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Spin-charge coupled transport in van der Waals systems with random tunneling
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We study the electron and spin transport in a van der Waals system formed by one layer with strong spin-
orbit coupling and a second layer without spin-orbit coupling, in the regime when the interlayer tunneling is
random. We find that in the layer without intrinsic spin-orbit coupling, spin-charge coupled transport can be
induced by two distinct mechanisms. First, the gapless diffusion modes of the two isolated layers hybridize
in the presence of tunneling, which constitutes a source of spin-charge coupled transport in the second layer.
Second, the random tunneling introduces spin-orbit coupling in the effective disorder-averaged single-particle
Hamiltonian of the second layer. This results in nontrivial spin transport and, for sufficiently strong tunneling,
in spin-charge coupling. As an example, we consider a van der Waals system formed by a two-dimensional
electron gas (2DEG)—such as graphene—and the surface of a topological insulator (TI) and show that the
proximity of the TI induces a coupling of the spin and charge transport in the 2DEG. In addition, we show that
such coupling can be tuned by varying the doping of the TI’s surface. We then obtain, for a simple geometry,
the current-induced nonequilibrium spin accumulation (Edelstein effect) caused in the 2DEG by the coupling of
charge and spin transport.
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I. INTRODUCTION

In recent years experimentalists have been able to make
very novel and high-quality heterostructures that allow the
realization of new effects and states of great fundamental and
technological interest [1]. Recently simple heterostructures
formed by two graphene layers with a relative twist angle
[2–5] have shown a phase diagram [6,7] that is remarkably
reminiscent of the phase diagram of high-temperature super-
conductors. These are just some of the most striking examples
that heterostructures can be used to realize novel effects that
are not present in the single constituents. Applications of het-
erostructure engineering [8] can be found in tunnel junctions
[9], plasmonic [10], photoresponsive [11], spintronics [12–14]
and valleytronic [15] devices.

One of the essential elements to realize nontrivial topo-
logical states and spin-dependent transport phenomena is the
presence of spin-orbit coupling (SOC). However, often the
presence of spin-orbit coupling is not accompanied by other
desirable properties such as high mobility, or superconducting
pairing. For this reason heterostructures that combine one
constituent with significant SOC and one constituent with no
SOC but other distinct properties are very interesting both
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for fundamental reasons and for their potential for techno-
logical applications. So far, the theoretical studies of van der
Waals heterostructures have focused on the regime when the
tunneling is not random and a strong hybridization between
the electronic states of the isolated systems can be achieved,
see for example the case of graphene-topological-insulator
systems [16–25]. However, in many situations we can expect
the tunneling between the systems forming the heterostructure
to be random, due for example to the incommensurate nature
of the stacking configuration and/or the presence of surface
roughness.

In this work we focus on this situation and study the
electron and spin transport in a two-dimensional van der
Waals system comprised of one component (layer) with strong
SOC and one with no, or negligible, SOC, when the interlayer
tunneling is random. Due to the random nature of the tun-
neling in most experimental situations the transport will be
diffusive even in the absence of disorder. For this reason we
consider only the diffusive regime, in which specific details of
the system considered (like the value of the mean free path)
do not affect the general expression of the transport equations
that, therefore, have a somewhat universal character. We find
that in general, if the diffusive transport in the layer with SOC
exhibits spin-charge coupling [26–28] such coupling will be
present also in the layer without SOC, i.e., in the most com-
mon experimental situation. To exemplify this general result
we consider the case of a van der Waals system formed by a
two-dimensional electron gas (2DEG) placed on the surface of
a strong three-dimensional topological insulator (TI) [29–31].
Graphene and the surface of TIs in the tetradymite family
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such as Bi2Se3 have almost commensurate lattices and as a
consequence in many graphene-TI heterostructures the K , K ′
points of the graphene’s Brillouin zone are folded close to the
TI’s � point [19]. This fact, combined with the random and
finite-range nature of the interlayer tunneling, implies that the
results that we obtain for a 2DEG-TI van der Waals system
are directly relevant to graphene-TI heterostructures. Besides
graphene, other 2D systems with low energy states around the
� point could be candidates for hosting the 2DEG [32–34].

