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We study quantum transport in Dirac materials with a single fermionic Dirac cone (strong topological

insulators and graphene in the absence of intervalley coupling) in the presence of non-Gaussian long-range

disorder. We show, by directly calculating numerically the conductance fluctuations, that in the limit of very

large system size and disorder strength, quantum transport becomes universal. However, a systematic

deviation away from universality is obtained for realistic system parameters. By comparing our results to

existing experimental data on 1=f noise, we suggest that many of the graphene samples studied to date are in

a nonuniversal crossover regime of conductance fluctuations.
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With the successful isolation of graphene [1], and the
discovery of topological insulators (TI), the study of Dirac
materials has come to the fore. In a Dirac material, the
conduction and valence bands touch at an isolated set of
points, called Dirac points (DP) (or valleys). The energy
spectrum close to the DPs is linear and the low energy
properties of these materials are well described by a set of
massless 2D Dirac fermions. Graphene is intrinsically a 2D
material [2], while in the case of a 3D topological insulator
the Dirac fermions are realized as surface states whose
presence is demanded by the nontrivial topology of the
bulk energy bands [3]. In this Letter, we report an exact
numerical theoretical study of quantum conductance fluctu-
ations (CF) in the presence of non-Gaussian long-range
disorder in 2D Dirac materials, which should apply directly
to both graphene (in the absence of intervalley scattering)
and TI surface states. Specifically by (non-Gaussian) long-
range disorder, we refer to disorder whose spatial correlation
function decays algebraically. In conventional parabolic
band 2D electron liquids, taking into account screening,
the disorder potential is short-range evenwhen due to charge
impurities. In Dirac materials, in contrast, due to the mass-
less nature of the fermionic excitations, the disorder poten-
tial due to charge impurities retains its long-range nature
even when screening is taken into account; in particular the
spatial correlation function decays as 1=r3 at large distances.
As a consequence, our work is the first to address the very
fundamental and broad question of how the long-range
nature of the disorder affects the quantum transport proper-
ties of 2D electron systems.

In graphene, the dominant source of disorder is believed
to be from remote charge impurities [2] (though other
scattering mechanisms might also be of relevance in certain
cases [4]). This type of disorder does not couple the two
valleys of graphene and to a good approximation graphene

can be described by a single Dirac fermion. At the same
time, a strong TI is characterized by an odd number of
Dirac cones in the surface spectrum (as opposed to a weak
TI which has an even number). The dominant physics is
captured by the case of a single Dirac fermion which is
experimentally realized in, e.g., Bi2Se3. In both cases, the
Hamiltonian is invariant under a time reversal symmetry
T with T 2 ¼ !1, placing these systems in the symplectic
(AII) symmetry class [5]. Below we focus on the single
Dirac fermion case.
In the clean case, the density of states goes to zero and

transport is by quantum tunneling of evanescent modes
rather than diffusion of propagating modes. This regime
is referred to as pseudodiffusive [6]. Disorder drives the
system away from the pseudodiffusive regime and into a
symplectic metal phase characterized by weak antilocali-
zation [7] (enhanced conductivity due to destructive inter-
ference of time reversal symmetric paths [8]).
These conclusions were reached by studying the effects

of short range disorder. However, in a Dirac material, the
disorder potential created by charge impurities retains its
long-range character even after screening has been taken
into account [9]. This leads to strong carrier density in-
homogeneities and, close to the DP it induces puddles of
electrons and holes. In this regime, conventional analytical
methods fail and one needs to rely on numerical simula-
tions. This puddle formation due to random charged
impurities in the environment has been experimentally
observed both in graphene [10] and TIs [11].
In this Letter, we study the problem of quantum transport

in the presence of long-range disorder both in the puddle
regime and away from the DP at large carrier density, n. We
study both quantum corrections to the average conductivity
(!) [weak antilocalization (WAL)] and the CF arising from
changes in interference patterns as external parameters are

PRL 109, 096801 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

31 AUGUST 2012

0031-9007=12=109(9)=096801(5) 096801-1 ! 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.096801


varied. In conventional semiconductors and metals, the
amplitude of these fluctuations is a universal number giving
rise to universal conductance fluctuations (UCF). In terms
of the scaling function "ð!Þ ¼ d ln!=d lnL, where L is
the sample length, the WAL is the first order term in the
expansion in 1=!. It happens that the second and third order
terms are identically zero in the symplectic class [12] and
therefore the WAL can be obtained already for rather small
values of !. In contrast, higher order terms in the UCF are
expected to be nonzero making the numerical calculation of
UCF more sensitive to finite size effects. Moreover, in
general, the calculation of CF requires a much larger num-
ber of disorder realizations than the calculation of !. These
facts make the numerical calculation of CF in the symplectic
class much more challenging than the calculation of ! and
WAL corrections. Earlier numerical studies [13] of UCF in
graphene using tight binding models with short range dis-
order found results consistent with the UCF theory [14];
however, even for short-range disorder, no systematic study
of density dependence or deviations from universality was
attempted.

