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Improved evolution equations for magnetic island chains in toroidal pinch
plasmas subject to externally applied resonant magnetic perturbations
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An improved set of island evolution equations is derived that incorporates the latest advances in
MHD (magnetohydrodynamicaltheory. These equations describe the resistive/viscous-MHD
dynamics of a nonlinear magnetic island chain, embedded in a toroidal pinch plasma, in the presence
of a programmable, externally applied, resonant magnetic perturbation. A number of interesting
example calculations are performed using the new equations. In particular, an investigation is made
of a recently discovered class of multiharmonic resonant magnetic perturbations that have the novel
property that they can lock resonant island chains in a stabilizing phase200@ American
Institute of Physics.[DOI: 10.1063/1.1404384

I. INTRODUCTION (i) An improved treatment of nonlinear island saturation
using the exact results of Thyagardjaather than the heu-

Recent experimental results strongly suggest that furthelristi ¢ analysis of Whitest al1®

progress in obtaining thermonuclear reactor grade plasmas in (iii) A vastly improved treatment of the viscous coupling

either tokamaks or reversed-field pinch@&¥FPs is depen- . ) . .
dent on the development of some reliable method for Conpetween the island chain and the plasma. As discussed in

trolling the amplitudes of relatively low mode-number tear- Refs. 17 and 18, it is vi.tally importarjt to .model th.is coupling
ing modes, resonant within the plasfd.As the name accurately. The analysis presented in this paper is completely

suggests, “tearing modes” tear and reconnect magnetic fieldeneral, unlike that presented in Refs. 17 and 18, where a
lines to produce helical chains of magnetic islands inside thé€parable form for the perturbed plasma velocity was
plasma. Such island chains degrade plasma confinement bddopted, which had the effect of excluding transient solu-
cause both heat and particles are able to travel radially frorions. Although the exclusion of transients was a sensible
one side of an island chain to the other by flowing alongapproximation for the class of problems discussed in Refs.
magnetic field lines, which is a relatively fast process, in-17 and 18, it is not appropriate in this paper, which deals
stead of having to diffuse across magnetic flux surfaceswith programmable RMPs, which, in principal, could vary
which is a relatively slow proce$s. sufficiently rapidly in time to excite strong velocity tran-

Currently, one of the most promising options for control- sients.
ling tearing mode amplitudes in toroidal fusion devices is (iv) A correct treatment of ion polarizatiofwithin the
active feedback by means of externally applied, resonangontext of resistive/viscous MHD Previously, it was sup-
magnetic perturbation(RMPS. Active control has already posed that ion polarization hadséabilizing effect on mag-
been implemented in a handful of tokamak experimémts, netic island chain&*1%21t has since been established that
with some degree of success. _ just the opposite is the case—ion polarization hatestabi-

The most_useful approach to interpreting data from RM izing effect on magnetic island€:2! The form for the ion
experiments s to reduce the problem to a set of coupleg 4 rization term presented in this paper is more general than

. . . Mhat presented in Ref. 17, since it allows for the possibility of
plitude evolution of the target magnetic island chatiOver a multiharmonic RMP.

the years, a great deal of effort has been put into deriving a (v) The allowance for multiharmonic RMPs. As demon-

suitable set of island evolution equatidisi*Our aim in the strated recently by Fitzatrick and Ro&inonfinear cou-
paper is to continue this effort by making available to experi-~ .~ >htly by Fitzp " .
pling in the island region allows the overtone harmonic com-

mentalists an improved set of evolution equations that incor A )
ponents(i.e., jm, jn, wherej=2,3,4,..) of a RMP to exert a

porates the latest advances in MHD theory. : ) s L .
Our analysis is restricted to loy; large aspect-ratio, torque on arm, n island chain. In principle, it is possible to

circular cross-section, axisymmetric, toroidal plasmas. Ouk'Se this effect to construct a perturbation capable of locking
starting point is the standard equations of resistive/viscoud resonant 'S|§”d Cha'”. msia@hzmg phaseThe analysis
MHD. Drift and two-fluid effects are completely neglected in Presented in this paper is considerably more general than that

this paper. The novel features of our island evolution equaPresented in Ref. 22 for two reasons. First, because of the
tions include the following. incorporation of plasma rotation and viscosity into the analy-

