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Abstract. The article presents experimental and theoretical investigations on the dynamics of saw-

teeth and neoclassical tearing modes in tokamak plasmas. The main findings of these investigations

are: (1) The experimental validation, on the basis of FTU and TCV data, of a model for the predic-

tion of the sawtooth period and amplitude; (2) the importance of diamagnetic effects in determining

the threshold for sawtooth crashes and the rotation of non-linear tearing modes; (3) a clarification of

collisionless reconnection processes, in particular the role of phase mixing in association with magnetic

island growth and saturation in dissipationless regimes. The interplay between ECRH and macroscopic

island dynamics is also discussed.

1. Introduction and the diamagnetic
rotation of magnetic islands

Often the confinement properties of tokamak plas-
mas are limited by the onset of macroscopic, coher-
ent magnetic islands. The qualification ‘coherent’
refers to single-helicity islands where chaotic field
line behaviour does not play an important role. Typ-
ically, coherent islands correspond to magnetic per-

turbations with low poloidal mode numbers, such as
neoclassical tearing modes and m = 1 resistive kinks.
The non-linear evolution of these islands is still an
open problem.

Diamagnetic effects are known to influence sig-
nificantly the reconnecting magnetic instabilities.
The important changes to the classic resistive tear-
ing mode occur in the ‘drift tearing regime’ [1],
when the electron diamagnetic frequency ω∗e is
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sufficiently larger than the (normalized) growth rate
[2], γT = 0.55(∆′)4/5η3/5, obtained by the resis-
tive MHD (RMHD) model, which ignores the equi-
librium pressure gradients. For values of ω∗e/γT
exceeding a critical threshold, the eigenfunction
undergoes a transition to a radially oscillating,
delocalized mode. One can construct an initially
localized wave packet, which propagates outwards,
undergoing spatial amplification. Furthermore, the
nominal mode growth rate, which is obtained from
the dispersion relation ignoring the localization prob-
lem, is strongly suppressed at high ω∗e/γT . A local-
ized mode can be found when additional physics is
included in the models. An important localizing non-
dissipative effect, which can lead to the complete
stabilization of the drift tearing mode, is the finite
β coupling to sound waves [3]. Localization is also
achieved by the introduction of appropriate dissipa-
tive or finite Larmor radius effects. The roles of two
such effects, ion viscosity and particle diffusivity, are
discussed in this section.

Diamagnetic effects are altered in the non-linear
regime, as density and temperature profiles tend to
flatten, on average, across the island region. This
leads to two main questions: (i) To what extent are
the stabilizing diamagnetic effects suppressed in the
non-linear saturated regime? (ii) What are the actual
mode structure and rotation frequency of saturated
islands? These questions are especially relevant when
treating more general models that predict full lin-
ear stability, as in Ref. [3], when one can argue that
the non-linear suppression of the diamagnetic effects
could lead to bistability, that is, the coexistence of
states with and without magnetic islands for the
same set of parameters.

In order to address these issues, we consider the
three field non-linear version of the model of Ref. [1],
with the inclusion of ion viscosity and particle diffu-
sivity. The cold ion limit is taken for simplicity and
the electron temperature is constant. The (suitably
normalized) vorticity equation is

dU/dt = [J, ψ] + µ∇2U (1)

where φ is the electric potential, U = ∇2φ, ψ is the
magnetic flux function, J = −∇2ψ is the current
density, [A,B] ≡ (∂xA)(∂yB) − (∂xB)(∂yA), d/dt ≡
∂/∂t + [φ, ·], and µ is the ion viscosity coefficient.
The Prandtl number is P = µ/η. We adopt Ohm’s
law

dψ/dt+ v∗∂yψ = [n, ψ]− η(J − Jeq) (2)

where v∗ is proportional to the equilibrium density
gradient and η is the normalized electrical resistivity,
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Figure 1. Perturbed current density. (a) Non-localized

structure, P = D = 0; (b) viscosity localization, P = 0.1,

D = 0; (c) diffusivity localization, D = 0.01η, P = 0.

while the fluctuating density n obeys the continuity
equation

dn/dt+ v∗∂yφ = D∇2n (3)

with D the particle diffusivity. These equations are
defined in a box [−Lx, Lx] × [−Ly, Ly], with aspect
ratio ε = Lx/Ly and periodic boundary conditions.
The system is driven by the equilibrium current den-
sity, Jeq(x) = cos(x) (having set Lx = π). Following
standard techniques, we define the tearing mode sta-
bility parameter ∆′. For the considered equilibrium,
∆′ = 2κ tan πκ/2, where κ =

√
1−m2ε2 and m is

an integer. Tearing perturbations φ = φL(x)eikyy,
with ky = mε, are linearly unstable when ε < 1
(∆′ > 0).

