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We study the low-energy electronic structure of heterostructures formed by one sheet of graphene placed on
a monolayer of NbSe2. We build a continuous low-energy effective model that takes into account the presence
of a twist angle between graphene and NbSe2, and of spin-orbit coupling and superconducting pairing in NbSe2.
We obtain the parameters entering the continuous model via ab initio calculations. We show that despite the
large mismatch between the graphene’s and NbSe2’s lattice constants, due to the large size of the NbSe2’s Fermi
pockets, there is a large range of values of twist angles for which a superconducting pairing can be induced into
the graphene layer. In addition, we show that the superconducting gap induced into the graphene is extremely
robust to an external in-plane magnetic field. Our results show that the size of the induced superconducting gap,
and its robustness against in-plane magnetic fields, can be significantly tuned by varying the twist angle.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are extremely
interesting materials due to their unique electronic properties
[1–11] and the fact that in recent years experimentalists have
been able to isolate and probe TMD films only few atoms
thick, down to the monolayer limit. Some TMDs monolayers,
like MoSe2 and MoS2, are insulators with gaps of the order
of 1.5–2 eV. Other TMDs monolayers, such as NbSe2, NbS2,
TaSe2, and TaS2, are metallic at room temperature and super-
conducting at low temperature. One feature that all TMDs
have in common is a strong spin-orbit coupling (SOC). In
monolayer TMDs, the strongest effect of the SOC is a spin
splitting of the conduction and valence bands around the K ,
and K ′, points of the Brillouin zone (BZ) [12–14]. For the
TMDs that are superconducting at low temperature, such a
spin splitting causes the superconducting pairing to be of
the Ising type [9] and therefore extremely robust to exter-
nal in-plane magnetic fields [15–18]. The ability of metallic
TMDs to exhibit superconductivity even in the limit in which
they are only one atom thick, and the robustness of such a
superconducting state to external magnetic fields make them
very interesting systems both from a fundamental point of
view and for possible applications.

Recent advances in fabrication techniques have made pos-
sible the realization of van der Waals (vdW) heterostruc-
tures obtained by stacking crystals that are only few atoms
thick [19,20]. In these structures, the different layers are
held together by vdW forces. As a consequence, the crystals
that can be used to create the structures, and their stacking
configuration, are not limited to the configurations allowed
by chemical bonds. This makes possible the realization of
systems with unique properties such as graphene–topological-
insulator heterostructures in which graphene has a tunable
SOC depending on the stacking configuration [21–25].

In graphene, the conduction and valence bands touch at the
corners (K and K ′ points) of the hexagonal BZ, and around

these points the electrons behave as massless Dirac Fermions
[26,27]. This fact makes graphene an ideal semimetal in which
the polarity of the carriers can easily be tuned via external
gates. In addition, graphene has a very high electron mobility
due to its very low concentration of defects and the fact
that electron-phonon scattering processes do not contribute
significantly to the resistivity for temperatures as high as room
temperature [28–30]. All these features make graphene an
ideal system to probe, via tunneling setups, other materials
and to realize vdW heterostructures with tunable properties.
In particular, the fact, that the low-energy states of graphene,
in momentum space, are located just at the K points of its
BZ in vdW structures implies that by simply varying the twist
angle, graphene can be used as a momentum selective probe of
the electronic structure, and properties, of the substrate. The
work that we present below is an example of such momentum-
selective probing capability of graphene. In monolayer NbSe2,
the Fermi surface (FS) is formed by a pocket around the �

point, and pockets around the K and K ′ points. Contrary to
bulk NbSe2, in monolayer NbSe2 there is no seleniumlike
FS pocket around the � point. As a consequence monolayer
NbSe2 is expected to be a single-gap superconductor with
the same gap at the � pocket as at the K pockets [31].
However, the � and K pockets differ in the magnitude, and
k dependence around the pocket, of the spin-splitting induced
by the SOC. The splitting is much larger for the K pockets
and therefore the superconducting gap for these pockets is
much more robust to external in-plane magnetic fields than
for the � pocket. As we show below, a graphene-NbSe2

heterostructure allows us to probe separately NbSe2’s states
around the � point, and K point simply by tuning the relative
twist angle between graphene and NbSe2 and therefore to
study the difference between pockets of the interplay between
SOC and superconducting pairing.

In this paper, we study vdW heterostructures formed by
graphene and monolayer NbSe2. Our results show that despite
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FIG. 1. Brillouin zone for graphene and NbSe2, and correspond-
ing q vectors for the case when θ = 0, (a), (c), and θ �= 0, (b), (d).

the large mismatch between the lattice constants of graphene
and NbSe2 in these structures, a large superconducting pairing
can be induced into the graphene layer. In addition, we show
how such pairing depends, both in nature and structure, on the
stacking configuration. Our results are relevant also to other
graphene-TMD heterostructures such as the ones that can be
obtained by replacing the NbSe2 monolayer by a monolayer
of NbS2, TaSe2, or TaS2 that have also been shown to be
superconducting at low temperature [18,32–34] and show
how graphene can be used to probe in these systems the
momentum-dependent superconducting gap and in particular
its multiband structure.

II. METHOD

In graphene, the carbon atoms are arranged in a 2D hexag-
onal structure formed by two triangular sublattices, A and B,
with lattice constant ag = √

3a = 2.46 Å, with a = 1.42 Å
the carbon-carbon atomic distance. The 2D structure of NbSe2

is also formed by two triangular sublattices. One of the sub-
lattices is formed by the Nb atoms, the other by two Se atoms
symmetrically displaced by a distance u = 1.679 Å above and
below the plane formed by the Nb atoms. The lattice constant
of NbSe2 is as = 3.48 Å [13]. Figure 1 shows the BZ of
graphene and NbSe2. In this figure and in the remainder, we
take kx to be in the direction connecting the valley K with
its time-reversed partner K′. Figure 1(a) shows the relative
orientation of the graphene’s and NbSe2’s BZs for the case
when the twist angle θ is zero and Fig. 1(b) for a case when
θ �= 0.

