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One-atom-thick crystalline layers and their vertical heterostruc-
tures carry the promise of designer electronic materials that are
unattainable by standard growth techniques. To realize their
potential it is necessary to isolate them from environmental distur-
bances, in particular those introduced by the substrate. However,
finding and characterizing suitable substrates, and minimizing the
random potential fluctuations they introduce, has been a persistent
challenge in this emerging field. Here we show that Landau-level
(LL) spectroscopy offers the unique capability to quantify both
the reduction of the quasiparticles’ lifetime and the long-range
inhomogeneity due to random potential fluctuations. Harnessing
this technique together with direct scanning tunneling microscopy
and numerical simulations we demonstrate that the insertion of a
graphene buffer layer with a large twist angle is a very effective
method to shield a 2D system from substrate interference that has
the additional desirable property of preserving the electronic
structure of the system under study. We further show that owing
to its remarkable nonlinear screening capability a single graphene
buffer layer provides better shielding than either increasing the
distance to the substrate or doubling the carrier density and re-
duces the amplitude of the potential fluctuations in graphene to
values even lower than the ones in AB-stacked bilayer graphene.
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The recent realization of one-atom-thick layers and the fab-
rication of layered Van der Waals heterostructures revealed

fascinating physical phenomena and novel devices based on in-
terlayer interactions (1–10). Inherent to the 2D structure of these
layers is an extreme vulnerability to disturbances introduced by the
substrate (11–14). Substrate interference can be eliminated by
suspending the sample, an approach that led to the observation of
ballistic transport (15, 16) and the fractional quantum Hall effect
in graphene (17–20), but this method only works for small (mi-
crometer-sized) samples at relatively low doping. Another approach
is to use atomically smooth metallic substrates (21–23) or graphite
(24–28), which screen the random potential. However, these sub-
strates short-circuit the 2D channel and prevent tuning the carrier
density by gating, rendering them unsuitable for device applica-
tions. Among insulating substrates atomically flat hBN (29–31)
and MoS2 (6) have recently emerged as promising alternatives to
SiO2 substrates.
Here we show that by inserting a graphene buffer layer be-

tween the 2D sample (in this case, also graphene) and the insulating
substrate, the random potential fluctuations are screened without
compromising the electronic structure of the 2D system under study
and the gating capability. This capability relies on the fact that in
van der Waals structures the stacking configuration in the third
direction can be set arbitrarily and is not fixed by the chemistry of
the elements forming the heterostructure. Consequently it is pos-
sible to electronically decouple two 2D crystals by simply ensuring
that the relative angle (the twist angle) between them is significantly
different from values that would lead to a commensurate stacking
configuration (2, 30). In this situation the only effect of the addi-
tional graphene layer is to screen random potential fluctuations

caused by the substrate. Due to the large twist angle the additional
graphene layer (i) does not modify the low-energy band structure of
the 2D systems under study and (ii) does not induce significant
intrinsic doping (contrary, for example, to what happens in gra-
phene grown on silicon carbide) and therefore does not compro-
mise the gating capability, which allows probing the intrinsic
electronic properties of 2D materials and their doping dependence.
We characterize the reduction of the potential fluctuations in

the presence of the additional graphene buffer layer by using
direct scanning tunneling microscopy (STM) imaging, spectros-
copy (STS), Landau-level (LL) spectroscopy, and numerical
simulations. LL spectroscopy gives a measure of the local po-
tential fluctuations by providing access to the onset of well-defined
cyclotron orbits, to the quasiparticle lifetime, and to the mean
free path. Furthermore, we show that gate-dependent LL spectros-
copy allows quantifying the strength of the spatial inhomogeneities
induced by the disorder. Using this technique we find that scattering
is substantially suppressed in the presence of the graphene buffer
layer and that the sample quality is further improved by the prox-
imity to an hBN flake (7). This is the first time to our knowledge
that the beneficial effect of introducing a graphene buffer layer is
verified and quantified using direct imaging STM, STS mapping of
the LLs, and numerical simulations.