The linearized system can be solved analytically.
For reasons of brevity, we omit the analytic deriva-
tion and present only a brief summary of the main
interesting regimes.

P = D = 0

The tearing mode growth rate, γ = γT , is obtained
also when ω∗e = kyv∗ = 0. For sufficiently large val-
ues of ω∗e/γT , the mode becomes delocalized. Fig-
ure 1(a) shows an example of what happens to the
perturbed current density during the initial growth
of the instability for η = 1 × 10−4, ∆′ = 0.71 and
ω∗e/γT = 3.

P 6= 0

For non-zero values of the Prandtl number, a turn-
ing point is introduced in space beyond which the
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Figure 2. Non-linear evolution. Top: magnetic signal;
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eigenfunction decays exponentially to zero. When
ω∗e/γT > 1 and µ > ω

7/3
∗e (∆′)−2/3, a new scaling for

the growth rate is found, γ ∼ ∆′6/5η4/5ω
−1/5
∗e P−1/5.

An example of the eigenfunction for P = 0.1, η =
1 × 10−4, ∆′ = 0.71 and ω∗e/γT = 3 is shown in
Fig. 1(b). The mode is now localized with radial
oscillations.

D 6= 0

The most striking effect on the mode structure is
found for non-zero values of the diffusivity parame-
ter. At D/η ≈ 10−2, the mode structure is localized
even for P = 0; in addition, the radial oscillations
are wiped out completely. The effect on the mode
growth rate is negligible, as can be shown analyti-
cally. An example of the numerical solution is shown
in Fig. 1(c), for η = 10−4, ∆′ = 0.405, ω∗e/γT = 3
and D = 5× 10−6.

We also present preliminary non-linear studies of
Eqs (1)–(3), aimed at identifying the interesting phe-
nomenology. Figure 2 shows the evolution of the
magnetic signal of the dominant mode and the rota-
tion frequency. For this run, ∆′ = 0.34, η = 1×10−3,
P = 0.2, D = 5× 10−5 and ω∗e = 0.015. The mode
initially grows exponentially and rotates at the lin-
ear frequency ωlin ≈ 0.013, but then it slows down
to a somewhat lower frequency. This is accompa-
nied by a reduction of the mean density gradient
in the island region. Density flattening is caused by
the electric field advection in the continuity Eq. (3)
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Figure 3. Mean fields, density and potential, for D =

5× 10−5 (solid) and D = 2.5 × 10−5 (dashed).

and is counterbalanced by the diffusivity. Figure 2
also shows that when the diffusivity is reduced to
D = 2.5 × 10−5, as we do at time t = 20, the fre-
quency drops further. Figure 3 shows the profiles of
the mean fields for two values of diffusivity. We also
find that the amplitude of the saturated island is only
weakly affected by the diamagnetic frequency, being
about 10% less than the amplitude obtained [4] with
the RMHD model for the corresponding value of ∆′.

2. Neoclassical tearing modes

Neoclassical tearing modes can be destabilized in
weakly collisional toroidal plasmas, as a consequence
of the local reduction of the bootstrap current within
a magnetic island of finite width in an otherwise sta-
ble equilibrium with ∆′ < 0 [5]. The local current
reduction follows the quasi-linear pressure flattening
within the island region. While the proposed the-
oretical models appear to be in qualitative agree-
ment with experimental observation [6], non-linear
diamagnetic effects, which as argued in the previous
section are expected to play an important role, have
not been properly included in the models. Further-
more, the critical threshold, in terms of the initial
seed island for the onset of these modes, is still an
open question [7–9]. These modes are deemed dan-
gerous for a tokamak reactor because the critical seed
island can be provided by error fields or through the
coupling with sawteeth and other magnetic modes.