To obtain the electronic structure of the graphene-NbSe2

structure for a generic twist angle and in the presence of su-
perconducting pairing in the NbSe2, we first need to estimate
the charge transfer between the graphene layer and NbSe2,
and the strength of the tunneling t between graphene and
the NbSe2 monolayer. To this effect, we first obtain via ab
initio the electronic structure of a commensurate graphene-
NbSe2 structure. Let a1s = as[cos(π/3 − θ )x − sin(π/3 −
θ )y], a2s = as[cos(π/3 + θ )x + sin(π/3 + θ )y], be the prim-
itive lattice vectors for NbSe2, and a1g = ag[cos(π/3)x −

sin(π/3)y], a2g = ag[cos(π/3)x + sin(π/3)y], the primitive
vectors for graphene, with x and y the unit vectors in the
x and y directions, respectively. In a commensurate stacking
configuration, the primitive vectors satisfy the equation

m1a1s + m2a2s = n1a1g + n2a2g, (1)

where (m1, m2, n1, n2) are four integers constrained by the
following second-order Diophantine equation:

(
m2

1 + m2
2 − m1m2

) = a2
g

a2
s

(
n2

1 + n2
2 − n1n2

)
. (2)

Given that the lattice constant of graphene and NbSe are
highly incommensurate with respect to each other, Eq. (1)
[or, equivalently, Eq. (2)] can only be satisfied for structures
with primitive cells comprising a very large number of atoms
(∼1000). It is computationally extremely expensive to study
structures with such large primitive cells using ab initio
methods. For this reason, we allow for a few percent strain
of the graphene’s lattice so that Eq. (1) [or, equivalently,
Eq. (2)] can be satisfied for structures with primitive cells
comprising 100 atoms or less. In general, the relative strain
of the graphene’s and NbSe2’s lattices will depend on the
specific structure considered. We did not perform an energy
minimization analysis and chose to strain graphene rather than
NbSe2 for convenience. This is justified considering that the
amount of charge transfer between the graphene layer and
NbSe2 and the magnitude of the graphene-NbSe2 tunneling
strength, are not expected to be affected by a small change of
the graphene or NbSe2 lattice constant

The ab initio calculations were performed using the Quan-
tum ESPRESSO package [35,36]. We use full-relativistic ultra-
soft pseudopotentials with the wave-function kinetic energy
cutoff of 50 Ry. We adopted the Perdew-Burke-Ernzerhof
(PBE) [37] as the exchange and correlation functional. We
set the vacuum thickness equal to 25 Å to isolate the het-
erostructure and avoid the interactions between the periodic
layers along the direction, (z), perpendicular to the layers. The
interlayer distance between graphene and NbSe2 was obtained
by full relaxation in the z direction. The total energy was
calculated by using a 18 × 18 × 1 Monkhorst-Pack scheme
grid for the k points.

After having obtained the amount of charge transfer and
the strength of the tunneling between the graphene layer and
NbSe2 via ab initio, we use a continuum model [23,38–40]
to obtain the low-energy spectrum of the graphene-NbSe2

heterostructure for different values of the twist angle θ . In
general, the Hamiltonian Ĥ describing the graphene-NbSe2

heterostructure can be written as Ĥ = Ĥg + Ĥs + Ĥt , where
Ĥg is the Hamiltonian for graphene, Ĥs is the Hamiltonian
for NbSe2, and Ĥt is the term describing tunneling processes
between graphene and NbSe2.

In graphene, the low-energy states are located at
the Kg and K′

g points of the BZ: Kg = (4π/(3ag), 0),
K′

g = (−4π/(3ag), 0) (and equivalent points connected
by reciprocal lattice wave vectors). Close the Kg and
K′

g points in graphene the electrons, at low energies,
are well described as massless Dirac fermions with
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Hamiltonians ĤKg = ∑
k,ττ ′σσ ′ c†

Kg+k,τ ′σ ′HKgcKg+k,τσ , ĤK′
g
=∑

k,ττ ′σσ ′ c†
K′

g+k,τ ′σ ′HK′
g
cK′

g+k,τσ , where

HKg = h̄vF k · τσ0 − μgτ0σ0, (3)

HK′
g
= −h̄vF k · τ∗σ0 − μgτ0σ0, (4)

c†
p,τσ (cp,τσ ) is the creation (annihilation) operator for an elec-

tron, in the graphene sheet, with spin σ and two-dimensional
momentum h̄p = h̄(px, py), k is a wave vector measured
from K (K′), vF = 106 m/s is graphene’s Fermi velocity,
μg graphene’s chemical potential, and τi, σi (i = 0, 1, 2, 3)
are the 2 × 2 Pauli matrices in sublattice and spin space,
respectively. As a consequence, when considering the states
of graphene close to the Kg (K′

g) point, we have Hg = HKg

(Hg = HK′
g
).

