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Planar Josephson junctions (JJs) have emerged as a promising platform for the realization of topological
superconductivity and Majorana zero modes. To obtain robust quasi one-dimensional (1D) topological supercon-
ducting states using planar JJs, limiting the number of 1D Andreev bound states’ subbands that can be present,
and increasing the size of the topological superconducting gap are two fundamental challenges. It has been
suggested that both problems can be addressed by properly designing the interfaces between the JJ’s normal
region and the superconducting leads. We fabricated Josephson junctions with periodic hole structures on the
superconducting contact leads on InAs heterostructures with epitaxial superconducting Al. By depleting the
chemical potential inside the holes region with a top gate, we observed an enhancement of the supercurrent
across the junction. The theoretical analysis shows that the enhancement of the JJ’s critical current is achieved
when the depletion of the holes is such to optimize the matching of quasiparticles’ wave function at the
normal/superconductor interface. These results show how the combination of carefully designed patterns for
the Al coverage, and external gates, can be successfully used to tune the density and wave functions’ profiles in
the normal region of the JJ, and therefore open an avenue to tune some of the critical properties, such as number
of subbands and size of the topological gap, that must be optimized to obtain robust quasi-1D superconducting

states supporting Majorana bound states.
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Planar Josephson junctions based on 2DEGs with spin-
orbit coupling have attracted a lot of attention in recent years,
due to their potential to realize topological superconductivity
and Majorana zero modes (MZM) [1-6]. In the presence of
a Zeeman field, the normal region in the Josephson junction
can host Majorana zero modes at its ends [7,8]. While solid
progress has been made in both planar Josephson junctions
and hybrid nanowire systems toward the realization of MZM
[9-16], so far an unambiguous demonstration of MZM is
still missing [17-20]. More evidence indicates that in hybrid
systems there is a competition between disorder and the topo-
logical gap [21,22]. As spin-orbit coupling and induced gaps
jointly determine the size of the topological gap at finite mag-
netic fields [23], an ideal hybrid system should have strong
spin-orbit coupling and a large induced gap [24,25].

Several theoretical proposals suggest modification of the
Josephson junction geometry could lead to an enhanced in-
duced gap and even an enhanced Rashba spin-orbit coupling
[2,26,27]. To realize a robust topological superconducting
state in planar JJs, it is important to maintain the carrier
density in the normal region (N) of the junction as low as
possible. With this constraint, one could consider increasing
the JI’s critical current by tuning the doping of the super-
conducting leads. In JJs with a normal design this cannot
be done via external gates given the strong screening of
the superconducting material. However, by creating holes
along a strip in the superconducting coverage of the semi-
conductor it is possible to achieve two, seemingly contrasting,
results: (i) tuning of the carrier density in a strip close to N;
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(ii) preservation of the overall superconducting phase coher-
ence in the superconducting lead across the strip (via the
regions between the holes). In this work we present experi-
mental and theoretical results for JJs designed to maximize
the critical current while keeping the doping in N fixed.

We fabricated Josephson junctions on epitaxial supercon-
ducting Al thin films grown in situ on InAs heterostructures.
Such devices have shown high transparency [28-31] and
a spin-orbit induced anomalous phase [32]. The Josephson
junction is 4 um long with a width of around 100 nm. Two
rows of periodic holes are etched on each side of the Al
contacts as shown in Fig. 1(a). Each hole is approximately
110 nm wide and 220 nm long. To control the chemical
potential in the junction as well as in the holes region, we
fabricated two layers of gates. In the first layer, a junction gate
(JG) that covers the middle section of the junction is used to
control the chemical potential in the junction. In the second
layer, which is separated from the first gate by a second layer
of dielectric, a top gate (TG) covers a much larger device
region that includes the holes and the ends of the junction.
A schematic diagram of the device and the material stacks are
presented in Figs. 1(a) and 1(b). As shown in Fig. 1(a), the JG
is shorter than the junction by 100 nm at each end by design.
Although JG itself cannot fully deplete the junction, as it does
not cover the ends of the junction, the chemical potential in the
whole junction can still be fully controlled by using JG and
TG together (see the SM [33]). We notice that TG depletes
the ends of the junction around —2.5V (see the SM [33]).
Since the 2DEG inside the holes region should have a similar

©2025 American Physical Society
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FIG. 1. (a) False-color scanning electron micrograph of the mea-
sured device. (b) Schematic of the device and the material stacks.
(c), (d) Differential resistance as a function of the bias current and
out-of-plane magnetic field for JG =0V and TG =0V (c¢) and JG
=0Vand TG = -5V (d).