A number of suggested stabilization schemes rely
on RF waves. These can be divided into two classes.
The first class depends on global modifications of
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Figure 4. Time evolution of the frequencies of the oscil-
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FTU shot 14979. Diamonds correspond to m = 2 oscil-
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r ≈ rq=1; full and dashed lines show the results of the

theoretical model in Ref. [13].

the background current density profile due to heat-
ing or considerable current drive. The second class
relies on the subtler local balance between the RF
driven current and the helical bootstrap current
modification. In the latter case, the stabilization task
requires that, in the frame of the rotating island,
the externally applied counter-electromotive field,
ECD = −〈∂ψCD/∂t〉, be seen as constant. Therefore,
in the laboratory frame the source should be modu-
lated in phase with the rotating island [10]. However,
in recent experiments on ASDEX [11] and FTU [12],
the much simpler scheme of unphased ECRH and
ECCD on magnetic islands with helicity m/n = 2/1
was applied with success.

On FTU, the effect of ECRH on neoclassical
islands was studied in detail. Experiments were per-
formed with EC wave injection from the low field
side, O mode polarization at the fundamental fre-
quency, f = 140 GHz, and EC power PEC = 800 kW.
At low currents and high q values, Ip ≈ 350 kA
and qψ ≈ 6, sawtooth oscillations were suppressed.
With moderate reshaping of the current density pro-
file induced by off-axis ECRH and increasing values
of poloidal beta, the stability of MHD resistive modes
with m/n = 2/1 was altered and temperature oscilla-
tions due to rotating magnetic islands were observed
to grow.

The dynamics of coupled rotating magnetic
islands associated with ECRH can be interpreted
on the basis of non-linear model equations, given
in detail in Ref. [13], which describe the interaction
of the island inertia with the resistive wall braking
torque and the electrodynamic coupling of the mode

side bands. Coupling can have a stabilizing or desta-
bilizing effect, depending on the phase difference ∆φ,
which evolves non-linearly in a pendulum-like fash-
ion. During an ECRH pulse in FTU, e.g. shot 14979
shown in Fig. 4, the m/n = 1/1 and m/n = 2/1
magnetic islands initially rotate at a common fre-
quency controlled by the larger of the two islands.
This frequency is occasionally seen to jump between
the natural frequencies, which, in the plasma rest
frame, are related to the electron diamagnetic fre-
quencies at the corresponding mode rational sur-
faces. This frequency jump is the result of the com-
petition between the mutual torques associated with
the two islands, viscous drag and wall braking. In
Fig. 4, for t < 0.62 s, the m/n = 2/1 island is
the larger and determines the common rotation fre-
quency, ω(t) ∼ ω∗e(r2), where q(r2) = 2. This fre-
quency slows down as a consequence of the interac-
tion with the resistive wall. Decoupling of the two
islands occurs at t = 0.62 s, when ω(t) reaches a
value close to ω∗e(r1). Superimposed on the experi-
mental points is the result of a numerical simulation
based on our model. Theoretically, mode decoupling
is an important new result that follows the non-linear
behaviour of the phase difference ∆φ, since the cou-
pling torque depends to a considerable extent on this
phase difference.

3. Model for the sawtooth period and
amplitude

Sawtooth crashes are triggered by internal kink
modes with toroidal n = 1 and dominant poloidal
m = 1 mode numbers (in short, an m = 1 mode)
[14, 15]. The necessary instability condition for these
modes is that q drop below unity in the central
plasma region. However, it is clear from both the-
ory and experiments that consideration of non-ideal
MHD effects is necessary in order to understand saw-
tooth behaviour, particularly the threshold for recon-
nection and the resulting sawtooth period and ampli-
tude. This threshold can be written as [16]

δW < δWcrit for instability (4)

where

δW = δWmhd + δWKO + δWfast (5)

is an effective potential energy functional, with
δWmhd the ideal MHD part [17, 18], δWKO the
part contributed by the thermal trapped ions (the
Kruskal–Oberman contribution) [19, 20], δWfast the
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fast particle contribution [21, 22] and δWcrit a criti-
cal threshold determined by microscopic effects (i.e.
electron–ion collisions, ion Larmor radius, electron
skin depth, diamagnetic frequency, etc.) in a narrow
layer around the q = 1 surface, where reconnection of
magnetic field lines can occur. Detailed expressions
for δW and δWcrit can be found in Ref. [16].