In NbSe2, the low-energy states are located close to the
�, K, and K′ points of the BZ: Ks = (4π/(3as), 0), K′

s =
(−4π/(3as), 0) (and equivalent points connected by recipro-
cal lattice wave vectors). Close to the � point, the effective
low-energy Hamiltonian for NbSe2 takes the form H�s =∑

kσσ ′ d†
k,σ H�s dk,σ ′ , where d†

k,σ (dk,σ ) is the creation (anni-
hilation) operator for an electron in NbSe2 with momentum k
and spin σ , and H�s is the effective low-energy Hamiltonian
matrix for the conduction band of NbSe2. By fitting the ab
initio results, we obtain

H�s = ε0� (k)σ0 + λ� (k)σz, (5)

where

ε0� (k) = η0� + η2�k+k−,

λ� (k) = l3�[(k3
+ + k3

−) cos(3θ ) + i(k3
+ − k3

−) sin(3θ )], (6)

k± = kx ± iky, and η0� , η2� , l3� are constants:

η0� = 0.5641 eV,

η2� = −7.0640 eV [as/(2π )]2,

l3� = 0.5085 eV [as/(2π )]3. (7)

Close to the corners of the BZ of NbSe2, the Ks and K′
s

points, for NbSe2, we have HKs = ∑
kσσ ′ d†

k,σ HKs dk,σ ′ , HK′
s
=∑

kσσ ′ d†
k,σ HK′

s
dk,σ ′ , where k is now a wave vector measured

from the Ks, K′
s points, respectively, and

HKs = ε0(k)σ0 + ε3(k)σ0 + λ(k)σz, (8)

HK′
s
= ε0(k)σ0 − ε3(k)σ0 − λ(k)σz, (9)

where

ε0(k) = η0 + η2k+k−,

ε3(k) = η3[(k3
+ + k3

−) cos(3θ ) + i(k3
+ − k3

−) sin(3θ )],

λ(k) = l0 + l2k+k−, (10)

and η0, η2, η3, l0, l2, are constants that we extracted
from the ab initio results for an isolated monolayer of

NbSe2:

η0 = 0.4526 eV,

η2 = −9.0940 eV [as/(2π )]2,

η3 = 3.07 eV [as/(2π )]3,

l0 = 0.0707 eV,

l2 = −0.33 eV [as/(2π )]2. (11)

Let pg, ps, be the wave vector of an electron in graphene,
NbSe2, respectively. In the remainder, we consider only mo-
mentum and spin-conserving tunneling processes. Conserva-
tion of crystal momentum requires

ps + Gs = pg + Gg, (12)

where Gg and Gs are reciprocal lattice vectors for graphene
and NbSe2, respectively. For the purpose of developing a con-
tinuum low-energy model for a graphene-NbSe2 heterostruc-
ture, it is more convenient to consider the twist angle θ as
relative twist between BZs, as shown in Fig. 1. For θ = 0, the
K point of graphene and NbSe2 BZs are on the same axis.
Depending on the value of θ , we can have two situations: the
low-energy states of graphene, in momentum space, are close
to NbSe2’s Fermi pockets around the K and K′ points, or,
considering NbSe2’s extended BZ, to NbSe2’s Fermi pocket
around the � point. In the first case, the conservation of the
crystal momentum, Eq. (12), takes the form

ks = kg + (Kg − Ks) + (Gg − Gs), (13)

where ks kg are momentum wave vectors measured from Kg

and Ks, respectively. By replacing Kg, Ks, with K′
g, and K′

s
in Eq. (13), we obtain the momentum conservation equation
valid for momenta taken around the K′ points. In the second
case, Eq. (12) takes the form

ks = kg + Kg + (Gg − Gs), (14)

and similarly for momenta around K′
g.

The conservation of the crystal momentum implies that the
tunneling term takes the form

Ĥt =
∑

GgGsτσ

T̂τσσ ′ (pg + Gg)e−iGg·dτ c†
pgτσ dpg+(Gg−Gs )σ ′ + H.c.,

(15)
where dτ is the position of the carbon atom on sublattice τ

within the primitive cell of the graphene sheet. For sublat-
tice A dτ = (0, 0), for sublattice B dτ = (a0, 0), with a0 the
carbon-carbon distance.

Considering that, as shown in Table I, the separation d =
3.57 Å between the graphene sheet and NbSe2 is much larger
than the interatomic distance in each material, in momentum
space, the tunneling amplitude t (p) decays very rapidly as a
function of p [40] and so in Eq. (15) we can just keep the
terms for which (pg + Gg) is smallest, i.e., restrict the sum
to Gg = 0 and the two Gg that map K (K′) to the two other
equivalent points in the BZ and set t = t (K). The sum over
Gs is restricted by the fact that we only need to keep terms for
which the graphene and NbSe2 states have energy separated
by an amount of the order of t .
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TABLE I. Parameters for graphene-NbSe2 commensurate structures.

TMD (m1, m2, n1, n2) as(Å) ag(Å) %δag θ |A|(Å) d (Å) μG(eV)

NbSe2 (−2, 1, −4, −3) 3.48 [13] 2.55 3.7% −65.20 9.2 3.57 −0.40
NbSe2 (−1, 2, 1, 4) 3.48 [13] 2.55 3.7% 33.00 9.2 3.57 −0.40

Let q = ks − kg. The above considerations imply that, for
the case when the Kg and Ks are close, we only need to keep
the terms for which |q| = |Kg − Ks|, given that these are the
terms for which (pg + Gg) that satisfies Eq. (13) is smallest.
Due to the C3v symmetry of the hexagonal structure, there are
three equivalent K points, K1, K2, K3, (and K′ points), i.e.
two reciprocal lattice wave vectors G connecting equivalent
corners of the BZ. There are three vectors qiK = (Kg − Ks) +
(Ggi − Gsi ) (i = 1, 2, 3) such that |qi| = |Kg − Ks|. q1K is
obtained by taking Gg1 = 0 and Gs = GsK1 ≡ 0, q2K by tak-
ing Gg = Gg2 ≡ 4π/(

√
3ag)[cos(5π/6), sin(5π/6)], Gs =

GsK2 ≡ 4π/(
√

3as)[cos(5π/6 + θ ), sin(5π/6 + θ )], and q3K

by taking Gg = Gg3 ≡ 4π/(
√

3ag)[cos(7π/6), sin(7π/6)],
Gs = GsK3 ≡ 4π/(

√
3as)[cos(7π/6 + θ ), sin(7π/6 + θ )].

