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We theoretically revisit graphene transport properties as a function of carrier density, taking into

account possible correlations in the spatial distribution of the Coulomb impurity disorder in the environ-

ment. We find that the charged impurity correlations give rise to a density-dependent graphene

conductivity, which agrees well qualitatively with the existing experimental data. We also find, quite

unexpectedly, that the conductivity could increase with increasing impurity density if there is sufficient

interimpurity correlation present in the system. In particular, the linearity (sublinearity) of graphene

conductivity at lower (higher) gate voltage is naturally explained as arising solely from impurity

correlation effects in the Coulomb disorder.
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One of the most studied properties of graphene is its
electrical conductivity as a function of the applied gate
voltage which translates directly into the carrier density-
(n-) dependent conductivity �ðnÞ [1]. The functional de-
pendence of�ðnÞ at low temperatures contains information
[1] about the nature of disorder in the graphene environ-
ment giving rise to the dominant resistive carrier scattering
mechanism. Although there is a well-accepted theory [1]
for graphene transport involving an interplay between
long-range charged impurity and short-range disorder scat-
tering, the theory is not universally accepted and cannot
explain all experimental observations, indicating the pos-
sibility of important missing ingredients [2].

In this work, we provide a qualitatively new theory for
the �ðnÞ properties of graphene and introduce a new
physical explanation for the experimental observations;
i.e., we explain why �ðnÞ � n for ‘‘small’’ or ‘‘intermedi-
ate’’ n and �ðnÞ � const for ‘‘large’’ n, with a smooth
nonlinear crossover between the two asymptotic behaviors.
We also provide theoretical results for �min, the graphene
minimum conductivity at the Dirac point, using our new
theory. We concentrate on the nature of the underlying
static disorder limiting graphene transport in currently
available samples where phonon scattering effects are
relatively weak (compared with disorder scattering) even
at room temperature [3]. The quantitative weakness of the
electron-phonon interaction in graphene gives particular
impetus to a thorough understanding of the disorder
mechanisms limiting graphene conductivity, since this
may enable substantial enhancement of room temperature
graphene-based device speed for technological applica-
tions as disorder remains the primary resistive mechanism
limiting graphene transport even at room temperature.
Therefore, a complete understanding of the disorder
mechanisms controlling �ðnÞ in graphene at T ¼ 0 is of
utmost importance from both fundamental and technologi-
cal perspectives.

The most important features of the experimentally ob-
served �ðnÞ [4–8] in graphene are (i) a nonuniversal
sample-dependent minimum conductivity �ðn � 0Þ �
�min at the charge neutrality point (CNP) where the aver-
age carrier density vanishes, (ii) a linearly increasing,
�ðnÞ / n, conductivity with increasing carrier density on
both sides of the CNP up to some sample-dependent char-
acteristic carrier density, and (iii) a sublinear �ðnÞ for high
carrier density, making it appear that the very high-density
�ðnÞ may be saturating.
A successful model [1,9–12] for diffusive graphene

carrier transport incorporates two distinct scattering
mechanisms with individual resistivity �c and �s, arising,
respectively, from the long-range Coulomb disorder due to
random background charged impurities and static zero-
range (often called ‘‘short-range’’) disorder. The net gra-
phene conductivity is then given by � � ��1 ¼
ð�c þ �sÞ�1. It is easy to show that [1,9–12] �c � 1=n
and �s � const in graphene, leading to �ðnÞ going as
�ðnÞ ¼ n=ðAþ CnÞ, where the constants A and C are
known [1] as functions of disorder parameters; A, arising
from Coulomb disorder, depends on the impurity density
(ni) (and also on their locations in space) and the back-
ground dielectric constant (�), whereas the constant C,
arising from the short-range disorder [1,11], depends on
the strength of the white-noise disorder characterizing the
zero-range scattering. The relation �ðnÞ ¼ n=ðAþ CnÞ
explains the observed �ðnÞ behavior of graphene for
n � 0 since �ðn � A=CÞ � n, and �ðn � A=CÞ � 1=C
with �ðnÞ showing sublinear ðCþ A=nÞ�1 behavior for
n� A=C.
The above-discussed scenario for disorder-limited gra-

phene conductivity, with both long-range and short-range
disorder playing important qualitative roles at intermediate
ðni & n � A=CÞ and high (n > A=C) carrier densities re-
spectively, has been experimentally verified by several
groups [5–8]. There is, however, one serious issue with
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this reasonable scenario: Although the physical mecha-
nism underlying the long-range disorder scattering is ex-
perimentally established [1,5,6] to be the presence of
unintentional charged impurity centers in the graphene
environment, the physical origin of the short-range disor-
der scattering is unclear and experimentally obscure. Point
defects (e.g., vacancies) are rare in graphene, producing
negligible short-range disorder. There have also been
occasional puzzling conductivity measurements (e.g.,
Ref. [13]) reported in the literature which do not appear
to be easily explicable by using the standard model of
independent dual scattering by long- and short-range dis-
order playing equivalent roles.

