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Chiral two-dimensional electron gases, which capture the electronic properties of graphene and rhombohedral
graphene systems, exhibit singular momentum-space vortices and are susceptible to interaction-induced topo-
logical Haldane phases. Here, we investigate pairing interactions in the inversion-symmetric Haldane phases
of chiral two-dimensional electron gases. We demonstrate that the nontrivial band topology of the Haldane
phases enhances intra-valley (Q = ±2KD) pair susceptibility relative to inter-valley (Q = 0) pair susceptibility,
favoring the emergence of a lattice-scale pair-density wave order. When longitudinal acoustic phonons mediate
the pairing interaction, the system supports a chiral Kekulè superconducting order at low densities. At higher
densities, the phase diagram depends on the parity of the chiral index J. For even parity an s-wave Kekulè order
appears, while for odd parity we find a Q = 0 valley triplet chiral-J and a valley singlet s-wave order at different
densities. Our findings are relevant to superconductivity in rhombohedral graphene and Kagome metals.

While significant progress has been made in understand-
ing unconventional superconductivity [1–11] in spin Chern
bands of twisted two-dimensional (2D) crystals, the presence
of a moiré superlattice often complicates the identification of
the underlying mechanisms [12–29]. For instance, it remains
unresolved whether the observed superconductivity originates
predominantly from band-projected interactions or from novel
pairing instabilities intrinsic to topological bands [30–34].
Alternatively, multi-layer rhombohedral graphene (RG) has
emerged as a promising platform, displaying superconduct-
ing phenomenology [35–43] that appears to be as rich as that
of twisted 2D crystals [44–47], but without the complexity
of a moirè potential. Notably, in RG, superconductivity can
even be hosted by a spin-polarized valley Chern band [35–
43, 45, 48], which underscores the necessity to understand the
interplay of band geometry and pairing interactions [49].

In ordinary metals, the pair susceptibility typically diverges
at zero center-of-mass momentum (Q = 0), favoring uniform
superconductivity over finite-momentum pairing at weak cou-
pling [50–52]. In contrast, this Letter demonstrates that the
nontrivial topology of a Chern band qualitatively modifies
this picture. Our conclusions are based on the analysis of
superconducting pairing within a Chern band realized in chi-
ral two-dimensional electron gases (C2DEGs). Specifically,
we show that in a spin-polarized half-metal phase of RG, the
band-projected intra-valley pair susceptibility with pair mo-
mentum Q = ±2KD is enhanced relative to the inter-valley
pair susceptibility with Q = 0, and depends on the ratio m/µ,
where µ is the Fermi energy and m is an interaction-induced
Haldane mass [53]. Since this enhancement occurs at high-
symmetry points in the Brillouin zone, it naturally favors a
lattice-scale pair density wave (PDW) order, previously iden-
tified as a Kekulé superconductor in a different context [54].

This enhancement arises from the coherence factors of the
Bloch wavefunctions in the Haldane phase [55], which can be
visualized using the ẑ-component of pseudo-spinor field de-
fined by the Hamiltonian on the Bloch sphere, as illustrated
in Fig. 1. In the case of intra-valley pairing as depicted in
Fig. 1 a), the ẑ-component pseudo-spinors point in the same

Intra-valley pairing Inter-valley pairing
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FIG. 1. Hamiltonian pseudo-spinor field ĥ on the Bloch sphere
for a) intra-valley pairing and b) inter-valley pairing in the Haldane
phase, with the Fermi surface projection indicated by the dotted red
(blue) circles for KD (−KD) valleys. The projections of ĥ onto the
ẑ-direction for intra-valley pairs p and −p are parallel, whereas they
are anti-parallel for inter-valley pairs p and −p. This spinor structure
of the Haldane phase results in the suppression of the coherence fac-
tors of the inter-valley pair susceptibility (see text for details).

direction, resulting in constructive interference. In contrast,
for inter-valley pairing shown in Fig. 1 b), the pseudo-spinors
point in opposite directions, leading to destructive interfer-
ence and a corresponding suppression of the inter-valley pair
susceptibility. Overall, the pair susceptibility and supercon-
ducting phase diagram depend on the parity of the chiral in-
dex J. When longitudinal acoustic phonons mediate the pair-
ing interaction, the system supports a chiral Kekulè supercon-
ducting order for low densities ne. For even values of J the
system transitions to an s-wave Kekulè superconducting or-
der when ne > ne,2, and chiral Kekulè superconducting order
appears for ne > ne,2. For odd values of J, a π-phase chiral
Kekulè superconducting order appears when ne < ne,1, while
in the density regime ne,1 < ne < ne,2, we find a Q = 0 valley
triplet chiral superconducting state and a valley-singlet s-wave
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superconductor for ne > ne,2. The chiral superconducting or-
der arises from projected interactions within the topological
bands, thereby further reflecting the underlying geometric fea-
tures of the Haldane phase of C2DEGs.

