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By tuning the angle between graphene layers to specific “magic angles” the lowest energy bands of
twisted bilayer graphene (TBLG) can be made flat. The flat nature of the bands favors the formation of
collective ground states and, in particular, TBLG has been shown to support superconductivity. When the
energy bands participating in the superconductivity are well isolated, the superfluid weight scales inversely
with the effective mass of such bands. For flat band systems one would therefore conclude that even if
superconducting pairing is present, most of the signatures of the superconducting state should be absent.
This conclusion is at odds with the experimental observations for TBLG. We calculate the superfluid
weight for TBLG taking into account both the conventional contribution and the contribution arising from
the quantum geometry of the bands. We find that both contributions are larger than one would expect
treating the bands as well isolated, that at the magic angle the geometric contribution is larger than the
conventional one, and that for small deviations away from the magic angle the conventional contribution
is larger than the geometric one. Our results show that, despite the flatness of the bands the superfluid
weight in TBLG is finite and consistent with experimental observations. We also show how the superfluid
weight can be tuned by varying the chemical potential and the twist angle opening the possibility to tune
the nature of the superconducting transition between the standard BCS transition and the Berezinskii-
Kosterlitz-Thouless transition.
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The ability to control accurately the twist angle θ between
two-dimensional crystals forming a van derWaals systems
[1–4] has recently emerged as a powerful way to tune the
electronic properties of a condensed matter system. The most
remarkable example of such tunability has been observed in
twisted bilayer graphene (TBLG). For most values of the
twist angle between the graphene sheets, the systems behave
as a normal two-dimensional (2D) semimetal; however, for
specific “magic angles” [5–9] the system’s lowest energy
bands become almost completely flat and the system may
support topological properties [10–14]. Quenched kinetic
energy in the flat bands increases the importance of
interactions and leads to superconductivity and other corre-
lated states [15–27] recently observed in graphene moiré
superlattices [28–37]. The hallmark signature of the super-
conducting state is the absence of electrical resistance. For
this to happen the superfluid weight Ds

xx must be nonzero.
For an isolated parabolic band at zero temperature,
Ds

xx ∝ n=m!, where n is the electron density and m! the
effective electron’s mass. From this expression one would
conclude that the standard signature of superconductivity
might be absent for flat bands because one expects 1=m! to
vanish proportionally to the bandwidth. This is not what
happens experimentally in TBLG.

In order to reconcile experimental observations and
theory, we notice that the above expression forDs

xx assumes
an isolated band and neglects the interband matrix elements
of the current operator. Neither of these assumptions is valid
in TBLG. In an isolated band the density of electrons within
the band is constant, and therefore when the superconduct-
ing transition occurs, the chemical potential is renormal-
ized. The superfluid weight depends strongly on the
chemical potential, and this renormalization is responsible
for the appearance 1=m! dependence of the intraband
(conventional) contribution to the superfluid weight. In a
semimetal where both electron- and holelike bands are
present, such as TBLG, the densities in each band are not
conserved in the transition separately and the dependence
on the chemical potential is weak so that the conventional
contribution can be much larger than expected for isolated
bands. Moreover, the bandwidth of the low-energy bands,
even though very small, is still finite and larger than the
superconducting gap. Therefore, the velocity can be large at
some points of the Brillouin zone (BZ), further enhancing
the conventional contribution to the weight. On the other
hand, the interband matrix elements give rise to the so-
called geometric part of Ds

xx, which can be large even for
completely flat band well isolated from other bands [38,39].
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In this work we calculate the superfluid weight of
superconducting twisted bilayer graphene taking into
account both the conventional and the geometric parts.
We assume singlet pairing and use the experimentally
measured value of Tc to set the value of the coupling
constant that enters the mean field gap equation. We obtain
the dependence of the superconducting weight on the twist
angle and separate the conventional and geometric parts.
We find that at one of the magic angles, θ ¼ 1.05°, the
geometric contribution is approximately twice as large
as the conventional one. However, just off the magic angle
the conventional contribution is larger than the geometric
one. We also obtain the dependence of the Berezinski-
Kosterlitz-Thouless (BKT) TKT temperature on θ and show
that its scaling with the chemical potential is different at the
magic angle and away from it. Because our calculations
take into account the full band structure of TBLG and
include both intra- and interband contributions, they can be
used for quantitative predictions and they go beyond the
models and approximations previously used in deriving
bounds for the superfluid weight [40,41].
To model the TBLG we use the approach described in

Refs. [8,17]. The low-energy states of the isolated single
layers of graphene are located at the K and K0 ¼ −K
valleys of the BZ. Close to K the Hamiltonian for each
layer l ¼ # 1 is