density and coupling to TG as the 2DEG in the junction,
we expect that the 2DEG in the holes region should also be
depleted around TG = —2.5 V. Tuning the chemical potential
of the 2DEG in the holes region has a nontrivial effect on
the junction, as discussed below. All measurements in this
study were performed in a dilution refrigerator equipped with
a three-axis vector magnet (see the SM [33]). As shown in
Fig. 1(a), the z axis of the magnet is perpendicular to the
device plane, while x and y axes are in-plane fields aligned
parallel and perpendicular to the current, respectively. Dif-
ferential resistance is measured using standard low-frequency
lock-in techniques in a four-point manner (see the SM [33]).
In Figs. 1(c) and 1(d), we present differential resistance as
a function of the bias current and applied out-of-plane mag-
netic field for two different gate configurations. We find that
the critical current is larger when the current is swept from
zero to high bias than vice versa. This is most likely due to
heating (see the SM [33]). To avoid artifacts due to such a
hysteresis effect, all the results presented were taken with the
bias swept from high bias to zero unless otherwise specified
(see the SM [33]). All gates are set to O for Fig. 1(c). In
Fig. 1(d), TG is set to —5V while JG remains at 0. As TG
is below —2.5V in Fig. 1(d), the holes region is supposed
to be depleted. The periodicity of the Fraunhofer patterns
reveals an effective junction area of approximately 4.6 um?,
which is larger than the nominal junction area of 0.4 um” due
to flux focusing caused by the Meissner effect and London
penetration [34,35]. The peculiar triangular shape of the cen-
tral lobe is due to a fraction of the supercurrent flowing just
outside the edges of the JJ [33]. Overall, the two Fraunhofer
patterns show similar periodicity, suggesting the effective
junction area is not significantly modified by the depletion
of the holes region. Next, we characterize the supercurrent
gate dependence at different magnetic fields. At zero field, the
supercurrent decreases when the voltage on TG is swept from
0 to —2.5V as aresult of depletion of the ends of the junction
[Fig. 2(a)]. Below TG = —2.5V, however, the supercurrent
remains almost unchanged since the middle section of the
junction is inaccessible by the TG due to the screening of
the JG. For JG, the dependence is simpler, as the supercurrent
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FIG. 2. Differential resistance as a function of the bias current
and TG voltages at zero magnetic field (a) and By = 200 mT (b). Dif-
ferential resistance as a function of the bias current and JG voltages
at By =200 mT when TG =0V (¢) and TG = =5V (d).

always decreases monotonically with a decreasing JG voltage
(see the SM [33]). When the magnetic field is turned on, the
supercurrent shows a very different behavior regarding TG
voltages. At B, = 200 mT, where B, is perpendicular to the
supercurrent, the supercurrent is significantly enhanced when
a more negative voltage is applied to the TG [Fig. 2(b)]. The
supercurrent reaches its maximum around TG = —2.5V and
remains almost constant for TG voltages below that value. The
presence of an in-plane component of the magnetic field can
significantly modify the spatial profile of the supercurrent. In
this scenario the maximum value of the critical current (I.)
as a function of the perpendicular component of the magnetic
field is expected to shift from zero to a finite value of B, [36].
As we show in detail in the SM [33], however, we find that
in our JJs the maximum value of I. as a function of B, is
always found at B, = 0 (within the accuracy of our setup).
In particular this is the case for By =200 mT, the value of
B, for which we observe a strong enhancement of I. as a
function of TG. This suggests that a redistribution of the su-
percurrent profile is unlikely to be the reason for the observed
enhancement of /, as the holes are depleted. For fields parallel
to the supercurrent, we observed a similar enhancement of
the supercurrent with TG voltages (see the SM [33]). When
TG is fixed to 0 V and —5V and By, = 200mT, sweeping
JG reveals that the supercurrent still monotonically decreases
with decreasing JG voltages Figs. 2(c) and 2(d). That indicates
that the enhancement of supercurrent is solely determined by
the change of the chemical potential in the holes region and
is not related to the change of the chemical potential in the
junction.

The enhancement of the supercurrent can also be observed
in in-plane magnetic field scans when the gate voltages are
fixed. In Fig. 3(a), we plot differential resistance as a function
of B, and bias current for TG = 0 V and JG = 0 V. The
supercurrent exhibits a nonlinear behavior as it first quickly
decreases at low fields followed by a much slower decline
at higher fields. When TG is fixed to —5V, Fig. 3(b), the
supercurrent has an almost linear dependence on B,. From
By, =0.1T to B, =0.5 T, the supercurrent still preserves
40% of its value.
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FIG. 3. Differential resistance as a function of the bias current
and By whenJG=0V, TG=0V (a) and JG=0V, TG = -5V (b).
(c) Critical currents as a function of By for TG =0and TG = -5V
extracted from bias current vs TG scans at different in-plane fields.

In Fig. 3(c), we plot /. as a function of B, for TG = 0
and TG = —5V extracted from bias current vs TG scans at
different in-plane fields. As can be seen, the two critical cur-
rents cross around By, = 0.12 T, confirming the observation
that the enhancement of the supercurrent occurs only at finite
fields and when the voltage on TG is below the specific value.
In another device, we have observed a similar enhancement of
supercurrent at finite fields when TG is below a certain value
(see the SM [33]).

