

c†j′,↑c
†
j′,↓ +

δ∆∗
j′

δAµ(q)

∣∣∣∣∣
A=0

cj′,↓cj′,↑ −
1

U

δ|∆j′ |2

δAµ(q)

∣∣∣∣∣
A=0

]
(41)

where the derivatives with respect to A are evaluated at A = 0. Hereafter, all derivatives with respect to A will
be evaluated at A = 0; thus, we omit the evaluation symbol on the derivatives from now on. We have used that
the variation δ∆j′ with respect to a vector potential of the form δAµ(r, t) = δAµ(q, t)e

−iq·r is

δ∆j′ =
∑
j′

δ∆j′

δAµ(rj)
δAµ(q, t)e

−iq·rj (42)

so that ∑
j

δ∆j′

δAµ(rj)
e−iq·rj =

δ∆j′

δAµ(q)
(43)

Recall that we have assumed that ∆j at A = 0 is periodic with the same periodicity as the hopping amplitudes tℓj ,
i.e. we can still define a unit cell by the vectors a1,a2 (in 2D) in the presence of pairing. More generally we take
∆i to be periodic, and take its period to be commensurate with that of the hopping amplitudes. This situation
requires a modification of a1,a2, but otherwise no generality is lost. Thus ∆j is only a function of the intra-unit
cell label. In other words,

∆j = ∆m (44)

From this, it follows that
δ∆j′

δAµ(q)
can be written as a periodic function times a plane wave:

δ∆j′

δAµ(q)
=

δ∆m

δAµ(q)
e−iq·Ri (45)

Thus the pairing contribution to the current, after using (23), is

Ĵ∆,p
µ (q) =

1

Nc

∑
m,k

[
δ∆m

δAµ(q)
c†m,↑(k)c

†
m,↓(−k − q) +

δ∆∗
m

δAµ(q)
cm,↓(−k)cm,↑(k + q)

]
−
∑
j

1

U

δ|∆j |2

δAµ(q)
(46)

The paramagnetic current is then

Ĵp
µ(q) =

i

Nc

∑
m,ℓ,σ

∑
k

(βℓ
m)µ

[
tℓme

−ik·βℓ
mc†

m+βℓ
mσ

(k)cmσ(k + q)− tℓ∗me
i(k+q)·βℓ

mc†mσ(k)cm+βℓ
mσ(k + q)

]
+

1

Nc

∑
m,k

[
δ∆m

δAµ(q)
c†m,↑(k)c

†
m,↓(−k − q) +

δ∆∗
m

δAµ(q)
cm,↓(−k)cm,↑(k + q)

]
−
∑
i

1

U

δ|∆i|2

δAµ(q)
(47)
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It is convenient to write the kinetic part of the current operator in the following way (what follows is merely a
matter of convenient notation)

ĴK,p
µ (q) =

1

Nc

∑
k,σ

∑
mm′

Jmm′;µ(k, q)c
†
mσ(k)cm′σ(k + q)

=
1

Nc

∑
k

∑
mm′

[
Jmm′;µ(k, q)c

†
m↑(k)cm′↑(k + q)− Jm′m;µ(−k − q, q)cm↓(−k)c†m′↓(−k − q)

]
+ c-numbers

(48)

where m and m′ are site/orbital labels. The matrix elements Jmm′;µ(k, q) can be read off from (47). Now,
Hermiticity of the current operator implies Jm′m;µ(−k − q, q) = Jmm′;µ(−k,−q)∗. Thus the total paramagnetic
current can be written in the basis

ψm(k) =

(
cm↑(k)

c†m↓(−k)

)
as

Ĵp
µ(q) =

1

Nc

∑
k

∑
mm′

ψ†
m(k)

(
Jmm′;µ(k, q)

δ∆m

δAµ(q)
δmm′

δ∆∗
m

δAµ(q)
δmm′ −J∗

mm′;µ(−k,−q)