HK;lðkÞ ¼ e−ilðθ=4Þτz ½ℏvFðk − κlÞ · τ − μτ0'eilðθ=4Þτz ; ð1Þ

where vF ¼ 106 m=s is graphene’s Fermi velocity, μ is the
chemical potential, and τi (i ¼ 0, 1, 2, 3) are the 2 × 2 Pauli
matrices in sublattice space. Because of the rotation of each
layer by angle θ=2, the Dirac cone position in layer l is
shifted to κl. We choose moiré BZ in which κl are located at
the corners and refer to the center of this BZ as the γ point.
This leads to a Hamiltonian for TBLG around the K point,

H TBLG;K ¼
!HK;þ 1 TðrÞ

T†ðrÞ HK;−1

"
; ð2Þ

with periodically varying interlayer tunneling terms
TðrÞ ¼ w½T0 þ e−ib2·rT þ 1 þ e−iðb2−b1Þ·rT−1', where Tj ¼
τ0 þ cosð2πj=3Þτx þ sinð2πj=3Þτy, b1 ¼ ð

ffiffiffi
3

p
Q; 0Þ and

b2 ¼ ð
ffiffiffi
3

p
Q=2; 3Q=2Þ are reciprocal basis vectors, Q ¼

ð8π=3a0Þ sinðθ=2Þ, a0 is the lattice constant of graphene,
and w ¼ 118 meV [17,42]. HK0 is obtained from HK via
time reversal.
We leave d-wave pairing [17] for future studies and

focus on s-wave pairing. In the presence of superconduc-
tivity the mean field theory in Nambu space is described by
the Bogoliubov–de Gennes Hamiltonian,

H BdG ¼

"
H TBLG;KðkÞ Δ̂s

Δ̂†
s −HT

TBLG;K0ð−kÞ

#

; ð3Þ

and Δ̂s ¼ Δτ0
P

b Δbeib·r, where Δ is the overall ampli-
tude of the superconducting gap, and Δb is the normalized
coefficient of the b ¼ m1b1 þ m2b2 (mi ∈ Z) Fourier
component. In the remainder of the Letter, we assume
Δ ¼ 1.764kBTc and determine Tc and the coefficients Δb
by solving the linearized gap equation [17,43].
Using standard linear response theory we can obtain the

expression for the superconducting weight [38,39,43],

Ds
μν ¼

X

k;i;j

nðEjÞ − nðEiÞ
Ei − Ej

!
1

4L2
hψ ijv̂μjψ jihψ jjv̂νjψ ii

−
1

L2
hψ ijv̂cf;μjψ jihψ jjv̂cf;νjψ ii

"
; ð4Þ

where L × L is the size of the two-dimensional system,
nðEÞ is the Fermi distribution function, Ei, jψ iðkÞi are the
eigenvalues and eigenvectors of H BdG, and μ; ν ¼ x; y
represent the directions. In the remainder of the Letter,
we focus on the case ν ¼ μ. We have the velocity operators
v̂μðkÞ¼∂H BdG=∂kμ, v̂cf;μðkÞ ¼ ð1=2Þγz∂H BdG=∂kμ (γz is
the Pauli matrix acting in Nambu space).
Let H þ and H − be the particle and hole Hamiltonians,

respectively, of H BdG, jψ# mi the eigenstates of H # ,
w# im ≡ hψ# mjψ ii, and vþμ ≡ ∂μH þ , v−μ ≡ −∂μH −. In terms
of these quantities, we have [39]

Ds
μμ ¼

1

L2

X

kijmnpq

nðEiÞ − nðEjÞ
Ei − Ej

w!
þ imv

þ
μmnwþ jnw!

−jpv
−
μpqw−iq; ð5Þ

where m, n and p, q index the particle and hole bands. The
matrix elements with m ≠ n and p ≠ q in Eq. (5) represent
pure interband contribution. By defining

Vd
# μij ≡

X

m

w!
# imv

#
μmmw# jm;

Vo
# μij ≡

X

m≠n
w!
# imv

#
μmnw# jn;

we can separate Eq. (5) into a conventional and a geometric
part:

Ds;conv
μμ ¼ 1

L2

X

kij

nðEiÞ − nðEjÞ
Ei − Ej

ðVd
þ μijV

d
−μji þ Vd

þ μijV
o
−μji þ Vo

þ μijV
d
−μjiÞ;