Model.—The continuum model Hamiltonian of a C2DEG
with a Chern number J on a projected bipartite lattice is

H0 = ζJ pJ
(
σ̂x cos(Jφp) + τzσ̂y sin(Jφp)

)
+ mσ̂zτz, (1)

where the Pauli matrices σ̂i act on the pseudospinor ψ† =
(ψ†A, ψ

†

B), (A, B) are sublattice degrees of freedom to be spec-
ified below, τz = ±1 denote the valleys associated with the
Dirac points located at the corners of the hexagonal Bril-
louin zone (BZ) ±KD, p = (px, py) is the momentum mea-
sured from the Dirac points with φp = tan−1(py/px), and

p =
√

p2
x + p2

y . We choose the M-point of the BZ as the
origin, giving ±KD = (±2π/3, 0) and the valley separation
Q = 2KD = (4π/3, 0). Eq. 1 with m = 0 describes the mini-
mal model of J-layer RG [56], with the pseudospinor defined
on the top (1, A) and bottom (J, B) layers, ζJ = vJ/γJ−1

1 , and
v =

√
3/2γ0a0 ∼ 673 meV nm−1, where γ0 ∼ 3.16 eV and

γ1 ∼ 0.445 eV are the nearest-neighbor intra- and inter-layer
hopping parameters [42], respectively, and a = 0.246 nm is
the graphene lattice constant. To highlight the interplay be-
tween band geometry and pairing interactions, we neglect trig-
onal warping for now and address this aspect later.

The Haldane mass term mσ̂zτz results in a quantum anoma-
lous Hall (QAH) state with a Chern number J [53]. This
mass term breaks time-reversal symmetry while preserving
inversion symmetry. In contrast, a displacement field pro-
duces a sublattice staggered potential ∆V σ̂z breaking the in-
version symmetry. The band dispersion ϵp,J,± = ±(ζ2

J p2J +

m2)1/2 near the ±KD points is particle-hole and inversion sym-
metric. The Bloch wave function for the conduction band
near KD is |up(KD)⟩ = (cos(θp/2)e−ıτz Jφp/2, sin(θp/2)eıτz Jφp/2)
with cos(θp) = m/ϵp,J,+, with inversion symmetry giving
|u−p(−KD)⟩ = σx|up(KD)⟩. The singularities of the Bloch
states near the Dirac points exhibit frustrated momentum-
space pseudospin structure, creating a “fertile ground” for
spontaneous symmetry breaking [53, 57, 58].

Interaction-induced Haldane phase in RG.—Since our fo-
cus is on the superconducting instabilities of the Haldane
phase, we consider the simplest case of spinless C2DEGs.
In spinless C2DEGs, the corresponding valley-diagonal mass
terms are i) mσ̂zτz and ii) ∆V σ̂z. The latter leads to a valley
Hall effect, because time-reversal symmetry ensures that the
Berry curvatures at the two valleys are equal in magnitude but
opposite in sign. In contrast, the former induces a QAH effect
with σxy = Je2/h, since inversion symmetry dictates that the
Berry curvatures at the two valleys are identical, resulting in a
nontrivial Chern number.

A series of experiments [32, 33, 59, 60] have provided com-
pelling evidence for interaction-driven Haldane phase in RG
systems ranging from bilayer to pentalayer. In particular, the
QAH conductance is quantized at 5e2/h in pentalayer RG at

(𝑝, 𝑖𝜔𝑛) (𝑝, 𝑖𝜔𝑛)

(−𝑝, −𝑖𝜔𝑛) (−𝑝, −𝑖𝜔𝑛)

a) b)

FIG. 2. Feynman diagrams for the a) intra- and b) inter-valley pair
susceptibility of chiral 2DEGs. The solid (dotted) lines denote the
band projected electron propagator of the KD(−KD) valleys.

zero magnetic field [32]. Effective in these states, only one
spin contributes to the QAH effect [53]. Our mean-field anal-
ysis for spinless C2DEGs (see End Matter) reveals a negative
interaction u⊥ < 0 in the τ⊥ ≡ τ × τz channel of the short-
ranged valley-dependent interaction leads to a spontaneous
QAH state, whereas u⊥ > 0 yields a fully-layer-polarized
state. The interaction-induced Haldane mass term m depends
on the chirality J, which can be significant m ∼ 50 meV for
J = 4, 5 for a hBN encapsulated device with a dielectric con-
stant ϵ ∼ 5, for gate-screened interactions with gate distance
d = 10 nm. Since mean-field theory tends to overestimate
interaction-induced gaps, we take m , 0 as a tunable parame-
ter.