We demonstrate that just as in the case of short range
Gaussian disorder, long-range disorder drives the system
into the symplectic metal phase. However, the crossover
regime before the universal quantum transport sets in is
considerably larger than in the case of short-range disorder.
This gives rise to CF with an amplitude which is smaller
than the UCF close to the DP but considerably larger at
high n which, as we argue, can lead to an intriguing non-
monotonic behavior of the 1=f noise, which may have
already been observed in graphene. We emphasize that
our study is performed at zero temperature, in the absence
of inelastic scattering, conditions in which the phase
coherence length lph is infinite. Our analysis is valid as
long as lph >L. The main goal of our work is to study the

effect of the long-range nature of the disorder on the
universal properties of quantum transport, for this reason
we must have lph > L otherwise sample-dependent effects

due to finite lph would mask the sought after effects.

Moreover, any quantum transport measurement strives to
be in this regime that appears also to be the relevant
one for current experiments on mesoscopic samples of
graphene.

To obtain the conductance G of a single Dirac fermion
we solve, using the transfer matrix method described in
Ref. [7], the scattering problem defined by the Hamiltonian:
H ¼ vFp % ! þ VDðrÞ !#. Here vF is the Fermi velocity,
! the vector formed by the Pauli matrices (!x, !y) (in spin
space for TIs and in sublattice space for graphene), # the
chemical potential which controls n, and VD is the disorder
potential. We take a sample of length L and width W with
periodic boundary conditions in the transverse direction.
The solution of the scattering problem returns the trans-
mission amplitudes t that in turn give us the two-terminal
conductance G ¼ R!1 ¼ ðgsgve2=hÞTrðtytÞ, R being the

resistance and gs and gv the spin and valley degeneracies
respectively (gsgv ¼ 4 for graphene and gsgv ¼ 1 for the
surface of a TI). In the remainder for concreteness we set
gsgv ¼ 4. The conductivity is obtained via the relation
! ¼ ðWdR=dLÞ!1 which minimizes the contribution of
contact resistance [15]. The CF are in turn obtained as the
variance hð$GÞ2i ¼ hG2i ! hGi2, where the angle brackets
denote the average over disorder realizations.
The scattering potential VD is induced by the remote

impurity charges. In the absence of screening, in momen-
tum space, VDðqÞ ¼ ðe2=%0ÞAðqÞe!qd=q, where %0 is the
background dielectric constant, d the average distance of
the impurities from the graphene layer, and AðqÞ are ran-
dom numbers with Gaussian distribution such that hAi ¼ 0
and hA2i ¼ nimp, with nimp the impurity density. The bare
disorder is renormalized by the interactions replacing the
dielectric constant %0 by a dielectric function %0 ! %ðqÞ.
To calculate %ðqÞ in the presence of charge impurities
we use the Thomas-Fermi-Dirac theory (TFD) in which
both Hartree and exchange-correlation terms are taken into
account [16,17]. The TFD approach is valid when the
inequality jrnj=jnj< kF is satisfied. Close to the DP,
due to the disorder, the root mean square of n (nðrmsÞ) is
much larger than its average. In this situation nðrmsÞ should
be used instead of n in the inequality above to verify the
validity of the TFD theory [16,18]. Because nðrmsÞ ' nimp

[16,19] the TFD theory is valid as long as nimp is not too

small ( * 1011 cm!2) [18,20]. The TFD gives results for
the carrier density profile nðrÞ and %ðqÞ that compare well
with both density functional theory results [21] and experi-
ments [10] and is the only method available, for large
samples and ensembles, that takes into account nonlinear
screening effects that dominate close to the DP.
For purposes of comparison it is useful to consider differ-

ent models of screening. In particular, one can turn off
exchange-correlation terms in the TFD. We denote the cor-
responding dielectric function by%nxc, the full TFDdielectric
function being %TFD. The cases of doping dependent but
uniform screening %!1 ! %!1

dds ¼ q=ðqþ 4rskFÞ, where
rs ¼ e2=ð%0@vFÞ, and constant screening %!1 ! %!1

cs ¼
q=ðqþ qsÞwill also be considered. Finally, we also compare
with the case of Gaussian correlated disorder defined by
hVDðrÞVDðr0Þi ¼ K0=ð2&'2Þ expð!jr! r0j2=2'2Þ. K0 is a
dimensionless measure of the disorder strength and ' the
correlation length. This is the type of disorder correlation
considered in most prior numerics, and in analytical consid-
erations (where the limit ' ! 0 is routinely taken).
The analytical theory of UCF requires diffusion,

i.e., L ( ‘, where ‘ is the mean free path. In this limit,
one can perform a controlled diagrammatic calculation
of transport properties. Adapting the results of the short-
range calculation in Ref. [14] to our geometry, this
approach predicts a universal (independent of micro-
scopic parameters, such as nimp, K0 and ') value of the
CF given by
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hð$GÞ2iucf ¼
!
e2