Ds;geom
μμ ¼ 1

L2

X

kij

nðEiÞ − nðEjÞ
Ei − Ej

Vo
þ μijV

o
−μji: ð6Þ

Below we show that both the conventional [44,45] and
the geometric contribution [38,39] are important for the
superfluid weight in TBLG.
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Figure 1 shows the dispersion of the lower flat band
without superconductivity. It is plotted in the moiré BZ for
two different values of θ: θ ¼ 1.05°, the magic angle, and
θ ¼ 1.00°. For each angle we see a sharp feature in the
dispersion at the γ point, which is away from zero energy.
For θ ¼ 1.05°, the bandwidth of the nearly flat moiré band
is about 2 meV, whereas for θ ¼ 1.00° it is around 5 meV.
The bandwidth of the lowest energy bands and the value of
the magic angle can differ between experiments [46], a fact
that can be taken into account by tuning w; see Ref. [43].
For θ ¼ 1.00°, we see that the bands exhibit deep and
narrow valleys; green regions emanating from the γ point.
Around these valleys the quasiparticle energy ϵðkÞ varies
rapidly with k, producing high local velocity despite the
fact that the bandwidth is only few meVs.
Figures 2(a) and 2(b) show the profile of ϵðkÞ for the

lowest excitation in the presence of s-wave pairing, for
θ ¼ 1.05° and θ ¼ 1.00°. The amplitude and Fourier
components of the superconducting gap are obtained by
solving the mean field gap equation [43]. We see that also
in the presence of a superconducting gap the bands exhibit
the same qualitative features as the bands with no pair-
ing, Fig. 1.
Figures 2(c) and 2(d) show the momentum space profile

of the integrand, ds;convxx ðkÞ, that enters the expression (6)
for D s;conv

xx for θ ¼ 1.05°; 1.00°, respectively. We see that for
θ ¼ 1.05°, ds;convxx is peaked at the γ point, and is otherwise
quite uniform and small. At bands crossings ds;geomxx is
expected to be large as long as the Berry curvature is not
zero, regardless of the nature of the crossing [47]. For
θ ¼ 1.00°, ds;convxx is strongly peaked at the position of the
valleys that we identified in Fig. 1(b). This clearly shows
that the conventional contribution to Ds can depend very
strongly on the twist angle and in general cannot be
assumed to be negligible despite the smallness of the
bandwidth. The reason is that even for narrow bands,
the expectation value of the velocity operators can be non-
negligible. Figures 2(e) and 2(f) show the profile of the
integrand, ds;geomxx ðkÞ, that enters the expression of D s;geom

xx
for the same conditions used to obtain Figs. 2(c) and 2(d).
For θ ¼ 1.05°, ds;geomxx ðkÞ is strongly peaked at the γ
point and on average is larger than the conventional term.

This shows that at the magic angle the geometric contri-
bution to Ds

xx is significant and larger than the conventional
contribution. For θ ¼ 1.00°, however, ds;convxx ðkÞ is large
in most of the moiré BZ so that the conventional con-
tribution to Ds

xx is larger than the geometric one. As the
bands become flatter, the conventional contribution, for
fixed electron’s density, decreases and so we can expect
its importance to decrease relative to the geometric
contribution. Figures 2(g) and 2(h) show the sum
ds;convxx ðkÞ þ ds;geomxx ðkÞ. It is worth pointing out that the
spin Chern number C of the lowest energy bands is zero,
but in general Ds;geom

xx is nonzero even when C ¼ 0 [39].
We continue by obtaining the dependence of D s;conv

xx

and Ds;geom
xx on the chemical potential. From the initial

FIG. 1. The dispersion of the lower flat band of TBLG for
(a) θ ¼ 1.05° and (b) θ ¼ 1.00°. The high symmetric points in the
moiré BZ are also shown.

FIG. 2. The dispersion of superconducting band and superfluid
weight integrand. Left-hand column, θ ¼ 1.05°; right-hand col-
umn, θ ¼ 1.00°. (a),(b) The lowest quasiparticle bands with
superconducting gap. (c),(d) ds;convxx ðkÞ. (e),(f) ds;geomxx ðkÞ. (g),
(h) ds;totalxx ðkÞ. All the figures are obtained with μ ¼ −0.30 meV
and Tc ¼ 1.6305 K, Tc ¼ 1.2119 K for θ ¼ 1.05°, θ ¼ 1.00°,
respectively.
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discussion we expect Ds;conv
xx to increase with the electron

density and therefore with jμj. The scaling of D s;geom
xx with

respect to μ depends on the details of the quantum metric of
the bands [39]. Figure 3 shows the evolution of D s;conv