To understand the origin of this dependence of critical
currents on the gate voltage, we set up a tight-binding model
for the Boguliobov de Gennes (BdG) Hamiltonian describing
the system (see the SM [33]), using the python package Kwant
[37]. To be able to obtain from the model all the desired
quantities, in particular the critical current, with the available
computational resources, we scaled down all the dimensions
while using a value of the superconducting gap A and of the
chemical potential  in the regions outside the holes such that
the ratio between the geometric dimensions and the supercon-
ducting coherence length, &, is of the same order as in the
experiment. For the results presented below we use a value of
A 16 times larger than the physical one and set u = 1.25A.
The geometry of the model used is shown in Fig. 4(a). To
properly model the superconducting leads we chose a value
of L, ; sufficiently larger than & to avoid spurious finite-size
effects.

We first obtain the ABSs’s spectrum {€,(¢)} as a function
of the phase difference ¢ between the superconducting pairing
of the two leads. We then calculate the supercurrent /() =
Zgn<0(86n/8g0)(2n/d>o), where ®y = h/2e is the magnetic
flux quantum. From this, the critical current I, = max(/(¢))
is extracted for different values of the in-plane magnetic field
and chemical potential w;, of the holes.

Figure 4(b) shows the evolution of I. with the strength
of the Zeeman energy E; due to an in-plane magnetic field
perpendicular to the current for the case when p, = u, in
red, and pu, = —1.25A, in green. The Zeeman energy in the
superconductor is taken to be 1/2 the value in the normal
and depleted regions. In the first case the holes are normal
regions, i.e., regions where A is set to zero, with the same
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FIG. 4. (a) Schematic of simulation setup to model the exper-
iments. (b) I. as a function of E; for u, = u = 1.25A (red) and
wn = —1.25A (green). (c), (d) I. vs u;, for E; = 0 and E; = 1.14A,
respectively. In (c) and (d) I, is the value of /. when u;, = u.

carrier density as the rest of the system. In the second case the
carrier density in the holes is lower than in the areas around
them. In both cases we see that /. first decreases with E;
up to Ez =~ 0.6A. For E, > 0.6A in the first case /. changes
nonmonotonically with Ez, a behavior that can be attributed
to the almost closing and reopening of the gap of the ABS’s
spectrum In the second case I, keeps decreasing also for
E, > 0.6A, albeit more slowly, suggesting that in this case
the gap of the ABS doesn’t recover with E.

As in the experimental case, from Fig. 4(b), we see that
above a threshold value of Ez, Ez = 1.1A, I, for the depleted
case is larger than for the nondepleted, suggesting that for
E; > 1.1A the evolution of I, with x; might be not mono-
tonic. This is confirmed by the results for the evolution of
1. with respect to u;, shown in Figs. 4(c) and 4(d), for the
E; =0 and Ez = 1.14A cases, respectively. We see that for
Ez =0, I. decreases monotonically as the depletion (—pup,)
of the holes increases, whereas for E; = 1.14A, I. varies
nonmonotonically with u;, in qualitative agreement with the
experimental results.

‘We have verified, see the SM [33], that different values of
the spin-orbit coupling (SOC) strength, and different direc-
tions of the in-plane magnetic field do not modify qualitatively
the results presented in Figs. 4(b)—4(d).

Figure 5 shows the spatial profile of the quasiparticle cur-
rent density J,(x, y) = —i(i/2m*) Zén<0(lﬂ:V1ﬂn — v, VY
[38], where y, are the eigenstates of the BAG Hamiltonian
and m* is the effective mass. Notice that the regions where
J = 0 are regions where the current is carried by the super-
conducting condensate. Panels (a) and (b) show the results for
the case Ez = 1.14 A for the values of u;, denoted by N1, N2
in Fig. 4(d). We see that for the value of pu; for which I, is
maximum, panel (b), J is more uniform in the central region
of the JJ. This suggests that the optimal value of p;, results in
a better matching of the quasiparticle wave functions across
the different regions of the JJ.
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FIG. 5. (a), (b) Profile of J, for the case when E; = 1.14A and
y, corresponds to the points N1, N2 in Fig. 4(d), respectively. Jy is
the average current density for the case when E; = 0, u;, = . The
red dashed lines indicate the boundary of the normal strip. The red
boxes show positions of some of the depleted holes.
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To check that this is the case, we considered a simpli-
fied model, shown in Fig. 6(a). In this model the holes are
effectively replaced by a normal strip, shown in green in
Fig. 6(a), at a distance /, from the normal region of the JJ.
Notice that the difference of the superconducting phase across
the normal region modeling the holes is set to zero. This is
done to take into account that in the experimental geometry
there are paths between the holes that connect the different
superconducting regions on the same side of the JJ’s normal
region, the region shown in orange in Fig. 6(a), that separates
the left and right superconducting leads.

