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The inhomogenous real-space electronic structure of gapless and gapped disordered bilayer graphene is

calculated in the presence of quenched charge impurities. For gapped bilayer graphene, we find that for

current experimental conditions the amplitude of the fluctuations of the screened disorder potential is of

the order of (or often larger than) the intrinsic gap � induced by the application of a perpendicular electric

field. We calculate the crossover chemical potential �cr, separating the insulating regime from a

percolative regime in which less than half of the area of the bilayer graphene sample is insulating. We

find that most of the current experiments are in the percolative regime with �cr � �. The huge

suppression of �cr compared with � provides a possible explanation for the large difference between

the theoretical band gap � and the experimentally extracted transport gap.

DOI: 10.1103/PhysRevLett.107.155502 PACS numbers: 81.05.ue, 73.21.�b, 73.23.�b

One of the unique properties of single layer graphene
(SLG) [1] is its high room-temperature electronic mobility
[2]. This fact makes graphene of great interest for possible
technological applications. However, the lack of a band
gap implies that in SLG the current can never be turned off
completely (i.e., SLG has a very low on-off ratio in the
engineering jargon) and therefore limits the possible use of
SLG in transistor or switching applications. The mobility
of bilayer graphene (BLG) is normally lower than the
mobility of SLG [3–5], but it can be very high when boron
nitride is used as a substrate [6,7]. Most importantly, by
applying a perpendicular electric field [8–14], a gap of up
to 250 meV can be opened in the band structure of BLG
which should strongly enhance the on-off switching ratio.
The strictly 2D nature of the carriers, the high room-
temperature mobility, and the ability to open and tune �
make BLG an extremely interesting material from both a
fundamental and a technological point of view. In recent
BLG experiments [11–13], the activated transport gap has
been found to be orders of magnitude smaller than �. This
finding has been explained by assuming that transport is in
the variable range hopping regime [11–13] or that edge
modes might contribute significantly to transport [15].
Resonant scattering centers have been proposed as the
dominant source of disorder [16] in both SLG and BLG.
In gapped BLG the resonant scatterers would induce
localized states that would then mediate transport via
variable range hopping. However, scanning tunneling mi-
croscopy experiments have so far not shown direct evi-
dence of resonant states suggesting that their density might
be quite low; in addition, no sign of localization is ever
observed in ungapped BLG even in the presence of strong
disorder. On the other hand, the edge modes can signifi-
cantly contribute only if scattering between counterpropa-
gating edge modes is suppressed. Because the BLG band

structure is characterized by two equivalent valleys with
opposite chirality, even small quantities of short-range
defects can mix the fermionic states of the two valleys
and greatly suppress the contribution of the edge modes to
transport [14]. These facts motivated us to look for a
possible alternative explanation to the smallness of the
experimental BLG transport gap compared to � based on
the disorder-induced massive breakdown of momentum
conservation.
Our model is based on the assumption that charge im-

purities are the dominant source of disorder in exfoliated
BLG samples. There is ample evidence [2] that this as-
sumption is at least consistent with most of the transport
experiments on gapless SLG and BLG, although other
scattering sources might play an important role [16,17].
In particular, we assume the charge impurities to be located
at a typical distance d � 1 nm from the graphenic layer
and to be uncorrelated. In reality, some degree of correla-
tion is expected, but it does not affect qualitatively our
results. In the presence of charge impurities, the carrier
density becomes strongly inhomogenous. The importance
of density inhomogeneities for the understanding of the
physics, especially transport, of 2D electronic systems has
been appreciated in the context of the quantum Hall effect
[18] and of standard 2D electron gases (2DEGs), in which
the gap between the hole band and the electron band is
much larger than the disorder strength [19]. The case of
gapped BLG is different from these cases, because no
magnetic field is present and so the dispersion is not broken
up in Landau levels, and yet the band gap is small com-
pared to the strength of the disorder potential. We empha-
size, moreover, that the transport phase diagram, which is
the main topic of our work, has never before been ad-
dressed in the literature for any system. In BLG we there-
fore have the unique condition of a small band gap between
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nondegenerate valence and conduction bands. The most
striking and counterintuitive consequence of this fact is
that, as we show below, in gapped BLG an increase of the
disorder strength can drive the system from being an
insulator to being a bad metal when the chemical potential
� is within the gap. This behavior is the opposite of what
happens in a standard 2DEG, in which an increase of the
disorder strength drives the system to an insulating state.
By showing that the disorder can effectively drive BLG to a
metal state even when � is finite and � is well within the
gap, our work provides a compelling possible explanation
for the large discrepancy between � of gapped BLG and
the gap extracted from transport measurements. We define
an effective real-space gap �cr that determines the trans-
port properties and show that for disorder strengths typical
in current experiments it can be zero even for � as large as
150 meV. Although our specific calculations are carried out
for gapped BLG systems, the general idea developed here,
namely, a spatially fluctuating local band gap in the pres-
ence of charged impurity disorder-induced inhomogeneity,
should apply to other systems, and we believe that the same
idea could explain the experimental finding [20] of rather
small transport band gaps in graphene nanoribbon experi-
ments where percolation effects are known to be important.