Results
Fig. 1A shows the schematic measurement setup. The STM to-
pography of a single layer (GSiO2) and an adjacent double layer
(GGSiO2) is shown in Fig. 1B. The step height across the boundary
between the two regions, ∼0.7 nm, is significantly larger than for
Bernal stacked graphite (0.34 nm) (32), suggesting that the top and
bottom layers are electronically decoupled. Side-by-side topography
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images on residue-free regions of the GSiO2 and GGSiO2 samples
(Fig. 1C) show that they have the same average height corrugation
of ∼0.9 nm (Fig. 1D). The absence of a moiré pattern in the
GGSiO2 sample suggests weak interlayer coupling, consistent with
their large separation.
Fig. 2A shows the gate voltage, Vg, dependence of the dI/dV

spectra for the GGSiO2 sample (see Fig. S1 for GSiO2). In Fig.
2B we plot the Dirac point (DP) energy, ED, obtained from Fig.
2A, as a function of Vg. For two decoupled graphene layers, and
using the convention where the Fermi energy is at the origin
EF ≡ 0, the gate voltage dependence of the DP in the top layer is
given by (33) the following: Et

DðVgÞ= ZvF  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νπα

""Vg −VD
""

q
. Here

Z is the reduced Planck constant, vF is the Fermi velocity,
ν= ntop=ntotal is the ratio of the carrier density in the top graphene
layer (ntop) to the total carrier density (ntotal), α= 7 × 1010 cm−2·V−1

is the charging capacitance per layer, per unit area and unit charge,
and VD indicates the gate voltage needed to cancel the un-
intentional doping. To obtain the charge distribution between the
two layers we use the value of vF independently measured from LL
spectroscopy as discussed below. Fitting the data in Fig. 2A to this
expression with vF = 1.12 × 106 m/s, we obtain ν = 0.43, indicating
that the top layer is slightly less populated than the bottom one.
In addition, we find VD = 22.5 ± 0.5 V, corresponding to un-
intentional hole doping with an average carrier density, n, of
∼8 × 1011 cm−2. The substrate-induced random potential produces
electron-hole puddles observed as density of states (DOS) fluctu-
ations in the maps shown in Fig. 2 C and D for GSiO2 and
GGSiO2, respectively. The substantial reduction of the fluctuations
in GGSiO2 compared with GSiO2 reflects the significant screening
afforded by the buffer graphene layer.
To understand screening in this system we carried out nu-

merical simulations that used the Thomas–Fermi–Dirac theory
(TFDT) (34, 35). In graphene, unlike the case of materials with
parabolic bands, the disorder potential created by trapped
charges retains its long-range nature (36–38). This property, to-
gether with the nonlinear nature of the screening in graphene (34,
39), poses significant challenges to theoretical treatments. Pre-
vious work has shown that TFDT provides a computationally fea-
sible approach to modeling this problem (Supporting Information,
Notes on Modeling Puddles in the Graphene–Graphene System).

Starting from the random distribution of charge impurities shown
in Fig. S2 A and B we used TFDT to numerically illustrate the
screening effect of a single graphene layer (Fig. 2E) and to dem-
onstrate the shielding effect of adding a second layer (Fig. 2F).
Similarly to the experimental results, we find that the double layer
experiences a substantial reduction in the potential fluctuations
compared with the single layer. This reduction cannot be explained
simply as a consequence of higher carrier density, or the larger
distance from the SiO2 plane (39), as clearly shown in Fig. 3, where
we compare the strength of the potential fluctuations in single-
and double-layer graphene. We see that neither an increase of the
distance from the substrate, d, nor a doubling of the carrier density
is sufficient to reduce the strength of the fluctuations in the single
layer to the values obtained, and observed experimentally, for the
double layer. Remarkably, as shown in Fig. 3B, even in the limit in

Fig. 1. (A) Schematics of the STM measurement configuration illustrating
the GSiO2 and GGSiO2 samples and the Ti/Au electrode. (B) (Top) Constant
current STM topography map of the boundary between GGSiO2 and GSiO2.
(Bottom) Height profile along the dashed line crossing the boundary shows
a step height of 0.7 nm. Tunneling parameters: Iset = 20 pA and Vb = 0.7 V.
(C) Constant current STM topographs of GSiO2 and GGSiO2. Tunneling pa-
rameters: Iset = 20 pA and Vb = 0.4 V. (D) Height profiles along the dashed
lines in C.