)
ψm′(k + q) + c-numbers

≡ 1

Nc

∑
k

∑
mm′

ψ†
m(k)Imm′;µ(k, q)ψm′(k + q) + c-numbers

(49)

where

Imm′;µ(k, q) =

(
Jmm′;µ(k, q)

δ∆m

δAµ(q)
δmm′

δ∆∗
m

δAµ(q)
δmm′ −J∗

mm′;µ(−k,−q)

)
(50)

It is convenient to do the same for the kinetic current only:

ĴK,p
µ (q) =

1

Nc

∑
k

∑
mm′

ψ†
m(k)IKmm′;µ(k, q)ψ

′
m(k + q) + c-numbers (51)

where

IKmm′;µ(k, q) =

(
Jmm′;µ(k, q) 0

0 −J∗
mm′;µ(−k,−q)

)
(52)

Diamagnetic Current

The diamagnetic current should also be computed in order to calculate the linear response to an electromagnetic
field. The diamagnetic current is obtained by carrying out the expansion in A to linear order in (37) and going over
to momentum space. The result for the prefactor of Aν(q) coming from the kinetic current in such an expansion is

T̂K
µν(q) = − 1

Nc

∑
m,ℓ,σ

∑
k

(βℓ
m)µ(β

ℓ
m)ν

[
tℓme

−ik·βℓ
mc†

m+βℓ
mσ

(k)cmσ(k + q) + tℓ∗me
i(k+q)·βℓ

mc†mσ(k)cm+βℓ
mσ(k + q)

]
(53)

There is also a pairing contribution T̂∆
µν(q). However, since ⟨Ĵ∆

µ (q)⟩ ≡ 0, this term does not contribute to the
response of the current, and thus is irrelevant for our calculation of the superfluid weight.

Superfluid Weight

The superfluid weight may be computed by calculating the response of the current ⟨Ĵµ⟩ ≡ ⟨ĴK
µ ⟩ to a static vector

potential (ω = 0) in the long wavelength limit (q → 0) [1, 2]

δ⟨Ĵµ(q → 0, ω = 0)⟩ ≡ δ⟨ĴK
µ (q → 0, ω = 0)⟩ = D(s)

µνAν(q = 0, ω = 0) (54)
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where

D(s)
µν =

〈
T̂K
µν(q = 0, ω = 0)

〉
+ lim

q→0
Πµν(q, ω = 0) (55)

We will see that the pairing potential modifies the paramagnetic current-current correlation function Πµν(q, ω).

Paramagnetic Current-Current Correlation Function

We will compute the paramagnetic current-current correlation function while taking into account the dependence
of the pairing potential on Aµ(q). We compute the following response function in imaginary time τ :

Πµν(q, τ) = − 1

Nc

〈
Tτ ĴK,p

µ (q, τ)Ĵp
ν (−q, 0)

〉
(56)

The time-ordering symbol in imaginary time is Tτ . Note that the first factor in the expectation value above is the
kinetic current operator ĴK,p

µ , since we are computing the response of ⟨ĴK
µ ⟩, whereas the second factor is the full

current Ĵp
µ = ĴK,p

µ + Ĵ∆,p
µ , since the vector potential couples to the full current.

The response function may be represented in the Matsubara frequency domain, using (49), as

Πµν(q, iωn) =
1

βNc

∑
mm′ll′

∑
k,ikn′

Tr

[
Gm′l′(k, ikn′) · IKl′l;µ(k, q) · Glm(k + q, ikn′ + iωn) · Imm′;ν(k + q,−q)

]
(57)

The centered dots indicate matrix multiplication in particle/hole space and G can be expressed in the basis

ψm(k) =

(
cm↑(k)

c†m↓(−k)

