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Effect of inversion asymmetry on the superconducting and exciton condensates of bilayer graphene
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Inversion asymmetry in bilayer graphene can be tuned by the displacement field. As a result, the band
dispersion in biased bilayer graphene acquires flatband regions near the Dirac points along with a nontrivial band
geometry. We analyze the effect of inversion asymmetry on the critical temperature and superfluid stiffness of
the superconducting state of AB-stacked graphene bilayer and the exciton condensate in double layers formed by
two AB-stacked graphene bilayers. We find that the geometric superfluid stiffness in bilayer graphene supercon-
ductors is negligible due to the small superconducting gap. Furthermore, since the geometric superfluid stiffness
is maximized for a constant order parameter, it can be neglected in biased bilayer graphene superconductors with
any pairing symmetry. In contrast, the displacement field enhances the geometric superfluid stiffness in exciton
condensates. It is most prominent at low densities and high displacement fields. A consequence of the geometric
superfluid stiffness is a modest enhancement of the Berezinskii-Kosterlitz-Thouless transition temperature in

bilayer graphene’s exciton condensate.

DOI: 10.1103/fw3r-pcw5

I. INTRODUCTION

The recent discovery of superconductivity [1-7] and corre-
lated phases [8—13] in twisted two-dimensional crystals [14]
has brought attention to the role of nontrivial band geometry
in multiorbital superconductors [15-24] and other strongly
correlated states [13,25-36]. Nontrivial band geometry in
multiorbital superconductors [1-7] and exciton condensates
results in a geometric superfluid stiffness associated with in-
terband excitations of the condensate. For isolated bands, the
interband contribution to the superfluid stiffness can be pro-
jected onto the lowest energy band and is proportional to the
quantum metric of that band [16]. In contrast, the conventional
superfluid stiffness is proportional to the electron density
and inversely proportional to the band’s effective mass [37].
Consequently, the geometric superfluid weight dominates in
flatband superconductors [17,18] and exciton condensates
[35,36,38], such as superconducting twisted bilayer graphene
[1-4] and twisted multilayer graphene [5—7] at magic an-
gles. Additionally, the quantum metric is lower-bounded
by the absolute value of the Berry curvature. Therefore,
the superconducting states of systems with topological and
Wannier obstructed bands [15,18,39—41] are guaranteed to
have a nonzero geometric contribution to the superfluid
stiffness [42].

Until recently, the geometric superfluid weight has only
been studied for flat or weakly dispersive isolated bands.
However, situations arise where an otherwise dispersive band
contains large flat regions in momentum space, as in mul-
tilayer graphene systems [43—48]. Since pairing interactions
are typically projected close to the Fermi energy if the Fermi
energy is within these flat regions, the geometric superfluid
density can be comparable to its conventional counterpart.
Additionally, to maximize the flatband regions and geometric
superfluid stiffness, it would be ideal to engineer situations
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where the local extrema of the Berry curvature also coincide
with such flatband regions. In bilayer graphene, the flatband
regions appear at the Dirac points, in the vicinity of which
the Berry curvature and the quantum metric exhibit maximum
values. The tunability of the band structure and Berry curva-
ture of biased bilayer graphene (BLG) by displacement fields,
and the control of the total density, in dual-gated samples
make it possible to satisfy these stringent constraints.

In this work, we analyze the geometric and conventional
superfluid stiffness ratio, which can be tuned by displacement
fields in biased BLG superconductors [49,50] and exciton
condensates [51]. In both cases, the conventional stiffness
is independent of the magnitude of the order parameter.
However, the geometric stiffness depends on the magnitude
of the order parameter squared, which must be attained
self-consistently. Therefore, we first perform a mean-field
analysis of superconductivity and exciton condensation in
dual-gated bilayer graphene in the presence of a mass term
m due to broken C, symmetry. The mass term arises due
to the displacement field between the layers. We assume a
momentum-independent order parameter at the Fermi surface
in both cases. Inversion asymmetry, characterized by m, en-
hances the superconducting and excitonic gap, increasing the
critical temperature 7.. We find that for small changes of the
mass term, m ~ 0-50 meV, the self-consistent value of the su-
perconducting gap increases by several orders of magnitude,
even though the associated critical temperature 7. remains
quite small. The enhancement with m of the exciton gap is less
pronounced, but the 7; can be larger. Furthermore, The exciton
gap is maximized for a density-dependent optimal value of
the mass m(n) suggesting that there is an ideal combination of
displacement field and total density.