The fast particle contribution δWfast is responsi-
ble for the ‘monster sawteeth’, which first appeared
in JET discharges where a fast ion population was
created by ICRH. Monsters are actually periods of
transient sawtooth stabilization lasting a fraction of
the global resistive diffusion time, more precisely, the
time for the q = 1 radius r1 to evolve to about 50%
of the plasma minor radius, starting from a saw-
tooth relaxed q profile; at these large values of r1,
fast ion sawtooth suppression becomes ineffective. To
the extent that the resistive diffusion time is much
longer than the energy confinement time, the cen-
tral temperature saturates during the sawtooth free
period until a giant crash occurs, giving rise to the
characteristic shape of monster X ray traces.

Another important ingredient associated with the
stability criterion (5) is the local magnetic shear. For
most tokamak discharges of interest today, including
those of TCV and FTU, the relevant layer physics
determining the δWcrit threshold term corresponds
to the ‘ion kinetic regime’ [23], where electron–ion
collisions determine the impedance to the parallel
electric field in the reconnection layer, but the ion
Larmor radius is comparable to or larger than this
layer; in addition, diamagnetic effects are important.
Under these circumstances, the instability condition
(4) is equivalent to [24]

max(γρ, γη) > c∗(ω∗eω∗i)1/2 (6)

where γρ and γη are the ion kinetic [23] and resistive
kink [15] growth rates, respectively, c∗ is a numerical
factor of order unity and the diamagnetic frequencies
are evaluated at r1. This condition can be recast in
terms of a critical magnetic shear condition for the
local parameter s1 = r1q

′(r1), as is done in Ref. [16].
For the case γρ > γη

s1 > s1 ,crit = c
7/6
∗ [πTi/2(Ti + Te)]

1/3

× τ
7/6
A (ω∗eω∗i)7/12(r1/ρi)2/3S1/6 (7)

where τA is the relevant Alfvén time, ρi is the ion
Larmor radius and S is the magnetic Reynolds num-
ber.

The sensitivity to the local magnetic shear was
tested in JET discharges with fast wave current
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Figure 5. TCV sawtooth simulations of shots 15278

and 15282. Top: ECCD as a function of time; bottom:

central electron temperature. Also shown in the bottom

panel are two experimental soft X ray sawtooth traces.

drive, where phasing of the ICRH antennas led to
lengthening or shortening of the sawtooth period,
depending on the sign of the driven current, when
the resonant absorption layer was close to the q = 1
radius [25].

Various experiments performed on TCV have
highlighted the strong sensitivity of the sawtooth
period to ECH and ECCD operation conditions
[26, 27]. Simulations performed with the PRETOR
code, where the sawtooth crash trigger criterion dis-
cussed in this section has been implemented, are in
good agreement with the experimental results [28].
In Fig. 5, we present in more detail the simulation of
a dedicated experiment showing the influence of even
small amounts of current drive close to the q = 1 sur-
face on the sawtooth period. Two shots with identi-
cal plasma conditions have been produced [27]: in
one case, shot 15278, the ECH power is accompa-
nied by a small amount of counter-CD (less than
1% of the plasma current); in the second case, shot
15282, the same power deposition is accompanied
by a similar amount of co-CD. The sawtooth period
changes experimentally from 7 to 11 ms. A simula-
tion performed fitting the c∗ coefficient in Eq. (7) to
the ohmic sawtooth period reproduces the observed
trends. As the ECH power deposition is nearly the
same in the two cases, the simulated critical shear
is the same function of time for the two discharges.
In contrast, the small amount of CD, well localized
close to the q = 1 surface, changes the evolution
of the magnetic shear at q = 1, i.e. s1 increases
more quickly after a crash with counter-CD and more
slowly with co-CD. Thus the time to cross the thresh-
old in Eq. (7) is different for the two cases, changing
the sawtooth period in very good agreement with the
experimental data.