Our main goal is to find a qualitative explanation for the
smallness of the transport gap compared to � for the
situation when charge impurities are the dominant source
of disorder. To calculate the electronic structure in the
presence of the disorder potential due to charge impurities,
we use the Thomas-Fermi theory (TFT). For SLG the TFT
results [21] compare well with density functional theory
results [22] and experiments [23–25] as long as the impu-
rity density nimp is not too low (* 1011 cm�2) [26]. These

results suggest that the TFT might give reasonable results
also for disordered BLG. The TFT is valid when the
density profile nðrÞ satisfies the inequality jrn=nj< kF,
with kF ¼ ffiffiffiffiffiffiffi

�n
p

the Fermi wave vector. As shown
below, the density varies on length scales of the order of
10–20 nm, whereas in the metallic regions n �
2� 1012 cm�2, so that the inequality jrn=nj< kF is
only marginally satisfied. A complete quantitative valida-
tion of the TFT results can be achieved only by comparison
to density functional theory results that, however, are not
yet available for disordered BLG. On the other hand, due to
the computational cost, density functional theory cannot be
used to calculate disorder-averaged quantities that are
needed to extract the transport properties. The TFT is
therefore the only approach that can be used to address
the issue of transport in BLG in the presence of long range
disorder and, given that our goal is the qualitative under-
standing of the large difference between transport gap and
�, is also adequate. Moreover, the strong dependence of
the transport gap on the details of the experiments (like the
temperature range) makes a quantitative comparison of
theory and experiments almost impossible. For this reason,

and given the limited quantitative accuracy of the TFT, for
the band structure of BLG we use the simple model of 2
parabolic bands with effective mass m� ¼ 0:033me. The
simplicity of this model allows us to identify the few
parameters that affect the qualitative features of the results
and makes our findings relevant also to standard parabolic
2DEGs.
The TFT energy functional is given by

E½n� ¼
Z

dr
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�@2
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Z
dr0
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Z
drVDðrÞnðrÞ ��

Z
drnðrÞ; (1)

where � is the static background dielectric constant and
eVD=� the bare disorder potential. The first term is the
kinetic energy, the second is the Hartree part of the
Coulomb interaction, and the third is the contribution due
to the disorder potential. Assuming � ¼ 4 for the substrate,
as appropriate for graphene on SiO2, in the remainder we
set � ¼ 2:5, the average of the dielectric constant of the
vacuum and substrate. By differentiating E½n� with respect
to n, we find

2m�

@
2

�E

�n
¼ �nþm��

@
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Z nðr0Þdr0
jr� r0j
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@
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; (2)

where we have introduced the screening length rsc �
½ð2e2m�Þ=ð�@2Þ��1 � 2 nm.
At the energy minimum, �E=�n ¼ 0. For the gapless

case this equation can be solved analytically in momentum
space to find

nðqÞ ¼ �VDðqÞ
�rsc

q

qþ r�1
sc

: (3)

Let V̂D;scðrÞ ¼ r�1
sc VDðrÞ þ ð1=2rscÞ

R
dr0nðr0Þ=jr� r0j be

the screened disorder potential. Using Eq. (3), we find

V̂ D;scðqÞ ¼ VDðqÞ
rsc

q

qþ r�1
sc

¼ ��nðqÞ: (4)

We have VDðqÞ ¼ AðqÞe�qd=q, where AðqÞ are random
numbers with Gaussian distribution such that hAi ¼ 0
and hA2i ¼ nimp, where the angle brackets denote the

average over disorder realizations. Using Eqs. (3) and (4)
and the statistical properties of AðqÞ, for the variance of the
density VarðnÞ, we find

VarðnÞ ¼ 2nimp

�r2sc

Z 1

0
dq

qe�2qd

ðqþ r�1
sc Þ2

¼ 2nimp

�r2sc
fðd=rscÞ (5)

with fðd=rscÞ ¼ e2d=rscð1þ 2d=rscÞ�ð0; 2d=rscÞ � 1, a
dimensionless function [here �ða; xÞ is the incomplete
gamma function]. For small d=rsc, f ¼ �1� ��
logð2d=rscÞ þOðd=rscÞ (where � ¼ 0:577 216 is the Euler
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constant), whereas for d � rsc f ¼ 1=ð2d=rscÞ2 þ
Oððd=rscÞ�3Þ. For the root mean square of the density,

nðrmsÞ, and screened disorder potential VðrmsÞ
D;sc ¼

ð@2=2m�ÞV̂ðrmsÞ
D;sc , we then have, respectively,

nðrmsÞ ¼
ffiffiffiffiffiffiffiffiffi
nimp

p
rsc

�
2

�
fðd=rscÞ

�
1=2

; VðrmsÞ
D;sc ¼ @

2�

2m�n
ðrmsÞ: (6)