)
(58)

as

Gmm′(k, ikn′) = −
∫ β

0

dτ
〈
Tτψm(k, τ)ψ†

m′(k, 0)
〉
eikn′τ (59)

which is a 2 × 2 matrix-valued Green’s function; α and β label the orbital/site within the unit cell. ωn = 2πn/β
is a bosonic frequency and kn′ = (2n′ + 1)π/β is a fermionic frequency. It is convenient to express G in terms of
eigenstates |ϕa(k)⟩ with particle and hole components at site/orbital m

|ϕma (k)⟩ =
(
uma (k)
vma (k)

)
(60)

and energies Ea(k) of the BdG Hamiltonian as

Gmm′(k, ikm) =
∑
a

|ϕma (k)⟩⟨ϕm′

a (k)|
ikn′ − Ea(k)

(61)

Inserting this into (57) and doing the sum over kn′ , we obtain, in the static limit ωn = 0,

Πµν(q, iωn = 0) =
1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k + q))

Ea(k)− Eb(k + q)
⟨ϕa(k)|IKµ (k, q)|ϕb(k + q)⟩ (62)

×⟨ϕb(k + q)|Iν(k + q,−q)|ϕa(k)⟩

Where we have introduced the shorthand notation ⟨ϕb(k)|M |ϕa(k′)⟩ =
∑

mm′⟨ϕmb (k)|Mmm′ |ϕm′

a (k′)⟩ We then take
the limit q → 0, where Imβ;µ(k, q → 0) may be expressed as

Imm′;µ(k, 0) =

 ∂Hmm′
∂kµ

∣∣
k

δ∆m

δQµ
δmm′

δ∆∗
m

δQµ
δmm′ −∂H∗

mm′
∂kµ

∣∣
−k

 (63)
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where H is the normal state Hamiltonian. We have called Aµ(q = 0) = Qµ. Note that δ∆m

δQµ
≡ δ∆m

δAµ

∣∣∣
0
from the

main text. We have

Πµν(q → 0, iωn = 0) =
1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩⟨ϕb(k)|Iν(k, 0)|ϕa(k)⟩ (64)

Note that the limit q → 0 implies that nF (Ea(k))−nF (Eb(k))
Ea(k)−Eb(k)

should be understood as ∂nF

∂E whenever Eb(k) = Ea(k).

Calculating the Response of ∆

In order to complete the calculation, we need to compute δ∆m

δQµ
. This can be done in a number of ways including

finite difference as mentioned in the main text (also see below), differentiating the gap equations directly, solving
the Bethe-Salpeter equation for the vertex correction, or using linear response. Here, we use linear response. The
operator ∆̂m can be written in Nambu form by writing

∆̂m(q) = U
∑
k

cm,↓(−k)cm,↑(k + q) = U
∑
k

∑
ll′

ψ†
l (k) · M

m
ll′ · ψl′(k + q) (65)

where Mm
ll′ = δll′δl,mτ− and τ− = 1

2 (τx− iτy) where τx and τy are the Pauli x and y matrices in particle/hole space.
The centered dots indicate matrix multiplication in particle/hole space. We compute the response function

δ∆m

δAµ(q, τ)
=

1

Nc

〈
Tτ ∆̂m(q, τ)Jp

µ(−q, 0)
〉

=
U

Nc

∑
kk′

∑
pll′p′

〈
Tτψ†

p(k, τ) · Mm
pl · ψl(k + q, τ)ψ†

l′(k
′, 0) · Il′p′;µ(k

′,−q) · ψp′(k′ − q, 0)
〉 (66)

We have assumed that ⟨∆m(q)⟩ = 0 for q ̸= 0 and
〈
Jp
µ(q = 0)

〉
= 0 (i.e. the total current vanishes in the

groundstate). The above may be expressed in Matsubara frequency space as

δ∆m

δAµ(q, iωn)
= − U

βNc

∑
pp′ll′

∑
k,ikn′

Tr

[
Gp′l′(k, ikn′) · Mm

l′l · Glp(k + q, ikn′ + iωn) · Ipp′;µ(k + q,−q)