We obtain the diffusive transport equations in the 2DEG
layer and show that they describe a transport in which the
charge and the spin degrees of freedom are coupled. Fi-
nally, we show how the diffusive equations give rise to spin-
dependent transport effects, analogous to the ones obtained for
a 2DEG with Rashba SOC [26] and an isolated TI’s surface
[27], that are tunable by simply varying the doping of the TI,
and that can be used for possible spintronics applications.

The rest of this work has the following organization. In
Sec. II, we define the heterostructure Hamiltonian and the
disorder and tunneling potentials, and we calculate the rele-
vant response function. In Sec. III, we derive the spin-charge
coupled transport equations. In Sec. IV, we solve the diffusion
equations for a particular experimental setup and compare the
results with those for a 2DEG with spin-orbit coupling and a
TI alone. Finally, in Sec. V we present our conclusions.

II. MICROSCOPIC APPROACH

In this section, we introduce the heterostructure Hamilto-
nian along with the impurity and random tunneling potentials.
Then, we calculate the self-energies and relevant response
function, including vertex corrections. Finally, from the re-
sponse function, we extract the inverse diffuson.

The Hamiltonian Ĥ for the heterostructure can be written
as

Ĥ =
∑
l=1,2

[Ĥl + V̂l ] + T̂ , (1)

where l is the layer index, Ĥl is the Hamiltonian for layer
l in the clean limit, V̂l is the term due to disorder lo-
cated in layer l , and T̂ is the term describing interlayer
tunneling. For the 2DEG layer we have Ĥl = Ĥ2d(k) =∑

kss′ ψ̂
†
2d,ksH2dss′ (k)ψ̂2d,ks′ , where ψ̂

†
2d,ks (ψ̂2d,ks) is the cre-

ation (annihilation) operator for an electron with momentum
k and spin s. Without loss of generality we can linearize
the 2DEG dispersion around the Fermi surface and assume
H2d(k) = (v2d|k| − μ2d )σ0 with v2d the Fermi velocity, μ2d

the chemical potential, and σ0 the 2 × 2 identity Pauli matrix
in spin space. For the TI’s surface we have Ĥl = ĤTI =∑

kss′ ψ̂
†
TI,ksHTIss′ (k)ψ̂TI,ks′ , where ψ

†
TI,ks (ψ†

TI,ks) creates (an-
nihilates) a surface Dirac fermion with spin s and momentum
k, HTI(k) = −vTI(k × σ )z − μTI, vTI being the Fermi veloc-
ity on the TI’s surface, μTI the TI’s surface chemical potential,
and σi, i = x, y the Pauli matrices in spin space.

For the disorder potential in layer l , V (D)
l (q), we have

〈V (D)
l (r1)V (D)

l (r2)〉 = W D
l (r1 − r2), where the angle brackets

denote average over disorder realizations, and W D
l (r1 − r2) is

the disorder-averaged spatial correlation. In momentum space
we have W D

l (q) = nl
imp|U (q)|2, where nl

imp is the impurity
density in layer l , and Ul (q) the Fourier transform of the

potential profile Ul (r) of a single impurity. Without loss of
generality we can set 〈V (D)

l (r)〉 = 0. Assuming the tunneling
to be spin-conserving we have

T̂ =
∑
kqs

(t0δq + T (q))ψ̂†
l̄ks

ψ̂lk+qs + H.c., (2)

where l̄ �= l , and t0 and T (q) are the spatially uniform and
random components of the tunneling amplitude, respectively.
We consider the limit where the uniform component is negli-
gible and the remaining random component can be character-
ized by the spatial average of the tunneling matrix element
〈T (r1)T (r2

′)〉 = W t (r1 − r2). This regime could arise, for
example, due to random variations in the interlayer distance or
in the alignment of orbitals on the surface. In the remainder we
assume both the intralayer disorder and interlayer tunneling
to be short range so that Ul (q) = const = Ul , and W t (q) =
const = t2.