(i) The absence of a tokamak-specific approach. Our issis, and, second, because the variation of the coupling
land evolution equations are valid for tokamaks, RFPs, andtrength with the phase of the island chain with respect to the
any other type of axisymmetric toroidal fusion device. external perturbation is taken into account. The latter effect
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is important and was neglected in Ref. 22 for the sake ofvith anm, nisland chain inside the plasma. In general, such

simplicity.

This paper is organized as follows. After some prelimi-

a perturbation consists of an admixture raf n andjm, jn
(for j=2,3,4,.) magnetic fields. In the absence of the

nary analysis in Sec. I, we derive our improved island evoplasma, the applied perturbation takes the folm,

lution equations in Sec. lll. We then illustrate the properties=CV {1,

where C=(m?+n2e?) Y2 and A

of these equations by using them to analyze the standard caseC(0,ne,m). In the region lying within the field coils, we
of a single-harmonic RMP in Sec. IV. The more interestingcan write
case of a multiharmonic RMP is considered in Sec. V. Fi-

nally, in Sec. VI, we summarize and draw some conclusions. Pad T, E 1) = E B. e;,-[g_fg)vc(mdt,]’

Il. PRELIMINARY ANALYSIS
A. Plasma equilibrium

Consider a large aspect-rafibzero3,2* plasma equilib-
rium whose unperturbed magnetic flux surfaces map(@lt

mos) concentric circles in the poloidal plane. Such an equi-
librium is well approximated as a periodic cylinder. Suppose

that the minor radius of the plasma&asStandard cylindrical

polar coordinatesr(#,z) are adopted. The system is as-

sumed to be periodic in the direction, with periodicity
length 27R,, whereR, is the simulated plasma major ra-
dius. It is convenient to define a simulated toroidal angle
=2/Ry. The equilibrium magnetic field is written aB
=[0By(r),By(r)], whereVIB=o(r)B.

B. Perturbed magnetic field

The magnetic perturbation associated withnam tear-
ing mode(i.e., a mode withm periods in the poloidal direc-
tion, andn periods in the toroidal directigrcan be written as
b(r,t)=b™"(r,t)€¢, where/=mé#—n¢ is a helical angle.
In this paper, it is assumed that>0 andn#0. The linear-
ized magnetic flux functiony™"(r,t)=—irb™" satisfies
Newcomb’s equatio”®?® As is well known, Newcomb’s
equation issingularat them/n rational surface, minor radius
rs, which satisfies F(r)=0, where F(r)=mBy(r)
—ne(r)B,(r). Here,e=r/R,. This singularity is resolved
by the presence of a thin nonlinear/nonideal regioe., a
magnetic island chajrncentred on the rational surface.

Let ™"(r) represent the normalized, n tearing eigen-
function. In other wordsy™"(r) is areal, continuous solu-
tion to Newcomb’s equation, which is well behaved ras
—0, satisfiesy™"(rg)=1, and is bounded as—c. This
prescription uniquely specifie¢™"(r). In general y™"(r)
possesses a gradient discontinuityr atrs. The real quan-
tity,

Sim,jn s+

Ej={rd¢/ ' (r)} |

r
.

can be identified as the standdirtear stability indexfor the
jm, jn tearing modé?® In this paper, it is assumed that
>0 andE;<0 (for j=2,3,4,..). In other words, the funda-
mental harmonici.e., j=1) is linearly unstable, whereas the
overtone harmonic§.e., j=2,3,4,..) are linearly stable.

