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Spontaneous interlayer superfluidity in bilayer systems of cold polar molecules
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Recent experimental progress in producing ultracold polar molecules with a net electric dipole moment
opens up possibilities for realizing quantum phases governed by the long-range and anisotropic dipole-dipole
interactions. In this work we predict the existence of experimentally observable broken-symmetry states with
spontaneous interlayer coherence in cold polar molecule bilayers. These exotic states, which are manifestations
of collective bilayer quantum entanglement, appear due to strong repulsive interlayer interactions and exhibit
properties of superfluids, ferromagnets, and excitonic condensates.
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During the past decade we have observed the spectacular
progress in the realization of various quantum phases using
cold atoms. This progress has deepened our understand-
ing of various phenomena such as BCS-BEC crossover of
fermions [1] and superfluid–to–Mott-insulator phase transition
of bosons in an optical lattice [2]. However, the variety of quan-
tum phases that can be realized in cold-atom systems is limited
by the short-range nature of the interparticle interactions.
Recent progress in producing and manipulating heteronuclear
polar molecules [3] provides an opportunity to realize a
plethora of quantum phases of matter governed by long-range
interactions [4]. This interesting prospect is made possible
by the fact that polar molecules have large electric dipole mo-
ments associated with their rotational excitations, which lead to
strong, long-range, and anisotropic dipole-dipole interactions.
The interactions between such polar molecules can be tuned
using dc and ac electric fields [5]. In what follows, we con-
centrate on one intriguing aspect of fermionic polar molecule
systems—the possibility of realizing bilayer superfluidity (or,
equivalently, bilayer XY ferromagnetism) with spontaneous
interlayer coherence using interlayer molecular repulsion.

Because of the fermionic nature of the molecules even for
the spinless fermion case considered here, the interaction has
an exchange component in the layer (or pseudospin) index
which drives the instability toward the bilayer superfluid phase.
The dominant contribution to the exchange energy comes from
the short distances (large momenta) where the interlayer dipo-
lar interaction is repulsive. Thus, the collective bilayer state we
predict arises from a repulsive interaction in sharp contrast to
all other superfluid quantum phases discussed in cold atomic
fermions where interparticle attraction leads to superfluidity.
In the symmetry-broken interlayer coherent phase, the particle
number in each layer becomes indeterminate in spite of the
interlayer single-particle tunneling amplitude being almost
zero. Such a state is very analogous to an excitonic superfluid
in which excitons formed a quasiparticle in one layer “binding”
to a quasihole in the other layer condense into a phase-coherent
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state. Up to this date the clearest evidence for the realization
of this type of exciton superfluid state has been observed in
semiconductor bilayers in the quantum Hall (QH) regime, in
which the layers are immersed in very high magnetic fields [6].
The unavoidable presence of disorder in solid-state systems
as well as the nature of the measurement involving finite
interlayer tunneling [7] cause complications in the pristine
realization of the interlayer superfluid phase in QH bilayers.
As a result, vortices and the Berezinskii-Kosterlitz-Thouless
(BKT) transition, unambiguous signatures of the interlayer
coherent state, have not been observed yet in solid-state QH
systems. The predicted polar molecule bilayer superfluid phase
should be more striking because of the lack of disorder in cold-
atom systems, the tunability of the interaction strength, and the
availability of experimental techniques allowing imaging of
vortices [8]. Moreover, by adding an optical lattice potential
in the xy plane it is possible to modify the single-particle
dispersion of the particles and model various condensed-matter
systems. For example, the bilayer cold-polar-molecule system
with honeycomb lattice potential will mimic the bilayer
graphene system. Thus, the realization of this interesting phase
in cold-atom systems is of great importance for understanding
the instabilities driving the bilayer superfluidity and in general
the physics of exciton condensation.

Theoretical model. Our starting point is the Hamiltonian
for fermionic polar molecules tightly confined along the z

direction by the laser field as shown in Fig. 1(b). We consider
two clouds of polar molecules separated by a distance lz much
larger than the confinement length wz of the molecules within
each layer. When the confinement length wz is much larger
than the size of the polar molecules, the rotational motion
of the molecules is three-dimensional and is described by a
three-dimensional rigid rotor Hamiltonian. Polar molecules
have permanent electric dipole moment d, which couples to
internal rotational degrees of freedom. The dipole moment
leads to long-range interlayer and intralayer dipole-dipole
interactions. The Hamiltonian of the polar molecules H reads
(h̄ = kB = 1) [5],

H =
∑

i

(
p2

i

2m
+B J2

i

)

+
∑
ij

di · dj −3(d i · r̂ ij )(dj · r̂ ij )