]

= − U

βNc

∑
pp′

∑
k,ikn′

Tr

[
Gp′m(k, ikn′) · τ− · Gmp(k + q, ikn′ + iωn) · Ipp′;µ(k + q,−q)

] (67)

We follow the steps leading to (64), and we find

δ∆m

δQµ
= − U

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|Mm|ϕb(k)⟩⟨ϕb(k)|Iµ(k, 0)|ϕa(k)⟩ (68)

= − U

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕb(k)|Iµ(k, 0)|ϕa(k)⟩ (69)

This is an equation in δ∆m

δQµ
since this quantity also appears in the right hand side as

Iµ(k, 0) ≡ IKµ (k, 0) +
∑
m

(
δ∆m

δQµ
MmT +

δ∆∗
m

δQµ
Mm

)
(70)

where

IKµ (k, 0) ≡ IKµ (k) =

(
∂H
∂kµ

∣∣
k

0

0 −∂H∗

∂kµ

∣∣
−k

)
(71)
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Plugging this in to the right hand side gives

δ∆m

δQµ
=− U

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕb(k)|IKµ (k)|ϕa(k)⟩

− U

Nc

∑
m′

δ∆m′

δQµ

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm

′

b (k)|τ+|ϕm
′

a (k)⟩

− U

Nc

∑
m′

δ∆∗
m′

δQµ

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm

′

b (k)|τ−|ϕm
′

a (k)⟩ (72)

where τ+ = 1
2 (τx + iτy). This may be written in the following form

(Cµ)m =
∑
m′

(
Amm′

δ∆m′

δQµ
+ Bmm′

δ∆∗
m′

δQµ

)
(73)

where

Amm′ = − 1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm

′

b (k)|τ+|ϕm
′

a (k)⟩ − 1

U
δmm′

Bmm′ = − 1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm

′

b (k)|τ−|ϕm
′

a (k)⟩

(Cµ)m =
1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕb(k)|IKµ (k)|ϕa(k)⟩

(74)

The vector Cµ corresponds to the first term on the right hand side of (72).
The equation (73) is singular. This follows from gauge invariance. Consider a small rotation of the phase of ∆j

∆j → eiα∆j ≈ (1 + iα)∆j (75)

where α≪ 1. We may think of this as perturbing the Hamiltonian (18) with

Ĥ′ = −iα
∑
j

(
∆jc

†
j,↑c

†
j,↓ −∆∗

jcj,↓cj,↑

)
(76)

We then compute the response of the pairing potential ∆i to this static perturbation. On the one hand, the answer
is clear, it is

δ∆m = iα∆m (77)

On the other hand, the response δ∆m follows from the static linear response formula, which may be written as

δ∆m =
U

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|Mm|ϕb(k)⟩⟨ϕb(k)|

(
−iαMmT∆m + iαMm∆∗

m

)
|ϕa(k)⟩

=U
∑
m′

(
Amm′ +

1

U
δmm′

)
(iα∆m′)− U

∑
mm′

Bmm′(iα∆∗
m′)

(78)

Combining (77) and (78), we have ∑
m′

(Amm′∆m′ − Bmm′∆∗
m′) = 0 (79)

(This may be viewed as a Ward identity obeyed by the pairing susceptibility.) Thus, for any solution
δ∆ĩ

δQµ
of (73),

we may construct another solution

δ∆ĩ

δQµ
→ δ∆ĩ

δQµ

′
=
δ∆ĩ

δQµ
+ iα∆ĩ (80)

since according to (79), the additional term is “projected out.” The response (77) corresponds to the Goldstone
mode, as is clear from (75). The matrix pseudoinverse is convenient for finding a representative solution of a singular
equation such as (73).
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Correction to the Superfluid Weight

Once δ∆m

δQµ
is determined, we may compute the correction to the superfluid weight. It is expedient to write