Using the simplified model we were able to see that the
critical parameter determining the nature of the evolution of /,
with respect to uy, is the distance /; between the normal region
modeling the holes, the depletion strip, and the JJ’s normal
region. We find that when [, < &, I, decreases monotonically
with (—up), while at I, ~ &, I, varies nonmonotonically with
(—up) as shown in Fig. 6(b). For I, > & the two normal
strips are effectively decoupled from each other and so u;,
has no effect on /.. These results suggest that the main reason
why experimentally a nonmonotonic scaling of I, vs (—up)
is observed in the presence of an in-plane magnetic field is
the fact that when E; 2 A the ABSs’ wave functions decay
faster in the superconducting regions at the sides of the JJ’s
normal region, effect that in the simplified model corresponds
to a reduction of £ [39] and therefore to an increase of the
ratio [, /& to values ~1 for which I, scales nonmonotonically
with .

To further understand the origin of the observed depen-
dence of I. on l,/&€ and w, we calculated the reflection
coefficients of a superconducting-normal (SN) junction with
a depletion region on the superconducting side at a distance /,
from the SN interface. We found, see Fig. S10 in the SM [33],
that the depletion of the holes, equivalent in the simplified

—20 —10 0
pn(A)

FIG. 6. (a) Layout of simplified two-strip model. (b) Scaling of
1. with w;, obtained using the simplified model for the case when
h=§/2, Ez=0, SOC=0.1 = L.(y = p).

model to the depletion of the green strip in Fig. 6(a), can be
tuned to maximize the value of the electrons’ wavefunction at
the boundary between the superconducting lead and JJ’s nor-
mal region, and so optimize the ratio |r4 /ry| between Andreev
reflection, r4, and normal reflection, ry, and therefore the JJ’s
critical current /., when [, = & /2. We therefore conclude that
varying via an external gate the depletion of the holes for a JJ
like the one shown in Fig. 1(a) results in the effective tuning of
the spatial profile of the quasiparticles wave functions leading
to qualitative changes of critical properties such as the JI’s
critical current.

In summary, we have fabricated Josephson junctions with
periodic hole structures on the Al contact. A counterintuitive
enhancement of supercurrent has been observed when the
2DEG in the holes region is depleted by the TG. Theoreti-
cal modeling and careful analysis of the experimental results
show that such unusual enhancement of the critical current is
due to changes of the spatial profile of the quasiparticles’ wave
functions. The ability to shape and engineer the wave function
of the electronic quantum states is critical to realize robust
topological superconducting states supporting non-Abelian
quasiparticles. Our results show that by combining specific Al
coverage layouts in InAs/Al planar JJs with external gates, a
unique control of the profile of the electrons’ wave functions
can be achieved, resulting in remarkable tunability of key
properties of the JJs.
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EXPERIMENTAL DETAILS

Methods— Wafers are grown by molecular beam epitaxy. Devices are fabricated using a combination of wet etching
and deposition techniques after electron beam lithography. Device mesa features are defined by a deep wet etch with
85% concentrated phosphoric acid, 30% concentrated hydrogen peroxide, and deionized water in a volumetric ratio of
1:1:40 after selectively etching the aluminum top layer with Transene Aluminum Etchant Type D. Junction weak links
and smaller device features are defined by a subsequent aluminum etch. Double-layer gates subsequently undergo two
cycles of dielectric deposition of aluminum oxide via atomic layer deposition, and titanium/gold gates are deposited
via electron beam evaporation. Measurements are performed in a dilution refrigerator at a temperature of around
30 mK using standard low-frequency lock-in amplification techniques with excitation currents of at most 10 nA and
frequencies of around 17 and 77 Hz. The magnetic field is generated by a three-axis superconducting vector magnet.
To align an in-plane field, B, for example, with the device, we first take a series of out-of-plane field scans at different
B, (50 mT to 200 mT with an interval of 50 mT). Then based on the shift of Fraunhofer patterns at each in-plane
field, we make an adjustment to the out-of-plane field to cancel the perpendicular component from B,. In Fig.3(b)
and (c), we only show B, above 80 mT because of the difficulty in reliably calibrating the in-plane fields when B, is
less than 50 mT. Only when the in-plane field is above 50 mT can the field be aligned with a linear fit. To get an
accurate switching current as a function of the in-plane field for all the field ranges, we first performed out-of-plane
field scans at each in-plane field to align the field, and then extracted the switching current from bias current vs TG
scans at each in-plane field as shown in Fig.3(a).

Ezxperimental results— We show additional differential resistance plots at various values of the junction gate
voltage, the top gate voltage, and the in-plane field in Fig. S1, Fig. S3. The Fraunhofer patterns for different gate
settings at low in-plane fields are shown in Fig. S2 and Fig. S4, and Fraunhofer patterns at high in-plane fields are
shown in Fig. S5. In Fig. S6, we present information related to the high supercurrent density at the ends of the
junction. In Fig. S7, we demonstrate hysteresis in current-voltage characteristics and justify the use of a downward
sweep direction. For a similar device (device B), the corresponding supercurrent dependence is given in Figs. S8 and
S9.

