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Improved evolution equations for magnetic island chains in toroidal pinch
plasmas subject to externally applied resonant magnetic perturbations
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~Received 1 May 2001; accepted 30 July 2001!

An improved set of island evolution equations is derived that incorporates the latest advances in
MHD ~magnetohydrodynamical! theory. These equations describe the resistive/viscous-MHD
dynamics of a nonlinear magnetic island chain, embedded in a toroidal pinch plasma, in the presence
of a programmable, externally applied, resonant magnetic perturbation. A number of interesting
example calculations are performed using the new equations. In particular, an investigation is made
of a recently discovered class of multiharmonic resonant magnetic perturbations that have the novel
property that they can lock resonant island chains in a stabilizing phase. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1404384#
th
s

on
r-

e
th
t
ro
ng
in
e

l-
is
a

,

le
am

g

ri
o

,
u

ou
in
ua

i
an

on
-

g
d in
g
tely

re a
as
lu-

ible
efs.
als
ry
-

at

han
of

n-

m-

o
ing

that
the
ly-
ling
the
ect
I. INTRODUCTION

Recent experimental results strongly suggest that fur
progress in obtaining thermonuclear reactor grade plasma
either tokamaks or reversed-field pinches~RFPs! is depen-
dent on the development of some reliable method for c
trolling the amplitudes of relatively low mode-number tea
ing modes, resonant within the plasma.1–5 As the name
suggests, ‘‘tearing modes’’ tear and reconnect magnetic fi
lines to produce helical chains of magnetic islands inside
plasma. Such island chains degrade plasma confinemen
cause both heat and particles are able to travel radially f
one side of an island chain to the other by flowing alo
magnetic field lines, which is a relatively fast process,
stead of having to diffuse across magnetic flux surfac
which is a relatively slow process.6

Currently, one of the most promising options for contro
ling tearing mode amplitudes in toroidal fusion devices
active feedback by means of externally applied, reson
magnetic perturbations~RMPs!. Active control has already
been implemented in a handful of tokamak experiments7–9

with some degree of success.
The most useful approach to interpreting data from RM

experiments is to reduce the problem to a set of coup
ordinary differential equations governing the phase and
plitude evolution of the target magnetic island chain.9,10Over
the years, a great deal of effort has been put into derivin
suitable set of island evolution equations.11–14Our aim in the
paper is to continue this effort by making available to expe
mentalists an improved set of evolution equations that inc
porates the latest advances in MHD theory.

Our analysis is restricted to low-b, large aspect-ratio
circular cross-section, axisymmetric, toroidal plasmas. O
starting point is the standard equations of resistive/visc
MHD. Drift and two-fluid effects are completely neglected
this paper. The novel features of our island evolution eq
tions include the following.

~i! The absence of a tokamak-specific approach. Our
land evolution equations are valid for tokamaks, RFPs,
any other type of axisymmetric toroidal fusion device.
4481070-664X/2001/8(10)/4489/12/$18.00
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~ii ! An improved treatment of nonlinear island saturati
using the exact results of Thyagaraja15 rather than the heu
ristic analysis of Whiteet al.16

~iii ! A vastly improved treatment of the viscous couplin
between the island chain and the plasma. As discusse
Refs. 17 and 18, it is vitally important to model this couplin
accurately. The analysis presented in this paper is comple
general, unlike that presented in Refs. 17 and 18, whe
separable form for the perturbed plasma velocity w
adopted, which had the effect of excluding transient so
tions. Although the exclusion of transients was a sens
approximation for the class of problems discussed in R
17 and 18, it is not appropriate in this paper, which de
with programmable RMPs, which, in principal, could va
sufficiently rapidly in time to excite strong velocity tran
sients.

~iv! A correct treatment of ion polarization~within the
context of resistive/viscous MHD!. Previously, it was sup-
posed that ion polarization had astabilizing effect on mag-
netic island chains.14,19,20 It has since been established th
just the opposite is the case—ion polarization has adestabi-
lizing effect on magnetic islands.17,21 The form for the ion
polarization term presented in this paper is more general t
that presented in Ref. 17, since it allows for the possibility
a multiharmonic RMP.

~v! The allowance for multiharmonic RMPs. As demo
strated recently by Fitzpatrick and Rossi,22 nonlinear cou-
pling in the island region allows the overtone harmonic co
ponents~i.e., jm, jn, where j 52,3,4,...! of a RMP to exert a
torque on anm, n island chain. In principle, it is possible t
use this effect to construct a perturbation capable of lock
a resonant island chain in astabilizing phase. The analysis
presented in this paper is considerably more general than
presented in Ref. 22 for two reasons. First, because of
incorporation of plasma rotation and viscosity into the ana
sis, and, second, because the variation of the coup
strength with the phase of the island chain with respect to
external perturbation is taken into account. The latter eff
9 © 2001 American Institute of Physics
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is important and was neglected in Ref. 22 for the sake
simplicity.

This paper is organized as follows. After some prelim
nary analysis in Sec. II, we derive our improved island e
lution equations in Sec. III. We then illustrate the propert
of these equations by using them to analyze the standard
of a single-harmonic RMP in Sec. IV. The more interesti
case of a multiharmonic RMP is considered in Sec. V.
nally, in Sec. VI, we summarize and draw some conclusio

II. PRELIMINARY ANALYSIS

A. Plasma equilibrium

Consider a large aspect-ratio,23 zero-b,24 plasma equilib-
rium whose unperturbed magnetic flux surfaces map out~al-
most! concentric circles in the poloidal plane. Such an eq
librium is well approximated as a periodic cylinder. Suppo
that the minor radius of the plasma isa. Standard cylindrical
polar coordinates (r ,u,z) are adopted. The system is a
sumed to be periodic in thez direction, with periodicity
length 2pR0 , whereR0 is the simulated plasma major ra
dius. It is convenient to define a simulated toroidal anglef
5z/R0 . The equilibrium magnetic field is written asB
5@0,Bu(r ),Bf(r )#, where“∧B5s(r )B.