)

C. Rotating resonant magnetic perturbation

Suppose that the plasma is surrounded by a set of field
coils that generate a rotating magnetic perturbation, resonant

iim(jne
Im(in) .
|]m(Jn€a)
where e,=a/R,. Here, theB; are complexquantities that
specify the amplitudes and phases of the various harmonics
that make up the perturbation, wheragsis the common
helical phase velocity of these harmonics. The function
im(ne), as well as the associated functidqg,(ne), are
vacuum solutions to Newcomb’s equation, and are defined in

=1

Ref. 22.

D. Rutherford island width evolution equation

According to the results of Rutherfofé4?® Thyagarajd?®
and Fitzpatrick and Waelbroedk,we can write the follow-
ing island width evolution equation:

Ay d(Wiry) ) w Arg
2 ®oqr B Ml gy
W, 2 4IO(THIS)2
+(W) OS‘P+—(W/4rS)KS' 3)

Here, A;=1.6454,1,=2.934<10 2, W is the full radial
width of them, n island chain,p is the helical phase differ-
ence between the chain and tiee n component of the ex-
ternal perturbation,

. r’do/dr 4
S |ro—2mne/(m?+n®e®) . @)
and
_ (nfs)z )
s m2+(nes)z'

wheree;=r¢/Ry. The quantityW,, which is a convenient
measure of the amplitude of the external perturbation, is de-
fined as

We _ D,albyc (@) ®)
Arg Fe '
whereF ;= (r*dF/dr), , and
Prin(@)jA(m?+n’ed) o
" —Kim(jn€a)ijm(jnes) -
The quantities,
2
I'sVMop
TH:SF—QS, €)
2
r
N2, ©
Ms
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2
r JAQ(0)
re=t0s (10) ————=AQ(a,t)=0. (13)
7 ot
represent the hydromagnetic, viscous diffusion, and resistive ~Equation(11) is simply the toroidal angular equation of
diffusion time scales, respectively, evaluated in the vicinitymotion of the plasma. The term on the right-hand side rep-
of the rational surface. Hergy, us, and 7 are the plasma resents the electromagnetic torque exerted in the island re-
mass densityperpendicular; viscosity, and(paralle) resis- ~ 9ion by the RMP. Note that the radial extent of this region is
tivity, respectively, at the rational surface. Finallf, assumed to be negligible compared to the radial extent of the
—[ra(nAQ)/ar]**, where AQ is the modification of the Plasma. Equatioril2) is the familiar “no slip” condition®°
fs- which ensures that the magnetic island chain is entrained by
the plasma flow in the vicinity of the rational surface. Fi-
nally, Eqg. (13) enforces the physical constraint that there is
no significant modification of the edge plasma rotation due to
*he external torqué®

plasma toroidal angular velocity profile due to the action of
the external perturbation.

In writing Eq. (3), the following assumptions have been
made. First, the width of the island chaly, is assumed to
be much smaller than the radial localization scale length o
the perturbed plasma velocity profil&(}, in the vicinity of
the rational surface. Second, strong neoclassical flow pERIVATION OF ISLAND EVOLUTION EQUATIONS
damping® is assumed to prevent any significant modification
of the plasma poloidal velocity profile, and, hence, to give
rise to an effective enhancement of ion inertia by a factor  Itis helpful, at this stage, to normalize our equations. Let
1Kg. M a=ulus, p=plps, t=tlrs, a=alrg, V=nAQ/©®, 5,

According to Eq.(3), the width of anm, nmagnetic -, /,© andi=ty®. Equations(11), (12), and (13) re-
island chain evolves onrasistivetime scale?’ The firstterm  qyce to
on the right-hand side represents the linear instability dfive.