When the graphene’s low-energy states are close to the
� pocket of NbSe2’s second BZ, the smallest possible value
of |q| is |Kg − Gs| with Gs = 4π/(

√
3as)[cos(−π/6 +

θ ), sin(−π/6 + θ )]. As before, considering the C3v

symmetry, there are three vectors qi� with this
magnitude: q1� obtained by taking Gg = 0, Gs = Gs�1 ≡
4π/(

√
3as)[cos(−π/6 + θ ), sin(−π/6 + θ )], q2� obtained

by taking Gg = Gg2, Gs = Gs�2 ≡ 4π/(
√

3as)[cos(π/2 +
θ ), sin(π/2 + θ )], and q3� obtained by taking Gg = Gg3,
Gs = Gs�3 ≡ 4π/(

√
3as)[cos(7π/6 + θ ), sin(7π/6 + θ )],

By retaining only the tunneling terms for which t (pg + Gg)
is largest, when considering the graphene states close to the
Kg point so that Hg = HKg , we can rewrite Ĥt as

Ĥt =
3∑

i=1

c†
kgτσ

T †
Kg,i,τσσ ′dkg+qi,σ ′ + H.c., (16)

with

T †
Kg,1

=
[

t 0 t 0

0 t 0 t

]
, (17)

T †
Kg,2

=
[

t 0 te−iGg2·dB 0

0 t 0 te−iGg2·dB

]
, (18)

T †
Kg,3

=
[

t 0 te−iGg3·dB 0

0 t 0 te−iGg3·dB

]
. (19)

In the remainder, supported by DFT results, we take t
to be the same both when the graphene’s low-energy states
tunnel into states around the K (K′) point and the � point
of NbSe2. Let γ ≡ t/h̄vF |qi|. When γ < 1, we can develop
a perturbative approach in which γ is the small parame-
ter [40,41]: terms of order γ n correspond n-tuple tunneling
processes. For our situation, as we show in the following
section, γ � 1 and so we can retain just the lowest order
terms in γ .

It is convenient to define the following spinors:

C†
k = (c†

kA↑, c†
kA↓, c†

kB↑, c†
kB↓),

D†
�k = (d†

k↑, d†
k↓),

D†
K,k = (

d†
Ks+k↑, d†

Ks+k↓
)
,

�
†
Kg�sk

= (
C†

k, D†
�,k+q1�

, D†
�,k+q2�

, D†
�,k+q3�

)
,

�
†
KgKs,k

= (
C†

k, D†
K,k+q1K

, D†
K,k+q2K

, D†
K,k+q3K

)
.

For the case when the graphene’s FS overlaps with the
NbSe2’s pocket close to the K point, we can then express
the Hamiltonian for the graphene-NbSe2 system as ĤKgKs =∑

k �
†
k,KgKs

HKgKs (k)�k,KgKs with

HKgKs (k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

HKg (k) TKg,1 TKg,2 TKg,3

T †
Kg,1

HKs+GsK1 (k + q1K ) 0 0

T †
Kg,2

0 HKs+GsK2 (k + q2K ) 0

T †
Kg,3

0 0 HS
Ks+GsK3

(k + q3K )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

For the case when we consider graphene states close
to the K′

g point, so that Hg = HK′
g
, the expression of the

Hamiltonian matrix HK ′
gK ′

s
(k) for the graphene-NbSe2 system,

within the approximations described above, can be obtained
from Eq. (20) by doing the following substitutions: Ks →
K′

s, Ggi → −Ggi, Gsi → −Gsi, qiK → −qiK and noticing

that TK′
g,i = T ∗

Kg,i
. Similarly, when the low-energy states of

graphene are close to the � point of NbSe2, the Hamiltonian
HKg� (k) [HK ′

g�
(k)] is obtained from the expression Eq. (20)

for HKgKs (k) via the substitutions Ks + GsKi → Gs�i (K′
s −

GsKi → −Gs�i), and qiK → qi� (q′
iK → −qi� ).
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Including the superconducting pairing, the effective low-
energy Hamiltonian for NbSe2 for states close to the � point
takes the form

Ĥ (SC)
�s

=
∑

k

�
†
ksH

(SC)
�s

�ks, (21)

where �
†
ks is the Nambu spinor �

†
ks = (D†

k, D−k ),

H (SC)
�s

=
[

H�s (k) i
�σ2

−i
�σ ∗
2 −HT

�s
(−k)

]
, (22)

H�s (k) is given by Eq. (5), and 
� is the size of the supercon-
ducting gap of NbSe2 close to the � point.

For states close to Ks, including the superconducting
pairing, the Hamiltonian for NbSe2 becomes

Ĥ (SC)
sK =

∑
kn

�
†
ks

H (SC)
sK �ks , (23)

where now k (−k) is understood to be measured from Ks (K′
s),

and

H (SC)
sK =

[
HsKs (k) i
Kσ2

−i
Kσ ∗
2 −HT

sK′
s
(−k)

]
, (24)

HsKs (k), HsK′
s
(k) are given by Eq. (8).

For monolayer NbSe2, the superconducting gap is expected
to have the same value, 
, on the � and K pocket. In the
remainder, we conservatively assume 
 = 0.5 meV [31].