The geometric superfluid density for the two cases exhibits
very different behaviors. The conventional stiffness, which is
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proportional to the density and inversely proportional to the
effective mass, is similar for both cases. In the case of su-
perconductors, the geometric superfluid density enhancement
with m tracks the enhancement of the superconducting but
remains negligible compared to the conventional superfluid
density. This is due to the small values of the superconducting
gap. For the exciton condensate, the geometric contribution
is of the same order as the conventional superfluid density.
As a result, the geometric superfluid stiffness for the exciton
condensate exhibits a rich phenomenology, the most striking
of which is a density-dependent maximum value as a function
of the mass term m. We analyze the Berezinskii-Kosterlitz-
Thouless (BKT) transition temperature (7gkt) for the exciton
condensate [52]. The additional geometric superfluid density
increases the ratio Tgkr/7T..

The paper is organized as follows: Sec. I reviews chiral
two-dimensional electron systems’ geometric and topological
properties. In Sec. II, we solve the self-consistent gap equa-
tion for the superconductor and the exciton condensates as
a function of the density n and the mass m. In Sec. III, we
calculate the superfluid density and discuss the enhancement
of the geometric superfluid stiffness due to m for both cases.
Finally, Sec. IV discusses the influence of the mass term
on the BKT transition in exciton condensates. We conclude
by discussing the relevance of our results to experiments in
superconducting and exciton condensates in biased BLG.

II. CHIRAL 2DEGS: GEOMETRIC PROPERTIES

The electronic properties of single- and multilayer
graphene two-dimensional (2D) crystals are described by the
chiral two-dimensional electron gas (C2DEG) Hamiltonian.
This class of k - p Hamiltonians is defined for the electron en-
velope wave-function momenta k near the Dirac points K (K")
denoted by n = =£. The chiral 2DEG Hamiltonian H,, =

>k c;;,n?:[O,r/ck,n’ with the chirality index J,

Ho ., = ¢k (cos(Ji)dy + nsin(Jg)dy) +mé,, (1)

captures a chirality-dependent electronic dispersion. In
Eq. (1), 6; are the Pauli matrices defined in the sublat-
tice space, k = (k,, k,) is the two-dimensional momentum
(k= 1Kk]), gk = tan_l(ky /ky), ¢y denotes a constant in units
of eV/nm’, ¢; = hv for graphene, and & = (hv)* /v (y1 ~
0.4 eV) for bilayer graphene systems, with v =~ 1 x 10°
m/s. The Hamlltonlan acts on the two-component spinor
C, = (ckA ’CkB;) with ¢} A®).y (Ckam),y) denoting the
creation (anmhllatlon) fermionic operator for a given sublat-
tice A (B), valley n. In the remainder of the paper, we use
the C2DEG Hamiltonian to describe bilayer graphene. The
effect of trigonal warping is negligible for the density range
nyp = 10""-10'> cm~2 for both the superconducting and ex-
citon condensates, and therefore is not included.

The mass term m breaks C, symmetry; however, the sys-
tem still retains particle-hole and time-reversal symmetry,
expressed as o, H ,0, = ’HO and o, = "H,O _,» respec-
tively. The energy dispersion for the inversion asymmetric
chiral 2DEG is ex; = £(¢7k* + m*)!/2. For biased BLG,

J = 2, the density of states is enhanced for € ~ m,

N(0)e

— Oe* —m?), )

Dj(e) =
where N(0) = y,/[4m (hv)?], and ® is the Heaviside function.
This divergent behavior at € ~ m is critical for the supercon-
ducting and exciton gap in biased BLG, as discussed in the
next section.

The quantum geometry of a band can be described by a
gauge-invariant complex tensor R, (k), called the quantum
geometric tensor [53],

Ry, (K) = 2 Tr[Py (k)3 Py (K)3, Py (K)], 3)

where P, (k) = |uy,(k)) (1, (K)| denotes the projection opera-
tor for the ath band, and 0, = 9/(9k,,), i, v = ky, k, denote
directions in momentum space. The real part of the quantum
geometric tensor, the quantum metric, denoted by gj, (k) =
Re[R};, (k)], provides a notion of a quantum distance between
projected states in the Hilbert space. The imaginary part
Im[R, (k)] = €27, is the well-known Berry curvature.

For any two-band model, H = o - n(k), the quantum geo-
metric tensor R"‘ , (k) can be expressed as

R, = 30, - 9,A+ a3 0,A x 9,8, 4)

where o = =+ denotes the particle/hole bands, and fi = n/|n]|.
The quantum metric for the massive chiral 2DEG model is

valley- and spin-independent,
272k ~

—2(””28;“} + é‘jzkzj z(kz(sp_v - kukv ))

267K +m?)