xx ,
Ds;geom

xx , and Ds
xx with μ for the cases of θ ¼ 1.05° and

θ ¼ 1.00°. To obtain these results the superconducting gap
is obtained for each value of μ. The results of Fig. 3 confirm
the expectation that Ds;conv

xx increases with jμj, for both the
magic angle and θ ¼ 1.00°. They also show that for both
angles the geometric contribution decreases with jμj.
Considering that Ds

xx controls the critical temperature
TKT for the Berezinskii-Kosterlitz-Thouless phase transi-
tion [48,49], the results of Fig. 3 show that in TBLG it
could be possible in principle to tune the nature of the
transition, BCS or BKT, by simply varying the doping.
An increase of Δ, keeping μ fixed, is expected to cause

an increase of Ds
xx. This is confirmed by the results

of Fig. 4. Again, we can see at θ ¼ 1.05° the geometric
contribution is significant while at θ ¼ 1.00° the conven-
tional contribution dominates.
In Figs. 5(b) and 5(d) we show the BKT transition

temperature as a function of μ obtained from the
equation kBTKT ¼ πDs½ΔðTKTÞ; TKT', assuming ΔðTÞ ¼
1.764kBTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
. The prefactor on the rhs of the

equation for TKT is twice π=2 due to the valley degeneracy.
In Figs. 5(a) and 5(c) the curves with solid circles show the
evolution ofDs½ΔðTÞ; T'with T for different values of μ for
θ ¼ 1.05° and θ ¼ 1.00°, respectively. The intersection of
these curves with the solid line kBT returns the values of
TKTðμÞ. We note that TKT is fairly close to Tc, well above
the lower bound set by previous studies [41].

We obtained the value of Ds
xx (Ds;conv

xx , D s;geom
xx ) for

different twist angles using the corresponding values of
Tc. The results are shown in Fig. 6(a). We see that despite
the fact that Tc is lower for θ ¼ 1.10° than for θ ¼ 1.05°,
the superconducting weight is larger for θ ¼ 1.10°. This is
because for θ ¼ 1.10° the conventional contribution to
Ds

xx is much larger than at the magic angle. The results of
Figs. 6(a) clearly show that Ds

xx varies strongly with the
twist angle, and that, as a function of θ, the dominant
contribution to Ds

xx can either be the conventional
or the geometric one. It is somewhat surprising that even
for twist angles as small as 1.00°, corresponding to a
bandwidth of the lowest energy bands of just 5 meV,
the conventional contribution is larger than the geo-
metric one.
Figure 6(b) shows the dependence of Tc and TKT on the

twist angle. We see that both Tc and TKT are maximum at
the magic angle and decrease rapidly for θ larger than the
magic angle. The results of Fig. 6(b) suggest that it may be
possible to tune TKT by tuning the twist angle. Taking into
account finite size effects, this can change the nature of the
normal-superconductor phase transition.
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FIG. 3. Ds as a function of the chemical potential for
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In summary, we have shown that in twisted bilayer
graphene, despite the flatness of the low-energy bands, the
superconducting weight Ds

xx is finite and large enough to
explain the experimental observation of superconducting
behavior in these systems. We find that the share of the
geometric and conventional contributions to Ds

xx depends
on the twist angle: at the magic angle the geometric
contribution dominates, while for angles slightly away
from the magic angle the conventional contribution domi-
nates. This qualitative difference is also reflected in the
scaling of Ds

xx with μ: at the magic angle Ds
xx decreases

with jμj, a somewhat surprising result due to the conven-
tional contribution to Ds

xx being almost independent of μ,
whereas the geometric, large, contribution decreases with
jμj at the magic angle. Away from the magic angle we find
the more conventional behavior of Ds

xx growing with jμj as
the conventional contribution, that grows with jμj, domi-
nates. This has the important implication that at the magic
angle, by simply increasing jμj twisted bilayer graphene
can be tuned into a regime for which the Berezinzki-
Kosterlits-Thouless transition is significantly smaller than
the BCS critical temperature. This result shows that twisted
bilayer graphene is an exceptional system in which the
nature, BKT or BCS, of the superconducting transition can
be tuned and experimentally studied in unprecedented
ways. We stress that the superfluid weight is one of the
few observable signatures of the Berry phase in the
Brillouin zone. Measurements of the superfluid weight
with the known experimental techniques [50–54] can
directly test our predictions of its parametric dependencies.
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Note added.—Recently, we became aware of a related
recent preprint by A. Julku et al. [55].
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K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, arXiv:
1903.08596.