Fig. 2. (A) Gate voltage dependence of dI/dV spectra on GGSiO2. Curves are
vertically displaced for clarity. Red arrows indicate the conductance mini-
mum which is identified with ED. Tunneling parameters: Iset = 20 pA, Vb = 0.3 V,
and modulation voltage 5 mV. (B) Gate voltage dependence of measured ED
(squares) together with the fit (solid line) discussed in the text. (C and D)
dI/dV maps at Vb = 0.3 V reveal the electron (red) hole (blue) puddles
resulting from doping inhomogeneity. Maps cover the same areas as in Fig.
1C). The color scale, which is proportional to the deviation of dI/dV from the
mean value across the map, is a direct representation of the local fluctua-
tions of ED. (E and F) Simulated map illustrating the spatial fluctuations of ED
for a single disorder realization (shown in Fig. S3 A and B) for a graphene
single layer (E) and double layer (F). Simulation parameters: impurity density
nimp = 5 × 1011 cm−2, carrier density <n> = 1 × 1012 cm−2, average distance
d between the charge impurities and the graphene layer closest to the
substrate 1.5 nm, and interlayer distance 0.7 nm.
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which the doping is set at the Dirac point, in both layers, the
random potential fluctuations are substantially reduced. For
comparison we also show the case of an AB-stacked bilayer gra-
phene (BLG), where we find that in the regime relevant to the
current experiments the strength of the disorder-induced fluctu-
ations is significantly larger than in the double-layer case. At high
doping the graphene buffer layer reduces the potential fluctua-
tions in the top graphene layer to values even lower than the ones
of the BLG, mainly because of its higher DOS compared with the
almost constant DOS of AB bilayer graphene. However, even at
the charge neutrality point for dK 1.5 nm the graphene buffer
layer can reduce the potential fluctuations to values smaller than
in BLG. The reason for the unusually strong screening efficiency
of the graphene buffer layer is the nonlinear screening inherent to
the linear dispersion of the charge carriers in single-layer gra-
phene. Owing to this nonlinearity large potential fluctuations are
screened more efficiently than smaller ones, with the net effect of
flattening the random potential landscape.
LL spectroscopy makes it possible to quantify the screening

effect by providing access to the quasiparticle lifetime and the
random potential fluctuations (27, 28). In the presence of a
magnetic field, B, normal to the layer the spectrum breaks up
into a sequence of LLs (40):

EN =ED ±
ZvF
lB

ffiffiffiffiffiffiffiffiffi
2jNj

p
N= 0, ±1, ±2, ±3, . . . , [1]

where lB = ðZ=eBÞ1=2 is the magnetic length and e the fundamen-
tal unit of charge. The LLs become observable when their char-
acteristic energy separation, vF

ffiffiffiffiffiffiffiffiffiffiffi
2eZB

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffi
N + 1

p
−

ffiffiffiffi
N

p
Þ, exceeds

the linewidth, ΔE, whose magnitude is primarily controlled by
the random potential fluctuations. This property defines an onset
field, Bo ∼

#ΔE
vF

$2 1
2eZ, above which the first LL becomes observable,

whereas for B < Bo the behavior is dominated by scattering from
the random potential. Thus, Bo measures the local random poten-
tial fluctuations, providing a gauge of substrate quality. B > Bo
implies l B < l, where l = vFτt is the mean free path and τt is the
transport time. For the regimes considered τt is of the order
(apart from a coefficient of order 1) of the quasiparticle lifetime
(41) τ≈ Z=ΔE. In other words, LLs become observable when the
magnetic length is smaller than the mean free path.
The evolution of LLs with field for the GSiO2 and GGSiO2

samples is shown in Fig. 4 A and B, respectively. In both samples
the LL energies follow the EN ∝