&2h

"
2 X1

nx¼1;ny¼!1

12gsgv
½n2x þ 4ðLWÞ2n2y*2

: (1)

Figure 1(a) shows the dependence of h!i on the doping n
for three different values of nimp. h!i approaches linear
dependence on n at large densities in qualitative agreement
with previous theoretical results [18,22] and experiments
[23]. At the DP, the conductivity (!min) is enhanced by
disorder, see Fig. 1(b), in contrast to what is obtained in
Boltzmann type of theories extended to the DP, but in
agreement with simulations with short range disorder.
For large system sizes and disorder strengths ! increases
logarithmically with system size, as shown in the inset of
Fig. 1(b), consistent with weak antilocalization WAL
which predicts !+ ðgsgv=&Þ lnL [24].

Figure 2(a) shows hð$GÞ2i as a function of n for several
values of nimp. The dashed lines in Fig. 2 show the universal
value of Eq. (1).We observe that, close to the DP, the CF tend
to be smaller than the UCF value, while at large n they are
larger. As nimp is increased, the CF approach the universal
valuewith the set of curves crossing roughly at theUCFvalue.
Similar trends are observed as a function of system size.
This suggests that in the thermodynamic limit the CF, in the
presence of long-range disorder, approach the universal value
independent of n. In this limit, the diffusive symplectic metal
is an accurate description of the system. In contrast, percola-
tion predicts CF larger than UCF at the DP [25].

To understand better the deviation from universality and
to quantify the behavior observed in Fig. 2, we estimate ‘
using the Boltzmann theory, which gives ‘ ¼ fðrs; kFdÞ,ffiffiffi
n

p
=nimp, [9], where f is a function that for d & 1 nm

depends very weakly on kFd [22,26]. For d ¼ 1 nm and
rs ¼ 0:8, f ' 5:66 almost independent of kF. In Fig. 2, we
represent with open symbols those data points for which
‘ > 0:25L, revealing that the observed oscillations at large n
and small nimp are ballistic effects. It also suggests that the
departure of the CF from theUCF value at high n is due to the
fact that we are in the ballistic to diffusive crossover regime.
Similarly, close to the DP, the deviations are attributed to a

pseudodiffusive to diffusive crossover (the estimates of ‘ are
not as reliable in this regime).
To better understand the role played by the disorder-

induced density inhomogeneities, we plot in Fig. 2(b) the
CF for the different variants of screening discussed above.
We observe that neglecting exchange-correlation terms in
the TFD increases the deviation of the CF from the uni-
versal value close to the DP. This is due to the fact that in
the absence of exchange-correlation the amplitude of the
density fluctuations are increased [16]. In contrast, assum-
ing uniform screening, either doping dependent or con-
stant, gives results that are closer to the UCF value. The
results of Fig. 2(b) clearly show that the presence of strong
carrier density inhomogeneities increases the range of n
and nimp for which the transport is in the crossover regime

for which the CF differ from the universal value.
In Fig. 2(c), we show the CF for the Gaussian correlated

potential as a function of kF' ¼ ð4&n=gsgvÞ1=2. In this case,
from the Boltzmann theorywe have ‘ ¼ 2

ffiffiffiffiffiffiffi
2&

p
'3k2F=K0. As

in the case of charge impurities, we find that in the pseudo-
diffusive regime hð$GÞ2i is smaller than the UCF value, and
larger in the ballistic high density regime, but approaches the

FIG. 1 (color online). (a) h!i as a function of n for nimp ¼
ð3; 5; 9Þ , 1012 cm!2 from top to bottom. (b) h!i at the DP
as a function of nimp for the case of Coulomb disorder. The

inset shows h!i as a function of sample length L - x for
W ¼ 160 nm, and n ¼ ð3; 2; 1Þ , 1012 cm!2 from top to
bottom. The dashed lines show d!=d lnL ¼ 4e2=&h.