[37] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang, L.
Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi, T.
Senthil, D. Goldhaber-Gordon, Y. Zhang, and F. Wang,
arXiv:1905.06535.

[38] S. Peotta and P. Törmä, Nat. Commun. 6, 8944 (2015).
[39] L. Liang, T. I. Vanhala, S. Peotta, T. Siro, A. Harju, and P.

Törmä, Phys. Rev. B 95, 024515 (2017).
[40] T. Hazra, N. Verma, and M. Randeria, Phys. Rev. X 9,

031049 (2019).
[41] F. Xie, Z. Song, B. Lian, and B. A. Bernevig, arXiv:1906

.02213.
[42] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, Phys.

Rev. B 89, 205414 (2014).
[43] See SupplementalMaterial at http://link.aps.org/supplemental/

10.1103/PhysRevLett.123.237002 for more details.

[44] D. J. Scalapino, S. R. White, and S. C. Zhang, Phys. Rev.
Lett. 68, 2830 (1992).

[45] D. J. Scalapino, S. R. White, and S. Zhang, Phys. Rev. B 47,
7995 (1993).

[46] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M.
Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C.
Dean, A. Rubio, and A. N. Pasupathy, Nature (London) 572,
95 (2019).

[47] J.-W. Rhim and B.-J. Yang, Phys. Rev. B 99, 045107
(2019).

[48] V. L. Berezinskiı̆, Zh. Eksp. Teor. Fiz. 59, 907 (1970) [Sov.
J. Exp. Theor. Phys. 32, 493 (1971)].

[49] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

[50] A. F. Hebard and A. T. Fiory, Phys. Rev. Lett. 44, 291
(1980).

[51] S. J. Turneaure, T. R. Lemberger, and J. M. Graybeal, Phys.
Rev. Lett. 84, 987 (2000).

[52] J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y.
Hwang, and K. A. Moler, Nat. Phys. 7, 767 (2011).

[53] J. A. Bert, K. C. Nowack, B. Kalisky, H. Noad, J. R. Kirtley,
C. Bell, H. K. Sato, M. Hosoda, Y. Hikita, H. Y. Hwang, and
K. A. Moler, Phys. Rev. B 86, 060503(R) (2012).

[54] I. Kapon, Z. Salman, I. Mangel, T. Prokscha, N. Gavish, and
A. Keren, Nat. Commun. 10, 2463 (2019).

[55] A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkilä, and P.
Törmä, arXiv:1906.06313v2.

PHYSICAL REVIEW LETTERS 123, 237002 (2019)

237002-6

https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1038/s41586-019-1695-0
https://arXiv.org/abs/1903.06952
https://arXiv.org/abs/1903.08130
https://arXiv.org/abs/1903.08596
https://arXiv.org/abs/1903.08596
https://arXiv.org/abs/1905.06535
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevX.9.031049
https://doi.org/10.1103/PhysRevX.9.031049
https://arXiv.org/abs/1906.02213
https://arXiv.org/abs/1906.02213
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1103/PhysRevB.89.205414
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.237002
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.237002
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.237002
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.237002
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.237002
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.237002
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.237002
https://doi.org/10.1103/PhysRevLett.68.2830
https://doi.org/10.1103/PhysRevLett.68.2830
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1103/PhysRevB.99.045107
https://doi.org/10.1103/PhysRevB.99.045107
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.44.291
https://doi.org/10.1103/PhysRevLett.44.291
https://doi.org/10.1103/PhysRevLett.84.987
https://doi.org/10.1103/PhysRevLett.84.987
https://doi.org/10.1038/nphys2079
https://doi.org/10.1103/PhysRevB.86.060503
https://doi.org/10.1038/s41467-019-10480-x
https://arXiv.org/abs/1906.06313v2


Geometric and conventional contribution to superfluid weight in twisted bilayer graphene:
supplemental material

Xiang Hu1, Timo Hyart2, Dmitry I. Pikulin3, Enrico Rossi1
1Department of Physics, William & Mary, Williamsburg, VA 23187, USA,

2International Research Centre MagTop, Institute of Physics,
Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland,

3Microsoft Quantum, Microsoft Station Q, University of California, Santa Barbara, California 93106-6105
(Dated: October 11, 2019)

CONTENTS

I. Solutions of the mean field gap equation 1

II. Calculation of the superfluid weight 1

III. The tight binding model of twisted bilayer graphene 3

IV. Dependence of the superfluid weight on the number of
bands 4

References 4

I. SOLUTIONS OF THE MEAN FIELD GAP EQUATION

To obtain an estimate of pairing parameters we solve the
linearized gap equation [1] �bl =