B. Perturbed magnetic field

The magnetic perturbation associated with anm, n tear-
ing mode~i.e., a mode withm periods in the poloidal direc
tion, andn periods in the toroidal direction! can be written as
b(r ,t)5bm,n(r ,t)ei z, wherez5mu2nf is a helical angle.
In this paper, it is assumed thatm.0 andnÞ0. The linear-
ized magnetic flux functioncm,n(r ,t)[2 irbr

m,n satisfies
Newcomb’s equation.22,25 As is well known, Newcomb’s
equation issingularat them/n rational surface, minor radiu
r s , which satisfies F(r s)50, where F(r )[mBu(r )
2ne(r )Bf(r ). Here,e5r /R0 . This singularity is resolved
by the presence of a thin nonlinear/nonideal region~i.e., a
magnetic island chain! centred on the rational surface.

Let ĉm,n(r ) represent the normalizedm, n tearing eigen-
function. In other words,ĉm,n(r ) is a real, continuous solu-
tion to Newcomb’s equation, which is well behaved asr

→0, satisfiesĉm,n(r s)51, and is bounded asr→`. This
prescription uniquely specifiesĉm,n(r ). In general,ĉm,n(r )
possesses a gradient discontinuity atr 5r s . The real quan-
tity,

Ej5F r
dĉ jm, jn~r !

dr
G

r s2

r s1

, ~1!

can be identified as the standardlinear stability indexfor the
jm, jn tearing mode.26 In this paper, it is assumed thatE1

.0 andEj,0 ~for j 52,3,4,...!. In other words, the funda
mental harmonic~i.e., j 51! is linearly unstable, whereas th
overtone harmonics~i.e., j 52,3,4,...! are linearly stable.

C. Rotating resonant magnetic perturbation

Suppose that the plasma is surrounded by a set of
coils that generate a rotating magnetic perturbation, reso
Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASC
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with anm, n island chain inside the plasma. In general, su
a perturbation consists of an admixture ofm, n and jm, jn
~for j 52,3,4,...! magnetic fields. In the absence of th
plasma, the applied perturbation takes the formbvac

5C“cvac∧n̂, where C5(m21n2e2)21/2, and n̂
5C(0,ne,m). In the region lying within the field coils, we
can write

cvac~r ,z,t !5(
j 51

`

Bj

i jm~ jne!

i jm~ jnea!
ei j @z2*0

t vc~ t8!dt8#, ~2!

where ea5a/R0 . Here, theBj are complexquantities that
specify the amplitudes and phases of the various harmo
that make up the perturbation, whereasvc is the common
helical phase velocity of these harmonics. The funct
i m(ne), as well as the associated functionkm(ne), are
vacuum solutions to Newcomb’s equation, and are define
Ref. 22.

D. Rutherford island width evolution equation

According to the results of Rutherford,27,28Thyagaraja,15

and Fitzpatrick and Waelbroeck,17 we can write the follow-
ing island width evolution equation:

L1

2
tR

d~W/r s!

dt
5E12ls

2L1S W

4r s
D lnS 4r s

W D
1S Wc

W D 2

cosw1
4l 0~tHIs!

2

~W/4r s!Ks
. ~3!

Here, L151.6454, l 052.93431022, W is the full radial
width of them, n island chain,w is the helical phase differ-
ence between the chain and them, n component of the ex-
ternal perturbation,

ls5F r 2ds/dr

rs22mne/~m21n2e2!G
r s

, ~4!

and

Ks5
~nes!

2

m21~nes!
2 , ~5!

wherees5r s /R0 . The quantityWc , which is a convenient
measure of the amplitude of the external perturbation, is
fined as

Wc

4r s
5AD1aubvacr

m,n ~a!u
Fs8

, ~6!

whereFs85(r 2dF/dr) r s
, and

D j5
ĉ jm, jn~a! j 2~m21n2es

2!

2kjm~ jnea!i jm~ jnea!
. ~7!

The quantities,

tH5
r s

2Am0rs

Fs8
, ~8!

tV5
r s

2rs

ms
, ~9!
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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tR5
m0r s

2

hs
, ~10!

represent the hydromagnetic, viscous diffusion, and resis
diffusion time scales, respectively, evaluated in the vicin
of the rational surface. Here,rs , ms , andhs are the plasma
mass density~perpendicular!, viscosity, and~parallel! resis-
tivity, respectively, at the rational surface. Finally,Is

5@r ](nDV)/]r # r s2

r s1, whereDV is the modification of the

plasma toroidal angular velocity profile due to the action
the external perturbation.

In writing Eq. ~3!, the following assumptions have bee
made. First, the width of the island chain,W, is assumed to
be much smaller than the radial localization scale length
the perturbed plasma velocity profile,DV, in the vicinity of
the rational surface. Second, strong neoclassical fl
damping29 is assumed to prevent any significant modificati
of the plasma poloidal velocity profile, and, hence, to g
rise to an effective enhancement of ion inertia by a fac
1/Ks .14

According to Eq.~3!, the width of anm, n magnetic
island chain evolves on aresistivetime scale.27 The first term
on the right-hand side represents the linear instability driv26

The second term controls the nonlinear saturation of the
land chain.15 The third term describes the influence of them,
n component of the external perturbation on the isla
width.28 Finally, the fourth term represents thedestabilizing
effect of the ion polarization current associated with p
turbed plasma flow in the vicinity of the island chain.17

E. Phase evolution equations

In order to access whether a RMP has a stabilizing o
destabilizing influence on its target island chain, we nee
method for determining the relative helical phase,w, of the
chain.

According to the results of Fitzpatrick, Waelbroeck, Y
and Rossi,17,18,22 the helical phase of an island chain in th
presence of a RMP is obtained from the following set
equations:

rr~r !tV

r s
2rs

]nDV

]t
2

]

]r S r
m

ms

]nDV

]r D
52

Ks

2

tV

tH
2 S Wc

4r s
D 2S W

4r s
D 2

T~w!d~r 2r s!, ~11!

and

dw

dt
5v ~0!1nDV~r s ,t !2vc . ~12!

Here,r(r ) andm(r ) are the plasma mass density and~per-
pendicular! viscosity profiles, respectively. Moreover,v (0) is
the so-called ‘‘natural frequency’’ of the island chain~i.e., the
value toward which its helical phase-velocity relaxes in
absence of an external perturbation!. The torque function,
T(w), is defined in Sec. III C. Finally, the boundary cond
tions imposed on Eq.~11! are
Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASC
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]DV~0,t !

]t
5DV~a,t !50. ~13!