Let GR,A
0l (k, ε) = [ε − Hl (k) ± 0+]−1 be the bare retarded

(advanced) real-time Green’s function for layer l . The total
self-energy for layer l , �l , has contributions from scattering
with impurities �0

l , and random tunneling events �t
l . We have

�0
l (k, ε) = nl

imp

∫
q
|Ul (q)|2Gl (k − q, ε), (3)

where
∫

q ≡ ∫
d2q/(2π )2. In the self-consistent Born approx-

imation, Gl is the disorder-dressed Green’s function for layer
l . For the 2DEG, apart from an overall unimportant real
constant, we have �0

2d = −i�0
2dσ0/2, where �0

2d = 1/τ 0
2d =

2πρ2d n2d
impU

2
2d , and ρ2d is the density of states (DOS) at the

Fermi energy. For the TI’s surface, because the electrons be-
have as massless Dirac fermions, for UTI(q) = const, we have
that the integral in the expression for �0

l has an ultraviolet
divergence [35]. After properly regularizing such divergence
[36] one finds that the intralayer disorder, in addition to
generating an imaginary part of the self-energy, −i�0

TIσ0,
with �0

TI = 1/τ 0
TI = πρTInTI

impU
2
TI and ρTI, the TI’s DOS at

the Fermi energy, causes a renormalization of the Fermi
velocity that we incorporate in the definition of vTI. The same
ultraviolet divergence appears for the self-energy correction
for the 2DEG due to tunneling events into the TI, �t

2d. The
proper renormalization of such divergence, consistent with the
Ward identities, causes �t

2d to have a nontrivial real part so
that

�t
2d(k, ε) = −i�t

2dσ0/2 + [
t2

/(
4πv2

TI

)]
(k × σ)z. (4)

where �t
2d = 1/τ t

2d = πρTIt2. This result shows that even
when the interlayer tunneling processes are random, a spin-
orbit coupling term is induced in the 2DEG due to TI’s surface
proximity. This term of the self-energy qualitatively affects
the diffusive transport in the 2DEG, but it is not necessary
to induce spin-charge transport in the 2DEG as we will show
below. The self-energy correction for the TI due to tunneling
events into the 2DEG, �t

TI, does not require any special care
and simply results in an additional broadening of the quasipar-
ticles: �t

TI(k, ε) = −i�t
TIσ0/2 with �t

TI = 1/τ t
TI = 2πρ2dt2.
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FIG. 1. (a) Illustration of the self-consistency equation for the
diffuson, Eq. (7). Solid and dashed lines symbolize retarded and
advanced Green’s functions, respectively. Dotted lines with black
circles represent tunneling processes. (b) The Bethe-Salpeter equa-
tion for the auxiliary diffuson, Eq. (8). The dotted lines with crosses
represent disorder scattering. (c) The diffuson Dl can be used to
calculate the dynamical part of the response function χ

dyn
l as shown.

With the self-energy contributions, the dressed 2D system
Green’s functions take the form

GR/A
2d,ε (k) = (ε ± i�2d/2 − εk )σ0 − [t2/(4πvTI)](k × σ)z

(ε ± i�2d/2 − εk )2 − [t4/(4πvTI)2]k2
,

(5)

GR/A
TI,ε (k) = (ε ± i�TI/2)σ0 − vTI(k × σ )z

(ε ± i�TI/2)2 − v2
TIk

2
, (6)

where �2d ≡ �0
2d + �t

2d and �TI ≡ �0
TI + �t

TI.
In the diffusive regime, to leading order in 1/(εF τ ), the

retarded dynamical part of the spin-density response function
for layer l , χ

dyn
l is obtained by summing all ladder vertex

corrections to the bare spin-density response. In our case we
have two types of ladder diagrams: the ones due to random
interlayer tunneling and the ones due to intralayer disorder.
In most experimentally relevant situations we expect the
scattering time due to intralayer disorder to be much smaller
than the relaxation time due to the interlayer random tunneling
processes. For this reason in the remainder we assume �t �
�0. The main building block for the calculation of χ

dyn
2d is

the diffuson D2d, which includes both interlayer tunneling
and intralayer ladder diagrams. It satisfies the self-consistent
equation [37,38]

D2d = D̃2d + κD̃2dJ TI
2d D̃TIJ 2d

TI D2d. (7)

In this equation, the auxiliary intralayer diffuson for layer
l , D̃l [l = (2d, TI)] is obtained by taking into account only
intralayer disorder and the junctions J describe the transi-
tion between the layers. The constant κ collects disorder-
dependent normalizations with κ−1 = n2d

impnTI
impU

2
2dU 2

TI. The
self-consistency equation (7) is shown diagrammatically in
Fig. 1(a).