Enlarged effective junction area— In the Josephson junction presented in the main text, we found an enlarged
effective junction area of 4.6 um? based on the periodicity of the Fraunhofer patterns, which is much larger than the
nominal junction area of 0.4 um? due to flux focusing caused by the Meissner effect and London penetration. Such
an effect has been observed in similar Josephson junctions (Nano Lett. 2021, 21, 19, 8274-8280; arXiv:2412.16221).
In the study of arXiv:2412.16221, the authors observe a similar increase in the effective junction area in InAs/Al
Josephson junctions, consistent with our findings. They introduce a scaling factor (v) to characterize the enhanced
effective area for magnetic flux, which accounts for both magnetic field focusing and an increased junction length
compared to the inter-electrode separation. Based on their analysis, v is primarily determined by the ratio of the
contact width (L,) to the junction length (L;). In our junctions, we also have a large L, /L, ratio, which naturally
leads to the significantly enlarged effective junction area.

Effect and origin of the high supercurrent density at the ends of the junction— We performed su-
percurrent density reconstruction based on Fraunhofer patterns for By, = 0 and JG = TG = 0 (Fig.s6(b)), which
reveals a much higher supercurrent density at the ends of the junction. This kind of effect has been observed in similar
InAs/Al Josephson junctions (Nano Lett. 2021, 21, 19, 8274-8280; arXiv:2412.16221). This high supercurrent density
in our junctions could result from supercurrent flow outside the junction region due to the proximitized normal region
between the junction ends and the additional Al contacts (red rectangular region in Fig.s6(a)). We acknowledge that
alternative explanations exist (see arXiv:2412.16221 for a more detailed discussion). This effect offers a plausible
explanation for why the TG-induced depletion of the junction ends can significantly alter the critical current as shown



in Fig.2(a). We can further demonstrate the effect of depleting the junction ends using data from our previous study
(Nano Lett. 2021, 21, 19, 8274-8280). In that work, we employed five mini gates to control a 4 pm-long junction,
where the two outer gates depleted the junction ends. When the ends were depleted, the high-density currents at
the edges were suppressed, leading to a 50% reduction in the critical current at zero field. This 50% reduction in
critical current due to the depletion of the ends is similar to what we observed in our manuscript when depleting
the TG as shown in Fig.2(a). Furthermore, sweeping the in-plane field perpendicular to the supercurrent showed no
enhancement of the critical current at finite fields when the ends were depleted. This data, therefore, serves as a
control experiment, demonstrating that depleting the junction ends significantly reduces the critical current at zero
field while not enhancing the critical current at finite fields.

Hysteresis in current-voltage characteristics and the choice of downward sweep direction— As shown
in Fig.s7, we observed hysteresis in current-voltage characteristics when the bias is swept from positive to negative.
For our Josephson junction, we calculated the McCumber parameter using I. = 1 uA, R,=100 Q, and C = (e.€9A)/d
= 35.4 fF with A = 4pm * 10nm (Al thickness), d = 100 nm.

_ 2nl.R.C
b0

is much smaller than 1, which indicates a strongly overdamped junction and the hysteresis between the downward
(retrapping current) and upward sweep critical currents is primarily due to the heating effect. Consequently, the
retrapping current can be interpreted as the critical current measured at a slightly higher effective temperature. In
practice, the choice of downward sweeps (retrapping current) over upward sweeps is mainly to reduce measurement
time, as they require a lower current bias. Fig.s7(a)(b) can also justify the robustness of using the retrapping current.
In these measurements, the positive branch corresponds to the retrapping current and is consistently smaller than the
negative branch. In both plots, we observe that the retrapping current systematically varies with the gate voltages
and follows the same trend as the negative branch. Since our study focuses on the gate dependence of the critical
current and we exclusively use the retrapping current rather than comparing it to the upward sweep current, we
believe that using the retrapping current does not compromise the robustness of our conclusions.

Be ~ 0.00161

THEORETICAL ANALYSIS

Simulation details— In the simulations, the implemented Hamiltonian in the tight-binding model is the following
for the normal metal (orange strip):

Hy = Y [(4t—p)m0+ Ez Toyla el i aCijs+ {[—tho —ilsocTzyly g el aCijes
e (S1)
+ [_t T.0 + 7 lSOCTZ‘”L’}a,ﬁ Cj,j,aCiJrl,j,B + hC}
in the Nambu spinor basis. Here the position of the lattice is (x,y) = (j,%)a, a is the lattice constant, o, =1 —4
denote the spin and electron/hole degrees of freedom. 7, , means o, operator in the electron/hole sector, and o, in
the spin degree of freedom, where og is the identity matrix and o, . is the usual Pauli matrix. /s = asoc /2a, tsoc

is the Rashba SOC strength. Ez represents the Zeeman term when we apply a magnetic field along the y direction.
In our simulations, ¢t = 7.32A, 5, = 0.23A. In the depleted region (green), we have

Hy = Z [(4t — pn)T20 + Ez TOy]aﬁ C;j)aci,jﬁ + {[—t T20 — ilsocsz}Oé”g c;f’j)aci,j_s_lﬁ
4,08 (S2)
+ [—t TL0 + 10 lsocsz]aﬁ C;‘r’j’aci—&-l,j,ﬂ =+ hc}

with a different chemical potential y;,. And in the superconductor, the Hamiltonian is