In this Letter, we propose an alternative physical model
for understanding disorder-limited �ðnÞ behavior in gra-
phene. The model is simpler (and, therefore, more appeal-
ing) than the standard model of independent dual disorder
mechanisms, because it requires only the long-range
Coulomb disorder associated with the background charged
impurities eliminating completely the ad hoc short-range
disorder necessary for explaining the high-density nonline-
arity in �ðnÞ. Our model, therefore, eliminates the undesir-
able feature of the standard model; namely, no adjustable
short-range scattering term with unknown physical origin
needs to be arbitrarily added to the problem in order to
explain the observed high-density sublinear �ðnÞ.

The key to our model is the inclusion of some spatial
correlations in the distribution of the charged impurity
locations in the system; i.e., the charged impurities are
no longer considered to be completely random spatially.
Some impurity correlations are perfectly reasonable to
assume, since much of the fabrication and processing of
graphene is done at room temperature (and, in fact, often
thermal and/or current annealing is used in sample prepa-
ration), which is expected to lead to actual diffusion of the
impurities producing an annealed, at least partially, corre-
lated impurity configuration rather than a quenched un-
correlated random one.We show that the single assumption
of impurity correlations, defined through a correlation
length scale parameter r0, is sufficient to explain the quali-
tative features of the experimental �ðnÞ behavior by using
only disorder scattering by background charged impurities.

To calculate the impurity correlations, we use
Monte Carlo simulations carried out on a 200� 200 trian-
gular lattice with 106 averaging runs, periodic boundary

conditions, and a lattice constant a0 ¼ 4:92 �A, which is 2
times the graphene lattice constant, since the most closely
packed phase of impurity atoms (e.g., K as in Ref. [6]) on
graphene is likely to be an m�m phase with m ¼ 2 for K
[14]. Correlations are automatically introduced by virtue of
the random positioning of the impurities at lattice sites

with the correlation length r0 < ri ¼ ð�niÞ�1=2. Our cor-
relation model is physically motivated with the reasonable
underlying assumption that two impurities cannot be arbi-
trarily close to each other (as they can be in the unphysical

continuum random impurity model, where r0 ¼ 0), and
there must be a minimum separation between them. A
reasonable continuum approximation to this discrete lattice
model is given by the following pair distribution function
gðrÞ (r is a 2D vector in the graphene plane):

gðrÞ ¼
�
0 jrj � r0
1 jrj> r0

(1)

for the impurity density distribution. Even though Eq. (1)
is only an approximation, the basic idea of a length scale r0
defining the spatial impurity correlations is physically
sound (with r0 ¼ 0 for the purely random case).
Impurity correlation effects enter the transport theory
through the structure factor SðqÞ, given by SðqÞ ¼
1þ ni

R
d2reiq	r½gðrÞ � 1
. For uncorrelated random im-

purity scattering, as in the standard theory, gðrÞ ¼ 1 al-
ways, and SðqÞ � 1. With Eq. (1), we have

SðqÞ ¼ 1–2�ni
r0
q
J1ðqr0Þ; (2)

where J1ðxÞ is the Bessel function of the first kind.
Figure 1(a) shows the structure factor SðqÞ obtained from
the Monte Carlo simulations. Figure 1(b) shows SðqÞ
for both the random Monte Carlo realistic numerical
model and the simple continuum analytic approximation
[Eq. (2)]. It is obvious that the analytic approximation
captures well the essential features of the full numerical
Monte Carlo simulation.
The graphene carrier conductivity due to scattering by

screened Coulomb disorder can now be calculated by
taking into account the impurity correlations, leading to
� ¼ ðe2=hÞðgEF�Þ=ð2@Þ, where EF is the Fermi energy,
g ¼ 4 is the total degeneracy of graphene, and the transport
relaxation time � is given by [15]

@

�
¼

�
�ni@vF

4kF

�
r2s

Z d�ð1� cos2�Þ
ðsin�2 þ 2rsÞ2

S

�
2kF sin

�

2

�
; (3)

FIG. 1 (color online). (a) Density plot of structure factor SðqÞ
obtained from Monte Carlo simulations for ni ¼ 0:95�
1012 cm�2, a0 ¼ 4:92 �A, and r0 ¼ 5a0. (b) Structure factor
SðqÞ using Eq. (2) (solid line) and Monte Carlo simulations.
Dot-dashed and dashed lines show the Monte Carlo results for
two different directions of q from the x axis: � ¼ 0 and � ¼ 30�,
respectively.