Nuclear Fusion, Vol. 41, No. 9 (2001) 1211
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Next we present a comparison of FTU experi-
mental results with simulations obtained with a 1-D
transport code, where the sawtooth trigger model (7)
has been implemented [29]. When Eq. (7) is satisfied,
the q profile is relaxed following Kadomtsev’s full
reconnection prescription [14]. Density and tempera-
ture profiles are flattened up to Kadomtsev’s mixing
radius, while conserving particle number and energy.
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Figures 6 and 7 illustrate the numerical simulation of
FTU discharge 15473, where ECRH is applied near
the q = 1 surface at time t ≈ 0.7 s. The effect
of localized heating is that of shrinking the q = 1
radius, reducing both the local and the critical mag-
netic shear values. For t > 0.7 s, the electron tem-
perature rises, and small and rapid sawteeth still
occur, which, however, now involve a narrow central
region within which the temperature profile is nearly
flat. Comparisons between simulated and experimen-
tal sawtooth traces are shown in Fig. 8 for FTU
shot 14992, with applied co-ECCD, and in Fig. 9
for FTU shot 14993, with applied counter-ECCD,
at t ≈ 160 ms after EC switch-on. As compared
with the ohmic phases of the same discharges, we
find that co-CD increases the sawtooth period, while

1212 Nuclear Fusion, Vol. 41, No. 9 (2001)
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counter-CD leaves it practically unchanged, probably
because of the low counter-current level achieved and
the competing destabilizing effect of heating. These
effects are also well described by the adopted saw-
tooth model.

The satisfactory agreement between the observed
sawtooth periods in ohmic and ECRH discharges in
TVC and FTU and the simulation results indicate
that the adopted sawtooth model is capable of cap-
turing the main trends, i.e. variations of the sawtooth
period when operation conditions are changed. How-
ever, the period itself can be predicted only within
a factor of 2 uncertainty. Nevertheless, the agree-
ment is remarkable, especially in view of the fact
that the sawtooth trigger model is based on lin-
ear stability theory, while magnetic fluctuations are
often observed in ECRH experiments, superimposed
over a significant fraction of sawtooth ramps, indica-
tive of the presence of saturated, m/n = 1/1 mag-
netic islands with an amplitude exceeding the recon-
nection layer width expected from linear theory. A
possible explanation is that, indeed, linear theory
indicates that m/n=1/1 drift tearing modes may be
unstable during sawtooth ramps when inequality (4)
is reversed, giving rise to low amplitude magnetic
islands; however, a full sawtooth crash requires a
more virulent instability whose threshold is consis-
tent with Eqs (4) and (6). A model for the dynam-
ics of saturated m/n = 1/1 magnetic islands during
ECRH has been proposed in Ref. [30].

4. Temperature profiles during
sawteeth and localized ECRH

A model for the evolution of the electron tem-
perature profile during localized ECRH and saw-
tooth activity has been proposed recently [31]. The
model solves the electron thermal energy diffusion
equation, taking into account the anisotropy intro-
duced by the magnetic field (heat diffusion along
field lines is much faster than cross-field diffusion),
a localized heat source, plasma rotation and, most
importantly, the appropriate magnetic topology cor-
responding to the growth of an m/n = 1, macro-
scopic magnetic island. A helical flux function is
introduced, ψ∗ = ψ∗(r, θ − φ; ξ), where θ and φ are
the poloidal and toroidal angles, respectively, and
ξ = ξ(t) is the radial displacement of the hot core
magnetic axis as a function of time. Figure 2 of
Ref. [31] illustrates a poloidal cross-section of the
ψ∗ = const flux surfaces and the heating region of
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the ECRH. The deposited ECRH power is effectively
spread along an annular region as a consequence of
large parallel thermal conduction and plasma rota-
tion. The diffusion equation, which is defined in a
Lagrangian frame, basically describes the evolution
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of electron thermal energy on magnetic flux tubes
frozen to the plasma flow. Advection of the flux tubes
is consistent with internal kink flow cells, which are
parameterized by ξ(t). At the particular instant in
time when two flux surfaces reconnect, a mixing rule
for the thermal energy is implemented [31]. The sim-
ulation code that evolves the electron temperature
according to the rules outlined above has been given
the name M1TEV. More details of the simulation
code can be found in Ref. [32].

The first application [31] of M1TEV was finalized
for the interpretation of the temperature filamentary
structures observed in RTP [33] and TEXT-U [34]
experiments during intense localized ECRH. These
multipeaked temperature profiles are obtained by
M1TEV assuming an ECRH deposition width nar-
rower than the size of the m/n = 1 island, which in
these experiments is observed to grow slowly during
sawtooth ramps.