In the presence of a band gap, the equation �E=�n ¼ 0

becomes nonlinear and an analytic expression for nðrmsÞ is
not readily obtainable. We have solved the problem nu-
merically for 100� 100 nm samples, with 1 nm spatial
discretization, considering several (1000 or more) disorder
realizations to then calculate the disorder-averaged quan-
tities. In Figs. 1(a) and 1(b), we show our calculated carrier
density landscapes for single disorder realizations for two
values of �, both with the same nimp and � fixed at

the charge neutrality point (CNP). In the absence of dis-
order, both situations in Figs. 1(a) and 1(b) will manifest
zero carrier density throughout with a pure intrinsic band
gap at all spatial points (i.e., both sets of plots will be
completely ‘‘white’’ in color since we are explicitly
at T ¼ 0 with no thermal interband excitations).

Figures 1(c) and 1(d) show the dependence of nðrmsÞ and
VðrmsÞ
D;sc , respectively, on the doping n for values of the gap

between 12 and 55 meV. nðrmsÞ is suppressed close to the
CNP, due to the large area covered by insulating regions

(n ¼ 0), whereas VðrmsÞ
D;sc is higher close to the CNP due to

the lack of screening. The results of Figs. 1(c) and 1(d) are

well fitted by the scalings nðrmsÞ ¼nðrmsÞð�¼0Þ�9�
10�3�0:78e�n2=bn , VðrmsÞ

D;sc ¼VðrmsÞ
D;sc ð�¼0Þþ0:24�e�n2=bv ,

with bn ¼ 1:83e��=98:5, bv ¼ 2:31e��=73:26, and n and �
expressed in units of 1012 cm�2 and meV, respectively.
The analysis of the disorder-averaged results obtained

from the TFT can be used to qualitatively understand the
electronic transport in the highly inhomogenous density
landscape of gapped BLG. Let Ai be the disorder-averaged
fraction of the area occupied by the insulating regions
[white in Figs. 1(a) and 1(b)]. The color plots in
Figs. 2(a)–2(c) show the dependence of Ai on nimp and the

doping hni for three different values of �. At high dopings
and low disorder, Ai is fairly small. As hni decreases, some
hole puddles and insulating regions start appearing. The

black line identifies the contour for which nðrmsÞ ¼ hni.
Below the black line, nðrmsÞ > hni, and we are in the
strongly inhomogenous regime. The white line identifies

FIG. 1 (color online). Color plot of nðrÞ at the CNP for a single
disorder realization in gapped BLG, for nimp ¼ 8� 1011 cm�2,

d ¼ 1 nm, and � ¼ 125 meV (a) and � ¼ 250 meV (b). The
white areas in (a) and (b) represent insulating regions. nðrmsÞ

(c) and VðrmsÞ
D;sc (d) as a function of doping for nimp ¼

3� 1011 cm�2 and different values of �, from top to bottom
in (c) [bottom to top in (d)] � ¼ 12, 23, 35, 46, and 55 meV. The

dashed line in (c) and (d) shows the value of nðrmsÞ and VðrmsÞ
D;sc ,

respectively, for the gapless case. The insets show the results for
� ¼ 500 meV [29].

FIG. 2 (color online). Color plots showing Ai as a function of
nimp and hni for � ¼ 125 meV (a), � ¼ 250 meV (b), and � ¼
500 meV (c). (d) �cr as a function of nimp for different values of

�. (e) �cr as a function of � for different values of nimp. (f)

�cr=ð�=2Þ as a function of VD=�. The filled (unfilled) symbols,
connected by the solid (dashed) line, show the dependence of

�cr=ð�=2Þ with respect to VðrmsÞ
D;sc =� [ðeVðrmsÞ

D =�Þ=�]. The differ-
ent symbols, circles, squares, diamonds, and triangles, show the
results for � ¼ 500, 250, 125, and 62.5 meV, respectively. [29].
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the contour for which the area fraction occupied by electron
puddles is equal to 50%. Below this line, more than half of
the sample area is occupied by hole puddles and insulating
regions. Finally, the red line shows the contour for which
Ai ¼ 0:5. Below this line, more than half of the sample is
covered by insulating regions. The counterintuitive result is
that close to the CNP Ai becomes smaller as nimp increases

with hni fixed. This is a consequence of the fact that as
nimp increases, the disorder becomes strong enough to bring

the Fermi level inside the conduction or the valence band.
Using the contour lines overlaid on the color plot for
Ai, we can qualitatively identify different semiclassical
transport regimes. Regime I: Weak disorder where

nðrmsÞ � hni.—The system is a good metal with an almost
uniform density landscape. Regime II: Strong disorder

nðrmsÞ > hni.—In this regime the density landscape breaks
up in puddles and insulating regions. Because the area
fraction covered by electrons is larger than 1=2, the system
behaves like a metal via percolation through the electron
puddles. Regime III: Weak-moderate disorder, j�j< �=2,