PRL 107, 156601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 OCTOBER 2011

156601-2



where vF is the graphene Fermi velocity, kF the Fermi
wave vector [kF ¼ EF=ð@vFÞ], and rs the graphene fine
structure constant [rs ¼ e2=ð@vF�Þ]. For uncorrelated ran-
dom impurity scattering, r0 ¼ 0, gðrÞ ¼ 1, and SðqÞ � 1,
we recover the standard formula for Boltzmann conductiv-
ity by screened random charged impurity centers [11,12].
In addition to scattering, charge impurities induce strong
carrier density inhomogeneities in graphene, especially
close to the CNP, that must be taken into account in the
transport theory. To characterize these inhomogeneities we
use the Thomas-Fermi-Dirac theory [16], assuming that the
impurities are placed in a 2D plane at a distance d ¼ 1 nm
from the graphene layer. Figures 2(a) and 2(b) show the
carrier density profile for a single disorder realization for
the uncorrelated case and the correlated case (r0¼10a0)
for ni ¼ 0:95� 1012 cm�2. We can see that in the corre-
lated case the amplitude of the density fluctuations is much
smaller than in the uncorrelated case. The Thomas-Fermi-
Dirac approach is very efficient and allows the calculation
of disorder averaged quantities such as the density root

mean square nrms and the density probability distribution
PðnÞ. Figures 2(c)–2(e) show PðnÞ at the CNP and away
from the Dirac point (ni ¼ 0:95� 1012 cm�2). In each
figure, both the results for the uncorrelated case and the
ones for the correlated case are shown. PðnÞ for the corre-
lated case is, in general, overall narrower than PðnÞ for the
correlated case, resulting in smaller values of nrms as shown
in Fig. 2(f), in which nrms=ni as a function of r0=ri is
plotted for different values of the average density hni
and two different values of the impurity density: ni ¼
0:95� 1012 cm�2 (‘‘low impurity density’’) for the solid
lines and ni ¼ 4:8� 1012 cm�2 (‘‘high impurity density’’)
for the dashed lines.
We now present our results for the conductivity. The

integral in Eq. (3) can be calculated analytically for
‘‘small’’ kF by expanding SðxÞ in the integrand giving

�ðnÞ ¼ An½1� aþ Ba2n=ni
�1; (4)

where A ¼ e2

h ½2nir2sG1ðrsÞ
�1, a ¼ �nir
2
0, and B ¼

G2ðrsÞ=½2G1ðrsÞ
. Note that a < 1 in our model. The di-
mensionless functions G1;2ðrsÞ are given by G1ðxÞ ¼ �

4 þ
6x� 6�x2 þ 4xð6x2 � 1ÞgðxÞ and G2ðxÞ ¼ �

16 � 4x
3 þ

3�x2 þ 40x3½1� �xþ 4
5 ð5x2 � 1ÞgðxÞ
, where gðxÞ ¼

sech�1ð2xÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
for x < 1

2 and sec�1ð2xÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 1

p
for x > 1

2 . Equation (4) indicates that, for small n, �ðnÞ �
Anð1� aÞ�1 and, for large n, �ðnÞ � ð1� nc=nÞ, where
nc ¼ ð1� aÞni=ðBa2Þ �Oð1=nir40Þ. The crossover density
nc, where the sublinearity (n > nc) manifests itself, in-
creases strongly with decreasing r0. This generally implies
that the higher mobility annealed samples should manifest
stronger nonlinearity in �ðnÞ, since annealing leads to
stronger impurity correlations (and hence larger r0). This
is exactly the experimental observation. While the resis-
tivity within the standard random model increases linearly
in ni, Eq. (4) indicates that the resistivity could decrease
with increasing impurity density if there are sufficient
interimpurity correlations present in the system. This is
due to the fact that, for fixed r0, higher density of impuri-
ties is more correlated, causing SðqÞ to be more strongly
suppressed at low q. This is easy to see in the case in which
r0 ¼ a0 and ni so high that ri ¼ r0. In this extreme case,
the charge impurity distribution would be very correlated,
indeed perfectly periodic, and the resistance, neglecting
other scattering sources, would be zero. For each value of
r0 and carrier density n, the maximum resistivity is found
to be at

ri=r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� �Bnr20Þ

q
: (5)