Mathematically, the auxiliary diffuson D̃l satisfies the
Bethe-Salpeter equation [see Fig. 1(b)]

D̃l (q, ω) = nl
impU

2
l [σ0 ⊗ σ0 − Pl (q, ω)]−1. (8)

Here, the quantum probability Pl is defined as

Pl (q, ω) ≡ nl
impU

2
l

∫
k

GR
l,εF

(k) ⊗ GA
l,εF −ω(k − q). (9)

The junctions J l ′
l = Plt2Pl ′ account for the tunneling pro-

cesses. The expressions of P2d and PTI are given in
Appendix A.

For the purpose of finding χ
dyn
l , it is convenient to solve

Eq. (7) in the spin-charge representation. To this end the
diffusons, as well as the junctions, are contracted with the
Pauli matrices as Dαβ

2d = 1
2σα

s1s2
Ds1s2,s3s4

2d σβ
s3s4

, where α, β =
(0, x, y, z) correspond to the charge and x, y, z components of
the spin, respectively. With the knowledge of Dl , the dynami-
cal part of the spin-density response function can be found by
introducing charge and spin vertices as illustrated in Fig. 1(c).
The full response function is then obtained by adding the static
part, χl = χ st

l + χ
dyn
l , where χ

st,αβ

l ∝ ρlδαβ . For systems with
conserved particle number, the density response function χ00

must satisfy the condition limω→0[limq→0 χ00(q, ω)] = 0. In
the problem under consideration, electrons can move from
one layer to the other. Therefore, a complete description of
the time evolution of the charge and spin densities must
include the mixed response function χll ′ with l �= l ′, i.e., the
response of densities in layer l to perturbations in layer l ′. χll ′

can be found in analogy to χl .

III. DIFFUSION EQUATIONS

In section, we derive the charge and spin coupled diffusion
equations and discuss the main general implications. In the
2DEG, the charge and spin response to external perturbations
in the form of electric potentials or Zeeman fields may be
conveniently cast in the form of coupled transport equations.
In the diffusive limit, we find

∂t n2d = D̄∇2ñ2d + �nslTI(ẑ × ∇)s̃2d − ν∂t (V2d − VTI), (10)

∂t s2d = (
D2d∇2 − �t

2d

)
s̃2d + α�t

2dlTI(ẑ × ∇) × s̃2d

+ �t
2dlTI(ẑ × ∇)[lTI(∇ × s̃2d )z + ñ2d/2], (11)

where the effective charge diffusion constant

D̄ = �t
2dDTI + �t

TID2d

�t
2d + �t

TI

, �t
l = 1

τ t
l

, (12)

is a weighted average of the diffusion constants D2d =
v2

F τ 0
2d/2, and DTI = v2

TIτ
0
TI in the 2DEG and TI, respectively.

Moreover, lTI = vTIτ
0
TI is the TI mean free path. The spin-

charge coupling in the 2DEG is characterized by �ns =
2�t

2d�
t
TI/(�t

2d + �t
TI). The term containing the dimensionless

constant α = εF τ 0
2d/(2π2ρTIDTI) originates from the induced

spin-orbit coupling in the 2DEG. The charge and spin densi-
ties ñ and s̃ appearing on the right-hand side of the diffusion
equations include external driving potentials for the charge,
V2d, and spin, h2d, respectively, as ñ2d = n2d + 2ρ2dV2d and
s̃ = s − 2ρ2dh2d . The last term in Eq. (10) accounts for a
potential loss of electrons in the 2DEG for a dynamically
driven system, with coefficient ν = 2ρ2d�

t
2d/(�t

2d + �t
TI).

Equations (10)–(12) are the main result of this work. They
show that in a 2DEG-TI system charge transport and spin
transport are coupled even when the tunneling between the
two systems is random. Notice that Eqs. (10)–(12) were
obtained in the limit in which �t

l /�
0
l � 1, and ωτ � 1, τ be-

ing the longest relaxation time: τ = max(τ t
2d, τ

t
TI ). Equations

(10)–(12) can only describe transport over time scales much

033085-3



M. RODRIGUEZ-VEGA, G. SCHWIETE, AND ENRICO ROSSI PHYSICAL REVIEW RESEARCH 1, 033085 (2019)

larger than τ and therefore are not valid in the limit t = 0 for
which τ → ∞. For t = 0 the two systems are decoupled and
for the 2DEG the diffusive transport of charge and spin are
independent with D2d = v2

2dτ
0
2d/2.