Pair susceptibility in the Haldane phase.—One key find-
ing of this Letter is that the pair susceptibility of the Hal-
dane Chern bands is strongly governed by the topologically
enforced geometrical properties of the Bloch states, leading
to qualitatively distinct superconductivity compared to that
of trivial bands. For a generic two-orbital Hamiltonian of
the form H0 = σ̂ · h(k), where h(k) defines the momentum-
dependent Hamiltonian field, the projected pair susceptibility
Π(q) in the σ0-channel (see Fig. 2) can be expressed as

Π(q) =
∫

d2k
(2π)2

g(k,k + q)
ξk+q + ξ−k

(1 + ĥk+q · ĥ−k

2

)
, (2)

where ĥk = (ĥx(k), ĥy(k), ĥz(k)) is the normalized Hamilto-
nian vector field, ξk = ϵk − µ denotes the energy measured
from the Fermi surface, and g(k,k+q) = 1−nF(ξk+q)−nF(ξ−k)
and nF(x) = (eβx + 1)−1 is the Fermi-Dirac distribution with
β = 1/(kβT ) and k is defined within the first BZ.

As illustrated in Fig. 1, q = 0 + p corresponds to the inter-
valley pair susceptibility, whereas q = 2KD + p denotes the
intra-valley pair susceptibility. Due to the topological na-
ture of the band ĥKD ∼ (0, 0, 1) and ĥ−KD ∼ (0, 0,−1), the
coherence factors of inter-valley pair susceptibility vanish as
(1+ĥp ·ĥ−p)/2→ 0, while the intra-valley pair susceptibility is
unaffected, (1 + ĥp · ĥ−p+2KD )/2→ 1 (see Fig. 1). Thus, intra-
valley pairing remains robust near the ±KD, whereas inter-
valley pairing is suppressed due to topologically enforced de-
structive interference of band geometry.

Away from the Dirac points, the intra-valley (S) and inter-
valley (D) pair susceptibilities, denoted byΠS = Π(Q = 2KD)
and ΠD = Π(Q = 0), dependent on the ratio of the Haldane
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gap m to the Fermi energy µ. They are different for even and
odd values of the chiral index J, and can be expressed as

Πa =
N0

(1 − x2)α
log
(Ec

T

)
fa(x) + · · · , (3)

where · · · denote non-singular terms, a = S (D) denotes the
intra- and inter-valley pairing, N0 = x1−β/(2πJζβJ m1−β), de-
notes the characteristic density-of-states, with α = 1 − 1/J,
β = 2/J, Ec ∼ γ1 is the high-energy cutoff, and we have set
the Boltzmann constant kB = 1. The intra-valley (S) and inter-
valley (D) pair susceptibilities, depend on x = m/µ through
the functions fS (x) and fD(x). For even chirality, fS (x) = 1
and fD(x) = (1− x2)/2, while for odd chirality fS (x) = x2 and
fD(x) = (1 − x2)/2. Therefore, for even values of J, ΠS > ΠD

throughout the physically relevant range x ∈ (0, 1]. Alterna-
tively, for odd values of J, ΠS > ΠD requires x > 1/

√
3. In

both cases, the geometric suppression of inter-valley coher-
ence represents a hallmark of pairing in the Haldane Chern
bands.

When inversion symmetry is explicitly broken, for exam-
ple, by applying a finite displacement field (∆V , 0), pre-
serving the topological phase requires ∆V < m. Simultane-
ously, realizing two Fermi surfaces, where a distinction be-
tween inter- and intra-valley pairing remains meaningful, ne-
cessitates ∆V + m < µ. Defining y = ∆V/µ, these constraints
translate into the conditions y < 1−x and y < x. In this regime,
the intra-valley pair susceptibility becomes valley-dependent
and is given by

ΠS (±2KD) =
−N0

(1 − (x ± y)2)α
log
(Ec

T

)
fS (x ± y) + · · · . (4)

Meanwhile, the inter-valley pair susceptibility loses its weak-
coupling logarithmic divergence due to the breaking of inver-
sion symmetry. Finally, in the limit y > 1 − x and y < x, the
system remains in the topological phase but hosts only a sin-
gle Fermi surface at a single valley. This regime corresponds
to a “quarter-metal” superconducting phase [42, 48].

Longitudinal acoustic phonon-mediated pairing.—To de-
termine whether the enhanced intra-valley pair susceptibility
leads to an intra-valley superconducting state, we must spec-
ify a model for the pairing interaction. Since translational
symmetry requires that the pairing interaction is explicitly in-
dependent of Q, any Q dependence of the pairing interac-
tion must arise from the projection onto the Haldane Chern
bands. Our estimates indicate that longitudinal acoustic (LA)
phonons provide the leading contribution to the effective pair-
ing interaction for a circular Fermi surface (see End Matter).
By employing a continuum model for the electron-phonon
coupling and performing a Schrieffer–Wolff transformation on
the band-projected interaction, we arrive at the generic form
of the effective pairing interaction (see End Matter) with two

G1

G2 G3

G4

-KD -KD

KD KD

Inter-valley pairing Intra-valley pairing

p p’

-p -p’

p

p

pp’

-p’-p

p’

-p -p’

-p

p’

-p’

(a) (b)

𝑘𝑥

FIG. 3. a) Feynman diagrams for inter-valley scattering interaction
G1 and inter-valley exchange interaction G2, and b) Feynman dia-
grams for intra-valley scattering interaction G4 and pair tunnelling
G3. The solid (dotted) lines correspond to the electron propagator
in the valley KD (−KD). The colors correspond to the microscopic
interactions on the circular Fermi surfaces for both inter-valley and
intra-valley pairing.