A. General solution of phase evolution equations

The second term controls the nonlinear saturation of the is- @ N 9 NV yW2/3T S(F—1 14
land chain®® The third term describes the influence of the v 4 aF Ly J, (¢)o(f—1), (14
n component of the external perturbation on the island
width.28 Finally, the fourth term represents tdestabilizing de A
effect of the ion polarization current associated with per- —=1+V(1t)—0, (15
turbed plasma flow in the vicinity of the island chafh. d
aV(0}1) .
77 =V(a,t)=0, (16)
E. Phase evolution equations
o where
In order to access whether a RMP has a stabilizing or a
destabilizing influence on its target island chain, we need a b 1 17
method for determining the relative helical phageof the v 97,
chain. 3
According to the results of Fitzpatrick, Waelbroeck, Yu, w= (ﬂ) (18)
and Rosst/'8??the helical phase of an island chain in the Wo/
presence of a RMP is obtained from the following set of W2W2
equations: y=—0C (19)
Wérit
rp(r)ry dnAQ a( 9 anAQ)
. _ 2
rep at o\ ug Or W, 4r E,;
Pe (H Inl | = 32a (0
Ke v [ W\ 2 W2 s 0 s
== % =z |2 T@dr=ry, (11)
T \4rs) \4rg (0) 2 14
Wcrit: vty 2 (21)
and 4r v K
d—¢=v(0)+nAQ(r t)—v.. (12 au(f)
dt s’ ¢ S=J : df. (22
1

Here,p(r) and u(r) are the plasma mass density aper-

pendiculay viscosity profiles, respectively. Moreover?) is  The parameter is the ratio of the natural rotation period of
the so-called “natural frequency” of the island chdire., the  the island chain to the viscous diffusion time scale of the
value toward which its helical phase-velocity relaxes in theplasma. The quantitie andy are convenient measures of
absence of an external perturbajioffthe torque function, the island width and the amplitude of the external perturba-
T(¢), is defined in Sec. Il C. Finally, the boundary condi- tion, respectively. Finally, the parametéf, is the saturated
tions imposed on Eqll) are island width in the absence of an external perturbation.
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Let
d [ _ du, .
| T | TTPBaUn=0, (23
dun(0) =u,(a)=0 (24
i "
a
fff)unumd?=5nm (25
0

According to standard Sturm—Liouville theory, thg(f) are

Fitzpatrick, Rossi, and Yu

Theu,(f) and B, are defined in Eq923)—(25). The torque
functionT(¢) is defined in Eq(34). The parameters, v, h,

L, M, andJg are defined in Eqs28), (17), (27), (29), (30),
and (22), respectively. Finally, the normalized amplitude,
y(t), and phase velocityi(t) [defined in Eqs(19) and(2),
respectively of the external perturbation are assumed to be
given.

Equation (31) is our island width evolution equation.
The normalized island widthv is defined in Eq.18). The
first term on the right-hand side specifies the linear instability
drive and the nonlinear saturation mechanism. The second

mutually orthogonalsee Eq(25)], and form a complete set. term represents the influence of the external perturbation on

Note that theu,(f) and thes, can be thought of as the jsland growth. The final term specifies the destabilizing ef-
velocity “eigenfunctions” and “eigenvalues” of the plasma, fect of the ion polarization current.

respectively.

Equations(32) and (33) are our phase evolution equa-

As is easily demonstrated, the general solution to Edtions. Here, is the helical phase of the island chain mea-

(14) is written as

- @ un(f)
Z up(1)’

where theg,, are specified in Eq(33).

B. Island evolution equations

It is convenient to define the following normalized quan-

(26)

sured with respect to then, n component of the external
perturbation, whereas thg, parametrize the perturbed
plasma velocity profile. The first equation describes how the
island chain is entrained in the plasma flow at the rational
surface. The second equation describes how the plasma flow
is modified by the electromagnetic torque exerted in the vi-
cinity of the rational surface by the external perturbation.