A second application [35] was aimed at the inter-
pretation of the ‘humpback’ relaxation oscillations,
first observed in T-10 [36] and later reported by
the TCV team [37] with intense ECRH near the
q = 1 radius. The distinctive feature of humpback
relaxations is the fast drop and rise of the central
soft X ray emissivity, on a timescale normally below
1 ms in TCV. Our interpretation of the humpback
phenomenon, as supported by M1TEV code simula-
tions, is based on the following two ingredients. First,
intense localized ECRH near q = 1 can produce elec-
tron temperature profiles that are nearly flat in the
centre, up to the q = 1 radius, and then fall steeply
beyond that radius. Secondly, once these profiles are
produced prior to the sawtooth relaxation phase, the
fast development of an m/n=1 magnetic island and
the corresponding advection and mixing of electron
thermal energy cause the fast drop and rise of the
soft X ray line integrated intensity.

In the M1TEV model, the displacement function
ξ(t) is a free parameter, not determined theoreti-
cally. An effort has been made to infer this func-
tion from TCV experimental data by measuring as
a function of time the radial distance of the peak
of the soft X ray emissivity profile from its initial
position at the bottom of the sawtooth ramp. An
example is shown in Fig. 10, illustrating a satu-
rated sawtooth obtained in TCV discharge 14385
during slightly off-axis ECRH (deposited mostly well
within the sawtooth inversion radius). In particular,
Fig. 10(d) shows the measured displacement func-
tion. When this function is used in M1TEV together
with the appropriate values of the relevant input

parameters, the simulated sawtooth traces shown in
Fig. 11 are obtained. Other examples of simulated
TCV sawteeth can be found in Ref. [32].

5. Collisionless magnetic
reconnection

Magnetic field line reconnection in high temper-
ature plasmas is one of the most fertile problems
in physics owing to its relevance to astrophysical
and laboratory plasmas and to its theoretical impli-
cations. One of its most important features is the
interplay between the energetic and the topological
aspects that characterize its evolution: a local relax-
ation of the topological magnetic structure is accom-
panied by a fast release of magnetic energy. This
energy is transformed into ion kinetic motion, into
internal (compressional) electron energy, and into
either heat (dissipative reconnection) or ordered elec-
tron kinetic energy (Hamiltonian reconnection) [38].

Research on magnetic reconnection in col-
lisionless plasmas was originally motivated by
applications to space plasma processes, such as
reconnection events occurring in the Earth’s mag-
netotail (see, for example, Ref. [39]). Renewed inter-
est in this problem was prompted by the observation
of fast sawtooth relaxations in JET. Wesson [40],
using a semi-heuristic Sweet–Parker type of argu-
ment, was the first to point out that electron inertia
may account for the observed fast relaxation time
τcrash ≈ 50 µs. More detailed analytic and numer-
ical work [41–43] showed that: (i) The actual fast
reconnection timescale in JET relevant regimes, τrec,
is determined by a combination of the electron skin
depth de and the ion (sound) gyroradius ρs, namely
τrec ∼ τA(r1/de)(deρs)2/3, which gives values of τrec

close to τcrash for JET parameters. (ii) The structure
of the collisionless reconnection region is very differ-
ent from that associated with the classic, collisional
Sweet–Parker process.

An appropriate model for collisionless reconnec-
tion is Eq. (1), with µ = 0, and the collisionless ver-
sion of Ohm’s law

∂F

∂t
+ [ϕ,F ] = ρ2

s[U,ψ] (8)

where F = ψ + d2
eJ is the velocity space averaged

canonical momentum along the ignorable z direc-
tion. The term proportional to ρ2

s represents elec-
tron compressional effects, which are important inso-
far as ρs > de. Equations (1) (with µ = 0) and
(8), together with U = ∇2φ and J = −∇2ψ, are
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Figure 12. Normalized growth time of the logarithm of

the island width in the collisionless de = ρs = 0.2 case

(solid line) and in the resistive de = 0, ρs = 0.1 and

η1/3 = 0.2 case (dashed–dotted line). Time runs along

the horizontal axis.

a closed set. In Refs [42, 43], these equations were
solved in a planar slab subject to double periodic
boundary conditions. Choosing a slab aspect ratio
ε = 0.5 and values of de and ρs such that ∆′(0.5)de >
(de/ρs)1/3, a quasi-explosive non-linear growth was
found on the timescale τrec indicated above, although
the adopted boundary conditions limited the inter-
esting non-linear phase to island widths smaller than
the box size (see also Ref. [44]).