Fermi surfaces at different valleys,

Hpair =
∑
p,p′

[
G1(p,p′)a†pb†−pb−p′ap′ +G2(p,p′)a†pb†−pa−p′bp′

+
G3(p,p′)

2
a†pa†−pb−p′bp′ +

G4(p,p′)
2

a†pa†−pa−p′ap′

+ (a↔ b)
]
, (5)

where the electron creation operators at KD(−KD) are defined
as c†KD+p = a†p and c†

−KD+p, = b†p. Due to inversion symmetry,
the interaction matrix elements Gi(p,p′), satisfy G1(p,p′) =
2G4(p,p′) and G2(p,p′) = 2G3(p,p′). Near the Fermi surface
px = pF cos(φp), py = pF sin(φp) and |p| ∼ |p′| ∼ pF , the
interaction matrix elements can be expressed as,

G4 = −G0e−ıJΦ
(eıJφp (ξp + µ − m)

2(ξp + µ)
+

eıJφp′ (ξp + µ + m)
2(ξp + µ)

)2
,

G3 = −
G0

2

[
1 + (−1)J cos(JΦ)

](
1 −

m2

(ξp + µ)2

)
, (6)

where Φ = φp + φp′ and the pairing interaction G0 = 9.24 ×
10−8(D/(ℏvs))2 ∼ 123 meV·nm−2, with D ∼ 15 eV denot-
ing the deformation field [61], and vs ∼ 2 × 104 m/s is the
phonon sound velocity [24, 62]. In Eq. 5, the interactions G1
and G2, which denote inter-valley scattering and inter-valley
exchange, as indicated in Fig. 3 a), naturally lead to a con-
ventional superconducting state. Intra-valley pairing results
from G4 and G3, which label intra-valley scattering and pair
tunnelling between the two valleys, as shown in Fig. 3 b).

To determine the leading pairing instability, we decompose
each interaction as Gi,l into the angular momentum channels
l = 0, J,−J. The renormalization group flow equations for the
pairing interactions Gi,l can be expressed as

ġ1,l = −[g2
1,l + g2

2,l] fS (x), ġ2,l = −2 fS (x)g1,lg2,l, (7)

ġ4,l = −[g2
4,l − g2

3,l] fD(x), ġ3,l = −2 fD(x)g3,lg4,l, (8)

where gi,l(x) = N0Gi,l/(1 − x2)α and ġi,l = dgi,l/dt, where t =
log(ωD/T ) and ωD ∼ 0.2 eV denotes the Debye energy. Eq. 7



4

and Eq. 8 can be solved by making the substitution gintra
±,l =

g4,l ± g3,l, ginter
±,l = g1,l ± g2,l which gives

gintra
±,l =

gintra
±,l

1 + fS (x)gintra
±,l t

, ginter
±,l =

ginter
±,l

1 + fD(x)ginter
±,l t

. (9)

The superconducting critical temperature for each pairing
channel is determined from the poles of Eq. 9, which depends
on the parity of the C2DEG, as discussed below.

For even values of J, the coherence factor fD(x) = (1−x2)/2
in Eq. 7, arising from the quantum geometric properties of the
Haldane phase, leads to the suppression of inter-valley pair-
ing. The critical temperature for the intra-valley (S) pairing
(with fS (x) = 1) is T S

c (x) = ωD exp(−1/|gintra
+,l |), higher than

that of the inter-valley (D) pairing, T D
c (x) = ωD exp(−2/((1 −

x2)|ginter
+,l |)). As shown in Fig. 4 a), the ratio T D

c /T
S
c is expo-

nentially suppressed, indicating that for even parity the intra-
valley pairing dominates over the inter-valley pairing for all
values of x. This exponential dependence is a direct result of
the ratio of the even parity inter- and intra-valley pair suscep-
tibilities ΠD/ΠS as derived in Eq. 3.

Since intra-valley pairing dominates for even values of J
we focus on the interaction matrix elements associated with
G4(p,p′) and G3(p,p′). For even chirality J, (g+,l > g−,l),
with G+,0 = −G0(1 − x2), G+,J = −G0(1 − x)/2 and G+,−J =

−G0(1 + x)/2. As G+,−J > G+,0 > G+,J for xc > 0.5 we
find that the chiral-J Kekulé superconductor has the largest
T S

c when kF ≤ (
√

3m/ζJ)1/J corresponding to the densities
ne ≤ ne,2 with ne,2 = 1/(2π)(

√
3m/ζJ)2/J . The superconduct-

ing order parameter is given by ∆(r) = ∆ cos(2KD · r + θ)
(where θ corresponds to the relative phase difference between
the valleys). Based on the minimal chiral model, we obtain
a phase diagram of superconductivity in Fig. 4 b) for even
parity chiral 2DEGs in the (ne,m) parameter space for dif-
ferent values of J = 4, 6 and 8. To ensure a simply con-
nected Fermi surface, we assumed that the electron density
ne ≥ 0.8 × 1012 cm−2, sufficiently large [42, 45] to avoid the
three-pocket and annulus Fermi surfaces induced by trigonal
warping. Due to the large superfluid stiffness of C2DEGs
in the dispersive regime [63], we anticipate the Berezin-
skii–Kosterlitz–Thouless (BKT) transition temperature T S

BKT
to approach the critical mean field temperature T S

BKT → T S
c .