Equation~11! is simply the toroidal angular equation o
motion of the plasma. The term on the right-hand side r
resents the electromagnetic torque exerted in the island
gion by the RMP. Note that the radial extent of this region
assumed to be negligible compared to the radial extent of
plasma. Equation~12! is the familiar ‘‘no slip’’ condition,30

which ensures that the magnetic island chain is entrained
the plasma flow in the vicinity of the rational surface. F
nally, Eq. ~13! enforces the physical constraint that there
no significant modification of the edge plasma rotation due
the external torque.30

III. DERIVATION OF ISLAND EVOLUTION EQUATIONS

A. General solution of phase evolution equations

It is helpful, at this stage, to normalize our equations. L
m̂5m/ms , r̂5r/rs , r̂ 5r /r s , â5a/r s , V5nDV/v (0), v̂c

5vc /v (0), and t̂5tv (0). Equations~11!, ~12!, and ~13! re-
duce to

r̂ r̂

n

]V

] t̂
2

]

] r̂
S r̂ m̂

]V

] r̂
D 52

yw2/3

Js

T~w!d~ r̂ 21!, ~14!

dw

d t̂
511V~1,t̂ !2 v̂c , ~15!

]V~0,t̂ !

] r̂
5V~ â, t̂ !50, ~16!

where

n5
1

v ~0!tV
, ~17!

w5S W

W0
D 3

, ~18!

y5
W0

2Wc
2

Wcrit
4 , ~19!

S W0

4r s
D lnS 4r s

W0
D5

E1

ls
2L1

, ~20!

Wcrit

4r s
5S v ~0!tH

2

tV

2

KsJs
D 1/4

, ~21!

Js5E
1

â m̂~ r̂ !

r̂
d r̂. ~22!

The parametern is the ratio of the natural rotation period o
the island chain to the viscous diffusion time scale of t
plasma. The quantitiesw and y are convenient measures o
the island width and the amplitude of the external pertur
tion, respectively. Finally, the parameterW0 is the saturated
island width in the absence of an external perturbation.
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Let

d

dr̂ S r̂ m̂
dun

dr̂ D1 r̂ r̂bnun50, ~23!

dun~0!

dr̂
5un~ â!50, ~24!

E
0

â
r̂ r̂unumdr̂5dn,m . ~25!

According to standard Sturm–Liouville theory, theun( r̂ ) are
mutually orthogonal@see Eq.~25!#, and form a complete se
Note that theun( r̂ ) and thebn can be thought of as th
velocity ‘‘eigenfunctions’’ and ‘‘eigenvalues’’ of the plasma
respectively.

As is easily demonstrated, the general solution to
~14! is written as

V~ r̂ , t̂ !5 (
n51

`

gn~ t̂ !
un~ r̂ !

un~1!
, ~26!

where thegn are specified in Eq.~33!.

B. Island evolution equations

It is convenient to define the following normalized qua
tities:

h5
1

3 ln~4r s /W0!
, ~27!

h5
6

L1

E1

v ~0!tR

r s

W0
, ~28!

L5
1

E1
S Wcrit

W0
D 4

, ~29!

M5
2l 0

nJs
S W0

4r s
D 3

. ~30!

Here,h is the ratio of the natural rotation period of the isla
chain to the island width evolution time scale. Furthermo
L controls the strength of the external perturbation term
the island width evolution equation. Finally,M measures the
relative strengths of the ion polarization current and exter
perturbation terms in the island width evolution equation

Our full set of normalized island evolution equations c
now be written as

1

h

dw

dt̂
5w2/3@12w1/3~12h ln w!#1Ly cosw

1LMw5/3y2@T~w!#2, ~31!

dw

d t̂
511 (

n51

`

gn2 v̂c , ~32!

1

n

dgn

d t̂
52yw2/3

@un~1!#2

Js

T~w!2bngn . ~33!
Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASC
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The un( r̂ ) andbn are defined in Eqs.~23!–~25!. The torque
functionT(w) is defined in Eq.~34!. The parametersh, n, h,
L, M, andJs are defined in Eqs.~28!, ~17!, ~27!, ~29!, ~30!,
and ~22!, respectively. Finally, the normalized amplitud
y( t̂ ), and phase velocity,v̂c( t̂ ) @defined in Eqs.~19! and~2!,
respectively# of the external perturbation are assumed to
given.

Equation ~31! is our island width evolution equation
The normalized island widthw is defined in Eq.~18!. The
first term on the right-hand side specifies the linear instabi
drive and the nonlinear saturation mechanism. The sec
term represents the influence of the external perturbation
island growth. The final term specifies the destabilizing
fect of the ion polarization current.

Equations~32! and ~33! are our phase evolution equa
tions. Here,w is the helical phase of the island chain me
sured with respect to them, n component of the externa
perturbation, whereas thegn parametrize the perturbe
plasma velocity profile. The first equation describes how
island chain is entrained in the plasma flow at the ratio
surface. The second equation describes how the plasma
is modified by the electromagnetic torque exerted in the
cinity of the rational surface by the external perturbation.

C. The torque function

The torque function,T(w), takes the general form

T~w!5(
j 51

`

t j sin~ j w!. ~34!

In vacuum, the normalized radial component of the ext
nally applied RMP is written as

r̂ b̂rvac~ r̂ ,z!5(
j 51

`

bj

Ej

E1

D1

D j

L1

L l

i jm~ jne!

i jm~ jnea!
sin~ j z!, ~35!

in a corotating frame of reference. TheEj are defined in Eq.
~1!. The D j are defined in Eq.~7!. The i m( ) are defined
in Ref. 22. Finally, the constantsL j take the following
values:22 L151.6454, L251.705831021, L3523.3174
31022, L451.281631022, L5526.452031023, L6

53.762231023, L7522.411331023, L851.6539
31023, etc. Here, we are assuming that all Fourier comp
nents of the perturbation are either in phase or in antiph
with one another, for the sake of simplicity. Hence, thebj are
real parameters. The normalizations adopted in this pa
imply that b151.

The t j and thebj are related as follows:

t15b11kb2 , ~36!

t25b21kb3 , ~37!

t j .25kbj 211bj1kbj 11 , ~38!

wherek5Ly/(2w2/3).
The above expressions specify how a multiharmo

RMP exerts a torque on anm, nmagnetic island chain. Over
tone harmonic components of the perturbation~i.e., jm, jn
components, wherej 52,3,4,...! are able to exert a torque o
the chain vianonlinear couplingin the island region.22 The
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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strength of the coupling varies with the phase of the isla
chain with respect to the external perturbation: this accou
for the nondiagonal transformation matrix between thet j and
thebj . ~Note that this variation was neglected in Ref. 22,
the sake of simplicity. This neglect is equivalent to the a
proximationẼ1→E1 made in Sec. V C of Ref. 22.!