C. The torque function

tities: The torque functionT(¢), takes the general form
1 oe]
= T(e)= t; sin(j o). 34
N~ 3T W 27) (¢) 2)1  sin(j ) (34)
6 E; rq In vacuum, the normalized radial component of the exter-
7= AL O Wy (28)  nally applied RMP is written as
E; Dy Ay ijm(jne)
1 [ Wege| i 1o GimJne) o
L=E—( V\;”t) , 29 nad )= E . DIE D, A, Tn(jney ST (39
1 0
ol (W, in a corotating frame of reference. Thg are defined in Eq.
0( 0) 300 (1. The D; are defined in Eq(7). Theip() are defined
W in Ref. 22 Finally, the constantd; take the following

Here, 7 is the ratio of the natural rotation period of the island values
chain to the island width evolution time scale. Furthermore, x10°? ~
L controls the strength of the external perturbation term |n—3 762% 10°°

A1=1.6454, A,=1. 7058<10 1, Ay=—3.3174
Ag= 1281@<10* Ag=—6. 4520><1o*3, Ag
A= —2411310°3,  Ag=16539

3
the island width evolution equation. Finally] measures the <10~ efc. Here, we are assuming that all Fourier compo-
relative strengths of the ion polarization current and external€nts of the perturbation are either in phase or in antiphase

perturbation terms in the island width evolution equation.

with one another, for the sake of simplicity. Hence, there

Our full set of normalized island evolution equations canfeal parameters. The normalizations adopted in this paper

now be written as

imply thatb,;=1.
Thetj and thebj are related as follows:

1 dw
= —=w1-wY¥(1-hInw)]+Lycose t;=b;+«b,, (36)
7 dt ty= b+ b, 37)
5/3,,2 2
+LMW 3y [T((’D)] ’ (31) tj>2:ij—l+bj+ij+l! (38)
de - A wherek=Ly/(2w?3).
? =1+ n§=:l 9n~ Ve (32 The above expressions specify how a multiharmonic
t RMP exerts a torque on an, nmagnetic island chain. Over-
1dg [y (1)]2 tone harmonic components of the perturbatiae., jm, jn
- W T(0) - Brh- (33) components, wherg=2,3,4,..) are able to exert a torque on

v dt Js

the chain vianonlinear couplingin the island regio? The
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strength of the coupling varies with the phase of the islandately represent any plausible perturbed plasma velocity pro-
chain with respect to the external perturbation: this accountfile. The parameted, [see Eq(22)] takes the value 0.1861.
for the nondiagonal transformation matrix betweentthend

theb; . (Note that this variation was neglected in Ref. 22, forC Static perturbations

the sake of simplicity. This neglect is equivalent to the ap-—" P

proximationﬁlﬁ E, made in Sec. V C of Ref. 2p. Consider, first of all,static RMPs: i.e., perturbations
Incidentally, it is helpful to define the “locking Whose phase velocity,, is zero. Let us adopt the following
potential:” #? normalized plasma parameterg=0.1, v=0.01, andL=1
= (i.e., a Rutherford evolution time scale that is about 10 times
_[® , , j . the natural rotation period; of the 2/1 island chain, and a
Viea ¢)= LOTW Jde’= _J-Z‘l j_COE{J(’D)' (39) global viscous relaxation time scale, which is about H0
These parameter values are characteristic of small tokamaks
IV. SINGLE-HARMONIC RESONANT MAGNETIC such as HBT-ERHigh Beta Tokamak—Extended Pujse
PERTURBATIONS For the moment, we shall neglect the destabilizing effect of

the ion polarization current, by settirig = 0.
Suppose that we subject the example plasma described
In this section, we shall concentrate on single-harmonidn Sec. IV B to the 2/1 static RMP whose wavefomy(t), is
RMPs(i.e., perturbations with no overtone harmonic compo-shown in Fig. 1. Herey is the normalized perturbation am-
nent3g. For this class of perturbation, our island evolution plitude [see Eq.(19)]. Incidentally, we would expectr