As detailed in the End Matter, the mean-field critical tempera-
ture of the chiral-J Kekulé state is estimated to be in the range
T S

c ∼ 90.8mK − 13.5K.
The situation is quite different for odd parity chiral 2DEGs,

as the intra-valley pairing only dominates the inter-valley pair-
ing when x > 1/

√
3. Therefore, the chiral Kekulé super-

conducting order has the highest TC , when ne ≤ ne,1 with
ne,1 = 1/(2π)(

√
2m/ζJ)2/J . Since G−,−J = −G0/2(1 + x) is

the dominant channel for odd parity, the intra-valley pairing
order exhibits an π-phase resulting in a Kekulé superconduc-
tor with the order parameter ∆(r) = ∆ sin(2KD · r + θ). G−,J
remains the dominant channel for 1/2 < x < 1/

√
3, resulting

in a valley-triplet π-phase chiral-J inter-valley superconduct-
ing order for the density regime ne,1 < ne < ne,2. However,

cos(ϕ)

cos(2𝜋/3 + ϕ)

cos(4𝜋/3 + ϕ)

chiral-J Kekule SC

s-wave Kekule SC

a) b)

d)

×  1012

×  1012

chiral-J Kekule SC

s-wave SCc)

FIG. 4. a) The ratio of the inter-valley critical temperature (T D
c ) to

the intra-valley critical temperature (T S
c ) as a function of x. b) Phase

diagram for the even chirality C2DEG model of J-layer RG with
J = 4, 6 and 8 in increasing order. The electron density ne is in
units of cm−2 and the Haldane mass is in meV. At low densities,
ne < ne,2 the chiral-J Kekulé superconducting channel dominates.
c) Phase diagram for the odd chirality C2DEG model of J-layer RG
with J = 3, 5 and 7 in increasing order, with the same axis label
as in b). The chiral-J Kekulé superconducting channel dominates
for ne < ne,2, giving way to Q = 0 valley triplet chiral supercon-
ductivity for ne,1 < ne < ne,2, with the phase boundary indicated
by the solid line. Conventional valley singlet s-wave superconduc-
tivity dominates for ne > ne,2, with the dashed line indicating the
phase boundary. d) Schematic of the Kekulé superconductor on the
projected honeycomb lattice, with the superconducting unit cell in-
dicated by the dotted lines.

when ne > ne,2, G+,0 = −G0(1 − x2) becomes the dominant
channel, we get a conventional valley singlet s-wave super-
conductor with Q = 0. Fig. 4 c) shows the phase diagram for
the odd parity chiral 2DEGs as a function of (ne,m).

Interestingly, for both parities, the presence of a valley de-
gree of freedom permits even-order pairing channels, includ-
ing a momentum-independent s-wave pairing when µ > m.
However, the s-wave pairing channel is suppressed as µ → m
given G+,0 = −G0(1 − x2). This suppression originates from
a combination of the Pauli exclusion principle and the quan-
tum geometric properties of the Haldane phase. At the Dirac
points (±KD), the sublattice and valley degrees of freedom
become coincident and act as a single pseudospin, thereby
forbidding local (contact) interactions and rendering s-wave
Kekulé order incompatible. Consequently, this enhances the
relative stability of the chiral-J Kekulé order, which emerges
as the dominant channel in this regime. Moreover, due to the
presence of a non-zero pair tunnelling channel G3,l, we expect
the chiral-J Kekulé state to be robust to the application of a
displacement field, so long as ∆V < m.

Chiral Kekulé superconductivity.—The proposed supercon-
ducting state exhibits a spatial Kekulé pattern on the pro-
jected bipartite lattice, indicated in Fig. 4 d, and notably, the
size of the superconducting unit cell is tripled. The odd J-
chiral Kekulé superconductor is a valley triplet with the spon-
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taneously broken symmetry U(1)⊗OV (3)⊗Z3, where the U(1)
is associated with the overall superconducting phase, OV (3) is
the valley symmetry, and Z3 is related to the lattice transla-
tional symmetry. Alternatively, the even J-chiral Kekulé su-
perconductor must be a valley singlet with the spontaneously
broken symmetry U(1) ⊗ Z3. Unlike the phase-modulated su-
perconductors revealed in the quarter-metal regime [42, 45],
the Kekulé superconductors in the half-metal regime are char-
acterized by a spatial modulation of the amplitude of the su-
perconducting order parameter (Fig. 4 d), which can be di-
rectly probed using scanning tunneling microscopy.