More recently, we have solved the same set of
equations removing the double periodic boundary
conditions. We have adopted a Harris pinch equi-
librium, Beq = B0ez + Byeq(x)ey , where Byeq(x) =
tanh(x/L) and L is the equilibrium scale length.
This equilibrium is unstable to tearing perturbations,
periodic in y over the distance Ly, when L < πLy.
In the x direction, we impose the condition that the
fields φ and ψ − ψeq vanish at infinity. The linear
(small perturbation) phase can be solved analyti-
cally. In the limit ∆′ → ∞, the normalized growth
rate [41] γL ≈ (2deρ2

s/π)1/3 is recovered. With the
Harris pinch configuration, a single coherent mag-
netic island can now be followed in time, until its
width saturates at a macroscopic amplitude.

The non-linear evolution requires numerical work.
Equations (1) (with µ = 0) and (8) are solved on
a non-uniform mesh with an increasing density of
grid points in the central region. The integration
domain is limited to large values of x, such that
the boundary fluxes are negligible. A suitable filter-
ing of the small spatial scale lengths (well below the

electron skin depth) has been included which is capa-
ble of ensuring numerical stability while not alter-
ing the required conservation properties significantly.
The solution is compared with a purely resistive
case. Choosing the parameters for two comparison
runs such that the collisionless and the resistive lin-
ear growth rates are the same, the collisionless case
exhibits a faster, quasi-explosive non-linear growth
that we are now able to follow to saturation (Fig. 12).
Thus we confirm the result in Refs [42, 43], indicat-
ing that the magnetic island grows to a macroscopic
amplitude on the timescale τrec ∼ γ−1

L . By contrast,
the resistive simulation shows that the non-linear
growth takes place on the Sweet–Parker timescale,
τSW ∼ (τητA)1/2. Interestingly, the saturation level
for the two cases is nearly the same.

The collisionless model we have adopted admits
two families of topologically invariant fields

G± = F ± deρsU. (9)

Equations (1) and (8) can be written as

∂G±
∂t

+ [ϕ±, G±] = 0 (10)

where ϕ± = ϕ ± (ρs/de)ψ. The energy functional
playing the role of the system Hamiltonian [45] is

H = −1
2

∫
d2x(ϕ+G+ + ϕ−G−). (11)

Equations (10) explicitly show the Lagrangian con-
servation of the fields G±, advected by the gener-
alized flows v± = ez × ∇ϕ±. Clearly, any func-
tion of G± is also a conserved field. It was shown
in Ref. [43] that the existence of these topologi-
cal invariants is responsible for the structure of the
reconnection region, in particular the cross-shaped
structure of the current density and vorticity layers
and the generation of microscales below the electron
skin depth. A more general question of principle that
we address here (see also Ref. [38]) is how to recon-
cile the reversible energy transport to small scales
implied by the dissipationless reconnection evolu-
tion, with the seemingly irreversible approach to a
saturated equilibrium with a macroscopic magnetic
island.

The resolution of this apparent paradox is phase
mixing of the Lagrangian invariants, i.e. the func-
tions G± develop fine scale oscillations as they are
advected by vortical patterns corresponding to the
velocity fields v±, while the functions φ and ψ, which
can be expressed through integrals of G±, turn out
to be smooth. This process can be more easily under-
stood in terms of a formal analogy with the standard
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Figure 13. In the first row the contour levels of the single particle Hamiltonian ϕ− at different simulation times are

plotted. The separatrices are superimposed in red. In the second row the contour levels of the Lagrangian invariant G−

are drawn (the red contour is the island separatrix). Note that the scale in the x direction is different at later times.

Vlasov–Poisson problem for electrostatic Langmuir
waves [46]. The set of Eqs (10) has the form of two
coupled 1-D Vlasov equations, with x and y playing
the role of the co-ordinate and the conjugate momen-
tum for the ‘distribution functions’ G± of two ‘par-
ticle’ species with equal charges in the Poisson-like
equation for φ,

deρs∇2φ = (G+ −G−)/2 (12)

and opposite charges in the Yukawa-type equation
for ψ,

ψ − d2
e∇2ψ = (G+ +G−)/2 (13)