P
b0 l0 �

ll
0

bb0�b0 l0 , where
the pairing susceptibility is

�
ll

0

bb0 =
2g0
A

X

qn1n2

N (q)[U(q)bl]
⇤
U(q)b0 l0 . (1)

Here N (q) =
1�nF [✏n1 (q)]�nF [✏n2 (q)]

✏n1 (q)+✏n2 (q)�2µ , U(q)bl =

hun1(q)|eib·r|un2(q)il, g0 is the pairing coupling constant
due to electron-phonon interaction, A is the total area of
the sample, ✏n1,2(q) and un1,2 are eigenvalue and wavefunc-
tions of the non-superconducting Hamiltonian HTBL,K(k)

and l(l
0
) represents the layer index. We keep the reciprocal ba-

sis vectors whose lengths are no larger than twice of b ⌘ |b1|.
When the temperature approaches Tc, the maximum eigen-

values of � approach one. Correspondingly, the linearized gap
equation becomes

�v = v, (2)

here v contains �0, �b and higher order Fourier components
of �(r). Because the higher order terms are small, we can
neglect them and keep only �0 and �b. The results are listed
in table (I).

Everywhere in the text we have asssumed � = 1.764kBTc

at zero temperature, where 1.764 is the prefactor for weak-
coupling theory in metals. This assumption is made for sim-
plicity because the actual prefactor in flat band systems de-
pends on the details of the model.

TABLE I: Results obtained from solving the mean-field gap
equation.

(a) Solutions at µ = �0.30meV

✓(�) 1.00 1.05 1.10 1.15
Tc(K) 1.2119 1.6305 0.2340 0.0189
�0 0.4193 0.4346 0.4465 0.4497
�b 0.2138 0.2118 0.2100 0.2104

(b) Solutions for ✓ = 1.05�.

µ(meV ) 0 -0.10 -0.20 -0.30 -0.40 -0.50
Tc(K) 1.7392 1.7330 1.7043 1.6305 1.4877 1.2455
�0 0.4346 0.4346 0.4346 0.4346 0.4346 0.4346
�b 0.2119 0.2119 0.2119 0.2118 0.2118 0.2118

(c) Solutions for ✓ = 1.00�.

µ(meV ) 0 -0.10 -0.20 -0.30 -0.40 -0.50
Tc(K) 1.2086 1.2097 1.2219 1.2119 1.1561 1.0461
�0 0.4186 0.4188 0.4191 0.4193 0.4196 0.4197
�b 0.2138 0.2138 0.2138 0.2138 0.2138 0.2138

II. CALCULATION OF THE SUPERFLUID WEIGHT

Our starting point is a BdG Hamiltonian for a singlet super-
conductor

HBdG(p) =

 
H0(p) �(p)

�†(p) �H
T
0 (�p)

!
. (3)

Here H0(p) is n ⇥ n normal state Hamiltonian and �(p) is
the superconducting order parameter.

We assume that the order parameter supports a gradient of
phase � = k · r

HBdG(r) =

 
H0(�ir) e

i k
2 ·r�(�ir)ei

k
2 ·r

e
�i k

2 ·r�†(�ir)e�i k
2 ·r �H

T
0 (+ir)

!
.

(4)
leading to a current

j =
2eDs

~ r�, (5)



2

where Ds is the superfluid weight. We choose the units so that
e = 1 and ~ = 1 everywhere. The BKT transition temperature
is given by

TKT =
⇡

2
Ds(TKT). (6)

We point out that in the literature several different
conventions are used. In particular, one often uses
e
i�(r)/2�(�ir)ei�(r)/2 ! e

i�(r)�(�ir)ei�(r) in Eq. (4)
and 2e ! e in Eq. (5). With this convention Ds becomes
4 times larger and ⇡/2 is replaced by ⇡/8, but this of course
does not affect the predictions for TKT.

To diagonalize the Hamiltonian (4) we use an ansatz

 (r) =

 
a(p)eip·rei

k
2 ·r

b(p)eip·re�i k
2 ·r

!
. (7)

This way we find that a(p), b(p) and corresponding eigenen-
ergies E(p) can be solved using the effective Hamiltonian

He↵(p,k) =

 
H0(p+ k

2 ) �(p)

�†(p) �H
T
0 (�p+ k

2 )

!
. (8)

The operator for quasiparticle velocity in the basis de-
scribed by the coefficients a(p), b(p) is given by

vµ(p,k) =
@He↵(p,k,� = 0)

@pµ
. (9)

The current density is given by

j =
1

L2

X

p,n

hn,p,k|�zv(p,k)|n,p,kinF (En(p,k)), (10)

where �z is the Pauli matrix in the Nambu space, |n,p,ki are
the eigenstates and En(p,k) the corresponding eigenenergies
of Hamiltonian He↵(p,k).