Kekulé superconducting textures have previously been pro-
posed for Dirac fermions in graphene, arising from nearest-
neighbor pairing interactions [54, 64]. However, the mech-
anism we describe here is fundamentally different: it origi-
nates from topologically enforced geometric constraints of the
Bloch wavefunctions, which enhances the pair susceptibility
at large momenta (±2KD). As such, this Kekulé supercon-
ducting order can emerge from a broad class of attractive in-
teractions in the Haldane phase of C2DEGs, independent of
the detailed microscopic pairing mechanism.

In RG, trigonal warping of the bands, due to remote hop-
ping processes, induces Lifshitz transitions [65], wherein
the Fermi surface evolves from being circularly connected
to an annular Fermi surface or a set of disconnected pock-
ets. For tetralayer RG, this transition occurs in the half-
metal regime at an electron density of ne ∼ 0.4 × 1012 cm−2

near zero displacement field. Even above such a density,
where the Fermi surface remains connected, it loses its az-
imuthal symmetry due to trigonal warping. In the presence
of a trigonal warping energy scale Etri, the weak-coupling
enhancement of the intra-valley pair susceptibility is cut off
by Etri, and Eq. 3 retains the same functional form, but with
log(Ec/T ) → log(Ec/Etri). Consequently, a critical pairing
strength G+,−J = −(1 − x2)α/(N0 log(Ec/Etri)) is required to
stabilize Kekulé superconductivity for even chirality. The
general continuum Hamiltonian for a J-layer RG, including
remote hopping, can be written as a sum of C2DEG Hamil-
tonians [66, 67], implying that the chiral index of the Kekulé
superconductor can become density dependent. Nevertheless,
because the Kekulé superconductivity results from the topo-
logically enforced quantum geometry of the Bloch states, it
should be robust against trigonal-warping effects so long as
the Fermi surface remains connected.

Multiple superconducting phases have been detected in bi-
layer to hexalayer RG [44–47] in the fully layer-polarized
(FLP) states, induced by displacement fields. However, more
recently, superconductivity has been observed in doped layer-
antiferromagnetic (LAF) ground states near zero displacement
field [46], notably, in the transition region between the FLP
and LAF states, where the Haldane phase is expected to oc-
cur. In ultra-clean suspended bilayer graphene, an anoma-
lous Hall state with m ∼ 1–3 meV has been inferred ex-
perimentally [68, 69], while in hBN-encapsulated pentalayer
RG devices a QAH state with m ∼ 10–15 meV has been re-
ported [32]. It would be valuable to investigate our proposal

for superconducting states arising at zero or small displace-
ment fields within these regimes.

Discussions and Outlook.—In conventional metals, the
emergence of PDWs typically requires strong correlation ef-
fects or fluctuations tied to lattice-scale physics, often leading
to modulation periods incommensurate with the crystalline
unit cell [70–87]. In contrast, we showed that in the Hal-
dane phase of C2DEGs, the pair susceptibility is enhanced
at finite momentum due to the topologically enforced quan-
tum geometry of the Bloch wavefunctions. This enhancement
occurs at high-symmetry points in the Brillouin zone, natu-
rally favoring the formation of lattice-scale PDW states even
in the weak-coupling regime. Unlike conventional scenar-
ios that rely on strong-coupling mechanisms, competing or-
ders, or fluctuation-driven instabilities, the quantum geomet-
ric mechanism proposed here provides a topologically pro-
tected mechanism to realize a lattice-scale PDW order in other
chiral Chern bands of 2D crystals and layered materials.
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End Matter

Interaction effects in J-layer RG.—For long-range interac-
tions that are both valley- and spin-independent, the sponta-
neously broken symmetry quantum valley Hall (QVH) and
quantum anomalous Hall (QAH) phases are energetically de-
generate. To distinguish between these competing states, one
must consider interactions that break valley symmetry or dif-
ferentiate between the sublattices. Since both QVH and QAH
mass terms share the same sublattice structure but differ in
their valley dependence, only valley-dependent interactions
can lift their degeneracy. Therefore, we only include valley-
dependent interactions in our analysis.

The interacting Hamiltonian, Hint = Hee+H′int, includes the
SU(4) Coulomb interaction Hee, with the Coulomb repulsion
vq, and the valley-dependent interaction H′int

Hint =
1

2L2

∑
k,k′,q

vqψ
†

k+qψkψ
†

k′−qψk′

+
1

2L2

∑
k,k′,q

∑
µ=z,x,y

uµψ
†

k+qτ̂µψkψ
†

k′−qτ̂µψk′ , (10)

where uµ’s are short ranged valley-dependent interaction
terms. τ̂z acts on the valley degree of freedom and L2 denotes
the sample area. For simplicity, we assume that ux = uy = u⊥.