A. Introduction

equations(31)—(33), reduce to ~0.1ms, in unnormalized units, for an HBT-EP-like toka-
mak. As can be seen, the amplitude of the external perturba-
l d—W:w2’3[1—w1’3(1—h Inw)]+Ly cose tion is slowly ramped up, held steady for a while, and then
7 dt slowly ramped down.
Figure 2 shows the phase-velocity response of the satu-
+LMw3y? sir? o, (40)  rated 2/1 island chain inside the plaspohtained by solving

Eqgs.(40)—(42)] to the applied 2/1 static RMP pictured in Fig.

d_‘#’zlJr 2 9u—d (41) 1. It can be seen that when the perturbation amplitude is
di =" ¢ relatively low, the island chain periodically speeds up and
slows down as it rotates past the perturbation, but the aver-
1dg, 2,3[Un(1)]2 _ age island phase velocity is reduced below its unperturbed
. —————SiNg—Bngn- (42)  value: i.e., the island chain experiences a net braking effect.
v odt Js However, when the perturbation amplitude exceeds a thresh-

In the following, we shall illustrate the typical behavior of old value, the island chain suddenlgcks to the external

solutions to the above equations in experimentally relevan@erturbation: i.e., its phase velocity is suddenly reduced to
parameter regimes. zero. Locking occurs at tim@) in Figs. 1 and 2. The island

chain remains locked until the perturbation amplitude falls

below a second threshold value, at which point the chain

unlocks i.e., it rapidly accelerates. Unlocking occurs at time
B. Example plasma (b) in Figs. 1 and 2.

Our example plasma is a tokamak equilibrium whose
normalized current profile takes the form(r)=o(0)(1
—r?/a?)%/%"1 Here,qo=1.1 andq,=3.2 are the central - ) '
and edge values of the “safety factor,” respectivéiywe . —— B
shall study the dynamics of am=2/nh=1 magnetic island I l
chain, embedded in this equilibrium. The minor radius of the
2/1 rational surface is;=0.7564. The saturation parameter - :
A\ [see Eq.(4)] takes the value-5.1050. The 2/1 tearing 2r .
mode is linearly unstable with stability indé& =6.765[see I ]
Eq. (1)]. All other tearing modes are linearly stable. The
unperturbed saturated radial width of the 2/1 island chain is I 1
W,=0.164 [see Eq.(20)]. The parameteh [see Eq.(27)] 1 i ]
takes the value 0.1144.

Let us adopt the physically plausible plasma density and
velocity profilesp(r)=p(0)(1—r?/a?)*? and u(r)= w(0) S T
X(1+r2/a?)3, respectively. In the following, the perturbed 0 100 200 300 400
velocity profile is represented as a superposition of the first t/ T

50 velocity eigenfunctionfsee Eq(26)]: i.e., we allown to FIG. 1. Normalized amplitude of the applied 2/1 static resonant magnetic

range from 1 to 5_0 in E(ﬁm—) an(_j (42). Convergence stud- perturbation versus time. Here,is the rotation period of the unperturbed
ies reveal that with this many eigenfunctions we can accuisland chain.
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(a) (b) 2 (a) (b)
L >""|"'III"'I""I.

PRI Y [ S TR T N ST ST S SR VO N W S SN | PRI | PSRRI NSRS O TSRO SO | ]
0 100 200 300 400 0 100 200 300 400
t/ T t/ T

. . . ) FIG. 4. Normalized width of the 2/1 magnetic island chain, versus time, for
FIG. 2. Normalized 2/1 island phase velocity, versus time, for a plasma, ja5ma subject to the 2/1 static resonant magnetic perturbation pictured in
subject to the 2/1 static resonant magnetic perturbation pictured in Fig. ig. 1. Here,W, is the unperturbed island width. The normalized plasma
The unperturbed normalized island phase velocity is unity. The normalize%arameters arg=0.1,»=0.01,L=1, andM =0

plasma parameters arg=0.1, »=0.01,L=1, andM =0.