ffiffiffiffiffiffiffiffiffiffi
jNjB

p
dependence expected for

single-layer graphene (Fig. S4A). Fitting the data to Eq. 1 we find
vF = (1.10 ± 0.1) × 106 m/s and (1.12 ± 0. 1) × 106 m/s for the
single and double layer, respectively. Both values are consistent
with the accepted value for single-layer graphene on SiO2, as
expected for complete decoupling of top and bottom layers. The
LL peaks in GGSiO2 are sharper and their onset is earlier than
in GSiO2, indicating a more homogeneous charge distribution
and a longer quasiparticle lifetime. Gaussian fits of the n = 0 LL
(Fig. S4) give ΔE∼ 42 meV and 18 meV for the single and double
layer, respectively, corresponding to more than doubling the car-
rier lifetimes, from τ≈ 15  fs to τ≈ 35  fs and to a similar increase in
the mean free path from l ∼15 nm to ∼35 nm. Estimating the
onset fields from the linewidths we find Bo ∼3 T and Bo ∼0.5 T for
the single and double layer, respectively, consistent with the data.
These results show that the buffer graphene layer significantly
reduces the local potential fluctuations. Using TFDT simulations
with the same parameters as those in Fig. 2 E and F to calculate
the disorder averaged values of the random potential fluctuations,
we find for the rms of the potential fluctuations, ΔE= 40 meV
and 20 meV for single and double layer, respectively, in agreement
with the experimental values (Supporting Information, Notes on
Modeling Puddles in the Graphene–Graphene System and Fig. 3A).
It is worth noting that the contribution to the linewidth from
electron–electron interactions for samples supported on SiO2 is
negligible compared with that from the random potential (27).
This extrinsic scattering mechanism is consistent with the fact that
the LL lineshape is Gaussian and the linewidth is independent of
energy. In contrast, for the case of graphene on graphite (25–28)
where scattering is intrinsic, the lineshape is Lorenztian and the
linewidth, which increases linearly with energy, is almost an order
of magnitude narrower than here.
In Fig. 4C we illustrate the effect of an hBN flake placed close

to the double layer (Fig. S5A). The onset field, ∼0.5 T, and the
linewidth, ΔEl ∼ 17 meV, are not very different from the case
without the hBN flake. However, as we show next, even though it
is not part of the graphene substrate the mere proximity of the
hBN suppresses the global potential fluctuations. This suppres-
sion is consistent with earlier reports of self-cleansing at the
graphene–hBN interface, which is believed to segregate con-
taminants, leaving the rest of the interface atomically clean (7).
We have seen that the LL linewidth gives the scale of the mean

free path and therefore the scale of the rms of the potential
fluctuations. Next we show that the evolution of LL spectra with
the gate voltage also provides access to the maximum strength of
the global disorder-induced potential fluctuations across the entire
sample. In the absence of fluctuations the gate dependence of
the LLs produces a staircase pattern consisting of a sequence of

Fig. 3. Comparison of the potential fluctuations in single graphene (G),
BLG, and double graphene (GG) obtained using the TFDT. In each panel the
black dashed line shows the values obtained for GG assuming d = 1.5 nm, n =
1012 cm−2, and nimp = 5 × 1011 cm−2. (A) The dependence of the rms of the
potential fluctuations (i.e., of ED) as a function of the distance d between the
graphene layer and the impurities. The dashed blue lines show the results
for G with doping n = 1012 cm−2, and the solid red lines the results for G with
doping n = 2 × 1012 cm−2. The solid green lines show the analytic results for
BLG (Supporting Information), and the green empty triangles show the results
for BLG obtained using the TFDT. Neither an increase of d, nor a doubling of
the carrier density, is sufficient to reduce the fluctuations to the levels seen in
GG. In BLG, at low dopings, the rms of the screened disorder and of the carrier
density fluctuations does not depend on the doping. From the figure we see
that only when d is very large, the strength of the disorder-induced fluctua-
tions is larger in GG (for a doping n = 1012 cm−2) than in BLG. (B) Even when
the Fermi level is set at the Dirac point, the potential fluctuations are much
smaller in GG than in G. (C and D) The rms of the carrier density fluctuations
corresponding to A and B, respectively.
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equidistant plateaus separated by sharp jumps (42, 43). The pla-
teaus reflect the pinning of EF within an LL as it is being filled,
and their width, ΔVg = 8

α
B
ϕ0
, corresponds to the gate voltage

needed to populate all available states in one LL (a total of 8 B
ϕ0
)

(43). Here ϕ0 = 4.14 × 10−15 Tm2 is the fundamental unit of flux
and 8 reflects the degeneracy due to spin, valley, and two layers.
Once the Nth LL is filled, EF jumps to the next LL, producing the
sharp step. Note that because EF defines the energy origin, it is ED
and the LLs that seem to be shifting, rather than EF.
A random potential smears out the staircase structure because