2r3
ij
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FIG. 1. (Color online) (a) Heteronuclear polar molecules AB
with AB being 40K87Rb, 7Li40K, 6Li133Cs. (b) Bilayer system of
cold polar molecules in the presence of a circularly polarized ac
electromagnetic field propagating along the z direction. Schematic
picture of different phases in the bilayers system: normal (c) and
pseudospin ferromagnetic (d).

where p = (px,py) is the center-of-mass momentum of
a molecule with mass m, rij is the distance between
two molecules, B is the effective rotational energy, and
J = (Jx,Jy,Jz) is the angular momentum operator. The
rotational eigenstates are |J,MJ 〉 with J and MJ denoting
the total internal angular momentum and its projection on the
quantization axis, respectively.

The orientation of the dipole moments can be controlled
with dc and ac electric fields Fig. 1(b) [5]. The transi-
tion dipole moment between the states with J = 0 and
J = 1 is dt ≡ |〈0,0|d|1,MJ 〉| = d/

√
3, with MJ = 0, ± 1.

A circularly polarized ac electric field Eac(t) propagating
along z direction [see Fig. 1(b)] drives transitions between
the rotational states |0,0〉 and |1,1〉 with Rabi frequency
�R = dtEac. If the frequency of the field ω is close to the
transition frequency ω0 = 2B between the states |0,0〉 and
|1,1〉 (i.e., the detuning � = ω − ω0 � ω0), the leading effect
of the electric field is to mix these two states. Within the
rotating wave approximation, the dressed states are given by
|±〉 = α±|0,0〉 ± α∓e−iωt |1,1〉, where α+ = −�/

√
�2 + �2

R ,
α− = �R/

√
�2 + �2

R , and 2� = � +
√
�2 + 4�2

R [5,9]. Polar
molecules can be prepared in the internal state |+〉i by an
adiabatic switching of the microwave field. In this case, the
effective interaction between polar molecules Veff(r) is given
by the dressed Born-Oppenheimer potential adiabatically con-
nected to the state |+〉i ⊗ |+〉j (see Fig. 1 of the supplementary
material [10]). At large distances the dipolar interaction can
be obtained perturbatively by first calculating the effective
dipole moment 〈+|d|+〉 = deff(cos ωt, sin ωt,0), with deff =
−√

2α+α−dt . The time-averaged interaction between dipoles
in layers λ and λ′ takes the form

V λλ′
eff (ρ) = d2

eff

⎛
⎝ 1(

z2
λλ′ + ρ2

) 3
2

− 3

2

ρ2(
z2
λλ′ + ρ2

) 5
2

⎞
⎠ , (2)

where ρ = (x,y) is the two-dimensional coordinate and zλλ′ =
lz for λ 	= λ′ and zero otherwise. At short distances, when the

FIG. 2. (Color online) (a) Intralayer Born-Oppenheimer potential
for polar molecules. The dashed (blue), solid (red), and dot-
dashed (violet) lines correspond to �R/� = 1/4, �R/� = 1/8,
and �R/� = 1/20, respectively. (b) Interlayer Born-Oppenheimer
potential for �R/� = 1/8. The dash-dotted (blue), solid (red), and
dashed (brown) lines correspond to lz/ρ� = 3,2,1.5, lz/ρ� = 1.5,
respectively. For typical interparticle distances considered here the
interlayer interaction is repulsive. Here �R/� = 1/8 and lz/ρ� = 3.

dipolar interaction energy is comparable with the detuning,
the preceding perturbative treatment breaks down. In order
to find the Born-Oppenheimer potential at short distances
ρ � ρ� ≡ (d2

t /�)
1
3 , it is necessary to account for all couplings

between different angular momentum channels within the
J = 0,1 manifold [5]. The exact Born-Oppenheimer potentials
are shown in Fig. 2. One can notice that the effective
intralayer dipole-dipole interaction between polar molecules
prepared in the state |+〉 becomes repulsive at ρ ∼ ρ� due
to the presence of avoided crossings with other field-dressed
levels [9]. For 6Li133Cs molecules, typical parameters are d ≈
6.3 D, B ≈ 6 GHz, and � ≈ 10 MHz yielding the length scale
ρ� ≈ 50 nm that is much larger than the characteristic scale
of dipole-dipole interactions ρB = (d2/B)1/3 ∼ 1 nm, which
sets the short-range cutoff. Thus, for typical densities of polar
molecules considered here, n0 ∼ 107 cm−2, the ac electric field
shields the molecules from short-range inelastic collisions and
prevents the collapse of the system [5,9,11] (see supplementary
document [10]).