Itis apparent, from Fig. 1, that the threshold perturbation{@f larger prior to locking than prior to unlocking. The reason
amplitude needed to trigger locking is significantly largerOr this is that, prior to locking, the plasma is subject to an
than that required to trigger unlocking. This implies that once?Scillating electromagnetic torquesince the island chain is
the locking threshold is exceeded, and the island chain lockitating that drives arunrelaxedperturbed velocity profile.
to the external perturbation, the amplitude of the perturbatiof?" the other hand, prior to unlocking, the plasma is subject
must be reduced by a substantial factor before the chain wif® @ Steadyelectromagnetic torquesince the island chain is
unlock. This hysteresis in the locking/unlocking cycle hasstatld,lwhl_ch drives a.reliaxedv.elocny profile. It folllows that
been observed experimentalfyThe origin of the hysteresis & rotating island chain is subject to a stronger viscous restor-
is illustrated in Fig. 3. ing torque than a locked island chain. Hence, a larger elec-

Figure 3 shows perturbed plasma velocity profiles calcu{romagnetic torquéi.e., a larger perturbation amplitudis
lated [from Eq. (26)] just before lockindi.e., at time(a) in required to lock a rqtatmg island 9ha|n than is needed to
Fig. 2] and just before unlockinfj.e., at time(b) in Fig. 2J. pre_vent allocked chain from unlockirignce the plasma ve-
Now, locking occurs when the electromagnetic torque ex]OCity profile has relaxed ,
erted on the island chain by the external perturbation over- 1€ previous discussion illustrates the importance of ac-
whelms the viscous restoring force exerted by the pla¥ma, curately modeling the viscous coupling between the island
Of course, the electromagnetic torque is proportional to th&hain and the plasmd.*® In other words, it is necessary to
scaled amplitudey, of the external perturbation. The viscous &/loW the perturbed plasma velocity profile to evolve vis-
torque, on the other hand, is proportional to the jump in theoUsly in response to the applied electromagnetic torque.
derivative of the perturbed plasma velocity profile across thd/10St previously - published ~sets of island evolution

iAn&0.14 ; ; e ;
island regior® It can be seen, from Fig. 3, that this jump is equatlopé were derived under the simplifying assumption
that a fixed-width region of the plasma corotates with the

island chain. Such equations are of limited use in interpreting
O e e experimental data, since they are incapable of accurately
' modeling the hysteresis in the locking/unlocking cycle.
Fl Figure 4 shows the normalized width of the 2/1 island
] chain, versus timéobtained by solving Eqg40)—(42)], in
the presence of the 2/1 static RMP pictured in Fig. 1. It is
1 clear that, as long as the island chain remains unlocked, its
3 width oscillates as it rotates past the external perturbation.
. ; 1 Note, however, that, on average, the width of the island is
R SRR e EEE RN 7 reducedduring the unlocked intervdi.e., prior to time(a),
12 TN and after timgb)]. This “dynamical stabilization” effect has
0 02 04 06 08 1 been observed both experimentdff§ and in computer
simulations®® Unfortunately, this effect is often misinter-
FIG. 3. Normalized perturbed plasma toroidal angular velocity profiles justpreted as a manifestation of the suppostabilizing influ-
blefme '°thi,”9(tsct’"dt ;;rg/‘?l irt‘gtiigigsgﬁt ng)c:gt‘i?azl:ﬁﬁbiiirgf foii;ti o ENCE of the ion polarization current associated with strongly
Igi;.sn;é'l'sr?ejsgrtigal line indicates the Iocatior? of thep 2/1 rationalpsurface.gheared perturbed plasma flow _m the island realaHOW' .
Here,v(@ i the “natural frequency” of the 2/1 island chain. The normalized €Ver, as has now been established beyond doubt, the ion
plasma parameters are=0.1, »=0.01,L=1, andM =0. polarization effect is, in factdestabilizing(within the con-

nAQ(r,) / v

Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASCE license or copyright; see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 8, No. 10, October 2001 Improved evolution equations for magnetic island . . . 4495