Incidentally, it is helpful to define the ‘‘locking
potential:’’ 22

Vlock~w!5E
w0

w

T~w8!dw852(
j 51

`
t j

j
cos~ j w!. ~39!

IV. SINGLE-HARMONIC RESONANT MAGNETIC
PERTURBATIONS

A. Introduction

In this section, we shall concentrate on single-harmo
RMPs~i.e., perturbations with no overtone harmonic comp
nents!. For this class of perturbation, our island evoluti
equations,~31!–~33!, reduce to

1

h

dw

dt̂
5w2/3@12w1/3~12h ln w!#1Ly cosw

1LMw5/3y2 sin2 w, ~40!

dw

d t̂
511 (

n51

`

gn2 v̂c , ~41!

1

n

dgn

d t̂
52yw2/3

@un~1!#2

Js

sinw2bngn . ~42!

In the following, we shall illustrate the typical behavior o
solutions to the above equations in experimentally relev
parameter regimes.

B. Example plasma

Our example plasma is a tokamak equilibrium who
normalized current profile takes the forms(r )5s(0)(1
2r 2/a2)qa /q021. Here,q051.1 andqa53.2 are the centra
and edge values of the ‘‘safety factor,’’ respectively.31 We
shall study the dynamics of anm52/n51 magnetic island
chain, embedded in this equilibrium. The minor radius of
2/1 rational surface isr s50.7564a. The saturation paramete
ls @see Eq.~4!# takes the value25.1050. The 2/1 tearing
mode is linearly unstable with stability indexE156.765@see
Eq. ~1!#. All other tearing modes are linearly stable. T
unperturbed saturated radial width of the 2/1 island chai
W050.164a @see Eq.~20!#. The parameterh @see Eq.~27!#
takes the value 0.1144.

Let us adopt the physically plausible plasma density a
velocity profilesr(r )5r(0)(12r 2/a2)1/2 and m(r )5m(0)
3(11r 2/a2)3, respectively. In the following, the perturbe
velocity profile is represented as a superposition of the
50 velocity eigenfunctions@see Eq.~26!#: i.e., we allown to
range from 1 to 50 in Eqs.~41! and~42!. Convergence stud
ies reveal that with this many eigenfunctions we can ac
Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASC
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rately represent any plausible perturbed plasma velocity p
file. The parameterJs @see Eq.~22!# takes the value 0.1861

C. Static perturbations

Consider, first of all,static RMPs: i.e., perturbations
whose phase velocity,v̂c , is zero. Let us adopt the following
normalized plasma parameters:h50.1, n50.01, andL51
~i.e., a Rutherford evolution time scale that is about 10 tim
the natural rotation period,t, of the 2/1 island chain, and
global viscous relaxation time scale, which is about 100t!.
These parameter values are characteristic of small tokam
such as HBT-EP~High Beta Tokamak—Extended Pulse!.9

For the moment, we shall neglect the destabilizing effect
the ion polarization current, by settingM50.

Suppose that we subject the example plasma descr
in Sec. IV B to the 2/1 static RMP whose waveform,y(t), is
shown in Fig. 1. Here,y is the normalized perturbation am
plitude @see Eq. ~19!#. Incidentally, we would expectt
;0.1 ms, in unnormalized units, for an HBT-EP-like tok
mak. As can be seen, the amplitude of the external pertu
tion is slowly ramped up, held steady for a while, and th
slowly ramped down.

Figure 2 shows the phase-velocity response of the s
rated 2/1 island chain inside the plasma@obtained by solving
Eqs.~40!–~42!# to the applied 2/1 static RMP pictured in Fig
1. It can be seen that when the perturbation amplitude
relatively low, the island chain periodically speeds up a
slows down as it rotates past the perturbation, but the a
age island phase velocity is reduced below its unpertur
value: i.e., the island chain experiences a net braking eff
However, when the perturbation amplitude exceeds a thre
old value, the island chain suddenlylocks to the external
perturbation: i.e., its phase velocity is suddenly reduced
zero. Locking occurs at time~a! in Figs. 1 and 2. The island
chain remains locked until the perturbation amplitude fa
below a second threshold value, at which point the ch
unlocks: i.e., it rapidly accelerates. Unlocking occurs at tim
~b! in Figs. 1 and 2.

FIG. 1. Normalized amplitude of the applied 2/1 static resonant magn
perturbation versus time. Here,t is the rotation period of the unperturbe
island chain.
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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It is apparent, from Fig. 1, that the threshold perturbat
amplitude needed to trigger locking is significantly larg
than that required to trigger unlocking. This implies that on
the locking threshold is exceeded, and the island chain lo
to the external perturbation, the amplitude of the perturba
must be reduced by a substantial factor before the chain
unlock. This hysteresis in the locking/unlocking cycle h
been observed experimentally.32 The origin of the hysteresis
is illustrated in Fig. 3.

Figure 3 shows perturbed plasma velocity profiles cal
lated @from Eq. ~26!# just before locking@i.e., at time~a! in
Fig. 2# and just before unlocking@i.e., at time~b! in Fig. 2#.
Now, locking occurs when the electromagnetic torque
erted on the island chain by the external perturbation ov
whelms the viscous restoring force exerted by the plasm30

Of course, the electromagnetic torque is proportional to
scaled amplitude,y, of the external perturbation. The viscou
torque, on the other hand, is proportional to the jump in
derivative of the perturbed plasma velocity profile across
island region.30 It can be seen, from Fig. 3, that this jump

FIG. 2. Normalized 2/1 island phase velocity, versus time, for a plas
subject to the 2/1 static resonant magnetic perturbation pictured in Fi
The unperturbed normalized island phase velocity is unity. The normal
plasma parameters areh50.1, n50.01,L51, andM50.