FIG. 2 (color online). (a) hð$GÞ2i as function of n for the
case of long-range disorder (L ¼ 160 nm) and different values
of nimp; from top to bottom (for n ¼ 2, 1012 cm!2): nimp ¼
ð0:682; 1; 3; 5; 9; 16Þ , 1012 cm!2. (b) hð$GÞ2i as a function of
# for different types of disorder potential (see text). (c) hð$GÞ2i
as a function of kF' for Gaussian disorder. (d) hð$GÞ2i at the
DP as a function of nimp for the case of long-range disorder

(L ¼ 160 nm). In the inset hð$GÞ2i as a function L=W; the top
line shows the results for nimp ¼ 5, 1012 cm!2 and n ¼ 3,
1012 cm!2; the solid line below, and the bottom one, show the
results for the same nimp and n ¼ 1012 cm!2 and n ¼ 0, respec-
tively. Between these two lines there is the line showing the
results for the case of Gaussian disorder with K0 ¼ 1 and
kF' ¼ 0:8. The dashed lines in all the panels show the universal
value of Eq. (1).
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UCF value as the impurity strength K0 or system size L are
increased. In contrast to the long- range case, there is a large
range of intermediate values of n where the CF quickly goes
to the UCF value. Thus, the crossover regime is strongly
suppressed for short-range disorder compared with long-
range disorder. In the presence of spatial correlations among
charge impurities, the long-range nature of the disorder is
suppressed compared to the case of uncorrelated impurities
[27] and so we predict that the crossover regime will also
be reduced.

The trend that emerges from Fig. 2(a) is that as nimp

increases the CF approach the universal value. This is
further demonstrated in Fig. 2(d) which shows the value
of the CF at the DP as a function of nimp for the case of
charge impurities. We see that for very large nimp, for
which ‘=L . 1, the CF saturate to the universal value
(dashed line). In the inset to Fig. 2(d), we compare the
aspect ratio dependence of the CF to the analytical expres-
sion (1). Both in the case of long range and Gaussian
disorder the curves agree well within the universal regime.
In the crossover regime the CF follow the same trend but
with an amplitude that differs from the UCF prediction.

Taken together these results suggest that even in the
presence of long-range disorder, the system is eventually
(large enough L and/or disorder strength) driven into the
universal symplectic metal phase and that, however, the
crossover regime in which neither ballistic or universal
diffusive physics is applicable is very large in the presence
of long-range Coulomb disorder and puddles.

To connect these results with experiments we consider
the relevance of the CF results to the 1=f noise. In 2D (and
1D) the displacement of a single defect can cause a change
in G of the order of e2=h [28]. One of the probable sources
of resistance fluctuations is thermally activated motion of
defects. Assuming that the defects move on a time scale
( ( (inelastic and that the hopping distance is uncorrelated
with (, for the spectrum of the resistance fluctuations
SRð!Þ ¼ R

dth$RðtÞ$Rð0Þiei!t we have [28]

SRð!Þ ¼ R2

$hð$GÞ2i
hGi2

%Z 2(

!2(2 þ 1
Pð(Þd(; (2)

where Pð(Þ is the probability distribution of the time that it
takes a defect to move. If the motion of defects is thermally
activated then Pð(Þ is quite broad and SRð!Þ will be
approximately 1=f. We can then calculate the dependence
with respect to the doping of the strength of the 1=f noise
by calculating the coefficient hð$GÞ2i=hGi2, or equiva-
lently hð$GÞ2i=h!i2.

Figure 3 shows hð$GÞ2i=h!i2 as a function of n for both
charge disorder and Gaussian disorder. In both cases, we see
that at low disorder strengths hð$GÞ2i=h!i2 depends non-
monotonically on n. The reason is that in the pseudodiffu-
sive regime hð$GÞ2i grows rapidly with n while G grows
very slowly, whereas at larger values of n the transport is
diffusive and hð$GÞ2i is almost constant while G grows

rapidly with n. In contrast, in the symplectic metal regime
the ratio hð$GÞ2i=h!i2 decreases monotonically with n. We
conclude that the nonmonotonic dependence of the 1=f
noise is a generic property of the crossover regime between
pseudodiffusive and diffusive regimes. The 1=f noise of
graphene has been measured experimentally [29] and its
dependence on n has been shown to qualitatively follow the
nonmonotonic behavior shown in Fig. 3. This suggests that
the samples in these experiments are not fully in the diffu-
sive regime but rather in a nonuniversal crossover regime.
In conclusion, we have calculated the amplitude of the

conductance fluctuations CF in Dirac materials with a single
Dirac cone and in the presence of disorderwith various range
and screening properties. Our work is the first to consider the
effect of the long-range nature of disorder on the quantum
transport properties of 2D electron systems. In the limit that
the mean free path is much smaller than the system size, the
CF approach the universal value predicted by diagrammatic
calculations. Before reaching the universal value, the CF
are systematically smaller than the universal value close to
the DP but larger away from it. In particular, for system
parameters realistic to graphene, the CF seem to deviate
from the universal value leading to a nonmonotonic depen-
dence of 1=f noise, as recently observed in experiments [29].
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