ED (and the entire LL sequence with it) fluctuates across the
sample following the potential variations as illustrated in Fig. 5A.
It is important to note that Vg, being controlled by the gate
electrode, deposits charge across the entire area of the sample
and not only at the position of the STM tip. Therefore, as Vg is
swept the first electron to populate a given LL will occupy a state
localized near the global minimum of the random potential
whereas the last electron will find a state near the global maximum,
neither of which is necessarily close to the tip position. However,
the effect of filling these states is felt, even when they are far from
the tip, through the global shift in EF, which is seen as a shift in the
n = 0 LL (i.e., the local value of ED). As states are being populated
and EF gradually increases, the spectrum measured by the STM
tip shifts down in energy, causing the LL energy to trace out the
random potential fluctuation, ΔEG. The total downshift of the
plateau as it is being populated provides a measure of the maxi-
mum strength of the disorder-induced potential fluctuations.
In Fig. 5 B–D we show the gating effect on the LL spectra for

GSiO2, GGSiO2, and GGSiO2 near hBN, respectively. In the
case of GSiO2 the absence of an observable staircase structure
signifies that ΔEG exceeds the LL spacing at 10 T ∼115 meV
∼3 rms, taking rms ∼42 meV as obtained from the onset field.
For the GGSiO2 sample the staircase becomes discernible and
from the plateau slope we find ΔEG ∼50 meV. Thus, adding a
second graphene layer strongly suppresses the substrate-induced
disorder on both local and global scales. Most remarkably, when
the sample is close to an hBN flake the global potential fluctu-
ations are almost completely suppressed, as shown in Fig. 5C and

also Fig. S5 B and C. Now the plateaus are much flatter with an
estimated slope of ∼11 meV, corresponding to a reduction of
ΔEDG below the LL linewidth, directly demonstrating the effi-
cacy of the self-cleansing phenomenon of hBN.

Discussion
An interesting question for further study is how the screening
properties depend on the degree of coupling between the two
graphene layers. When the twist angle θ between the layers is
such that the two layers are in a commensurate (or almost
commensurate) stacking configuration the coupling between the
two layers is increased. In this situation, when θ is such that the
primitive cell of the commensurate structure has dimensions
much larger than the graphene lattice spacing, a Moiré pattern
emerges, and Van Hove singularities appear in the DOS at en-
ergies separated by the energy interval ΔEVHS = 2KZvF   sinðθ=2Þ,
where K is the magnitude of the vectors that identify the corners
of the graphene Brillouin zone. For sufficiently large twist angles,
and large primitive cells, therefore the low-energy band structure
is unaffected by the second layer. Given that for large twist angles,
and large primitive cells, the coupling between the layers only
affects the high-energy states, one expects that for low-energy
probes, such as transport measurements, the screening benefit of a
second layer would still apply, and that only high-energy probes,
such as optical measurements, will be sensitive to the effects of the
interlayer coupling on the bands of the double layer. For the
samples discussed here, the absence of a Moiré pattern indicates
that the layers are electronically decoupled without appreciable
tunneling between them. This conclusion is confirmed by the fact
that the local DOS in the top layer is not altered by the presence
of the lower layer, apart from the reduction in disorder. In this
regime we only have incoherent random tunneling processes be-
tween the two layers. Such random tunneling processes simply
induce a broadening of the quasiparticle states that for most
conditions is negligible compared with the broadening induced by
the disorder. As a consequence, the tunneling-induced broadening
does not affect the transport properties. Early transport mea-
surements (44) and LL spectroscopy (33, 45) have shown that the

Fig. 4. Magnetic field dependence of LL spectra. (A) GSiO2, Vg = 10 V. (B) GGSiO2, Vg = −15 V. (C) GGSiO2 in the vicinity of hBN, Vg = −10 V. All curves are offset vertically
for clarity. The LL indexes, n= 0,−1,−2,−3, ..., aremarked. The optical micrograph of themeasured sample is shown in the bottom inset of each panel. The blue andwhite
dashed lines represent the outline of the bottom and top graphene layers, respectively. STS parameters: Iset= 20 pA, sample bias Vb= 0.3 V, andmodulation voltage 2mV.
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population of the electronic states in the two layers depends on
the displacement field, D, between them. For the samples studied
here the carrier density is almost evenly distributed between the
two layers. Deviations from D = 0, which can be due to uninten-
tional doping or can be induced with a top gate, cause a charge im-
balance between the layers and a corresponding shift between the
two charge neutrality points, but more experiments are needed to
understand how this imbalance affects the screening properties.
In summary this work demonstrates that, owing to its nonlinear

screening properties, a graphene buffer sheet placed underneath
an atomically thin layer substantially reduces random potential
fluctuations introduced by a substrate. We show that this is an
extremely effective and simple method to increase the quality of
2D electron systems without modifying their electronic structure
and without compromising the gating capabilities. This is the first
work, to our knowledge, showing a direct comparison between
theory and experiment that quantitatively characterizes the role of
electron-hole puddles, and demonstrates an efficient way to sup-
press their deleterious effects in graphene heterostructures.