FIG. 3. Normalized perturbed plasma toroidal angular velocity profiles
before locking~solid curve! and just before unlocking~dashed curve!, for a
plasma subject to the 2/1 static resonant magnetic perturbation pictur
Fig. 1. The vertical line indicates the location of the 2/1 rational surfa
Here,v (0) is the ‘‘natural frequency’’ of the 2/1 island chain. The normaliz
plasma parameters areh50.1, n50.01,L51, andM50.
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far larger prior to locking than prior to unlocking. The reas
for this is that, prior to locking, the plasma is subject to
oscillating electromagnetic torque~since the island chain is
rotating! that drives anunrelaxedperturbed velocity profile.
On the other hand, prior to unlocking, the plasma is sub
to a steadyelectromagnetic torque~since the island chain is
static!, which drives arelaxedvelocity profile. It follows that
a rotating island chain is subject to a stronger viscous res
ing torque than a locked island chain. Hence, a larger e
tromagnetic torque~i.e., a larger perturbation amplitude! is
required to lock a rotating island chain than is needed
prevent a locked chain from unlocking~once the plasma ve
locity profile has relaxed!.

The previous discussion illustrates the importance of
curately modeling the viscous coupling between the isla
chain and the plasma.17,18 In other words, it is necessary t
allow the perturbed plasma velocity profile to evolve v
cously in response to the applied electromagnetic torq
Most previously published sets of island evolutio
equations10,14were derived under the simplifying assumptio
that a fixed-width region of the plasma corotates with t
island chain. Such equations are of limited use in interpret
experimental data, since they are incapable of accura
modeling the hysteresis in the locking/unlocking cycle.

Figure 4 shows the normalized width of the 2/1 isla
chain, versus time@obtained by solving Eqs.~40!–~42!#, in
the presence of the 2/1 static RMP pictured in Fig. 1. It
clear that, as long as the island chain remains unlocked
width oscillates as it rotates past the external perturbat
Note, however, that, on average, the width of the island
reducedduring the unlocked interval@i.e., prior to time~a!,
and after time~b!#. This ‘‘dynamical stabilization’’ effect has
been observed both experimentally9,32 and in computer
simulations.33 Unfortunately, this effect is often misinter
preted as a manifestation of the supposedstabilizing influ-
ence of the ion polarization current associated with stron
sheared perturbed plasma flow in the island region.9,33 How-
ever, as has now been established beyond doubt, the
polarization effect is, in fact,destabilizing~within the con-

a
1.
d

t

in
.

FIG. 4. Normalized width of the 2/1 magnetic island chain, versus time,
a plasma subject to the 2/1 static resonant magnetic perturbation pictur
Fig. 1. Here,W0 is the unperturbed island width. The normalized plasm
parameters areh50.1, n50.01,L51, andM50.
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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text of resistive/viscous MHD.17,21 Indeed, ion polarization
plays no role in the dynamics shown in Fig. 4, since we h
setM50 in our island evolution equations. The explanati
for the dynamic stabilization seen in Fig. 4 is quite simple30

As the island chain rotates past the external perturbatio
experiences an oscillating electromagnetic torque. T
torque causes the island rotation to becomenonuniform: i.e.,
the island chain continually speeds up and slows down a
rotates. Moreover, the nonuniformly rotating chain spen
more time in the stabilizing phase@i.e., cosw,0—see Eq.
~40!# of the external perturbation than in the destabilizi
phase~i.e., cosw.0!. Hence, the island chain experiences
net stabilizing effect. As is apparent from Fig. 4, this sta
lization effect can become quite strong when the amplitu
of the external perturbation approaches the locking thre
old. Another important consequence of nonuniform isla
rotation is that the island chain spends more time in
helical phase in which it isslowed downby the electromag-
netic torque@i.e., sinw,0—see Eq.~42!# than the phase in
which the torque causes it tospeed up~i.e., sinw.0!. This
accounts for the net braking effect seen in Fig. 2 prior
locking.

According to Fig. 4, as soon as the island chainlocks to
the external perturbation it isstrongly destabilized: i.e., its
width increases substantially. Figure 5 shows the hel
phase of the island chain versus time. Note that during lo
ing @i.e., between times~a! and~b! in Fig. 4# the island chain
always maintains adestabilizingphase relation with respec
to the external perturbation~i.e., 2p/2,w,p/2!. This is a
standard result in MHD theory.30 It can be seen, from Fig. 5
that as the amplitude of the external perturbation is ram
down, and the electromagnetic locking torque conseque
decreases, the viscous restoring torque rotates the locke
land phase toward the stabilizing region~i.e., towardsw
.p/2!, but that the island chain unlocks before stabilizati
is achieved. Indeed, conventional wisdom holds that a m
netic island chain canneverlock in a stabilizing phase rela
tion to a RMP. It follows that magnetic feedback stabilizati
of tearing modes is only feasible if locking is prevented

FIG. 5. Helical phase of the 2/1 magnetic island chain, versus time, f
plasma subject to the 2/1 static resonant magnetic perturbation pictur
Fig. 1. The normalized plasma parameters areh50.1, n50.01,L51, and
M50.
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this is usually achieved by modulating the phase of the
ternal perturbation on a faster time scale than that requ
for locking.11 Unfortunately, such rapid phase modulation
a RMP would almost certainly require generating field co
locatedwithin the vacuum vessel~otherwise, the perturbation
would be shielded from the plasma by eddy currents!, which
is not reactor relevant.

As can be seen from Fig. 4, the island width is genera
reduced below its unperturbed value in the unlocked inter
whereas it is enhanced in the locked interval. Since the e
tromagnetic locking torque is proportional to the product o
scaled perturbation amplitude,y, and the square of the islan
width, W @see Eq.~42!#, this implies that a fixed amplitude
external perturbation generally exerts a larger locking torq
on a locked, rather than an unlocked, island chain. This ef
tends to deepen the previously mentioned hysteresis in
locking/unlocking cycle, although it is not its primary caus

D. Rotating perturbations

Let us now considerrotating RMPs. For this study, we
shall employ the following normalized plasma paramete
h50.1, n50.01, L51, andM50.1. These parameters a
the same as those used in our previous study, except tha
are now explicitly taking into account the destabilizing effe
of the ion polarization current, by settingM50.1. This value
for M is characteristic of small tokamaks such as HBT-EP

Suppose that we subject the example plasma descr
in Sec. IV B to the 2/1 rotating RMP whose normalize
helical phase velocity,v̂c(t), is shown in Fig. 6. As can be
seen, the rotation frequency~i.e., phase velocity! of the per-
turbation is ramped linearly from zero to a final value that
four times the ‘‘natural frequency’’ of the target 2/1 islan
chain inside the plasma. The perturbation amplitude is r
idly ramped up at timet540t, held steady at the normalize
valuey50.9, and then rapidly ramped down att5440t.