The Hamiltonian for the graphene-NbSe2 system in-
cludes the superconducting pairing in NbSe2. For the
case when Kg is close to Ks, the Hamiltonian becomes
Ĥ (SC)

KgKs
= ∑

k �
†
KgKs,SC,kH (SC)

KgKs
(k)�KgKs,SC,k, with �

†
KgKs,SC,k =

(�†
KgKs,k

, �T
K ′

gK ′
s,−k),

H (SC)
KgKs

(k) =
[

HKgKs (k) 
K�


K�† −HT
K ′

gK ′
s
(−k)

]
, (25)

and

� =

⎡
⎢⎢⎢⎣

04×4 04×2 04×2 04×2

02×4 iσ2 02×2 02×2

02×4 02×2 iσ2 02×2

02×4 02×2 02×2 iσ2

⎤
⎥⎥⎥⎦, (26)

where 0m×n is the zero matrix with m rows and n columns.
Similarly, for the case when the low-energy states of

graphene are close to the � point of the extended BZ
of NbSe2, the Hamiltonian for the whole system becomes
Ĥ (SC)

Kg�s
= ∑

k �
†
Kg�s,SC,kH (SC)

Kg�s
(k)�Kg�s,SC,k, with �

†
Kg�s,SC,k =

(�†
Kg�s,k

, �T
K ′

g�s,−k),

H (SC)
Kg�

(k) =
[

HKg� (k) 
��


��† −HT
K ′

g�
(−k)

]
. (27)

III. RESULTS

The large lattice mismatch between graphene and NbSe2

would suggest that even in the absence of any twist angle,
the electronic states of the two systems would not hybridize.
However, this does not take into account the large size of

FIG. 2. Overlap of the Fermi surfaces of monolayer NbSe2 and
graphene. The blue (green) FSs are the NbSe2 FSs for spin up
(down), respectively, the black circle shows the position of the
graphene Dirac point for all possible twist angles, and the red circles
show the region within which the graphene FS is confined as the twist
angle is varied.

NbSe2’s Fermi pockets. As shown in Fig. 2, there is a large
set of values of θ for which the Dirac point of graphene
intersects the NbSe2’s FS either around the K points or around
the � point in the repeated zone scheme. For these points,
the electronic states of graphene and NbSe2 are expected to
hybridize.

From the results shown in Fig. 2, we see that for small
values of θ , we can expect that the graphene’s low-energy
states close to the Dirac point will hybridize with the NbSe2’s
states close to the K point. For values of θ close to 30◦, we
see that graphene’s states will hybridize with NbSe2’s states
close to the � point. For this reason, to estimate the charge
transfer and the strength of the graphene-NbSe2 tunneling in
the two situations, we performed ab initio calculations for a
commensurate heterostructure with θ = −65.2◦, and one with
θ = 33.0◦. The parameters identifying these commensurate
structures are given in Table I and the corresponding primitive
cells are shown in Fig. 3.

The ab initio calculations return the band structure shown
in Figs. 4 and 5. In these figures, the dashed blue lines
show the bands of isolated graphene. The left panels show
the results obtained without including spin-orbit effects and
the right panels the results obtained taking into account the

FIG. 3. Commensurate graphene-NbSe2 structure corresponding
to the parameters listed in Table I. (a) is the configuration for θ =
−65.20. (b) is the configuration for θ = 33.00. The red (blue) spheres
show Nb (Se) atoms, the graphene lattice is shown in yellow.
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FIG. 4. Bands for the commensurate graphene-NbSe2 structure
shown in Fig. 3(a) for which θ = −65.2◦ so graphene’s FS overlaps
with NbSe2’s FS pocket around the K point. (a) No SOC, (b) with
SOC. (c): Low-energy detail of (a). (d): Low-energy detail of (b).

presence of SOC. Panels (c) and (d) show an enlargement at
low energies of the results shown in panels (a) and (b).

The results of Figs. 4(b) and 5(b) clearly show that there
is a significant charge transfer between graphene and mono-
layer NbSe2, resulting in hole doping of the graphene sheet
corresponding to a Fermi energy of about −0.4 eV. They also
show that the amount of charge transfer does not depend on

FIG. 5. Bands for the commensurate graphene-NbSe2 structure
shown in Fig. 3(b) for which θ = 33◦ so graphene’s FS overlaps with
NbSe2’s FS pocket around the � point. (a) No SOC, (b) with SOC.
(c): Low-energy detail of (a). (d): Low-energy detail of (b).

TABLE II. Values of the twist angle θ for which the graphene’s
FS overlaps with NbSe2’s FS pocket around the K point or �

point. For θm(K) − δθ (K) � θ � θm(K) + δθ (K), θm(�) − δθ (�) �
θ � θm(�) + δθ (�), graphene’s FS overlaps NbSe2’s K pocket, �

pocket, respectively. n is an integer between 0 and 5.

TMD (1L) θm(K) δθ (K) θm(�) δθ (�)

NbSe2 00 + n ∗ 600 7.20 21.90 + n ∗ 600 3.90

37.50 + n ∗ 600 3.90

the value of the twist angle θ . Considering the finite extension
of the graphene’s FS due to the charge transfer shown in
Figs. 4 and 5 between NbSe2 and graphene, we obtain that
there is a significant range of values of θ for which the
graphene’s FS intersects the NbSe2 FS, and for which we can
then expect non-negligible hybridization of the graphene and
NbSe2 states. This is shown in Fig. 2 in which the red circles
delimit the boundaries of the graphene’s FS as θ is varied.
Table II shows the range of values of θ extracted from Fig. 2
for which the graphene’s FS is expected to intersect either one
of the NbSe2’s FS pockets around the K (K ′) point, or around
the � point. In this table, θm(K ) [θm(�)] is the angle in the
middle of the range 2δθ (K ) [2δθ (�)] of angles for which the
graphene’s FS intersects the NbSe2’s FS.