In Figs. 3(a) and 3(b), we show calculated �ðnÞ using
different values of the impurity correlation parameters (r0)
and SðqÞ given by Eq. (2) and Monte Carlo simulations.
The comparison between the two results shows that the
analytic continuum correlation model is qualitatively and
quantitatively reliable. It is clear that, for the same value of

FIG. 2 (color online). The carrier density for a single disorder
realization obtained from the Thomas-Fermi-Dirac theory (a) for
the uncorrelated case and (b) r0 ¼ 10a0 with ni ¼ 0:95�
1012 cm�2. Carrier probability distribution function PðnÞ is
shown in (c), (d), and (e) for hni ¼ 0, 1.78, and 7:7�
1012 cm�2, respectively. In (f) the ratio nrms=ni is shown as a
function of r0=ri for ni ¼ 0:95� 1012 cm�2 (solid lines) and
ni ¼ 4:8� 1012 cm�2 (dashed lines). We use hni ¼ 7:7, 3.14,
0.94, and 0� 1012 cm�2 for the solid lines (from top to bottom)
and hni ¼ 8:34, 4.10, 1.7, and 0� 1012 cm�2 for the dashed
lines.
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r0, the dirtier (cleaner) system shows stronger nonlinearity
(linearity) in a fixed density range consistent with experi-
mental observation, since the larger impurity density ni of
the dirtier system allows, in principle, for stronger corre-
lation effects to manifest themselves due to the fact that the
crossover density nc is smaller for larger ni. To describe the
transport properties close to the CNP and take into account
the strong disorder-induced carrier density inhomogene-
ities, we use the effective medium theory [10]. Figures 3(c)
and 3(d) show the effective medium theory results for
�ðnÞ. The insets in Figs. 3(c) and 3(d) show the depen-
dence of �min on the size of the correlation length r0. �min

increases slowly with r0 for r0=ri < 0:5 but quite rapidly
for r0=ri > 0:5. Finally, Fig. 3(e) shows that the resistivity
(1=�) is highly nonlinear as a function of impurity density
and the optimal ri=r0 at which the conductivity is mini-
mum [Fig. 3(f)].

The results shown in Fig. 3 strikingly demonstrate the
full power of the impurity correlation model as it clearly
produces the observed experimental behavior with strong
sublinear behavior for stronger impurity correlations (i.e.,
larger r0). Annealing leads to stronger correlations among
the impurities, since the impurities can move around to
locate to equilibrium sites, thus enhancing r0, which
strongly suppress the crossover carrier density ncð�r�4

0 Þ,
thus increasing the overall nonlinearity of �ðnÞ. In addi-
tion, the theory explains the observed strong nonlinear
�ðnÞ in suspended graphene [7] where the thermal or
current annealing is used routinely. Finally, graphene on
hexagonal BN is likely to have significant correlations in
the impurity locations imposed by the similarity between
graphene and BN lattice structure. This implies stronger
nonlinearity in the �ðnÞ dependence for a graphene-BN
system as has recently been observed experimentally [17].
Although we have used a minimal model for impurity
correlations, using a single correlation length parameter
r0, which captures the essential physics of correlated im-
purity scattering, it should be straightforward to improve
the model with more sophisticated correlation models if
experimental information on impurity correlations be-
comes available [18].
In summary, we provide a novel physically motivated

explanation for the observed nonlinear behavior of gra-
phene conductivity by showing that the inclusion of spatial
correlations among the charged impurity locations leads to
a significant sublinear density dependence in the conduc-
tivity in contrast to the strictly linear-in-density graphene
conductivity for uncorrelated random charged impurity
scattering. The great merit of our theory is that it eliminates
the need for an ad hoc zero-range defect scattering mecha-
nism, which has always been used in the standard model of
graphene transport in order to phenomenologically explain
the high-density sublinear behavior. Even though the short-
range disorder is not needed to explain the sublinear be-
havior in our model, we do not exclude the possibility of
short-range disorder scattering in real graphene samples,
which would just add another resistive channel with con-
stant conductivity. We mention that a recent experimental
work [18] reports graphene transport data in remarkable
agreement with the theory developed herein.
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