(Ds)µν =
〈
T̂K
µν(q = 0, ω = 0)

〉
+

1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩⟨ϕb(k)|Iν(k, 0)|ϕa(k)⟩

=
(
D(0)

s

)
µν

+
1

Nc

∑
k

∑
ab

∑
m

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩⟨ϕb(k)|

(
δ∆m

δQν
MmT +

δ∆∗
m

δQν
Mm

)
|ϕa(k)⟩

=
(
D(0)

s

)
µν

+ 2 Re

[∑
m

(Cµ)m
δ∆∗

m

δQν

]
(81)

where (
D(0)

s

)
µν

=
〈
T̂K
µν(q = 0, ω = 0)

〉
+Π(0)

µν (q → 0, iωn = 0) (82)

is the usual formula for the superfluid weight and

Π(0)
µν (q → 0, iωn = 0) =

1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩⟨ϕb(k)|IKν (k, 0)|ϕa(k)⟩ (83)

Therefore the correction to the superfluid weight due to the response of the pairing potential is

(δDs)µν = 2 Re

[∑
m

(Cµ)m
δ∆∗

m

δQν

]
(84)

=
1

Nc

∑
k

∑
ab

∑
m

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩ (85)

×
(
δ∆m

δQν
⟨ϕmb (k)|τ+|ϕma (k)⟩+ δ∆∗

m

δQν
⟨ϕmb (k)|τ−|ϕma (k)⟩

)
(86)

where we have used the expression for Cµ is given in (74). Eq. (85) is the response of the current due to the change
in the pairing potential induced by a “twist” Q.

Example: Uniform Superconductor

We show that (δDs)µν vanishes for a uniform s-wave system. It is sufficient to show that Cµ vanishes. The
Hamiltonian is

H =
∑
kσ

ξkc
†
kσckσ −∆

∑
k

c†k↑c
†
−k↓ −∆∗

∑
k

c−k↓ck↑ (87)

where V is the volume of the system. Let us take ∆ to be real. The Green’s function is then

G(k, ikn) =
ikn + ξkτ3 +∆τ1

(ikn)2 − E2
k

(88)

where E2
k = ξ2k +∆2. It is convenient to express Cµ as

Cµ = − 1

βV
lim
q→0

∑
k,ikn

(∂µξk) Tr [τ− · G(k + q, ikn) · G(k, ikn)]

= − 1

V

∑
k

(∂µξk)
∆

2Ek
(n′F (Ek)− n′F (−Ek))

= 0

(89)

where ∂µ = ∂/∂kµ. The last equality follows from the fact that n′F (−Ek) = n′F (Ek). Thus the correction (85)
vanishes, and a spatially non-uniform system is required for the correction to be non-zero.
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Relation to Vertex Corrections

We briefly sketch how our result may be obtained using current vertex corrections in the Nambu basis. In a
superconductor, the photon vertex function Γµ describes the coupling of the system to the electromagnetic vector
potential Aµ. This can be related to the bare vertex γµ (e.g., determined through minimal or Peierls substitution),
and the correction arising from interactions encoded in the self-energy Σ:

Γµ − γµ =
δΣ

δAµ
. (90)

In terms of Green’s functions, the electromagnetic kernel is expressed as:

Πµν(q) = −iTr
[∫

d4k γµ(k + q, k)G(k) Γν(k, k + q)G(k + q)

]
, (91)

where G(k) is the full Green’s function in the Nambu basis. The self-energy Σ may depend on Aµ, either directly,
or indirectly through the order parameter. Indeed, in BCS/BdG theory, the self-energy in the Nambu basis is given
by

Σ(k) =

(
0 ∆(k)

∆†(k) 0

)
(92)

Thus the correction to the electromagnetic kernel is patently given by a term proportional to δ∆/δAµ. One may
solve for this correction using the Bethe-Salpeter equation, and it can be shown that this formulation respects gauge
invariance via the generalized Ward identity [47].