The Hamiltonian (in Nambu space C
†
p,k) can be written as

Ĥ =
X

p

C
†
p,kHe↵(p,k)Cp,k = Ĥ

0 + Ĥ
1
, (11)

where

Ĥ
0 =

X

p

C
†
p,kHe↵(p,0)Cp,k, (12)

and

Ĥ
1 =

X

p

C
†
p,k�z

k

2
· v(p,0)Cp,k (13)

The current density operator can be written as

ĵ =
1

L2

X

p

C
†
p,k�zv(p,k)Cp,k = ĵ0 + ĵ1, (14)

where

ĵ0 =
1

L2

X

p

C
†
p,k�zv(p, 0)Cp,k (15)

and

ĵ1 =
1

L2

X

p

C
†
p,k�zk ·

⇥
rkv(p,k)

⇤
k=0

Cp,k. (16)

We assume that the current flows parallel to the gradient
of phase k = keµ, ĥji = jeµ and by using linear response
theory to obtain

j =
k

2L2

⇢X

p,i

h i(p)|�zTµµ(p)| i(p)inF (Ei(p))

+
X

p,i,j

nF (Ei(p))� nF (Ej(p))

Ei(p)� Ej(p)
|h i(p)|�zvµ(p)| j(p)i|2

�
,

where

Tµ⌫(p) = �z
@

@pµ
v⌫(p), (17)

Ei(p) and  i(p) are the eigenenergies and eigenstates of
HBdG(p). We have also used a shorthand notation vµ(p) =
vµ(p,k = 0). Therefore, we can identify

Ds =
1

4L2

⇢X

p,i

h i(p)|�zTµµ(p)| i(p)inF (Ei(p))

+
X

p,i,j

nF (Ei(p))� nF (Ej(p))

Ei(p)� Ej(p)
|h i(p)|�zvµ(p)| j(p)i|2

�
,

Additionally we can simplify the expression using
X

p,i

h i(p)|⌧zTµµ(p)| i(p)inF (Ei(p))

=
1

�

X

!n

X

p

Tr
⇥
G(!n,p)⌧zTµµ(p)

⇤

= � 1

�

X

!n

X

p

Tr


@G(!n,p)

@pµ
vµ(p)

�

= � 1

�

X

!n

X

p

Tr


G(!n,p)

@HBdG(p)

@pµ
G(!n,p)vµ(p)

�

= � 1

�

X

!n

X

p,i,j

1

i!n � Ei(p)

1

i!n � Ej(p)

⇥h i(p)|
@HBdG(p)

@pµ
| j(p)ih j(p)|vµ(p)| i(p)i

= �
X

p,i,j

nF (Ei(p))� nF (Ej(p))

Ei(p)� Ej(p)

⇥h i(p)|
@HBdG(p)

@pµ
| j(p)ih j(p)|vµ(p)| i(p)i,

where G(!n,p) = (i!n �HBdG(p))�1 and !n are Matsub-
ara frequencies. By assuming also that �(p) is independent
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of momentum p we obtain

vµ(p) =
@HBdG(p)

@pµ
(18)

and arrive at the expression used in the main text.
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FIG. 1: The dependence of superfluid weight and bandwidth
(BW) on the interlayer hopping w at ✓ = 1.05�. Here w0 =
118meV. (a) Fixed chemical potential, and µ = �0.30meV,
and uniform pairing with �0 = 1.764kBTc. The straight lines
show the analytical results at w/w0 = 0. (b) Fixed chemical
potential, and µ = �0.30meV, and spatially dependent pair-
ing �(r) with parameters from Table I. (c) Fixed electrons’
density and uniform pairing with �0 = 1.764kBTc. The den-
sity is fixed to the value corresponding to µ = �0.30meV
and w/w0 = 1. (d) Same as (c) but with spatially dependent
pairing �(r) with parameters from Table I.

For single isolated parabolic band at zero temperature the
expressions above give Ds / n/m

⇤, where n is the den-
sity and m

⇤ is the effective mass of the electrons. In this
calculation one needs to take into account that the density
of electrons within the band is constant, and therefore when
the superconducting transition occurs the chemical potential
is renormalized. In particular, in the limit of small density and
large m

⇤ the chemical potential is renormalized well below
the band. This can be understood as a BCS to BEC crossover
driven by decreasing n/(m⇤�). In a semimetal where both
electron- and hole-like bands are present, such as TBLG, sim-
ilar renormalization of the chemical potential below the con-
duction band (above the valence band) cannot occur because it
would lead to appearance of large density of holes (electrons)

in the valence band (conduction band). The densities in each
band are not conserved in the transition separately (only the
total density is conserved) and therefore the conventional con-
tribution to the superfluid weight is necessarily much larger at
small densities than expected for isolated bands.