Methods
Devices were fabricated from exfoliated graphene flakes and transferred onto the
surface of a 300-nm chlorinated SiO2 layer capping a highly n-doped Si substrate,
which served as a back gate. To ensure decoupling between the top and bottom
graphene layers and to avoid interference from Van Hove singularities (2, 3, 46),
the layers were deposited with a large twist angle between them. Standard
e-beam lithography followed by electron-beam evaporation at base pressure of
2 × 10−7 Torr was used to deposit the Ti/Au (2 nm/60 nm) pads for guiding the STM
tip to the sample (47). The devices were baked for 3 h in forming gas at 250 °C
before mounting into the cryostat. STM and STS measurements were per-
formed at 4 K in a home-built STM using Pt-Ir tips that were mechanically cut
from polycrystalline wire. STM images were recorded in constant current mode
with the bias voltage, Vb, applied between the sample and grounded tip.
Differential conductance (dI/dV) spectra, which are proportional to the local
DOS, were obtained with a lock-in technique at modulation frequency 440 Hz
with fixed tip to sample distance.
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Gate Voltage Dependence of GSiO2 Sample
Fig. S1A shows the dI/dV measurements of graphene on SiO2 for
different gate voltages. Red arrows indicate the conductance
minimum that is identified with ED. In Fig. S1B we have Gate-
voltage dependence of ED for graphene on the chlorinated SiO2
substrate. The solid line represents a fit of the massless Dirac
fermion spectrum of graphene to the data:

ED = ZvF  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
παjVG −V0j

p
.

Here Z is the reduced Planck constant. The offset V0 ∼12 V and
the Fermi velocity vF = 1.1 ± 0.02 × 106 m/s are obtained from
the fitting of LL spectra.

Notes on Modeling Puddles in the Graphene–Graphene System
There is compelling evidence that in graphene-based systems, especially
when the substrate is SiO2, charge impurities are the dominant source
of disorder (36). In graphene-based systems the Coulomb nature of
the disorder makes its theoretical treatment challenging. This difficulty
is due to the linear nature of graphene’s low-energy bands, which
implies that in graphene, differently than in a standard 2D elec-
tron gas with parabolic bands, or a metal, the disorder potential
created by charge impurities retains its long-range nature even
when screening effects are taken into account (36–38) and that, in
addition, nonlinear screening effects are very important and must be
taken into account (34).
The long-range nature of the disorder and the necessity to take

into account nonlinear screening effects make the use of standard
diagrammatic methods to describe the effect of disorder unsuitable.
In this situation functionalmethods aremuchmore effective (48, 49).
In principle, one could use density functional theory (DFT). How-
ever, the fact that the disorder breaks the periodicity of the system
makes the use of DFT computationally very expensive and possible
only for small size (few nanometers) systems (50). An approach
similar in spirit to DFT, but computationally much less expensive, is
the TFDT (34). In this approach, contrary to DFT, also the kinetic
energy operator is replaced by a functional of the density, EK ½n",
appropriate for the case in which the electronic degrees of freedom
behave as massless Dirac fermions, as in single-layer graphene.
The presence of long-range disorder causes the appearance of

long-range carrier density inhomogeneities (36). The TFDT re-
turns accurate results as long as the length scale of the carrier
density inhomogeneities j∇n=nj−1 is larger than the Fermi wave-
length λF. Due to the long-range nature of the inhomogeneities it
is possible to define a local λF (51). For samples for which the
impurity density nimp is larger than 1011cm−2 the local density, even
at the charge neutrality point, is large enough to satisfy the con-
dition for the validity of the TFDT.
For a structure comprising two graphene layers the TFDT

energy functional takes the form (35)