Figure 7 shows the phase-velocity response of the s
rated 2/1 island chain inside the plasma to the applied
rotating RMP pictured in Fig. 6. It can be seen that when
rotation frequency~i.e., phase velocity! of the perturbation

a
in
FIG. 6. Helical phase velocity of the applied 2/1 rotating magnetic per
bation versus time. Here,v (0) is the ‘‘natural frequency’’ of the 2/1 island
chain.
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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lies too far below the ‘‘natural frequency’’ of the islan
chain, the chain remains unlocked. In this interval, t
chain’s rotation frequency oscillates about an average v
that is lessthan its natural value: i.e., there is a net break
effect. However, once the~magnitude of the! difference be-
tween the perturbation frequency and the ‘‘natural f
quency’’ of the island chain falls below a threshold value, t
island chain suddenlylocks to the perturbation: i.e., its rota
tion frequency becomes identical to that of the perturbati
Locking occurs at time~a! in Fig. 7. In the locked interval,
the island chain’s rotation frequency is swept upward by
perturbation, eventually reaching a value that is almost th
times its natural value. However, when the difference
tween the perturbation frequency and the ‘‘natural f
quency’’ of the island chain exceeds a second critical va
the island chain suddenlyunlocks: i.e., it suddenly deceler
ates. Unlocking occurs at time~b! in Fig. 6. After unlocking,
the island rotation frequency oscillates around a value
slightly exceedsits natural value.

It is apparent, from Fig. 7, that the threshold~magnitude
of the! difference between the frequency of the external p
turbation and the natural frequency of the island ch
needed to trigger locking is substantially smaller than t
required to trigger unlocking. This is another manifestat
of the hysteresis in the locking/unlocking cycle discuss
earlier. Moreover, the explanation for this hysteresis is
same as before.

Figure 8 shows perturbed plasma velocity profiles cal
lated just before locking@i.e., at time ~a! in Fig. 7#, just
before unlocking@i.e., at time~b! in Fig. 7#, and at some
intermediate time. Clearly, a rotating RMP is very effecti
at injecting toroidal angular momentum into a tokam
plasma. Note that the driven velocity profile is fairly fl
inside the rational surface, but strongly sheared outside.
mentum injection via rotating RMPs has been successf
demonstrated on both JFT-2M34 and HBT-EP.9 Jensen and
Leonard35 have suggested that this mechanism could be u
to control velocity shear within tokamak plasmas. The pr
ciple objection to such a scheme is that it only works eff

FIG. 7. Normalized 2/1 island phase velocity, versus time, for a plas
subject to the 2/1 rotating magnetic perturbation pictured in Fig. 6. H
v (0) is the ‘‘natural frequency’’ of the island chain. The normalized plas
parameters areh50.1, n50.01,L51, andM50.1.
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tively when the perturbationlocks a resonant island chain
inside the plasma—unfortunately, as soon as the island c
locks to the perturbation, it isstrongly destabilized~see Fig.
9!, and consequently degrades the plasma energy con
ment.

Figure 9 shows the normalized width of the 2/1 isla
chain, versus time, in the presence of the 2/1 rotating R
pictured in Fig. 6. As before, the island chain is strong
stabilized by the applied perturbation prior to locking@i.e.,
prior to time~a!#. Likewise, the chain is strongly destabilize
during the locked phase@i.e., between times~a! and ~b!#.
However, unlike the previous case, the island chain isdesta-
bilized by the perturbation after unlocking@i.e., after time
~b!#. This new effect is a manifestation of the destabilizi
influence of the ion polarization current~which was not pre-
viously included in our calculations!. It turns out that when

a
,
FIG. 8. Normalized perturbed plasma toroidal angular velocity profiles
before locking~solid curve!, halfway between locking and unlocking~short-
dashed curve!, and just before unlocking~long-dashed curve!, for a plasma
subject to the 2/1 rotating magnetic perturbation pictured in Fig. 6. T
vertical line indicates the location of the 2/1 rational surface. Here,v (0) is
the ‘‘natural frequency’’ of the 2/1 island chain. The normalized plas
parameters areh50.1, n50.01,L51, andM50.1.

FIG. 9. Normalized width of the 2/1 magnetic island chain, versus time,
a plasma subject to the 2/1 rotating magnetic perturbation pictured in Fi
Here,W0 is the unperturbed island width. The normalized plasma para
eters areh50.1, n50.01,L51, andM50.1.
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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the island chain is not locked to the external perturbation
subject totwo distinct ‘‘inertial’’ effects. The first effect is the
previously mentioned nonuniform island rotation, whi
causes the chain to spend more time in the stabilizing ph
of the external perturbation than the destabilizing phase.
second effect is the destabilizing influence of the ion po
ization current associated with perturbed plasma flow in
island region. It turns out that the stabilizing influence
nonuniform island rotation is relativelystrong when the
~magnitude of the! frequency difference between the appli
perturbation and the island issmall, and relatively weak
otherwise.30 On the other hand, the destabilizing influence
the ion polarization current is essentially frequency indep
dent @see Eq.~40!#. Hence, the former effect dominates th
latter just prior to locking~when the frequency difference i
relatively small!, andvice versajust after unlocking~when
the frequency difference is relatively large!. We conclude
that hysteresis in the locking/unlocking cycle, combined w
the different frequency dependences of the two previou
mentioned inertial effects, gives rise to a situation where
unlocked island chain is inertiallystabilizedwhen it is being
slowed downby an external perturbation, and inertiallyde-
stabilizedwhen it is beingsped up—at least, in frequency
ramp experiments. This conclusion is of great interest, si
it seems to be in accordance with recent experimental res
from HBT-EP.36

V. MULTIHARMONIC RESONANT MAGNETIC
PERTURBATIONS

A. Introduction

Let us now considermultiharmonicRMPs ~i.e., pertur-
bations with overtone harmonic components!. For the sake of
simplicity, we shall restrict our investigation tostaticpertur-
bations. For this class of perturbation, we need to employ
full set of island evolution equations,~31!–~33!. In particu-
lar, we must explicitly calculate the form of thetorque func-
tion, T(w) ~see Sec. III C!.