In this manuscript we always consider a system consisting
of two valleys K and K0 and calculate Ds only for a single
valley. The valley degeneracy gives an additional factor of 2,
so that ⇡/2 in Eq. (6) has to be replaced with ⇡.

To check our numerical codes we have calculated the su-
perfluid weight for a single valley of TBLG numerically as a
function of the effective interlayer tunneling amplitude w in
the case of uniform s-wave pairing [see Fig.1 (a)]. Analyti-
cally, for w = 0 one obtains

Ds =
�

4⇡

r
1 +

µ2

�2
+

�

|µ| ln
✓
|µ|
�

+

r
1 +

µ2

�2

◆�
, (19)

where the first term is the conventional superfluid weight and
the second term is the geometric[2]. The numerics demon-
strate that the superfluid weight quickly approaches the ana-
lytical result when the coupling between layers is decreased.
By increasing w we find that Ds/� first increases and then de-
creases. Qualitatively similar results are obtained also in the
case of spatially dependent �(r) with parameters from Table
I. However, in this calculation we have not self-consistently
taken into account the influence of w on the superconducting
order parameter. Experimentally the effect of w can be studied
by applying pressure.

III. THE TIGHT BINDING MODEL OF TWISTED
BILAYER GRAPHENE

Following the approach described in Ref. 1 and 3, we
can construct the tight binding model of TBLG. In TBLG,
the conservation of the crystal momentum requires kb =
kt + (Gt � Gb) where Gi is the reciprocal lattice wave-
vector in layer i, with i = t, b representing the top or bot-
tom layer. For small twist angles a fairly accurate description
is obtained by just keeping the tunneling processes for which
|kb � kt| = |Gt �Gb| = 2K sin(✓/2), where K = 4⇡/3a0.
There are three vectors Qi = Gt � Gb (i = 1, 2, 3) for
which Q = 2K sin(✓/2) and so all the tunneling processes
for which |kb � kt| = Q are taken into account by keeping
all the recursive tunneling processes on a honeycomb struc-
ture constructed in momentum space with nearest neighbor
points connected by the vectors Qi. The honeycomb arrange-
ment can be thought of as a triangular lattice. By keeping
b = 0,b1,b2 we can write out the tight binding Hamiltonian
around the K point
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HTBL,K =
X

k

 
†(k)

0

BBBBBBBB@

HK,+1 T0

T
†
0 HK,�1 T

†
1 T

†
�1

T1 HK+b1,+1 T0

T
†
0 HK+b1,�1

T�1 HK+b2,+1 T0

T
†
0 HK+b2,�1

1

CCCCCCCCA

 (k), (20)

where +1 = (0, 0) and �1 = (0, Q), and the basis is

 (k) = (�K++1+k,�K+�1+k,�K++1+b1+k,�K+�1+b1+k,�K++1+b2+k,�K+�1+b2+k)
T
, (21)

with �k = (ckA, ckB). Here ckA,B is the electron annihilation
operator with momentum k at sublattice A,B. Similarly, We
can include more b in this Hamiltonian.

IV. DEPENDENCE OF THE SUPERFLUID WEIGHT ON
THE NUMBER OF BANDS

1 2 3 4 6 10 20 50 100 196
band number

0

0.05

0.1

0.15

0.2

D
s(m

eV
)

Conv Geom Total

FIG. 2: Dependence of superfluid weight on the number of
non-superconducting bands included in the calculation. Here
✓ = 1.05� and µ = �0.30meV.

It is interesting to study how the superfluid weight de-
pends on the number of bands that are included in the cal-
culation. Figure 2 shows the dependence of both the con-
ventional and geometric part of Ds on the number of bands.
We see that the conventional part depends only weakly on
the number of bands, nbands, but that the geometric part de-
pends very strongly on nbands. We see that keeping only the
two nearly flat bands is not enough to get accurate estimates
of the geometric contribution. However, we find that when
nbands = 10, the D

s
geom is already very close (less than 2%

away) to the value obtained keeping as many as 196 bands.
This seems consistent with recent results that suggest that a
minimal model for TBLG might require a minimum of 10
bands [4]
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