E½ni"=
X

i

EK ½ni"+
X

i

e2

2e

Z
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Z
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"
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+
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d2r niðrÞ; [S1]

where niðrÞ is the carrier density profile in graphene layer i, e is
the dielectric constant of the medium surrounding the graphenic

layers, d12 is the distance between the graphenic layers, Vi
D is the

bare disorder potential in layer i, and μi is the chemical potential
in layer i. The second and third terms in Eq. S1 represent, respec-
tively, the intralayer and interlayer Hartree part of the Coulomb
interaction. Assuming that charge impurities close to the surface
of SiO2 are the dominant source of disorder we have

V ð1Þ
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e
e

Z
dr′ 

c
"
r′
#

h
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dr′ 
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"
r′
#

h
jr− r′j2 + ðd+ d12Þ2

i1=2, [S3]

where c(r) is the distribution of charge impurities. Here we have
denoted with i = 1 the layer closest to the substrate. To minimize
the number of parameters entering the theory c(r) is taken to be
effectively a 2D distribution placed at a distance d below the
surface of the dielectric substrate. Using angle brackets to de-
note quantities averaged over the whole sample, without loss of
generality, we can assume hcðrÞi= 0. We also assume the impu-
rities to be uncorrelated so that hcðrÞcðr′Þi= nimpδðr− r′Þ.
The ground state density profiles fnjðrÞg are obtained by

minimizing the functional E½nj", that is, by solving the two cou-
pled equations resulting from setting δE=δni = 0. In graphene,
the term

δEK
$
δn= μkin½n"= Zvf signðnðrÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πjnðrÞj

p
[S4]

introduces a nonlinear term in the equations that forces us to
solve the TFDT equations numerically. After obtaining the den-
sity profiles, using Eq. S4 the profiles of the local Fermi energy,
or equivalently, of the local shift of the Dirac point, are obtained.
To quantify the effect of the graphene buffer layer in a sta-

tistically significant way we calculate the disorder-averaged value
of the rms of ΔEF, that is, the value of ΔEF averaged over several
samples having the same parameter values (impurity density,
doping, . . .) but different spatial positions of the impurities. Due
to its computational efficiency, the TFDT allows the calculation
of the disorder-averaged quantities. Using samples 160 × 160 nm
we have calculated the disorder averaged values of the rms of
ΔEF using Nsamples = 600 disorder realizations (we find that that
for Nsamples ≥500 the disorder averaged values remain unchanged if
we consider more disorder realizations). For the parameters used
to obtain the results shown in Fig. 2 E and F and Fig. S2 A and B
we find the disorder averaged probability distributions P(ΔEF) of
ΔEF shown in Fig. S2 C and D for G and GG, respectively. We see
that for the top graphene layer of GGSiO2 P(ΔEF) is much nar-
rower than for GSiO2, a reflection of the lower amplitude of the
carrier density inhomogeneities. From these probability distribu-
tions we obtain that the value of the rms of ΔEF is equal to 40 meV
for GSiO2 and to 20 meV for GGSiO2.
Using the TFDT we have also characterized the disorder-

induced fluctuations in BLG and compared them with the GG
case. To obtain the carrier density profile in BLG in the presence of
charge impurities one must take into account that the random field
created by the charge impurities can induce the opening of a band
gap. Using the TFDT we have found that for the conditions rel-
evant for the experiment (n < 1012 cm−2) the small random gap
induced by the impurities does not affect in any quantitative
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way the values of the carrier density rms, nrms, and screened
disorder potential rms, (Vsc)rms. For nrms and (Vsc)rms we can
then use the values obtained when there is no band gap (52):

nrms =
ffiffiffiffiffiffiffiffiffinimp

p

rsc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
π
f ðd=rscÞ

r

ðVscÞrms =
Z2π
2mp

nrms,

where f ðd=rscÞ= e
2d
rsc

%
1+ 2d

rsc

&
Γ
%
0, 2drsc

&
− 1 is a dimensionless function,

rsc = eZ2

2e2m*
∼2 nm is the screening length (with e the dielectric constant,

e the electron’s charge, and m* the effective mass), and Γða, xÞ
is the incomplete gamma function. Notice that to very good approx-
imation in BLG nrms and (Vsc)rms do not depend on the value of the
doping, contrary to the case of double-layer graphene. Fig. 3 B andD
show the comparison of the values of nrms and (Vsc)rms in BLG and
GG. From this figure we see that for the doping levels of the double
layer relevant for the current experiment and values of dK 1.5 the
disorder-induced fluctuations are weaker in GG than in BLG.