It is instructive to note that there are two mechanisms
responsible for the spin-charge and spin-spin coupling in
Eqs. (10) and (11). The term with coefficient α in Eq. (11)
results from the real part of the self-energy in Eq. (4), i.e.,
from the tunneling-induced spin-orbit coupling in the effective
single-particle Hamiltonian of the 2DEG. This term couples
in-plane and out-of-plane spin components. The spin-charge
coupling in Eqs. (10) and (11) has a different origin. The
surface of the TI hosts a single gapless diffusion mode in
the absence of tunneling, as can be seen by diagonalizing the
diffuson [27,37,38]. For finite q, this mode has a nontrivial
spin structure. By means of the random tunneling, this mode
and the gapless modes in the 2DEG hybridize. The hybridiza-
tion gives rise to spin-charge coupling via the term with
coefficient �ns in Eq. (10) and the final term in Eq. (11), as
well as to anisotropic spin-diffusion encoded in the first term
of the second line in Eq. (11). To leading order in tunneling,
the two described mechanisms for spin-charge coupling are
independent of each other. As follows from Ref. [26], spin-
orbit coupling eventually also leads to spin-charge coupled
transport at higher orders in the coupling strength. A separate
consequence of the tunneling in Eq. (11) is that, since spin is
not conserved in the coupled system, a gap of size �t

2d opens
for the spin diffusion modes.

Equations (10) and (11) show that the strength of the
coupling between charge transport and spin transport, and
the spin-diffusion anisotropy, are proportional to the ratio
�t

2d/�
0
2d. Given that �t

2d = t2ρTIπ and that ρTI scales linearly
with μTI, we see that in the 2DEG both the spin-charge cou-
pling and the spin-diffusion anisotropy can be tuned simply
by changing the doping of the TI’s surface.

IV. APPLICATIONS

We now study the solution of Eqs. (10) and (11) for a
simple setup, as in Refs. [26,27], to highlight some of the
transports effects due to the coupling between spin and charge
transport described by Eqs. (10) and (11), and to highlight
some of the main similarities and differences between a
2DEG-TI system, a TI’s surface, and a 2DEG with Rashba
SOC.

We consider a system of size L along x, −L/2 < x < L/2,
and in which all the quantities are uniform along y. In the
stationary limit, due to the uniformity along y, Eqs. (10) and
(11) separate into two independent sets of equations: one set
describing the coupled transport of n and sy, one set describing
the coupled transport of sx and sz. Given that we are interested
in the coupling between charge and spin transport, we focus
on the first set. Due to the assumption that all the quantities
are homogenous along y, the coupled equations for n and sy

for a 2DEG-TI, a TI, and a 2DEG with Rashba SOC have the
same structure:

Dn∂
2
x n + 2βs∂xsy = 0, (13)

Ds∂
2
x sy − sy

τs
+ βn∂xn = 0, (14)

TABLE I. Diffusion coefficients for a TI, Rashba 2DEG, and
2D+TI. λ is the SOC strength in the Rashba 2DEG, and τ 0

R the
Rashba scattering time.

2D+TI TI Rashba

Dn D̄ v2
TIτ

0
TI/2 v2

Rτ 0
R/2

Ds D2d + �t
2dl2

TI 3Dn/2 Dn

βn
1
2 �t

2dlTI vTI/2 −λ(λkF τ 0
R )2

βs
1
2 �nslTI vTI/2 2βn

τs τ t
2d τ 0

TI 2τ 0
R/(2λkF τ 0

R )2

where Dn, Ds, βn, and βs are constants whose expressions in
terms of the parameters characterizing the system are given in
Table I for a 2DEG-TI, a TI, and a 2DEG with Rashba SOC.
From charge conservation, using Eq. (10), we find that the
charge current takes the form

J = −D̄∇n2d − �nslTI
(
sx

2dŷ − sy
2dx̂

)
, (15)

and for the simple case described by Eq. (13), J = Jx̂, J =
−Dndn/dx + 2βssy, with Dn and βs given in Table I. Similarly
from Eq. (14) we can obtain an expression for the current of
sy. This expression has the term βn∂xn; however, as pointed
out before [39–43], such a term describes an equilibrium
spin current and therefore should not be included in the
definition of an externally driven spin current. Knowing the
expression of J and of the spin current allows us to write the
boundary conditions for Eqs. (13) and (14), corresponding to
the situation when a charge current I is injected at x = −L/2
via a ferromagnetic electrode so that the incoming electrons
have a net spin polarization φ along sy:

J|x=± L
2

= I

e
, Ds∂xsy|x=− L

2
= − Iφ

e
, Ds∂xsy|x= L

2
= 0,

(16)

Recalling that the voltage drop �V (x) [44] at position x is
given by �V (x) = −(1/2eρ)

∫ x
−L/2 dx′(dn/dx′), and solving

Eqs. (13) and (14) with the boundary conditions (16) we find

sy(x) = Iφl∗
eDs

cosh [(x − L/2)/l∗]

sinh (L/l∗)
− l2

∗βnI

eDnDs
(17)

and the voltage drop between the leads

�V = I

2e2ρDn

(
2l2

∗βs

Ds

[
φ − βnL

Dn

]
+ L

)
. (18)

In Eqs. (17) and (18), l−2
∗ ≡ 1/(τsDs) + 2βnβs/(DnDs). Using

the expressions given in Table I for Dn, Ds, τs, βn, and βs,
Eqs. (17) and (18) for a 2D-TI system become, to leading
order in the tunneling amplitude (with l∗ ≈ √

D2dτ
t
2d),

sy(x) = Iφl∗
eD2d

cosh [(x − L/2)/l∗]

sinh (L/l∗)
− IlTI

2eD̄
, (19)

�V = I

2e2ρ2dD̄

(
L + 2lTIφ

�t
TI

�t
2d + �t

TI

)
. (20)

The second term on the right-hand side of Eq. (19) shows
that, as in the case of 2DEG with Rashba SOC [26] and a
TI [27], an Edelstein [45] effect is present, i.e., a constant
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nonequilibrium spin polarization generated by a charge cur-
rent I . This effect is present due to the “mirroring” into the
2DEG of the TI’s gapless diffusion mode characterized by the
coupling of charge and spin. It is interesting to notice that
for a 2DEG-TI system such a term, as long as τ t

2d � τ 0
2d to

remain in the regime of validity of the diffusion equations (10)
and (11), is independent of the interlayer tunneling strength.
This is because in the 2DEG-TI van der Waals structure,
in the 2DEG layer, both the spin relaxation rate 1/τs and
the spin-charge coupling βn in Eq. (14) scale as t2. As a
consequence we expect that even in the limit of very small
t a significant Edelstein effect should be present in a metallic
2D layer placed in proximity of a system with significant SOC
such as a TI’s surface. In addition, we see that for a 2DEG-TI
system, contrary to a TI, the strength of the Edelstein effect
can be tuned by varying the doping, and therefore ρTI, of the
TI’s surface. The other important result is that the decay length
of sy is l∗ which can also be tuned by varying the doping in
the TI and can be very long in the weak tunneling regime,
for which τ t

2d � τ 0
2d. The last term on the right-hand side of

Eq. (20) is a magnetoresistance contribution to the voltage
drop due to the coupling of the charge and spin transport.
For a 2DEG-TI system this term is therefore dependent on
the relative strength of the disorder in the TI and 2DEG.

V. CONCLUSIONS

In conclusion, we have studied the electron and spin trans-
port in a van der Waals system formed by one layer with
strong spin-orbit coupling and a second layer without spin-
orbit coupling, in the regime when the interlayer tunneling is
random. We have shown that in the layer without intrinsic
spin-orbit coupling, spin-charge coupled transport can be
induced by the hybridization of the diffusion modes of the two
isolated layers. To exemplify the mechanism we have studied
a van der Waals system formed by a 2DEG and TI’s surface
and shown how the coupling of the spin and charge transport
in the TI is “mirrored” into the 2DEG. In addition, for the
specific case of a 2DEG-TI van der Waals system, we show
that a spin-orbit coupling term is induced into the 2DEG, and
that the induced coupling of spin and charge transport in the
2DEG can be tuned by varying the TI’s doping. Finally we
showed how the coupled spin-charge transport described by
the diffusive equations that we obtain for the 2DEG leads
to a current-induced nonequilibrium spin accumulation and a
magnetoresistance effect that are also tunable by changing the
TI’s doping.
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APPENDIX A: QUANTUM PROBABILITIES