To perform the mean-field theory, we rewrite the Hamilto-
nian H by adding and subtracting the mean field terms H∆̂ as
H = (H0+H∆̂)+(Hint−H∆̂) = HMF+Hres, and H0 corresponds
to the non-interacting Hamiltonian. The mean-field Hamil-
tonian HMF is treated as the non-perturbative Hamiltonian,
and the effect of Hres can be studied via a diagrammatic ap-
proach. To ensure the field ∆̂ is self-consistently determined,
we satisfy the tree-level self-consistent equation correspond-
ing to the Feynman diagrams shown in Fig. 5. We consider
the competition between interaction-induced mass terms, one
corresponding to the QAH effect, m, and the other to the QVH
effect, ∆. The QVH Hamiltonian HQVH =

∑
k ψ
†

k∆VHσ̂zψk,
and the QAH Hamiltonian as HQAH =

∑
k ψ
†

kmσ̂zτ̂zψk where
σ̂z acts on the sublattice degree of freedom. In the presence of
valley anisotropy, the self-consistent gap equation at the tree
level becomes

∆̂ = −
1
β

∑
n

∫
d2k′

(2π)2

[
vk−k′GMF(k′, ıω′n)

+
∑
µ=x,y,z

uµτ̂µGMF(k′, ıω′n)τ̂µ
]
, (11)

+ =

𝜏𝜇 𝜏𝜇

෍

𝜇=𝑥,𝑦

𝑎 𝑢⊥𝑣𝑘−𝑘′
෡Δ

FIG. 5. Tree-level Feynmann diagram corresponding to the self-
consistent solution to the gap equation for the mean field ∆̂.

where GMF(k) = (ıωn −HMF(k))−1 is the Green’s function as-
sociated with the mean-field Hamiltonian, ωn = (2n + 1)π/β
and β = 1/(kβT ). Performing the summation over the frequen-
cies, we arrive at the gap equations:

m(k) =
∫

d2k′

(2π)2

[
vk−k′ − 2u⊥

]m(k′)
2Ek′

tanh
(
βEk′

2

)
, (12)

∆VH(k) =
∫

d2k′

(2π)2

[
vk−k′ + 2u⊥

]
∆VH(k′)

2Ek′
tanh
(
βEk′

2

)
,

where E2
k = |ϵJ,k|

2 + m2
k for the QAH state, and E2

k = |ϵJ,k|
2 +

∆VH(k)2 for the QVH state. From the structure of Eqs. 12, it is
clear that only u⊥ lifts the degeneracy of the QAH and QVH
state; therefore, we take uz = 0. The above equations imply
that the QAH is preferred over the QVH state for u⊥ < 0. The
negative sign that distinguishes the QAH state from the QVH
state is due to the anti-commutation of the Pauli matrices, in
the valley space τ̂zτ̂x = −τ̂xτ̂z and τ̂zτ̂y = −τ̂yτ̂z.

FIG. 6. Interaction induced mass gaps for different chirality indices
J for a) long-range Coulomb interactions and b) gate-screened in-
teraction with d = 10 nm evaluated at the Dirac point with a cutoff
kc = γ1/(ℏv). Each curve corresponds to a different value of the di-
electric constant ϵ = 5, 7.5, 10, 12.5 and 15, from the top to bottom,
with an arrow indicating the direction of increasing ϵ.

Fig. 6 a) shows the interaction-induced mass gaps as a func-
tion of the chirality index J for the bare Coulomb interaction
vq = 2πe2/(ϵq) and u⊥ < 0 (|u⊥| ∼ 2 meV) computed for dif-
ferent values of the dielectric constant ϵ = 5, 7.5, 10, 12.5 and
15. In the self-consistent calculation, we impose a momen-
tum cutoff kc = γ1/v and evaluate m at the Dirac point k = 0.
For low dielectric screening (e.g., ϵ = 5), the interaction-
induced mass gaps are substantial, with m > 50 meV. For
reference, the dielectric constant of h-BN is approximately
ϵ ∼ 6. As expected, increasing the dielectric screening re-
duces the magnitude of the induced gaps. To account for
the influence of nearby metallic gates, we incorporate a gate-
screened Coulomb interaction vsc

q = vq tanh(qd/2) where d is
the distance between the gates. The results are plotted in Fig. 6
b). Even in the presence of gate screening, the mass gaps re-
main sizable for ϵ = 5, particularly in tetra- and pentalayer
graphene, where we find m > 50meV .

Pair susceptibility in other channels—One can calculate
the particle-particle susceptibility in the σ̂z channel. Here,
we restrict to even chiralities. Again estimating the leading
logarithmic contribution one finds, Π−S = x2ΠS and Π−D =
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(1 − x2)/2ΠS , where Π−S (Π−D) are the inter- and intra-valley
pair susceptibility in the σz-channel (ΠS denotes the even J
intra-valley pair susceptibility). The intra-valley pair suscep-
tibility exceeds the inter-valley counterpart for x ≥ 1/

√
3, in-

dicating that in the σ̂z channel intra-valley Kekulé supercon-
ductivity should be favored when µ ≤

√
3m. One can also

evaluate the pair susceptibility in the σ̂x and σ̂y channels for
the Haldane phase. Here, we find that the inter-valley suscep-
tibility dominates over the intra-valley component.