5
The Berry curvature 27*(k) for a chiral 2DEG is valley-
dependent,

gn(k) =

£2? mk2d=1)
2 ({}kzl + m2)3/2

The Berry curvature 2(k) and Tr[g(k)] for biased-bilayer
graphene (J = 2) are plotted in Figs. 1(a) and 1(b) for dif-
ferent values of m. Both exhibit a mass-dependent maximum
at a nonzero wave vector. The position of the maximum in
Q(k) and Tr[g(k)] scales as 0.84(0.86)/m/¢,, respectively.
This feature is important to the density and mass-dependent
behavior of the geometric superfluid stiffness. Additionally,
since the positive-definiteness of the quantum geometry ten-
sor requires that the real part and imaginary part satisfy the
relation Tr[g(k)] > |Q2"? (k)|, these functions track each other.

Q k) =7 6)

III. MEAN-FIELD THEORY FOR SUPERCONDUCTIVITY
AND EXCITON CONDENSATION

A. Superconductivity in biased BLG

Initial experiments on superconductivity in BLG indi-
cate an unconventional pairing mechanism, possibly resulting
in a sign-changing order parameter on the Fermi surface
[49,50,54]. However, a k-independent order parameter on
the Fermi surface has also been proposed as a viable
candidate [55].

The main goal of the present work is to elucidate the role of
the quantum metric in determining the superfluid stiffness of

144502-2



EFFECT OF INVERSION ASYMMETRY ON THE ...

PHYSICAL REVIEW B 112, 144502 (2025)

(a)
1500
— m=10
[ — m=30
1000 m=50
(3]
S
~
S 500
0
0.00 0.05 0.10 0.15 0.20
ka

(b)
3000

— m=10
— m=30
m=50

2500
2000
1500
1000

500

Tr(g]/a?

O 4

0.00 0.05 0.10

ka

0.15 0.20

FIG. 1. (a) Berry curvature (k) and (b) trace of the g, (k) in units of a? as a function of ka for different values of the displacement field;

a ~ 0.246 nm is graphene’s lattice constant.

superconducting and exciton-condensate states in BLG when
a band gap is present. The symmetry of the pairing has only
minor quantitative effects on the superfluid stiffness, and, as
discussed in Sec. IV, the s-wave pairing case provides an
upper bound for the geometric contribution to the superfluid
stiffness. For these reasons, in treating the superconducting
case, we limit ourselves to the case of s-wave pairing for
which the mean-field Bogoliubov—de Gennes Hamiltonian
is HBdG = Zk wEﬂBdek’ with 1//11 = (CIL,T.+’ C x|, —> ) the
four-component Nambu spinor basis, and

R Ho,+ (k)
Hpyg = ( ;
Ak

Ag
AT _(-k))

The order parameter Ay is determined from the self-consistent
gap equation,

(N

d’k’
A = — Vi Do (k, K 8
k /(271)2 Kk Dsc (K, K) ®)

Ak
2E’
where E2(k) = &2 + Al with & = (ex; — 1), and n denotes
the Fermi energy. We assume @ > 0 (the results for u < 0
can be easily attained from the p > 0 results considering the
particle-hole symmetry of the bilayer graphene Hamiltonian).
Is.(k, k') denotes the superconducting form factor,

T (k, k') = 1(1 + cos b cos b ), ©

where cos(bx.j) = m/|ex jl-

To calculate the enhancement of the quantum metric contri-
bution due to the superfluid weight, the detailed values of the
parameters Vp and w, are not important as long as they return
the correct value of T, i.e., of the amplitude of the supercon-
ducting order parameter A. We estimate w, ~ hiv;kr, where
vy ~ 1 x 10% cm/s is the phonon sound velocity in graphene
[54], and we determine the value of V;; which corresponds to
the experimentally measured value of T, [49]. Considering
that for n ~ 6 x 101! cm™2 and m = 50 meV, the experi-
mentally measured 7, is ~30 mK and w, ~ 1 meV, we find
Vo = 908 meV nm?. This value is similar in magnitude to the
phonon-mediated attractive interaction estimate in Ref. [54].

The order parameter grows exponentially with m for m ~
0-50 meV, as shown in Figs. 2(a) and 2(b). It then increases
linearly for higher values of the mass term. This enhancement
results from the large density of states at low values of n. For
m = 0, the density of states in BLG is constant. Therefore, A
has no dependence on the carrier density n. However, when

m # 0 at lower values of densities, there is a large density
of states, resulting in an enhancement of the order parameter,
as indicated in different line cuts in Fig. 2(b). The full phase
diagram as a function of the mass m and the two-dimensional
density n is plotted in Fig. 2(a). Next, we study the exciton
gap in bilayer exciton condensates, which shows different
behavior from the superconducting gap due to the long-range
nature of the attractive interaction.