The generalized stream functions φ± play the role
of the single particle Hamiltonians. Thus, similarly
to Bernstein–Green–Kruskal (BGK) [47] solutions,
the stationary solutions of Eqs (10) can be written
in the form G± = G(φ±) (there is a single function
G because of the symmetry relation G+(−x, y) =
G−(x, y)). However, the present problem and the
standard Vlasov–Poisson problem are not formally
identical. In Poisson’s equation, the source term is
the electron density, which is the velocity space inte-
gral of the distribution function and as such does
not exhibit fine scale oscillations. In our problem,
the source terms for Eqs (12) and (13) are the distri-
bution functions G± themselves. On the other hand,

the fields φ and ψ, the solutions of these equations,
can be expressed in terms of integrals of G±. Thus
the fine scale structure of G± does not show up in φ
and ψ. An illustration of this process is the numerical
solution shown in Fig. 13.

In this fully non-linear phase, a new character-
istic dynamical time related to the eddy turnover
time of the Lagrangian invariants inside the island
becomes of interest. When this turning time, which
decreases as the instability grows, becomes of the
order of the non-linear island growth time, energy
is removed effectively from the large spatial scales
leading to the island growth saturation. The phase
mixing of the Lagrangian invariants can allow the
plasma to access a new ‘macroscopic’ stationary state
without violating energy conservation. This process
leads to the formation of macroscopic BGK equilib-
ria [47], superimposed on increasingly thin filaments,
as in the case of the non-linear Landau damping of
Langmuir waves. This can be seen by separating the
Lagrangian invariants into coarse grained and phase
mixed parts and by noticing that, in the spatial inte-
gration that gives ψ and ϕ from G±, the contribu-
tion of the phase mixed small scale filaments of G±
averages out. On the other hand, these small scale
structures continue to contribute to total energy
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conservation through the quadratic d2
eJ

2 and ρ2
sU

2

terms in Eq. (14). On the basis of this separation,
it was shown in Ref. [38] that the macroscopic mag-
netic equilibrium can be cast in the form J̄ = F(ψ̄),
where a bar denotes coarse grained quantities and
F is an arbitrary function, which need not contain
either de or ρs, consistently with the fact that the
saturated island widths are comparable for collision-
less and resistive regimes.

6. Conclusions

In this article, we have presented recent advances
in the understanding of macroscopic island dynam-
ics in magnetized plasmas, made possible by a prof-
itable interaction between theory and experiments.
The understanding, however, is still far from com-
plete. The main conclusions from our analysis can
be summarized as follows:

(1) A satisfactory model for the sawtooth period
and amplitude has been developed and validated
against TCV and FTU experiments. The model
points to the importance of diamagnetic effects,
which introduce a threshold for the trigger of the
sawtooth crash in terms of a critical value of the local
magnetic shear parameter. Localized current drive
can influence the time evolution of the local mag-
netic shear and thus represents an effective means for
sawtooth control. The model also includes the effect
of fast ions, which in previous work were shown to
explain the long monster sawtooth periods observed
in JET. Thus the proposed sawtooth model is a
state of the art viable tool for predicting sawtooth
behaviour in future experiments, and as such it has
been implemented in predictive transport codes such
as PRETOR and BALDUR.

(2) Diamagnetic effects are important not only for
the determination of the linear stability threshold of
m/n = 1 modes. Neoclassical magnetic islands in
FTU are observed to rotate at the electron diamag-
netic frequency. A non-linear model for the dynamics
of coupled rotating magnetic islands has been devel-
oped and compared with FTU data. In another the-
oretical development, preliminary results on the evo-
lution of non-linear drift tearing modes, based on
a reduced three field model, have been presented.
It is shown that density gradients in the reconnec-
tion region can be maintained non-linearly and give
rise to diamagnetic rotation of macroscopic magnetic
islands.

(3) A model for the evolution of electron temper-
ature profiles during sawteeth and localized ECRH

has been developed and compared against TCV and
FTU data.

(4) In large size tokamaks such as JET, saw-
tooth reconnection can occur under nearly collision-
less conditions. We have shown that non-linear col-
lisionless reconnection is fast enough to account for
the observed relaxation time in JET sawteeth. We
have also shown that the growth and saturation of
magnetic islands can occur in collisionless conditions.
Irreversibility in collisionless reconnection is associ-
ated with the phase mixing of conserved fields. In
this sense, magnetic island saturation has a formal
analogy with the formation of BGK equilibria for
dissipationless Langmuir waves.
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