Henceforth, we consider the dilute gases of polar molecules,
where the interparticle distance is larger than ρ�, that is,
lz,n

−1/2
0 � ρ�, and the interaction between particles is given

by the dressed Born-Oppenheimer potentials shown in Fig. 2.
In order to avoid unwanted inelastic collisions leading to the
decay of the molecules in an s-wave channel, we assume
the molecules to be spin-polarized. In this limit, the effective
second-quantized Hamiltonian of the bilayer system takes the
form

H =
∑
kλ

[ε(k) − µλ]c†kλckλ

+ 1

2

∑
q,k,k′,λλ′

V λλ′
eff (q)c†k+qλc

†
k′−qλ′ck′λ′ckλ, (3)

where ckλ and c
†
kλ are the fermion creation and annihilation

operators for a molecule with momentum k in layer λ.
The strength of the dipolar interactions can be characterized
by the dimensionless parameter rs = d2

effm
√

n0/2π . As rs

is increased, the bilayer system becomes susceptible to
various instabilities driven by the dipolar interactions. Here
we concentrate on the instabilities induced by the interlayer
interactions and neglect the instabilities induced by the
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intralayer interactions (see supplementary material [10] for
the justification of such approximations).

To understand the interlayer instability, it is convenient
to draw an analogy with ferromagnetism and introduce
pseudospin-1/2 operators 2m̂i = c

†
iλσ λλ′ciλ′ . The spinors |↑〉

and |↓〉 represent the states in which molecules are in layer
1 or 2, respectively. When lz � k−1

F , with kF = √
4πn0

being the Fermi momentum, the molecules in different layers
are uncorrelated, and the many-body state of the system is
given by

|
N〉 =
∏
k�kF

c
†
k1

∏
k′�kF

c
†
k′2|0〉. (4)

For equal densities in the layers n1 = n2 = n0, the total
magnetization M is zero, M = 〈
N| ∑i m̂i |
N〉 = 0, similar
to paramagnets. The normal state |
N〉 minimizes the kinetic
energy at the expense of the potential energy, which is at its
maximum. When the interlayer distance becomes smaller than
k−1
F , the potential energy becomes large and at some point

starts to dominate over the kinetic energy. In this case, the
system favors the state in which fermions in different layers
are correlated in a way that minimizes the interaction energy;
that is, the molecule in layer 1 is coupled to a “hole” in layer 2.
At the mean-field level such correlations are captured by
an order parameter �12 ∝ 〈c†k1ck2〉 	= 0. Since the product
wave function 
N does not have such entanglement between
the layers, the bilayer system should undergo a quantum phase
transition as a function of the distance lz or the strength of the
dipole moment deff . The many-body wave function minimizing
the interaction energy takes the form

|
FM〉 =
∏

k�
√

2kF

(
c
†
k1 + eiϕc

†
k2√

2

)
|0〉. (5)

In this entangled state the state of the molecule is given by the
coherent superposition of the amplitudes in different layers.
Thus, even in the absence of tunneling, the molecule layer
index becomes uncertain. Using the spin analogy, the state
|
FM〉 has nonzero magnetization M = 〈
FM| ∑i m̂i |
FM〉 	=
0, with M lying in the xy plane. Similar to superconductors,
this ferromagnetic state |
FM〉 spontaneously breaks U(1)
symmetry and develops interlayer coherence. In this state the
phase difference between different layers ϕ is well defined and
the number of molecules in each layer fluctuates satisfying the
uncertainty relations �mz�ϕ � 1/2 [12] despite the absence
of interlayer tunneling in Eq. (3).

The phase diagram between the two competing states—
normal |
N〉 and pseudospin ferromagnetic |
FM〉—can be
obtained using variational mean-field calculation [13]. The
total energy per area A of the bilayer system in the normal
phase is

EN

A = 2πn2
0

m

⎛
⎝1 + rs

Z(2kF ρ�)

kF ρ�
d2

eff

d2
t

⎞
⎠ , (6)
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m
]
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FIG. 3. (Color online) The dependence of �12(0) and �E on
lz and deff is shown in (a) and (b), respectively. Here we used
ρ� = 50 nm, n0 = 107cm−2, and m = 139mp , with mp being the
proton mass. The dependence of �E on n0 and deff at fixed
lz = 0.3 µm and on n0 and lz at fixed deff = 1.5 D is plotted in
(c) and (d), respectively.

where the dimensionless function Z(a), which describes
intralayer interaction, is defined as

Z(a) = 32√
π

∫ 1

0
xdxf (x)

[
V

(11)
eff (0) − V

(11)
eff (ax)