B. Exciton condensation in biased double BLG

Since indirect excitons in a spatially separated electron-
hole bilayer are protected from recombination [56], these
systems are ideal platforms for exciton (electron-hole bound
pair) condensation [57]. To realize BLG excitons condensates,
we therefore consider two BLG systems separated by a di-
electric of thickness d (see Fig. 3) [51,58-60]. The densities
of electrons and holes in the upper or lower bilayer graphene
can be tuned by an electric field applied perpendicular to
the combined heterostructure, as indicated in Fig. 3(a). The
layers are gated separately with the gate potential (V,, —V,)
in the top and bottom layers. The gate potential is adjusted
for a p-type Fermi surface (FS) in one layer nested with
the n-type FS in the other layer. The setup in the figure al-
lows independent control of the doping and layer potential.
Electrons in the top layer pair up with holes in the bottom
layer, forming excitons, and giving rise to a gapped spec-
trum as shown in Fig. 3(b). Particle-hole (PH) symmetry
in exciton condensates plays the same role as time-reversal
symmetry in superconductors [61]. 2D crystals generally

2 4 6 8 10 0
n (10""/cm?)

20 40

m (meV)

60

FIG. 2. The magnitude of the superconducting order parameter
A as a function of the mass gap and two-dimensional charge density
n for bilayer graphene. Here Vy = 908 meV nm? and w. = 1 meV.
The unit of 7 is 10'! cm~2 if not specified.
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FIG. 3. (a) Schematic of a dual-gated bilayer graphene device
for exciton condensate. (b) The quasiparticle band dispersion in bi-
ased bilayer graphene exciton condensate. Dashed lines indicate the
noninteracting electron-hole bands. The Fermi energy is indicated in
green.

satisfy perfect particle-hole symmetry [58,59], and therefore
they are attractive candidates to realize double-layer exciton
condensates [58,59].

The mean-field exciton parameter, here denoted by AL,
is calculated from a self-consistent gap equation similar to
Eq. (8) (see Appendix A for details) assuming for the inter-
layer interaction Vp(gq) = 2me?/(eq)e¢. The self-consistent
gap equation for A1 can be written in the form (see also
Appendix A)

/2 2cos @ e~ 4rd cos O cos 6
L. / d(p / da k—q k ,
a2 0 |k|=kp

I~
V(AL +(AL?
(10)

where Kk = ezyl / [4me(hv)*kp] is the coupling constant, and
the bar denotes that all energies are measured relative to the
Fermi energy €f, and the exciton gap A+ and chirality factors
are all evaluated at |k| = kg. The k;l dependence of the
coupling constant and exponential decay as a function of kg
results from the Coulomb interaction. In the calculation for
AL we neglect the effective-mass renormalization of A in
Eq. (A4) due to intralayer interaction, as it has been shown
to have a marginal effect on the value of the exciton gap
in BLG [62]. Before we discuss the results of the exciton
gap, we justify our use of unscreened Coulomb interactions
in Eq. (10).

The calculation of the strength of the electron-hole
Coulomb interaction for electron-hole bilayers, taking cor-
rectly into account screening effects, is subtle. This is due
to the difficulty of self-consistently accounting for the effect
of the formation of the exciton condensate on the screening
of the interlayer Coulomb interactions. This issue has been
extensively studied in the literature. Using a Thomas-Fermi
Static screening approximation, Refs. [63,64] concluded that
the exciton condensate’s order parameter A might be vanish-
ingly small. However, follow-up works [65—70], which more
carefully treated the competition between the screening and
opening of a band gap due to the establishment of an exciton
condensate, returned much higher values of A. While electron
density reduces the strength of the interaction, at the same
time the effect of opening a gap due to the formation of the
exciton condensate strongly suppresses the screening. Differ-
ent results are obtained depending on how the two effects are

(a) A (meV) (b)
70 (mev) ® g
6
60
4

S‘SO 5 5 |
© 40 4 4
£ =3 e
=30 s E N

20 <

0 20 40 60
n (10""/cm?) m (meV)

FIG. 4. The magnitude of the exciton order parameter A as a
function of the mass gap and two-dimensional charge density n for
biased bilayer graphene. The inset in (b) shows the A(m) at lower
values of m. The white dotted line in (a) indicates the optimal density,
which corresponds to the maximum exciton gap for each m.

considered. There are three possible approximations to treat
the screening of the electron-hole interaction: (i) unscreened
(US), in which no screening effect is included; (ii) normal
screening (NS), in which screening is included using the
random phase approximation in the normal state; and (iii)
superfluid state (SS) screening, in which screening is included
using the random phase approximation in the superfluid co-
herent state.