B. Locking potentials

Now, a torque function is most conveniently described
terms of its associatedlocking potential—see Eq.~39!. Fig-
ure 10 shows the locking potential,Vlock52cosw, associ-
ated with a conventional single-harmonic RMP. In the a
sence of plasma rotation, we would expect a reson
magnetic island chain to lock to such a perturbation at
minimumof the potential. This is equivalent to saying th
the chain always locks in themost destabilizingphase,w
50—see Eq.~40!. Plasma rotation tends to shift the lockin
angle away fromw50 ~see Fig. 5!. However, as a genera
rule of thumb, the locking angle is restricted to thelower half
of the potential: i.e., the regionVlock,0. This observation
leads to the well-known result that a resonant island ch
always locks to a single-harmonic RMP in adestabilizing
phase: i.e., uwu,p/2.

In Ref. 22, we introduced the concept of a ‘‘designe
RMP. This is a multiharmonic perturbation in which the am
plitudes and phases of the overtone harmonic compon
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are specially chosen so as to construct a locking poten
capable of maintaining a resonant island chain in astabiliz-
ing phase. As explained in Ref. 22, the physics basis
designer perturbations is the fact that nonlinear coupling
the island region allowsjm, jn ~where j 52,3,4,...! magnetic
perturbations to exert small torques on anm, n island chain.
Figure 10 shows the locking potential associated with
three-harmonic designer perturbation characterized byb1

51.0, b2522.92,b351.0, andbj .350.0. In Sec. III C we
explain how the vacuum, radial, magnetic perturbation t
generates this potential can be calculated using the abovbj

values. Incidentally, the coupling constantk, appearing in the
transformation~36!–~38!, takes the value 0.254~this value is
chosen to be consistent with the following example calcu
tion!. It can be seen, from Fig. 10, that nonlinear coupli
between the fundamental and overtone harmonics in the
land region generates a locking potential that isradically
different from a conventional potential. In particular, th
minima of the potential now lie on theboundaryof the de-
stabilizing region, rather than at itsmidpoint. Adopting the
usual rule of thumb that the locking angle is restricted to
lower half of the potential, it certainly seems plausible th
our designer perturbation could lock a resonant island ch
in a stabilizing phase~i.e., uwu.p/2!. Let us investigate fur-
ther.

C. Designer perturbations

Let us apply the designer perturbation discussed ab
to the example plasma described in Sec. IV B. Of course,
fundamental harmonic of the perturbation is 2/1. Moreov
the perturbation is assumed to be static. Finally, the am
tude of the perturbation is ramped from zero to a normaliz
value ofy51 betweent510t andt520t. The perturbation
amplitude is subsequently held steady aty51. The chosen
plasma parameters areh50.1, n50.01, L50.35, andM
50.

FIG. 10. Locking potentials. The dashed curve shows the locking pote
Vlock52cosw associated with a single-harmonic RMP. The solid cur
shows the potential associated with a ‘‘designer’’ perturbation character
by b151.0,b2522.92,b351.0, andbj .350.0. In the latter case, the cou
pling parameterk takes the value 0.254.
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Figure 11 shows the normalized 2/1 island width, vers
time, in the presence of the designer perturbation descr
above. The island chain locks to the perturbation at time~a!.
Note, however, that the island widthdecreasesafter locking.
This behavior—which is unprecedentedwithin MHD
theory—suggests that the island chain does indeed loc
the perturbation in astabilizing phase. This suggestion is
confirmed by Fig. 12, which shows the helical phase of
island chain versus time.

Note, from Fig. 11, that the designer perturbation on
reduces the island width by a modest amount~i.e., about
20%!. We find that any attempt to obtain a greater reduct
in island width invariably fails—either the island chain u
locks or the locking angle drifts into the destabilizing regio
This behavior is easily understood. A designer perturba
only works properly provided it is able tolock its target
island chain, and provided that the nonlinear coupling in
island region is sufficiently strong to generate a favora
shaped locking potential from the component harmonics
the perturbation. Unfortunately, the locking torque and

FIG. 11. The normalized width of the 2/1 magnetic island chain, ver
time, for a plasma subject to the designer perturbation shown in Fig.
Here,W0 is the unperturbed island width. The normalized plasma par
eters areh50.1, n50.01,L50.35, andM50.

FIG. 12. Helical phase of the 2/1 magnetic island chain, versus time, f
plasma subject to the designer perturbation shown in Fig. 10. The nor
ized plasma parameters areh50.1, n50.01,L50.35, andM50.
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strength of the nonlinear coupling in the island region bo
decreaseas the island width decreases. It follows that if
designer perturbation reduces the width of its target isla
chain by too great a factor then it ceases to be effective.

VI. SUMMARY AND DISCUSSION

We have derived an improved set of island evoluti
equations that incorporate the latest advances in M
theory—see Sec. III. These equations describe the resis
viscous-MHD dynamics of a nonlinear magnetic island ch
~embedded in a large aspect-ratio, low-b, circular cross sec-
tion, toroidal pinch plasma! in the presence of a program
mable, externally applied, resonant magnetic perturba
~RMP!. Our equations are fairly simple in form, and, henc
can be very rapidly integrated. Indeed, none of the exam
calculations described in this paper took more than abou
s of CPU~central processor unit! time on an ordinary desk
top computer. In fact, it would be quite feasible to empl
our equations during thereal timeanalysis of data from RMP
experiments.

We have performed a number of example calculatio
using our equations. The purpose of these calculations i
illustrate the typical behavior of solutions to our equations
experimentally relevant parameter regimes.

For the case of a static~i.e., nonrotating! single-
harmonic RMP~see Sec. IV C!, we find that the island chain
locks to the perturbation when the perturbation amplitu
exceeds a certain critical value, andunlockswhen the pertur-
bation amplitude falls below a second, much smaller, val
The main cause of thishysteresisin the locking/unlocking
cycle is the viscous evolution of the perturbed plasma vel
ity profile. It turns out that the profile is generally quite di
ferent ~and, hence, the viscous restoring force acting on
island chain is quite different! just prior to locking, and just
prior to unlocking. This observation underscores the nee
treat the viscous coupling between the island chain and
plasma in a fairly sophisticated manner. Simply assum
that a fixed-width region of the plasma corotates with t
island chain invariably leads to highly inaccurate estima
of locking and unlocking thresholds.