Gauge Invariance

Physical observables, in particular the correction to the superfluid weight arising from the fluctuations in ∆, must
be invariant under global U(1) gauge transformations. This implies that the overall phase of the {∆m(Q)} can
vary in an arbitrary way as a function of the probe field Q. To clarify the point at issue, let us suppose that there
exists a choice of the overall phase such that {∆m(Q)} are smooth functions of Q in the neighborhood of Q = 0.
We may thus approximate

δ∆m

δQi
≈ ∆m(δQêi)−∆m(0)

δQ
(93)

for δQ sufficiently small. This approximation for determining δ∆m

δQi
may be most convenient when one has nu-

merical solutions of {∆m(Q)} for various Q. However, numerical solutions of {∆m(Q)} are not guaranteed to
possess a smoothly varying phase as a function of Q. This is especially salient in systems with vortices, where
the singular nature of the phase around vortex cores means that, in general, the phase does not vary smoothly.
Let us suppose that the numerical solution {∆′

m(Q)} differs from the smooth solution {∆m(Q)} by a phase:
∆′

m(δQêi) = ∆m(δQêi)e
iθ(δQêi) and ∆′

m(0) = ∆m(0). Then, using the approximation Eq. (93), we would find

δ∆′
m

δQi
≈ ∆′

m(δQêi)−∆′
m(0)

δQ
=

∆m(δQêi)e
iθ(δQêi) −∆m(0)

δQ
(94)

≈
(
eiθ(δQêi) − 1

δQ

)
∆m(0) +

δ∆m

δQi
(95)

Again, since smoothness is not guaranteed, eiθ(δQêi) − 1 need not be small. Therefore, in order that the result

for δDs be gauge invariant, it should return the same result whether
δ∆′

m

δQi
or δ∆m

δQi
is substituted into the formula.

Equivalently, it should “project out” terms of the form zi∆m(0) where zi =
eiθ(δQêi)−1

δQ is a (large) complex number.
We note that this is more restrictive than standard discussions of gauge invariance, since we allow arbitrarily

rapid phase variations in the order parameter. This is essential for computing δ∆m/δQi via finite difference
approximation. In contrast, solutions to Eq. (73) are defined modulo a constant corresponding to an imaginary
zi (see Eq. (80)). This corresponds to the collective mode which is projected out, according to the generalized
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Ward identity (see previous section), thus ensuring gauge invariance. However, when using the finite difference
approximation, both real and imaginary components of zi must be projected out, as we have argued in the previous
paragraph. We will argue that Eq. (84) is gauge-invariant in this latter sense. As we have mentioned below Eq. (84),
δDs is determined by the response of the current due to the change in the pairing potential. In other words, it is
determined by the crossed susceptibility χJ,∆. Using this identification of the correction to the superfluid stiffness
with the current-pairing susceptibility, we may see why it is gauge invariant according to the discussion above,
provided scaling the pairing potential by a complex number produces no total current response in equilibrium.
Consider an inhomogeneous superconductor described by a position-dependent pairing potential ∆(r). The current
density J(r) in such a system is given by

J(r) ∝ Im (∆∗(r)(∇+ 2iA)∆(r)) , (96)

where ∆(r) = |∆(r)|eiθ(r) is the complex pairing potential. In equilibrium, the total current is zero:

Jtot =

∫
J(r) dr = 0, (97)

We now scale the pairing potential by a complex number z = |z|eiϕ. The scaled pairing potential is

∆′(r) = z∆(r) = |z|eiϕ∆(r) = |z||∆(r)|ei(θ(r)+ϕ). (98)

To determine the effect of this scaling on the current density, we compute the new current density J ′(r) for the
scaled pairing potential:

J ′(r) ∝ Im ((∆′(r))∗(∇+ 2iA)∆′(r)) . (99)

Therefore, the new current density is

J ′(r) ∝ Im
(
|z|2∆∗(r)(∇+ 2iA)∆(r)