Hg = Z [(4t — ) T20 + gse Bz oy + A(cos ¢ 740 — sin g y0)],, 4 Cz,j,aci,j,ﬂ
,5,0,0 (S3)
+ {[—t TL0 — Z'lsocsz]a”B C;!.’j?aCi’jJrl“B + [t +i ZSOCTZI]Q’B c;j,acwl’j,g + h.c.}

where the superconductor pairing gap is Ae’®, the phase ¢ = —@/2 in superconductors to left of the normal strip,
and ¢/2 on the right. gs. represents the ratio between the g-factor in superconductors and that of the normal metal.
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Fig S1. Supercurrent gate dependence at zero field and in-plane fields parallel to the supercurrent. (a) Differential
resistance as a function of bias current and TG voltage at zero field and JG = -3.5 V. (b) Differential resistance as a function
of bias current and TG voltage at B, = 200 mT and JG = 0, supercurrent is enhanced when TG is below -2 V. (c) Differential
resistance as a function of bias current and JG voltage at zero field and TG = 0 V. JG can not fully pinch off the supercurrent
since it doesn’t cover the ends of the junction and supercurrent can flow across the junction there. (d) Differential resistance
as a function of bias current and JG voltage at zero field and TG = -6 V. JG can fully pinch off the supercurrent when the
ends of the junction are depleted by the TG.

Here We choose g5 = 1/2 in the simulations [1]. To avoid spurious finite size effects, the theoretical calculation of the
spectrum of the Andreev bound states, requires superconducting leads of length Ly, > £. Given that for the systems
considered ¢ ~ 400 nm, and the width ~ 4 microns, the requirement L,. > £ makes a full-scale calculation very
expensive and beyond the capabilities of the computational resources that we can access. For this reason, we rescale
down all our length-scales keeping, however, the ratios between all the different lengths the same as in the experiment.
To achieve this rescaling, for the simulations we use A;. = 3.68 meV, so that the effective £ = hvp/Ay. = 42 nm,
is much smaller. We then set Ls.(= Lp + Ly ;) ~ 8¢, and make the ratios between all the other lengths and £ as
close as possible to the experimental values. To be more specific, in the punched hole setup, in the unit of coherence
length &, the system sizes are L, = 0.5,Lp; = 0.17,Lp 9 = 1.67,L;, = 3,L;; = 4.67,Ly; = 9.5,L, = 19.17. The
hole has a horizontal width L, ; = 0.5 and a vertical width L, , = 1.17. In the two-strip setup, the parameters are
li =13 =0.5¢, 1, =7.17¢, I, = 1.83¢. The lattice constant a in both setups is taken as £/6. In all our simulations,
we include a total of 800 energy bands for the calculation of the supercurrent.

Numerical results—In Fig. S10, we show the energy spectrum and current-phase relation corresponding to points
N1, N2, N3 in Fig. 4(d). For up ~ p we have many ABSs (subbands) that give opposite contributions to the current
I resulting in a small I.. As py, is decreased to 0, some of the subbands are pushed to higher energies (and flattened)
and so we have less of a cancellation and an increase of I.. For even larger (—pup) the junctions become much less
transparent, all the bands flatten, and so I. decreases. In Fig. S11, we show the current distribution corresponding
to M1 points in Fig. 4(c) and N1, N2, N3 in Fig. 4(d). Panel (a) shows the profile of J for the case when Ez = 0.
We see that the presence of the holes induces a periodic modulation in the transverse direction of the current in the
normal region of the JJ. In Fig. S12, we show that in the punched-hole structure, the SOC strength and the direction
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Fig S2. Fraunhofer patterns at low in-plane field for field alignment. Here we present B, scans at different gate
voltages that are used to properly align the in-plane fields.
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Fig S3. Bias vs TG scans at low in-plane fields. Here we present bias vs TG scans at low in-plane fields, from which we
extracted the critical current.

of the magnetic field don’t alter the qualitative trend. So it is justified that we use zero SOC for simplicity.

In the simplified two-strip structure without SOC or E., we see that the general trend can be well captured by
the first energy band, see Fig. S13. Therefore, we can shrink the width in the y—direction and focus only on the
single subband case. The corresponding energy spectrum and current-phase relation show similar behavior to the
punched-hole case, when py, is decreased, see Fig. S14.