Fig. S3 A and B show the disorder averaged rms of the carrier
density fluctuations and screened disorder potential as a function of
d for different values of the impurity density for G (dashed lines) and
GG (solid lines). Fig. S3C shows the disordered averaged correlation
length of the carrier density fluctuations, obtained as the full width at
half maximum length of the carrier density spatial correlation
function. Such correlation length can be interpreted as a measure of
the typical size of the electron-hole puddles. Similarly, Fig. S3D
shows the dependence on d of the full width at half maximum length
of the screened disorder potential spatial correlation function.

Effect of hBN on Global Potential Fluctuations
Fig. S5A shows a hybrid device that includes single-layer and double-
layer grapehene on SiO2, GSiO2, and GGSiO2, respectively, as well as
single- and double-layer graphene on hBN in close proximity. The white
dashed line represents the edges of two stacked monolayer graphene
flakes. Fig. S5 B andC show the STS gate maps obtained by sweeping
the gate voltage at 10 T for GSiO2 and GGSiO2, respectively. Each
vertical line represents an LL spectrum at a particular Vg. White
staircase pattern corresponds to the LL peaks with level-index N.

Fig. S1. (A) Gate voltage dependence of dI/dV spectra on GSiO2 sample. Curves are vertically displaced for clarity. (B) Gate voltage dependence of ED (squares)
together with the fit (solid line) discussed in the text. Tunneling parameters: Iset = 20 pA, Vb = 0.3 V, and modulation voltage 5 mV.
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Fig. S2. (A and B) The profiles of the bare disorder potentials, VD
(1) and VD

(2), given by Eqs. S2 and S3, respectively, for the same parameter values and disorder
realization used to obtain the profiles for ΔEF ≡ ΔED shown in Fig. 2 E and F. We notice that the profiles in A and B are anticorrelated with the profiles of Fig. 2
E and F: red (positive potential) regions in A and B correspond to blue (p-doped) regions in Fig. 2 E and F, and vice versa. This is simply due to the fact that
negative (positive) charge impurities induce a local decrease (increase) of the electron density. By comparing the scale of the color plots in B and Fig. 2F we can
notice the dramatic reduction of the strength of the disorder potential in GGSiO2. (C and D) Histograms of local potential fluctuations for G and GG, re-
spectively, obtained after disorder averaging over 600 disorder realization for the same impurity density and doping realization used to obtain A and B and
Fig. 2 E and F: nimp = 5 × 1011 cm−2; carrier density n = 1012 cm−2.

Fig. S3. Scaling of the amplitude of the carrier density fluctuations (A), screened disorder (B), puddle correlation length (C), and screened disorder correlation
length (D), as a function of the average distance d between charge impurities and the double layer graphene, for different values of the impurity density. The
dashed lines show the results for GSiO2 and the solid lines the ones for GGSiO2. Here the distance between the two graphene layers is set equal to 0.7 nm (as in
the other theoretical results) and the doping n = 1011 cm−2.
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Fig. S4. (A) LL energies (solid symbols) for fields in the range B = 8 T to 12 T are plotted against the reduced parameter sgnðNÞ*
ffiffiffiffiffiffiffiffiffi
jNjB

p
for the GGSiO2 sample.

The solid line is a linear fit to equation EN = ED ± vF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eZjNjB

p
n = 0, ±1, ±2, ± 3, . . ., yielding a characteristic Fermi velocity of vF = (1.12 ± 0.01) × 106 m/s. (B) LL

spectra (symbols) measured at 7 T in the GSiO2 (Left) and GGSiO2 (Right) samples, together with a Gaussian fit (solid lines). Using a constant linewidth to fit the
entire spectrum we obtain linewidths of 42 mV and 18 mV for the GSiO2 and GGSiO2 samples, respectively.

Fig. S5. (A) Optical micrograph of a typical sample showing single (G) and double (GG) graphene layers in the proximity of hBN. (B and C) Gate voltage maps
of LLs at 10 T for GSiO2 and GGSiO2. The substrate is SiO2 but in both cases the sample is close to an hBN flake. Tunneling parameters: Iset = 20 pA, Vac = 5 mV,
Vb = 0.3 in A, and Vb = 0.4 in B.
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