Longitudinal acoustic phonons.—The longitudinal acous-
tic (LA) phonons in RG correspond to in-phase motion of
the low-energy unstacked Carbon atoms (1A, JB). For J-layer
RG, both the intra-layer acoustic and optical modes contribute
to a total of 2J longitudinal phonon modes, with 2J−1 LA
phonon and 2J−1 longitudinal optical (LO) phonon modes. We
assume that inter-layer phonon coupling is weak, and express
the continuum limit of the electron-phonon coupling (EPC)
Hamiltonian as,

HEPC = D
∫

dr∇U(r)
∑

α=1A,JB

ψ†α(r)ψα(r), (13)

where D ∼ 15 eV is the effective deformation potential U(r)
is the deformation field [24, 62]. To proceed, we move to
momentum space, quantize the deformation potential in terms
of bosonic operators bq(b†−q),

U(r) =
∑

q

(
ℏ

2NMωq

)1/2
eıq·r(bq + b†−q), (14)

where N denotes the number of unit cells, M is the mass
of the Carbon atom, and we assume an isotropic phonon
dispersion ωq = vsq. To determine the pairing interac-
tion mediated by LA phonons, we worked in the band ba-
sis c†k,m =

∑
α u⋆mα(k)c†kα, where m denotes the band index,

and performed a Schriffer-Wolff transformation (with η =
D(ℏL2/(2NMωq))1/2) on the band-projected electron-phonon
interaction. The effective pairing Hamiltonian Hpair for the
BCS pair (k + Q;−k + Q) with a center of mass momentum
2Q, takes the form

Hpair =
1
L2

∑
k,k′,Q

Vk,k′,Qc†k+Qc†
−k+Qc−k′+Qck′+Q, (15)

with an effective interaction

Vk,k′,Q = −Auc

( D
ℏvs

)2 ℏ2

2M
Γk,k′,Q = −G0Γk,k′,Q, (16)

where Auc is the area of the unit cell, and we neglect the retar-
dation effect of the pairing interaction, and

Γk,k′,Q = ⟨um,k+Q|um,k′+Q⟩⟨um,−k+Q|um,−k′+Q⟩, (17)

encodes the effect of band geometry on the effective pair-
ing interaction. Notice that with the assumption of a linear
phonon dispersion, the magnitude of the effective interaction
G0 ∼ 123 meV nm−2 becomes Q independent.

The Fermi surfaces consist of two electron-like or hole-like
pockets below (above) or above (below) half-filling of the va-
lence (conduction) bands. We treat the Fermi surfaces as cir-
cular, which are separated by 2Q = (4π/3, 0). The effective
pairing interaction can be divided into four types G1,G2,G3,
and G4, which are related due to inversion symmetry (see
Eq. 5 and Fig. 3 and subsequent discussion in the text). The
intra-valley interactions G4 and G3 can be expressed as,

G4 = −G0⟨uKD/2(p)|uKD/2(p′)⟩⟨uKD/2(p)|uKD/2(p′)⟩, (18)
G3 = −G0⟨uKD/2(p)|u−KD/2(p′)⟩⟨uKD/2(p)|u−KD/2(p′)⟩,

which can be evaluated using the Bloch wavefunctions of the
C2DEG.

Our analysis indicates that optical phonon–mediated pair-
ing, proposed as a possible mechanism in twisted bi-
layer graphene [23, 25, 88], is weaker than the LA
phonon–mediated interaction. The estimated strength of
the optical phonon–induced pairing interaction is approxi-
mately ∼ 70 meV nm−2 [23], about half that of the LA
phonon–mediated counterpart. Consequently, we neglect its
contribution in our analysis. We note, however, that because
optical phonons correspond to out-of-phase oscillations be-
tween the two sublattices within the unit cell, they generate an
off-diagonal electron–phonon coupling that favors inter-valley
pairing (see the discussion above).

FIG. 7. g+,J as a function of x for a Haldane mass m = 10 meV, for
J = 4 and 6 in increasing order, with the inset corresponding to g+,0.

Critical Temperature scaling.—The critical temperature
Tc(x) for the even parity chiral-J Kekulé superconductor is de-
termined by g+,−J , whereas the s-wave Kekulé superconductor
is determined by g+,0. Fig. 7 shows the behavior of g+,−J(g+,0)
as a function of x for J = 4 and 6, with a Haldane mass m = 10
meV. As x → 1, g+,−J increases sharply, due to the large
density of states at the bottom of the band, while g+,0 → 0
due to suppression of the s-wave channel. At x = 0.5, we
find g0,−J > g+,0, resulting in the s-wave Kekulé supercon-
ducting phase at higher densities. Using ωD ∼ 0.2 eV and
g+,−J ∼ 0.1 − 0.2, for J = 4, 6, yields T S

c ∼ 90.8mK − 13.5K
for the chiral-J Kekulé superconductor.
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