]
�ρ2

�

, (7)

with f (x) = arccos(x) − x
√

1 − x2. The momentum depen-
dence of the intralayer interaction potential V

(11)
eff (q) is shown

in Fig. 1(b) of the supplementary material [10]. One can notice
that the contribution of the interlayer Hartree term is zero
here because V 12

eff (q) = d2
effπqe−qlz goes to zero as q → 0. To

calculate the energy of the system in the interlayer coherent
state |
FM〉 we first introduce the order parameter

�12(k) = 1

2

∑
q

V12(q)e−iϕ〈c†1(k + q)c2(k + q)〉, (8)

which takes into account interlayer correlations. The order
parameter is obtained by numerically solving the preceding
self-consistent equation, subject to the total particle number
conservation constraint. Because of the dipolar nature of
the interaction �12(k) has momentum dispersion. The
dependence of �12(0) on deff and lz obtained self-consistently
is shown in Fig. 3(a). At the mean-field level, the Hamiltonian
(3) can be diagonalized using a Bogoliubov transformation
yielding the many-body variational wave function (5). For
sufficiently large interactions the lowest energy state of the
system corresponds to the pseudospin ferromagnetic state
fully polarized in the xy plane [13] (see also supplementary
material [10]). The total energy of the system per area in the
interlayer coherent state is given by

EFM

A = E0

⎡
⎣1 − rsF (

√
8kFlz) + rs

2

Z(
√

8kF ρ�)

kF ρ�
d2

eff

d2
t

⎤
⎦ , (9)
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where E0 = 4πn2
0/m and the function F (a) describing the

interlayer exchange contribution reads

F (a) = 32
√

2π

∫ 1

0
x2dx[arccos(x) − x

√
1 − x2]e−ax.

(10)

The energy difference between normal and ferromagnetic
phase �E/A = (EFM − EN)/A determines the mean-field
phase diagram for the bilayers of polar molecules shown in
Fig. 3.

The long-wavelength Hamiltonian describing the phase
fluctuations is

H = 1

2

∫
d2rρs |∇ϕ|2, (11)

where ρs is the “spin stiffness,” which is the result of the loss of
interaction energy due to the spatial variations of order parame-
ter phase ϕ. The effective XY model defined by Eq. (11) under-
goes BKT transition associated with unbinding of vortex pairs
at the temperature TBKT ≈ πρs/2. The “spin stiffness” can
be calculated within linear response theory, which yields the
result ρs = n0/2m, similar to the one in superfluids. Thus, the
BKT transition in the bilayer system of polar molecules occurs

at the temperature TBKT ≈ εF /8, with εF = k2
F /2m, which for

n0 ∼ 107 cm−2 corresponds to a temperature that should be
accessible in the near future [14]. In the pseudospin ferromag-
netic phase vortices are correlated in different layers, and the
BKT transition in the bilayer system can be detected by imag-
ing vortices using matter-wave heterodyning techniques [8].

In summary, we predict an unusual broken-symmetry phase
with spontaneous interlayer coherence in a bilayer system of
cold polar molecules. Our main findings, summarized in the
phase diagram shown in Fig. 3, indicate that the experimental
observation of such a phase requires low densities of cold polar
molecules n0 ∼ 107 cm−2, realistic dipole moments deff ∼ 1D,
and reasonably low temperatures T ∼ 1 nK. Given that for
these parameters the inelastic decay rate is small [10], the
detection of this exotic many-body state should be within the
experimental reach in the near future. The phase we predict
is an interlayer entangled state, arising from the repulsive
part of the dipolar interaction and exhibiting superfluidity
(or, equivalently, XY pseudospin ferromagnetism) between
the layers rather than within the layers.

We thank P.S. Julienne, I. Spielman, T. Porto, and, most
particularly, D.-W. Wang, for helpful discussions. This work
is supported by US-AFOSR-MURI and NSF-JQI-PFC.

[1] M. Greiner, C. Regal, and D. Jin, Nature (London) 426, 537
(2003); C. Chin et al., Science 305, 1128 (2004); M. Zwierlein
et al., Nature (London) 435, 1047 (2005).

[2] M. Greiner et al., Nature (London) 415, 39 (2002).
[3] K. K. Ni et al., Science 322, 231 (2008); J. Deiglmayr et al.,

Phys. Rev. Lett. 101, 133004 (2008); F. Lang, K. Winkler, C.
Strauss, R. Grimm, and J. HeckerDenschlag, ibid. 101, 133005
(2008); S. Ospelkaus et al., Nat. Phys. 4, 622 (2008).

[4] A. Micheli, G. K. Brennen, and P. Zoller, Nat. Phys. 2, 341
(2006); D.-W. Wang, M. D. Lukin, and E. Demler, Phys. Rev.
Lett. 97, 180413 (2006); D.-W. Wang, ibid. 98, 060403 (2007);
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