By comparing the results obtained using the three different
approximations to highly accurate diffusion quantum Monte
Carlo (DQMC) results, Neilson et al. in Ref. [71] showed
that the SS approximation is the most accurate. In addition,
they showed that when the interaction parameter r, is larger
than 3, the SS and US approximations return almost undistin-
guishable results. For gapless bilayer graphene, we have that
ry > 3 corresponds to densities n < 7 x 10'?cm~2. The bands
flatten for a nonzero band gap m; therefore, for fixed density,
ry increases. As a consequence, as longasn < 7 x 102 cm~2,
the US approximation should be used to estimate the size
of the exciton condensate order parameter A+ for all values
of the gap m. In the remainder of the paper, we consider
densities only up to 10'> cm™2, well within the range of
validity of the unscreened approximation. To take into account
the screening effects of the nearby gates, we use a fairly large
value of the dielectric constant setting € = 10.

The results for the exciton gap with Coulomb interlayer
interactions are plotted in Fig. 4(a) as a function of m and n
for double bilayer graphene. We take the Fermi energy Ep ~
3 — 35 meV at m = 0, which corresponds to the densities n =
(0.1 = 1) x 102 cm~2 and d = 1 nm. At m = 0, the exciton
gap is expected to decrease as a function of the density n [not
visible due to the scale in Fig. 4(a)].

Figure 4(a) indicates that the exciton gap is maximized for
an optimal value of n and m, indicated by the white dotted
line. This behavior can be understood by studying the low and
high n limits for m in Eq. (10). At low densities, electrons
reside in flat-band regions with access to a large density of
states, resulting in a sudden increase in the exciton gap. At
large densities, the exponential term in Eq. (10) dominates,
thereby reducing the exciton gap sharply. At intermediate
values of the density n, these trends conspire to produce a
density-dependent local maximum value of the exciton gap.
This analysis indicates an optimal value of displacement fields
to search for exciton condensates in biased bilayer graphene.
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The exciton gap enhancement as a function of m is shown
in Fig. 4(b). Even though the exciton gap is enhanced as a
function of m, this enhancement is less pronounced than that
of the superconducting gap. The exciton gap exhibits a steady
enhancement as a function of the mass m which saturates to
a density-dependent value of the exciton gap enhancement.
There is a larger enhancement at higher densities, with a
higher gradient of enhancement associated with lower den-
sities. These differences are due to the long-range nature of
the Coulomb interaction, which results in a density-dependent
coupling parameter.

IV. SUPERFLUID DENSITY

While the pairing interaction in the superconductor and ex-
citon condensate corresponds to physically distinct processes,
the mathematical structure of the mean-field Hamiltonian is
similar, allowing for a unified description of the superfluid
properties. The superfluid density of the condensate character-
izes its ability to carry a supercurrent. For a two-band model,
taking the Fermi energy to lie within the wth band gives
two contributions to the superfluid density for the ath band,

Dy, = D3 4 DV [16], where
>>8ﬂa\)ek,0ﬁ (1 1)

DY = 2 Z <1 _ Sax tanh <'BE2°"k
E
(%)guua«), (12)

is the conventional contribution, and

pEeo _ Z 2|Ak|

Do = L2 ~  aFy
is the geometric contribution. In both Eqs. (11) and (12), Ex 4
denotes the quasiparticle dispersion of the BLG supercon-
ducting or exciton condensate, and 8 = 1/(kgT). At T =0,
DE™ = n/m*8,,,, where m* = I*(3%€/0k?)™" is the effec-
tive mass. This result is independent of the symmetry of the
order parameter. The s-wave order parameter maximizes the
geometric superfluid stiffness, as any non-s-wave symmetry
reduces phase space in the integral over momentum space
in Eq. (12). Therefore, our results for the s-wave symmetry
provide an upper bound for the geometric superfluid density
associated with the superconductor and exciton condensates
in biased bilayer graphene.

Using azimuthal symmetry, we can write D§° =0 and

DY’ = Dy;° = D&°. For m = 0, the total superfluid density
can be expressed as

J 2
D=5ty a4 g (“J” i ) (13)
2 2 A2+ 2

For weak coupling, u =¢r and A < €p, resulting in a
comparatively minor geometric superfluid stiffness. For m >
0, the superfluid density is calculated numerically using
Egs. (11) and (12).