The ab initio results allow us also to estimate the strength
of the tunneling between graphene and NbSe2. In Figs. 4(c),
4(d), 5(c), and 5(d), we can see the avoided crossings close
to the Fermi energy between the graphene and NbSe2 bands.
The amplitude of such crossings provides an estimate of
the tunneling strength t between the graphene sheet and the
monolayer of NbSe2. We find that both for the case when
the graphene’s FS intersects the NbSe2’s pocket around the
K point and when it intersects the NbSe2’s FS pocket around
the � point, t ≈ 20 meV and so in the remainder we set
t = 20 meV.

We first consider the case when graphene’s FS intersects
the FS pocket of NbSe2 close to the K point, i.e., −7.2◦ <

θ < 7.2◦, and 
 = 0. Figure 6 shows the results for the FS of
the hybridized system in the limit when no superconducting
pairing is present in NbSe2: the left (right) column shows the
FS around the K (K′) of graphene. Figures 6(a) and 6(b) show
the relative position in momentum space of graphene’s FS and
NbSe2’s FS for the case when θ = 0 and t = 0, taking into
account the “folding” of the NbSe2’s FS pockets due to the
fact that the three K (K′) corners of the BZ are equivalent. The
graphene FS is shown in red and the spin-splitted NbSe2’s FS
in blue and green. We use this color convention throughout
this paper. A zoom closer to the graphene’s K point, Figs. 6(c)
and 6(d), clearly shows the overlap of the graphene’s FS with
the NbSe2’ FS pockets. When t �= 0, the graphene and NbSe2

states hybridize, giving rise to the reconstructed FSs shown
in Figs. 6(e) and 6(f). Figures 6(e) and 6(f) show that the
graphene’s FS, due to the hybridization with NbSe2, becomes
spin split.

Figure 7 shows the results for the case when θ = 2◦, left
column, and θ = 6◦, right columns. For these values of the
twist angle, the low-energy states of graphene are still close
to the low-energy states of NbSe2 located around NbSe2’s K
points. For θ = 2◦, the graphene and NbSe2 low-energy states
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FIG. 6. (a) Graphene’s FS at the K point (in red) and NbSe2’s
FS (in red and green) for θ = 0, for which graphene’s low-energy
states are close to NbSe2’s K point. Because of SOC, the NbSe2 FS
for spin up, shown in blue is different from the NbSe2’s FS for spin
down, shown in green. The arrows show the vectors qiK . (b) Same
as (a) but for graphene’s valley around the K ′ point. (c), (d) zoom of
(a), and (b), respectively. (e) FS of graphene-NbSe2 heterostructure
around graphene’s K valley for the case when a finite tunneling
t = 20 meV between graphene and NbSe2 is present. (f) Same as
(e) for graphene’s K ′ valley.

are still close enough (in momentum and energy) that, for t =
20 meV, the hybridization is strong enough to significantly
modify the FS of the combined system, as shown in Fig 7(c),
obtained setting 
 = 0. For θ = 6◦ the graphene and NbSe2

FSs are tangent at isolated points as shown in Fig. 7(b). As
a consequence, when t �= 0, the states at the FS of graphene
and NbSe2 only hybridize around these “tangent-points,” as
shown in Fig. 7(d) obtained for t = 20 meV and 
 = 0.

We now consider the case when a superconducting gap is
present in NbSe2. We find that for θ = 0, the FS is completely
gapped but the gap is not uniform. Figure 8(a) shows the
lowest positive electron energy, Ec, as a function of k. The
smallest value of Ec(k) corresponds to the induced supercon-
ducting gap 
ind. For θ = 0, we find 
ind = 0.05 meV. By
calculating the smallest value of Ec(k) for each angle φk =
arctan(ky/kx ), we obtain the angular dependence of 
ind. This
is shown in Fig. 8(b) for the case when the twist angle is zero.
We see that 
ind is strongly anisotropic, with a C3v symmetry,
a reflection of the structure of the reconstructed FS, Figs. 6(e)
and 7(c).

As the twist angle θ increases, 
ind decreases becoming
vanishing small for θ � 9◦. Figure 8(c) shows Ec(k) when
θ = 9◦. From this figure, we see that the location where Ec(k)
is minimum appears to correspond to the original graphene’s

FIG. 7. Graphene and NbSe2 FSs for θ = 2◦, (a), and θ = 6◦ in
the limit t = 0. (c) FS of graphene-NbSe2 heterostructure for the case
when t = 20 meV and θ = 2◦. (d) Same as (c) for θ = 6◦.

FS for which |k| = kF,g. A closer inspection, however, reveals
small oscillations as a function of φk , as shown in Fig. 8(d)
where Ec(k) is plotted as function of φk and |k| for a small
range of |k| centered at kF,g.