Now to understand the dependence of the supercurrent behavior on the two-strip distance in the simplified structure
(see Fig. S13), we calculate the reflection matrix at the interface between the middle superconductor and the right
normal strip. The property of this interface is important since the phase jump ¢ is across the normal strip. To do
this, we leave out the right superconductor, and make the normal strip and the left superconductor semi-infinite, see
the schematic in Fig. S15(a). The incoming electron mode (denoted by black arrow) is assumed to have amplitude
one, and we assume the outgoing wavefunction consists of electron mode (denoted by right-pointing black arrow) and
hole mode (right-pointing white arrow). Their amplitudes then give the normal reflection 7 and Andreev reflection
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Fig S4. Fraunhofer patterns at different B, for different TG voltages. (a) - (c) Differential resistance as a function of
bias current and B, at B, = 100 mT, 150 mT and 200 mT for JG = 0 V and TG = 0 V. (d) - (f) Differential resistance as
a function of bias current and B, at By = 100 mT, 150 mT and 200 mT for JG = 0 V and TG = -5 V. Maximum switching
current I. is measured at the center of the main lobe.
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Fig S5. Fraunhofer patterns at high in-plane fields. (a) Differential resistance as a function of bias current and B, at
B, = 600 mT and TG = -5 V. Supercurrent in the main lobe shows around 50 §? resistance. (b) Differential resistance as a
function of bias current and B, at By = 600 mT and TG = 0. Fraunhofer patterns show significant finite resistance.

r 4 coefficients, respectively.

Since we are studying the case without magnetic field or SOC, and the Fermi energy we use is close to the band
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Fig S6. High supercurrent density at the ends of the junction. (a) Full SEM image of the device showing the extra Al
contacts. (b) Calculated supercurrent density distribution based on Fraunhofer patterns in Fig.1(c). Red dashed lines indicate
the Josephson junction edge.
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Fig S7. Hysteresis in current-voltage characteristics. We observed hysteresis in current-voltage characteristics when the
current bias is swept in one direction. (a) Differential resistance as a function of bias current and JG at By, = 0 and TG = 0
with bias swept from positive to negative. (b) Differential resistance as a function of bias current and TG at By = 0 and JG
= 0 with bias swept from positive to negative.

bottom (4 < t), the Hamiltonian Eq. (S1) in the momentum space is then simplified to
Hy =Y [4t — 2tcos(kya) — 2t cos(kya) — p] ¢, (720) 0 5 i
k,a,8

~ Z [t k2a® — u] cLa (Tzo)a’ﬁ k.3
k,o,3

(S4)

where k = (ky, k) and ka < 1. We obtain a quadratic dispersion ~ h?k?/2m* where m* is the effective mass and
t = h?/2m*a?. Similarly, we have this Hamiltonian in the depleted region and superconductors as well, differing only
by the chemical potential or the superconductor pairing gap.

We can then assume the entire wavefunction is in the same spin configuration. The wavefunction is then reduced
to two degrees of freedom (electron and hole). In the right normal metal, the wavefunction is

Y = (1,0)e "< 4 rn(1,0)e® + 1 4\/ke /K1 (0, 1)~ ne (S5)

at energy E, where ry is the normal reflection coefficient, and r4 is the Andreev reflection amplitude. The elec-
tron/hole wavevector is given by k., = /2m*(u+ E)/h?. For the middle superconducting strip, its finite width
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Fig S8. Enhancement of supercurrent at finite fields in device B. In device B with the same geometry, enhanced
supercurrent can be observed at finite fields when TG depletes (TG < -2 V) the 2DEG in the holes (b-g). In this device, JG
is misaligned with the junction, so TG can also tune the chemical potential in the junction and fully deplete the supercurrent.
Note that the bias current is swept from positive to negative in these scans.

allows overlap of four modes (decaying in different directions):

1/} 201(17 ei@)e)\eriksz + 02(1’ efie)e)\zfiksz

. ‘ ‘ , S6
_’_03(1, e—ze)e—)\w+zksa: + 04(1’ ezG)e—Aw—zksw ( )

where cos = E/A. kg, A are non-negative and kg + i\ = /2m*(u + iAsin0)/h%. The wavefunction in the depleted
strip (green) is

¢ =D1(1,0)e™ " + Dy(1,0)eFer

- o (S7)
+D3(0,1)e*n® 4 Dy(0,1)e~*ne
where the electron/hole wavevector in the depleted strip is &, ;, = \/2m* (u, = E) /2.
In the left superconductor, things are simple. There are only two vanishing modes:
w _ El(l, ei@)e)\z+iksa: + E2(1, e—i@)e)\a:—iksz (88)

By matching the boundary conditions (both wavefunction v and its gradient 9y /Jx) at all interfaces, we can then
solve for the coefficients, achieve the reflection matrix, and reconstruct the wavefunction profile in the entire region
at E = 0. Plugging in the parameter values mentioned before where a = £/6,t = h%/2m*a? = 7.32A, pp = 1.25A, and
I3 = £/2, we then arrive at results shown in Fig. S15. One can see that the strength of the Andreev reflection depends
on the depletion potential, in a similar manner to the supercurrent. It reveals that the supercurrent enhancement at
certain depletion strength is due to the enhanced Andreev reflection at this point.