The geometric and conventional superfluid densities as
functions of m for the superconducting case are shown in
Fig. 5. As in the case m = 0, the geometric superfluid stiffness
is negligible, D /D™ ~ 10~* for m up to ~50 meV due
to the small superconducting gap. The geometric superfluid
stiffness is plotted as a function of m in Fig. 5(a); it follows

%10 b 1
@ ‘—n 1=—n=3 /(\) ‘\\ - =n=1-= -n=3
— =2 e \ -
> e ) Wh n=2
o ) Vis
E 2 205\
o =3 \ i
[a) oom \\ \‘~-
0 0 | ‘
0 20 40 60 0 20 40 60
m (meV) m (meV)
-3
x10
(c) 4 T ) D ——
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5\ m=30 ~ 20 m=30 -7
) 2 -7
E2 E |
X Sl //, o
0 gl
2 4 6 8 10 2 4 6 8 10

n (10"/cm?) n (10"/cm?)

FIG. 5. The superfluid stiffness for bilayer graphene supercon-
ductor. Panels (a) and (c) plot the geometric stiffness as a function of
m for different density values n and as a function of n at different m,
respectively. (b) The conventional superfluid density as a function of
m for fixed n and (d) as a function of n for fixed m. The solid line
labels the geometric term in all graphs, while the dashed line is the
conventional superfluid density. The unit of energy is meV.

the same behavior as the enhancement of the superconduct-
ing gap. As expected, the conventional superfluid stiffness
decreases as a function of m as indicated in Fig. 5(b), due to
an increase in the effective mass m*.

In contrast, the geometric superfluid stiffness for the ex-
citon condensate exhibits a much richer phenomenology as
indicated in Figs. 6(a)-6(d). Due to the large value of the

0 20 40 60 "0 20 40 60

m (meV) m (meV)
(©) 25 S (d) 40 ——
[——m=0 —m=30 —m=r0| —=m=0 =—=-m=70 R
30 \L ,/’
¢/’/
20| P
"‘ -

2 4 6 8 10
n (10"/cm?)

FIG. 6. The superfluid stiffness for the exciton condensate. Pan-
els (a) and (c) plot the geometric term as a function of m for different
values of density n and as a function of n at different m, respectively.
(b) The ratio of the superfluid density as a function of m for fixed
n. (d) Total superfluid density as a function of n for fixed m. In all
graphs, the solid line labels the geometric term, while the dashed
line is the total superfluid density. The unit of energy is meV.
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exciton order parameter, the geometric superfluid stiffness is
non-negligible, contributing up to ~20% of the total stiffness,
and it has a density-dependent maximum as a function of m, as
seen in Fig. 6(a). The geometric superfluid stiffness acquires
an n- and m-dependent maximum, as shown in Fig. 6(c). The
scaling with respect to n and m of the geometric contribution
to Dy is determined by the trend of the Berry curvature and
quantum metric trace, see Fig. 1, and the trend of the exciton
gap, see Fig. 4. The conventional term still determines the
overall trend of the total superfluid density, except at very
low densities n < 1 x 10'! ecm~2, for which there is a slight
enhancement due to the geometric contribution, see Fig. 6(b).

V. BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION

In superconductors and superfluids, the BKT phase tran-
sition separates the superfluid and resistive states and is
associated with the binding-unbinding of vortices [52]. The
critical temperature of the BKT phase transition Tk is de-
termined from the relation kg Tkt = 7 Ds(A(TskT), TnKT)/8,
where D is the total superfluid density. A direct consequence
of a geometric contribution to D; is an increase of Tgkr.
In the following, we only present Tgkt for the exciton con-
densate. The results for the superconductors, which exhibit
negligible geometric superfluid stiffness, follow the standard
relations [52].

Figures 7(a)-7(f) summarize our findings for Tkt and crit-
ical temperatures 7, for the exciton condensate as a function
of the density n and mass m. The dotted lines show Tpkr
calculated with just the conventional term, while the solid
lines show the value of Tkt obtained taking into account
the geometric contribution. As expected, adding the geometric
superfluid density slightly enhances Tggt. The enhancement
of the ratio Tgkr/7T. is more pronounced at lower densities
and higher masses as indicated in Figs. 7(e) and 7(f).

VI. DISCUSSION AND OUTLOOK

Inversion asymmetry due to a mass term m enhances
the superconducting and exciton gap in biased-BLG and
double-BLG. The superconducting gap is enhanced expo-
nentially, prominently at low densities, due to the large
density of states resulting from band flatness near the Dirac
point. This is followed by a concomitant enhancement of
the geometric superfluid stiffness. However, the conventional
superfluid stiffness dominates in the weak-coupling limit. The
momentum-independent s-wave order parameter considered
in this paper provides an upper bound for the geometric
superfluid density in biased BLG. Therefore, the geometric
contribution to superfluidity in bilayer graphene superconduc-
tors should be negligible [49].