When the island chain is not locked to the external p
turbation it generally experiences a netstabilizing effect.
This effect is often misinterpreted as a manifestation of
supposed stabilizing influence of the ion polarization curr
associated with perturbed plasma flow in the island reg
~this effect is actually destabilizing!. In fact, the explanation
is generally much simpler. As the island chain rotates p
the perturbation, it experiences an oscillating electrom
netic torque. This torque causes the island rotation to bec
nonuniform. The nonuniformly rotating island chain spend
more time in the phase in which it is stabilized by the ext
nal perturbation than in the opposite phase. Conseque
the chain experiences a net stabilizing effect. As dem
strated in our example calculations, this effect becomes
ticularly strong as the locking threshold is approached.
the other hand, the effect is fairly weak well away from t
locking threshold.
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Our example calculations also show that the island ch
is strongly destabilizedas soon as it locks to a single
harmonic RMP. This occurs because the chain always lo
in a destabilizing phase. Indeed, conventional wisdom hold
that a magnetic island chain must always lock to a RMP i
destabilizing phase.

For the case of a single-harmonic, constant amplitu
RMP whose rotation frequency is ramped steadily upw
~see Sec. IV D!, we find that the island chainlocks to the
perturbation when the~magnitude of the! difference between
the rotation frequency and the ‘‘natural frequency’’ of th
island chain falls below a critical value, andunlockswhen
the same frequency difference exceeds a second, m
greater, value. This is another manifestation of the hyster
in the locking/unlocking cycle discussed above. Moreov
the basic explanation is the same. As before, the island c
is strongly destabilized when it locks to the perturbatio
However, during the interval when the chain is not locked
is subject totwo competing ‘‘inertial’’ effects. The first is the
stabilizing effect of nonuniform island rotation discusse
above. It turns out that the strength of this effect is a stron
decreasing function of the~magnitude of the! difference be-
tween the perturbation’s rotation frequency and that of
island chain. The second effect is thedestabilizinginfluence
of the ion polarization current associated with perturb
plasma flow in the island region. It turns out that this effec
essentially frequency independent. Under certain circu
stances, the combination of hysteresis in the locki
unlocking cycle, and the different frequency dependence
the two above-mentioned inertial effects, leads to a situa
in which the island chain isstabilizedwhen the perturbation
rotatesmore slowlythan the chain, anddestabilizedwhen the
perturbation rotatesmore quickly. This behavior seems to b
in accordance with recent experimental results fr
HBT-EP.36

For the case of a static, multiharmonic RMP~see Sec.
V!, we find that nonlinear coupling in the island region, co
bined with a judicious selection of the amplitudes and pha
of the different harmonics that constitute the RMP, allow t
island chain to lock to the perturbation in astabilizing phase.
We term a RMP capable of achieving this novel feat a ‘‘d
signer’’ perturbation, just to emphasize that a harmonic m
must be chosenvery carefully. In our example calculations
we employ a three-harmonic designer perturbation~i.e., a
particular mix of 2/1, 4/2, and 6/3 magnetic fields!. Unfortu-
nately, we find that our designer perturbation can o
squeeze a locked magnetic island chain by a modest am
before the chain either unlocks, or slips into a destabiliz
phase relation with respect to the perturbation. The prob
is that both the locking torque—required to maintain t
chain at constant phase—and the nonlinear coupling in
island region—required to permit locking in a stabilizin
phase—both decrease as the island width is reduced.

Despite the limitation discussed above, designer RM
have a number of interesting potential applications to
magnetic fusion program. The first application relates to
idea of Jensen and Leonard35 of employing rotating RMPs to
control velocity shear inside tokamaks. The eventual a
would be to enhance confinement by driving enough velo
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shear to suppress plasma turbulence. As we have seen,
ing RMPs are a very effective means of injecting angu
momentum into a toroidal plasma~see Sec. IV D!. Moreover,
the driven velocity profiles are highly sheared in the ou
regions of the plasma. The usual objection to the Jensen
Leonard scheme is that RMP momentum injection o
works efficiently when the perturbationlocks a resonant is-
land chain within the plasma. However, as soon as the isl
chain locks to a conventional single-harmonic RMP, it
strongly destabilized, and consequently grows, leading t
degradation in plasma confinement. Suppose, however,
we implement the Jensen–Leonard scheme with rotat
multiharmonic RMPs that are specially designed so as
lock resonant magnetic island chains inneutral phases: i.e.,
in phases such that the islands are neither stabilized nor
stabilized by the perturbations. From what we have see
our example calculations, this seems eminently feasible
this case, it would be possible to tailor the plasma rotat
profile via rotating RMPs without directly destabilizing th
island chains within the plasma. Such a scheme is proba
not reactor relevant~since the RMP coils would have to b
placed inside the first wall to avoid eddy-current shieldin!;
however, it could well lead to some invaluable experimen
insights into the relationship between velocity shear and
bulence.

The second application of designer RMPs relates toneo-
classical tearing modes~NTMs! in tokamaks. As is well
known, a NTM is anintrinsically stabletearing mode that
possesses ametastable statein which a nonlinear island
chain is maintained in the plasma by the perturbed boots
current.37 A NTM is ordinarily stable, but can be kicked int
its metastable state by the transient magnetic perturbat
generated by sawtooth crashes, ELMs~edge-localized
modes!, etc. However, a NTM magnetic island genera
only needs to be squeezed by a moderate amount in ord
trigger the reverse transition to its stable state. Suppose
we apply a static, multiharmonic RMP to a tokamak plas
subject to NTMs. Suppose, further, that the RMP is specia
designed so as to lock resonant island chains in astabilizing
phase. When a resonant NTM is triggered, it will grow, lo
to the RMP in a stabilizing phase, and~hopefully! be
squeezed out of existence. As we have seen, designer pe
bations can only squeeze locked island chains by a mode
amount—fortunately, this is all that is generally required
stabilize NTMs. The beauty of this scheme is that the app
RPM is static, so its generating coils can be placedoutside
the first wall, which is highly reactor relevant. Moreover, n
detection equipment or feedback circuits are required.
contrast, magnetic feedback using conventional, sing
harmonic RMPs requires fast phase modulation of the
plied perturbation, in order to prevent locking—since isla
chains always lock to conventional RMPs in a destabiliz
phase.11 Unfortunately, such rapid phase modulation of
RMP would almost certainly require generating field co
located within the first wall ~otherwise, the perturbation
would be shielded from the plasma by eddy currents!, which
is not reactor relevant.
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