We now consider the case when the graphene’s FS touches,
in the extended BZ, the NbSe2’s FS pocket around the � point.
Figure 9 shows the results when θ = 20◦, the situation for
which the overlap between the graphene’s FS and the NbSe2’s
pocket at the � point is largest. The left row show the results
for the K point, the right the ones for the K′ point. Figures 9(a)
and 9(b) show, on a fairly large scale, the configuration of
the graphene and NbSe2 FSs, in the absence of any interlayer
tunneling, and the corresponding qi vectors. Figures 9(c) and
9(d) show a zoom, at small momenta, of Figs. 9(a) and 9(b),
respectively, from which we can see that the graphene’s FS
and the NbSe2’s spin-split FS intersect at several points. At
these intersections, the graphene and NbSe2 states strongly

FIG. 8. (a) Ec(k) for θ = 0. (b) 
ind(φk ) for θ = 0. (c) Ec(k)
for θ = 9◦. (d) Ec(φk, |k|) for θ = 9◦ and |k| close to the original
graphene’s Fermi wave vector kF,g.
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FIG. 9. Fermi surfaces for θ = 20◦, the situation for graphene’s
FS overlaps with NbSe2’s pocket �. Left and right panels show the
results for the Dirac bands at valley K and K ′, respectively. (a),
(b) FSs for t = 0. (c), (d) zoom of (a) and (b), respectively. (e), (f)
FSs for t = 20 meV.

hybridize causing the FS of the system to take the form shown
in Figs. 9(e) and 9(f), for the case when t = 20 meV and

� = 0.

As θ moves away from 20◦, the overlap of the graphene and
NbSe2 FSs is reduced. For θ = 18◦, the overlap is still signifi-
cant, the graphene and NbSe2 FSs still intersect, Fig. 10(a),
resulting in a significantly modified FS for the graphene-

FIG. 10. (a) FSs for θ = 18◦ and t = 0. (b) FSs for θ = 16◦ and
t = 0. (c) FSs for θ = 18◦ and t = 20 meV. (d) FSs for θ = 16◦ and
t = 20 meV.

FIG. 11. Ec(k) for θ = 20◦, (a); θ = 22◦, (b); and θ = 16◦, (c).
For θ = 16◦, the induced superconducting gap is very small. Panel
(d) shows the value of Ec(φk, |k|) for θ = 16◦.

NbSe2 system, Fig. 10(c). For θ = 16◦, the graphene and
NbSe2 FSs merely touch, Fig. 10(b). As a consequence, the
FS of the hybridized system, for t = 20 and 
r = 0, is quite
similar to the FS of the two isolated systems.

The superconducting gap on the NbSe2’s gamma pocket
induces a gap in the graphene layer when θ is around
22◦. Figures 11(a)–11(c) show the profile of Ec(k) for θ =
(20◦, 22◦, 16◦), respectively. As θ moves away from 22◦ 
ind

decrease. Figure 11(d) shows Ec(k) as function of φk and |k|
for a small range of |k| centered at kF,g for the case when
θ = 16◦ and the original FSs of graphene and NbSe2 barely
touch. As for the case when θ = 9◦, we see that also for
θ = 16◦ 
ind is very small and oscillates as function of φk

for |k| ≈ kF,g.
Using tunneling experiments [42,43], it is possible to ob-

tain the density of states, DOS, of vdW systems like graphene-
NbSe2. From the DOS, it is then straightforward to extract the
value of the induced superconducting gap. Figure 12(a) shows
the total DOS as a function of energy on a linear-log scale.
We observe the coherence peaks corresponding to the NbSe2’s
superconducting gap. Below such coherence peaks, the DOS
remains finite, because of the graphene’s states, until the
energy is equal to 
ind. When the energy is equal to 
ind the
DOS rapidly goes to zero, given that at that energy the
graphene’s states also become gapped. By analyzing the DOS
at small energies, we can find how it depends on the twist
angle, as shown in Figs. 12(b) and 12(c). Figure 12(b) shows
the low-energy DOS for several values of θ close to zero, i.e.,
for the case when Kg is close to Ks, and Fig. 12(b) shows it
for several values of θ close to 20◦, i.e., for the case when the
Kg is close to � point of NbSe2’s extended BZ.

From results like the ones shown in Figs. 12(b) and 12(c),
we can extract the size of the induced superconducting gap
and, in particular, its dependence on the twist angle, Fig. 13.
We see that 
ind has a fairly sharp peak for θ = 23◦ (we used
a 0.5◦ resolution) where it reaches the value of 0.087 meV.
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FIG. 12. (a) Plot full DOS for graphene-NbSe2 heterostructure
for θ = 0. (b) Low-energy zoom of panel (a), for several values of
θ for which the graphene’s FS is touching NbSe2 K point valley.
(c) Same as (b) for values of θ for which the graphene’s FS overlaps
with NbSe2 pocket around the � point.

This is due to the fact that for θ ≈ 23◦, there is a very
strong overlap of the graphene and NbSe2 FSs. 
ind rapidly
decrease as θ deviates from 23◦ and becomes an order of
magnitude smaller when θ = 16◦. 
ind(θ ) has a lower and
broader peak for θ = 0, for which 
ind = 0.05 meV, i.e., for
the situation in which the graphene’s FS has the maximum
overlap with the NbSe2 K pockets. As θ increases from zero,

ind smoothly decreases and becomes negligible for θ ≈ 9◦.
Due to the symmetry of the system, the behavior of 
ind(θ )
has a “mirror” symmetry around θ = 30◦ and is periodic with
period equal to 60◦, as exemplified by Fig. 13. We notice that
the range of values of θ for which 
ind is not vanishingly
small is larger than what we can infer by simply looking at the

FIG. 13. Induced gap 
ind as a function of twist angle θ .

FIG. 14. Induced gap 
ind as a function of Zeeman field, Vz.
The solid lines (circles) show the results for values of θ for which
graphene’s FS overlaps with NbSe2’s K pockets. The dashed lines
(squares) show the results for values of θ for which graphene’s FS
overlaps with NbSe2’s � pocket.

overlaps of the graphene and NbSe2 FSs, Fig. 2. The reason is
that for finite t , graphene and NbSe2 states that are within the
energy window |t | can still hybridize resulting in a nonzero

ind.