For the exciton condensate, the band-structure modifi-
cation due to the mass term and the long-range nature
of the Coulomb interactions produces a modest increase
in the exciton gap. The exciton gap is maximized for a
density-dependent optimal value of the mass m with criti-
cal temperatures 7. ~ 1 — 10 K. These critical temperature
estimates are consistent with more sophisticated studies of
exciton condensation in two-dimensional crystals [51,66,72],
implying mean-field theory qualitatively captures the behavior
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FIG. 7. The exciton condensate BKT transition temperature Tgkt
(a) as a function of m for different values of density n and (b) as a
function of n at different m. In both (a) and (b), the dashed lines
correspond to Tkt calculated using only the conventional superfluid
weight, while the solid lines show the Tzkr using the total superfluid
weight. Note that in (b), for m < 70, the differences between the
solid lines and their corresponding dashed lines are very small. The
exciton condensate’s critical temperature 7, (c) as a function of m for
different n and (d) as a function of » at different m. The ratio Tkt /T,
(e) as a function of m for different n and (f) as a function of n at
different m. As in panels (a) and (b), the dashed and solid lines in
panels (e) and (f) show the results with and without the geometric
contribution, respectively.

of the exciton condensate gap in biased bilayer graphene.
These larger values of the exciton condensate gap result in
a non-negligible contribution to the total superfluid stiffness.
This geometric contribution is more pronounced at lower den-
sities and higher mass values, where flatter regions of the
electronic band dispersion influence the exciton condensate.
An experimental consequence of the more significant total
superfluid density is an increase in the BKT transition temper-
atures of the exciton condensate in biased bilayer graphene.
The duality of the superconducting and exciton conden-
sates, where time-reversal is interchanged to particle-hole
symmetry, has been discussed in lattice models [23]. Since
the conventional contribution is generally independent of the
strength of the order parameter, it has a similar value for
the superconducting and excitonic condensates. On the other
hand, the geometric term depends on the strength of the square
of the superconducting and exciton order parameters. The
difference in the geometric superfluid weight in these cases
originates from different self-consistent superconducting and

144502-6



EFFECT OF INVERSION ASYMMETRY ON THE ...

PHYSICAL REVIEW B 112, 144502 (2025)

excitonic gap values, which are due to the pairing mecha-
nisms.
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APPENDIX A: DETAILS OF MEAN-FIELD THEORY
FOR THE EXCITON CONDENSATE

Without loss of generality, we assume that the gate volt-
ages are such that the Fermi energy lies in the conduction
band for the top layer [0 = 1(+)] and in the valence band
for the bottom layer [0 = 2(—)]. The single-particle energy
dispersion of the low-energy bands of heterostructure is sym-
metric about the Fermi energy due to particle-hole symmetry
with eg j . = =V, + &y and ex y - =V, — & ; as indicated
in Fig. 3(b). Assuming that the exciton order parameter A is
smaller than the applied gate potential |V,]|, the density-density
interactions can be projected onto the electron band in the top
layer and the hole band in the bottom layer. The interaction
Hamiltonian can be expressed as

Hine = L2 Z qpqap qzx+V Pq.aP—q, Dt) (A1)

q,a==+

where L? denotes the area of the heterostructure, o = + =
(t, b) are identified with the electron bands in the top layer
and the hole bands in the bottom layer, qu (Vy) refers to the
interlayer (intralayer) interaction, and the projected density
operator can be expressed as

oo = Y (10K + Qe W qaoViao  (A2)

k,o

where yl:.a,a (Vk.«.0) denotes the oth band creation and an-
nihilation operator at k, and o denotes the spin and valley
degrees of freedom, which remain unaffected by the mass
term m. The eigenfunctions | x; o(K)),

cos(6k/2)
30+ (K)) = <sin(9k/z)¢fwk>

and |x; —(k)) =10,|xs,+(K)) determine the form factors in
the band projected density operator. The form factors asso-
ciated with the wave-function overlap in the projected density
determine the symmetry of the exciton order parameter A and
the fluctuations of the exciton condensate, as we show next.
For a nonzero expectation value for the exciton or-
der parameter, one obtains a mean-field Hamiltonian,
HMF=—) 5.0 ykTﬁ Ax - Too'Vk.or, Where A=(A", AV, A%)