If we look at the wavefunction distribution in the depleted strip and middle superconductor, we would see that
increasing the depletion strength is always pushing the particle distribution more to the right side of the middle
superconductor. An intuitive way to describe the situation might be to look at it as analogous to a “bullwhip effect”
in which a downward motion of the handle causes an upward motion of the whip’s tail. In this analogy the region



a —-JG=0V, TG=0V

5" IG=0V, TG=3V

| (LA)
s

e, .
* oo o * o t.‘?‘
o
.-

0
0.1 03 0.5
B, (T)

Differential resistance (kQ)

Differential resistance (kQ)

01 03 05 05 0
x(T) Ibias(uA)

0.5

Fig S9. Supercurrent in-plane field dependence for different gate configurations in device B. (a) Switching current
as functions of B, for depleted holes (TG = -3 V) and non-depleted holes (TG = 0). (b) Switching current as functions of B,
for depleted holes and non-depleted holes. (c) Differential resistance as functions of bias current and By for non-depleted holes.
(d) Differential resistance as functions of bias current and B, for depleted holes. Note bias is swept from positive to negative
in panels (c¢) and (d). Note that the bias current is swept from positive to negative in these scans.

under the holes is the whip’s handle: a suppression of the carrier density and therefore of the electron’s wavefunction
1, under the holes induces an increase of ¢, in whip’s tail, the superconducting section closest to the JJ’s normal
region. The Andreev reflection is always maximum when the amplitude of the electron sector (denoted as 1).) is close
to one at the superconductor/normal interface (defined as = 0 position here). When the strip distance is short,
[the| is big (> 1) at the interface without depletion, so stronger depletion is adding the amplitude further, which
then decreases |r4|. When the strip distance is increased, there is more space in the middle superconductor, and the
electrons spread more towards the left side. The amplitude at z = 0 is small without depletion. Now, at a proper
depletion, the amplitude gets close to one and |r4| is optimal. At even larger strip distance, the depletion potential
needs to be stronger to increase the electron amplitude at 2 = 0. Within our parameter range of uy, |1.| is always
smaller than one, and therefore |r4| is always increasing with (—up). The corresponding profiles of the quasiparticle
current density are provided in Fig. S16 at lo = £/6, £/2 without magnetic fields.

[1] The qualitative picture is always the same as long as gs. doesn’t vanish, independent of the detailed value.
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Fig S10. (a) and (b), (c) and (d), (e) and (f) are full and zoomed-in view ABSs’ spectra as a function of the phase difference
¢, corresponding to N1, N2, N3 in Fig. 4(d) respectively. (g) Current-phase relation for N1 (red), N2 (blue), and N3 (green).
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Fig S11. (a) Profile of J, for the case when Ez = 0 and pj, = p, M1 point in Fig. 4 (c). (b), (c), (d) Profiles of J, for the case
when Ez = 1.14A and pj, corresponds to the points N1, N2, N3 in Fig. 4 (d), respectively. Jp is the average current density for
the case when Fz = 0, pp = . The red dashed lines indicate the boundary of the normal strip. The red boxes show positions
of some of the depleted holes.



[c/[()
o
[oe)

0.7

0.6

10

(b) ©)
25
4
2.0
< <3
<15 =
~ ~
10 2
0.5 1
-0 10 20 10 0 100 —75 —50 —25 00
pn(A) pn(A) JUAA)

Fig S12. (a) I. vs up at E. = 0 without SOC in the punched-hole setup. (b) I, vs up at E. = 1.14A without SOC in the
punched-hole setup. (c) I vs un at E, = 1.14A when the magnetic field is along the x—direction with SOC in the punched-hole

setup. Io = Ic(pun = p).
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Fig S13. (a) Ic vs pp in the simplified two-strip setup at lo = £/6. (b) I. vs pp in the two-strip setup at lo = £/2. Supercurrents
are scaled by Iop = I.(ur = p) and divided to contribution from the first band (red) and the rest bands (blue).
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Fig S14. (a)-(c) Energy spectrum e vs phase difference ¢ in the two-strip setup at lo = £/2, corresponding to un = p, —1.25A,
and —25A, respectively. (d) Current-phase relation at pp = p (red), —1.25A (blue), and —25A (green). Iy = I.(un = p).
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Fig S15. (a) Setup for calculation of the reflection matrix. The phases are assumed zero for the left and middle superconductors.
Here we focus on the z—direction degree of freedom. (b) |ra/rn|? at lo = £/6. (c) and (d) Distribution of electron density in
the depleted strip (green) and middle superconductor (blue) | (z)|?, corresponding to points I and II in the (b) panel. (e)
[ra/rn|? at la = £/2. (f)-(h) |¢e(z)|* at I, II, and IIT of the (e) panel. (i) |ra/rn|? at lo = 5¢/6. Due to the large distance
and weak coupling between the two strips in this case, the effect of the depletion is much weaker and therefore we examine a
larger range of ps. (j) and (k) |[e(2)|* at T and IT of (i) Panel. (1) Relative Andreev reflection strength R = |ra/rn|*/Ro at
pn = —A as a function of strip distance lo. Here Ro is the value of |ra/rx|? without depletion for each l» choice.
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Fig S16. (a) and (b) Quasiparticle current density J;(z,y) for lo = £/6, at pup = p and p = —1.25A, respectively. (c) and (d)
Jz(z,y) for lo = £/2, at up = p and pp = —1.25A. Jo is the average current density at lo = £/6, up = p. All plots share the
same color bar.