VðrmsÞ
D;sc < �=2.—Most of the sample area is insulating and

the system is an insulator. Regime IV.—In this regime the

disorder is so strong, VðrmsÞ
D;sc � �=2> j�j, that, despite the

finite gap, Ai is less than 50% but neither the electron
puddles nor the hole puddles alone cover more than 50%
of the total area. The system should behave as a bad metal
with the conductance determined by tunneling events
across a few narrow insulating regions separating the
electron-hole puddles similar to transport at the CNP in
gapless BLG [27] and SLG [28]. It is obvious, by looking
at the color plots in Figs. 2(a)–2(c), that at lower (higher)
values of � (disorder) the apparent transport gap will be
strongly suppressed and in fact will be vanishingly small.
We believe that this is the current physical situation in
existing BLG systems.

To identify the transport regime, it is useful to introduce
the critical value of chemical potential �cr, for which
Ai ¼ 50%. For �> �cr (�<�cr) the system is expected

to behave as a bad metal (an insulator). For � � VðrmsÞ
D;sc ,

�cr � �=2 is almost independent of the disorder strength.

For small gaps, � & VðrmsÞ
D;sc , �cr depends strongly on the

disorder strength, and �cr � �. This is shown in Fig. 2(d),
in which the calculated �cr as a function of nimp is shown

for four different values of �. For fixed �,�cr decreases as
nimp increases. We see that for� & 150 meV, for impurity

densities of the order of the ones estimated in current
experiments on exfoliated BLG (nimp � 1012 cm�2), �cr

can be orders of magnitude smaller than �. Figure 2(e)
shows �cr as a function of � for different values of nimp.

We see that, for� � 100 meV,�cr � 0 already for nimp �
3� 1011 cm�2. In the presence of spatial correlations
among impurities, the density inhomogeneities are ex-
pected to be reduced, and therefore the value of nimp for

which�cr ! 0would increase. Finally, Fig. 2(f) shows the

scaling of �cr on the strength of the disorder potential VD.
The points connected by solid (dashed) lines show the

dependence of �cr=ð�=2Þ with respect to VðrmsÞ
D;sc =�

[ðeVðrmsÞ
D =�Þ=�], with VðrmsÞ

D the rms of the bare disorder

potential. In both cases, by normalizing both �cr and VD

with the band gap, we find that the results obtained for
different values of � collapse on a single curve that
does not depend on � and away from VD ¼ 0 scales

approximately as 1� aebVD=�, with (a ¼ 0:02, b ¼ 1:52)

for VD ¼ eVðrmsÞ
D =� and (a ¼ 0:015, b ¼ 6:65) for

VD ¼ VðrmsÞ
D;sc .

In summary, using a simple 2-bands model and TFT, we
have characterized the density inhomogeneities in gapless
and gapped BLG. For gapless BLG, we have found ana-

lytic expressions for nðrmsÞ and VðrmsÞ
D;sc as a function of the

experimental parameters and shown that they do not de-

pend on the doping and scale like
ffiffiffiffiffiffiffiffiffi
nimp

p
f1=2ðd=rscÞ=rsc.

For gapped BLG, nðrmsÞ (VðrmsÞ
D;sc ) is reduced (enhanced) with

respect to the gapless case, in particular, in the vicinity of
the CNP. By calculating the disorder-averaged fraction of
the sample area Ai covered by insulating regions, we have
qualitatively identified four different transport regimes. We
have shown that most of the current experiments are ex-
pected to be in a regime, regime IV, in which the disorder is
strong enough to reduce Ai below 50% even at zero doping.
In this regime, gapped BLG is expected to behave like a
bad metal in which transport is dominated by hopping
processes between electron and hole puddles that cover
most of the sample. The value of the chemical potential�cr

for which Ai ¼ 0:5 identifies the crossover between the
insulating regime and regime IV. We have shown how �cr

depends on the impurity density nimp, the strength of the

screened disorder potential, and the theoretical band gap�.
We believe the reduction of �cr as a function of nimp is the

qualitative resolution of the contradiction between � and
the transport gap. A clear prediction of our theory is that in
cleaner BLG (e.g., on boron-nitride substrates) there
should be close agreement between the transport gap and
�. We also predict agreement between � and the transport
gap for very large values of �.
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