(A3)

denote the mean fields and T = (t%, t”, t%) are the 2 x 2 Pauli
matrices acting in the layer pseudospin space. The transverse
components of the pseudospin field A define a complex order
parameter Aj" = A} — iA}, whose magnitude |A;f| deter-
mines the strength of the partlcle—hole condensate. The mean
fields Ak are given by the following self-consistent equations:

Ay = nk +

ZUZMpmw)&]

A (E
1+ =27(22)],
<[re2(3))
1 1 d Aé Ep
Ag = mZVk,pFex(k P)E—pf<7)7 (A4)
)

where 1k = (exy,+ — exs,-)/2, f(x) =tanh(Bx), and B =
1/(kgT). The interlayer Coulomb interaction in the direct
channel, Ey = 2mwe’gd /e, captures the layer charging energy,
g =4 is the spin and valley degeneracy, € is the dielectric

(AL)? + |Af|2.
[ex(k, k') denotes the angle-dependent chirality form factor
for the exciton condensate,

constant of the embedding media, and Ex =

Tex(k, K) = 3(1 + cos b s cos Oy

+ sin Gy ; sin Oy ; cos(@k k'), (A5)

where cos(bk.j) = m/|ex s| and g = J(@x — @r ). In gen-
eral, the chirality form factor I'gx (k, K’) results in an order
parameter of the form Ay = |Ay|e™*? T with chirality o =
0,+£1,+2,... [62] and an arbitrary global phase ¢ = 0.
Substituting Ag = |A4|e™% in the gap equation above and
integrating over g results in only three orthogonal solutions
a =0, +J for any central interactions. Solving the exciton
gap equation, we find that the ¢ = 0 channel exhibits the
largest gap for all values of m, hence we focus on a constant
value of the exciton order parameter at the Fermi surface.

APPENDIX B: SUPERFLUID DENSITY: GEOMETRIC
AND CONVENTIONAL CONTRIBUTION

The Kubo formula for the superfluid density [16] can be
expressed as

E)) - n(E,
W—HZ“) “%mmmwwmmw>

k,ij
— (Wil Hy: V) (¥jly-0,H| i),

where g = 2(4) denotes the degeneracy of the superconductor
(exciton condensate), i(j) = (&£, o) labels the particle-hole
Bogoliubov—de Gennes (BdG) bands in the ¢« = = band, with
Y; and E; denoting the respective BdG eigenfunctions and
eigenvalues, and n(E) is the Fermi-Dirac distribution. The
first term corresponds to the diamagnetic contribution, while
the second term is the paramagnetic contribution. At points
of degeneracy, the difference between the Fermi functions
should be replaced by the derivative dn/dE;.

The gauge fields in superconductors and exciton conden-
sates correspond to physically distinct processes, namely the
magnetic field for superconductors and displacement field

B
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asymmetry q = e(A, — A,) (where A; denotes the electromag-
netic gauge field in the ith layer) for the latter. Nevertheless,
the mathematical structure of the BdG mean-field Hamilto-
nian is the same, allowing for a unified description. In the
case of the superconductor, we assume p > 0. The supercon-
ducting BdG eigenstates for the « = + band can be expressed
in the basis set (k, 1, +; =Kk, |, —), w;,f(k) = (Uy, vy ), and

Yl _(K) = (—vg, 1) With

u? (k) = <+‘§°‘> vi(k) = 1(1—2-“), (B2)

where &, = ¢,(k) —p and E, =./§2+ A%, The BdG
eigenstates for the exciton condensate can be represented
by the same expression with a different basis choice
(k, 0, e; —k, o, h). This is due to the unified description al-
lowed by the superconductor and exciton condensate.

For a k-dependent and real order parameter Ay, we can
express the matrix element in the above expression as

(¢a’,+|auH|Wa,7> = _(va,kua,k + ua’,kva,k)(ua’laquua>-
(B3)

The matrix element above is calculated as usual,

<ua’|3,uH|Ma> = auea(saa’ + [ew(K) — Ea(k)]<8uua|ua’>-
(B4)

Taking the Fermi energy to lie within the oth band, at zero
temperature, a straightforward calculation [16] gives two con-
tributions to the superfluid density for the oth-band D, =

D + D5, where

DN =% Z (1 _ Sak a dveq k) (B5)

is the conventional contribution to superconductivity, while
the geometric contribution D’ becomes

Do _ o =) (11
b= E o D e (g
X [(auua|ua’><ua/|auua> +H.c], (B6)
where o = £ corresponds to the particle/hole bands of the

chiral 2DEG. In the limit of a well-isolated band, the geomet-
ric superfluid can be expressed as [16]

€0 § 2 1
geo _ O J—
D = §k 28 g ). (B7)
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