Figure 13 shows that in a graphene-NbSe2 structure, the
superconducting gap can be strongly tuned by varying the
twist angle and that, counterintuitively, the maximum induced
gap is achieved for a value of θ for which the graphene’s FS
overlaps with the � pocket of NbSe2 in the second BZ.

Due to the strong SOC in NbSe2, the in-plane critical
field is much larger than the field corresponding to the Pauli
paramagnetic limit. Due to the fact that SOC is also induced
into the graphene layer via proximity effect, we find that
also for graphene-NbSe2 heterostructures, the in-plane upper
critical field is much larger than the Pauli paramagnetic limit.
This is shown in Fig. 14 in which we plot the evolution of

ind in the presence of a Zeeman term Vz both for values of
θ corresponding to the case when the graphene’s FS overlaps
NbSe2’s K pockets (solid lines and circles), and for values of
θ corresponding to the case when the graphene’s FS overlaps
NbSe2’s � pocket (dashed lines and squares). We see that in
both cases, 
ind remains finite for Vz as large as 40 times the
induced gap of the system at zero magnetic field. However, it
is also evident that the suppression of 
ind due to the magnetic
field is weaker, and almost independent of θ , for the case
when graphene’s FS overlaps NbSe2’s K pockets. This is a
consequence of the fact that in NbSe2 the bands’ spin splitting
due to SOC is much stronger for the K pockets than for the �

pocket.
From Fig. 14, we notice that for θ = 22◦ the dependence

of 
ind on the Zeeman term deviates from the dependence
that we find for the other values of θ : 
ind suddenly decreases
when Vz ≈ 15
ind(Vz = 0) and it exhibits oscillations for
larger values of Vz. The reason is that for this value of θ ,
there are several points in momentum space for which the
induced gap is close to the minimum value and, as shown in
Figs. 15(a)–15(c), as VZ increases the point, k∗, in momentum
space where the induced gap is minimum moves. This is in
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FIG. 15. Location k∗ in momentum space where 
ind is min-
imum: (a) θ = 22◦, Vz = 0; (b) θ = 22◦, Vz = 14
ind(Vz = 0);
(c) θ = 22◦, Vz = 16
ind(Vz = 0); (d) θ = 20◦, Vz = 0;

contrast to what happens for other values of θ , for which the
gap is minimum always around the same points in k space,
Fig. 15(d), regardless of the value of Vz. This implies, for
θ = 22◦, depending on the value of Vz the minimum gap will
be located at points with a significantly different amount of
SOC-induced spin splitting of the original FSs, and therefore
different robustness against an in-plane magnetic field.

IV. CONCLUSIONS

In conclusion, we have shown that, despite the large lattice
mismatch between graphene and monolayer NbSe2 lattice
constants, in graphene-NbSe2 heterostructures, graphene ex-
hibits a significant proximity-induced superconducting gap
for a large range of stacking configurations. This is due to
the fact that NbSe2 has large FS pockets that overlap with
the FS of graphene for most twist angles. Using ab initio
calculations, we have obtained the amount of charge transfer
between graphene and NbSe2 and estimated the strength of
the interlayer tunneling. We have then obtained a continuum
model to describe the low-energy electronic structure valid
in the limit of small interlayer tunneling, a condition that
the ab initio results show is satisfied. The continuum model
takes into account both the presence of SOC and supercon-
ducting pairing in NbSe2 and the fact that, depending on the
twist angle, graphene’s FS overlaps either with NbSe2’s FS
around the K point or the � point. Using this model and the
value of the parameters from ab initio calculations, we find

that, assuming conservatively the gap in NbSe2 monolayer
to be equal to 0.5 meV, and the graphene-NbSe2 tunneling
to be 20 meV, the maximum induced superconducting gap
in graphene is ∼0.09 meV, obtained for a situation when the
graphene FS has maximum overlap the NbSe2’s FS around the
� point. We have shown that the superconducting gap induced
into the graphene layer is very robust to external in plane
magnetic fields: The superconducting gap remains finite for
values of the Zeeman term more than 40 times larger then the
value of the induced gap in the absence of magnetic fields.
In addition, we have shown that such robustness strongly
depends on the twist angle in the sense that if θ is such that
the graphene’s FS overlaps with the NbSe2 pockets around the
K points, the induced gap is much more robust to an external
in-plane magnetic field than if θ is such that the graphene’s FS
overlaps with the NbSe2 pocket around the � pocket. This is
a consequence of the fact that the spin splitting of the NbSe2

bands due to SOC is much stronger at the K point than at the
� point.

The strong dependence on the external magnetic fields of
the superconducting gap induced into the graphene layer is
a reflection of the fact that graphene can be used, by simply
varying the twist angle, as a momentum-selective probe of the
electronic structure, and properties, of the substrate. We can
therefore envision that tunneling experiments on graphene-
based heterostructures could provide very useful, momentum-
selective information on the gap structure of systems with
more complex gap profiles.

Considering the similarities between the FS structure of
monolayer NbSe2 and other TMDs, our results are also
relevant to other graphene-TMD heterostructures. This also
applies to the case in which, instead of a monolayer, a few-
atomic-layer TMD is used. Our results suggest that, in gen-
eral, for a large range of stacking configurations, the graphene
and TMD states, despite the large lattice mismatch, are ex-
pected to hybridize and, when the TMD is superconducting,
induce a significant superconducting gap into the graphene
layer. It would be interesting to study how such proximity
affect can affect the ground state of twisted-bilayer graphene
systems [44–48].
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