Here, it is convenient to define τl = 1/�l for �l = �0
l +

�t
l and to display formulas for P̃l = (τ 0

l /τl )Pl . In the limit
�t

l /�
0
l � 1 and �0

l /εF � 1, to leading order in ω/�0
l and

vF q/�0
l we find

P̃2d(q, ω) = ã2d(q, ω)σ 0 ⊗ σ 0 + b̃a
2d(q, ω)σ 0 ⊗ σ a

+ c̃a
2d(q, ω)σ a ⊗ σ 0, (A1)

P̃TI(q, ω) = ãTI(q, ω)σ 0 ⊗ σ 0 + b̃a
TI(q, ω)(σ 0 ⊗ σ a

+ σ a ⊗ σ 0) + d̃ab
TI (q, ω)σ a ⊗ σ b. (A2)

For the 2DEG,

ã2d(q, ω) ≈ 1 + iωτ2d − τ2dD̃2dq2, (A3)

b̃x
2d(q, ω) ≈ ατ2d�

t
2d l̃TIqy/4 = −c̃x

2d(q, ω), (A4)

b̃y
2d(q, ω) ≈ −ατ2d�

t
2d l̃TIqx/4 = −c̃y

2d(q, ω), (A5)

where D̃2d = v2
2dτ2d/2 and l̃2d = v2dτ2d.

For the TI’s surface [27],

ãTI = (1 − τTID̃TIq
2 + iωτTI)/2, (A6)

b̃x
TI = −il̃TIqy/4, by

TI = il̃TIqx/4, (A7)

d̃xx
TI = (

1 − τT I D̃TI
(
q2

x + 3q2
y

)/
2 + iωτTI

)
/4, (A8)

d̃yy
TI = (

1 − τTID̃TI
(
3q2

x + q2
y

)/
2 + iωτTI

)/
4, (A9)

dxy
TI = dyx

TI = τTID̃TIqxqy/4, (A10)

where D̃TI = v2
T IτTI/2 and l̃TI = vTIτTI.

APPENDIX B: SPIN-CHARGE DIFFUSION EQUATION
FOR TI’s SURFACE

To facilitate the comparison between the results that we
obtain in the main text for a 2DEG-TI system and an isolated
TI’s surface we report here the diffusion equations for a TI’s
surface, first derived in Ref. [27]:

∂t nTI = DTI∇2nTI + vTI(ẑ × ∇) · �sTI, (B1)

∂t s
x
TI = DTI

2
∂2

x sx
TI + 3DTI

2
∂2

y sx
TI − DTI∂

2
xysy

TI

− sx
TI

τ 0
TI

− vTI

2
∂ynTI, (B2)

∂t s
y
TI = 3DTI

2
∂2

x sy
TI + DTI

2
∂2

y sy
TI − DTI∂

2
xysx

TI

− sy
TI

τ 0
TI

+ vTI

2
∂xnTI, (B3)
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where nTI is the carrier density on the TI’s surface, and
�sTI = (sx

TI, sy
TI). Notice that the spin densities are damped

by scattering with nonmagnetic impurities due to spin-orbit
coupling. Due to a typographic error in Ref. [27] the terms
with mix derivatives have opposite sign compared to Eqs. (B2)
and (B2). We can see that the negative sign in front of the
terms ∂2

xysx
TI and ∂2

xysy
TI in Eqs. (B2) and (B2) is correct by

considering that when nTI is uniform in time and space so
that Eq. (B1) implies ∂ysx

TI = ∂xsy
TI, Eqs. (B2) and (B3) lead to

∂t sα
TI = [(1/2)DTI∇2 − 1/τ 0

TI]s
α
TI, the expected spin-diffusion

equation in this simple limit.

APPENDIX C: DIFFUSION EQUATIONS FOR TWO
COUPLED 2DEGs

In this Appendix, we review the density diffusion equation
of a 2DEG-2DEG heterostructure. The effect of the coupling

in the quantum interference has been studied before [46].
Each layer l poses its own diffusion constant Dl and density
of states ρl , where l = T, B label the top and bottom 2DEG
layers, respectively. We obtain

∂t n
(T )
2d = D̄∇2n(T )

2d ,

where we have defined

D̄ = �t
T DB + �t

BDT

�t
T + �t

B

, �t
l = 1

τ t
l

. (C1)

The renormalized diffusion constant contains corrections pro-
portional to the diffusion constant in the bottom layer. The
leading correction to the diffusion constant is given by a term
proportional the ratio of the DOS in each layer. Given that
there is no spin-orbit coupling, the spin follows analogous
diffusion equations in each direction.
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