)
= |z|2Im (∆∗(r)(∇+ 2iA)∆(r)) = |z|2J(r). (100)

Since Jtot = 0, it follows that

J ′
tot = |z|2Jtot = 0. (101)

Thus, the change in the total current (the induced current response) due to scaling the pairing potential is

δJtot = 0. (102)

We have verified numerically that Eq. (84) projects out δ∆m

δQi
= zi∆m, and that it gives the same result under

arbitrary variations in the phase θ(q), in the ground state for all cases studied in this work, thus achieving gauge
invariance.
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FIG. 2. The energy as a function of Qx for the system corresponding to Fig. 2 of the main text. The cyan points in that
figure are computed by taking a numerical second derivative at the minimum of the energy using Q points very close to that
value (not shown here). Without a periodic potential (V0 = 0), the system forms a vortex lattice that freely moves as Q
is varied. Thus, the energy does not depend on Q, as seen in the left panel, and the superfluid weight vanishes. When a
periodic potential is applied, the vortices become somewhat obstructed (pinned), resulting in the reemergence of superfluid
weight (center and right panels).
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FIG. 3. Top row: the spatially averaged value of |∆| as a function of the strength of the applied potential without (left) and
with (right) an applied magnetic field. Areas with high potential V (r) tend to reduce |∆|, while areas with low potential
tend to enhance it, resulting in |∆| roughly maintaining its average as V0 increases. Bottom Row: The correction to the

superfluid weight due to the response of ∆, expressed as a percentage of D
(0)
s , the uncorrected superfluid weight, without

(left) and with (right) an applied magnetic field. Under an applied magnetic field, a vortex lattice forms, and if the vortices
are unpinned (V0 = 0), the correction completely eliminates the superfluid weight, which is incorrectly given as non-zero

according to D
(0)
s . This is seen from the −100% correction shown in the bottom right panel at V0 = 0.
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Inversion of Equation (12)

As stated in the main text the square matrix K that appears in Eq. (12) is singular, it has rank one less than its
dimension, n, reflecting the fact that the superconducting order parameter is defined apart from an overall phase
factor. To obtain δ∆m/δAµ

∣∣
0
we need to calculate the pseudoinverse, K̃, of K. To do this we first perform a

single-value-decomposition (SVD) of K:

K = UΛV † (103)

where U and V are n× n unitary matrices and Λ is a n× n diagonal matrix of the form

Λ =



λ1 0 · · · · · · 0
0 λ2 0 · · · 0
... 0 λ3 0 0
...

...
...

. . .
...

0 0 0 0 λn = 0

 . (104)

Let

Λ̃ =



λ−1
1 0 · · · · · · 0
0 λ−1

2 0 · · · 0
... 0 λ−1

3 0 0
...

...
...

. . .
...

0 0 0 0 λ̃n = 0

 . (105)

then, the pseudoinverse of K is given by

K̃ = V Λ̃U† (106)

and

δ∆m

δAµ

∣∣∣∣
0

= K̃Cµ + (1− K̃K)W (107)

where Cµ is the column vector with elements {(Cµ)m}, and W is the vector containing the free parameters. In our

case, only the last element of the diagonal matrix (1−K̃K) is nonzero leaving just one free parameter, corresponding
to the overall gauge phase factor.

Superconductor with vortex lattice

We consider a superconductor with a 2D vortex lattice in the (x, y) plane induced by a background perpendicular
magnetic field Bz. The presence of this field is taken into account within the tight model Hamiltonian (18) via the
introduction of a Peierls phase. This has the effect of altering the translation group of the underlying square lattice
to that of the magnetic translation group [71]. A magnetic unit cell must be chosen such that an integer number of
magnetic flux quanta Φ0 = h/e due to Bz thread the 2D systems. We chose the magnetic unit cells to be Ma×Ma
with one flux quantum threading it.