1 (a) (b)
T L B B B LS BERy
05 /I
5 3¢ ]
[ §': 8
~ 0 § >
s & \02_‘ 7
S > 0
_05 g L
. kS 1
-1 | PRSI N T SR S : /l . \ \
0 I 11 22 1 P N I Al PR |
o 100 t2°/°_r 300 400 0 100 200 300 400

t /T

FIG. 5. Helical phase of the 2/1 magnetic island chain, versus time, for &G 6. Helical phase velocity of the applied 2/1 rotating magnetic pertur-
plasma subject to the 2/1 static resonant magnetic perturbation pictured igation versus time. Here,© is the “natural frequency” of the 2/1 island
Fig. 1. The normalized plasma parameters are0.1, »=0.01,L=1, and chain.

M=0.

S 201 _ o this is usually achieved by modulating the phase of the ex-
text of resistive/viscous MHB*" Indeed, ion polarization temal perturbation on a faster time scale than that required
plays no role in the dynamics shown in Fig. 4, since we havggy |ocking 1 Unfortunately, such rapid phase modulation of
setM =0 in our island evolution equations. The explanationg RMP would almost certainly require generating field coils
for the dynamic stabilization seen in Fig. 4 is quite sinle. |ocatedwithin the vacuum vessébtherwise, the perturbation

As the island chain rotates past the external perturbation, {l,ould be shielded from the plasma by eddy currgmgich
experiences an oscillating electromagnetic torque. Thi$s ot reactor relevant.

torque causes the island rotation to becaroauniform i.e., As can be seen from Fig. 4, the island width is generally

the island chain continually speeds up and slows down as feqyced below its unperturbed value in the unlocked interval,
rotates. Moreover, the nonuniformly rotating chain spendsyhereas it is enhanced in the locked interval. Since the elec-
more time in the stabilizing phagee., cosp<0—see Ed.  tromagnetic locking torque is proportional to the product of a
(40)] of the external perturbation than in the destabilizingscaled perturbation amplitudg, and the square of the island
phase(i.e., cosp>0). Hence, the island chain experiences ayigth, W [see Eq.(42)], this implies that a fixed amplitude
net stabilizing effect. As is apparent from Fig. 4, this stabi-external perturbation generally exerts a larger locking torque
lization effect can become quite strong when the amplitudey, 5 |ocked, rather than an unlocked, island chain. This effect
of the external perturbation approaches the locking thresheuds to deepen the previously mentioned hysteresis in the

old. Another important consequence of nonuniform islandgcking/unlocking cycle, although it is not its primary cause.
rotation is that the island chain spends more time in the

helical phase in which it islowed dowrby the electromag-

netic torqueli.e., sinp<0—see Eq(42)] than the phase in D. Rotating perturbations

which the torque causes it &peed upi.e., sing>0). This Let us now considerotating RMPs. For this study, we
accounts for the net braking effect seen in Fig. 2 prior toshall employ the following normalized plasma parameters:
locking. 7=0.1,v=0.01,L=1, andM=0.1. These parameters are

According to Fig. 4, as soon as the island chaicksto ~ the same as those used in our previous study, except that we
the external perturbation it istrongly destabilizedi.e., its  are now explicitly taking into account the destabilizing effect
width increases substantially. Figure 5 shows the helicabf the ion polarization current, by settidg=0.1. This value
phase of the island chain versus time. Note that during lockfor M is characteristic of small tokamaks such as HBT-EP.
ing [i.e., between time&) and(b) in Fig. 4] the island chain Suppose that we subject the example plasma described
always maintains aestabilizingphase relation with respect in Sec. IV B to the 2/1 rotating RMP whose normalized
to the external perturbatiofi.e., — 7/2<¢<w/2). Thisis a  helical phase velocity;.(t), is shown in Fig. 6. As can be
standard result in MHD theoR).It can be seen, from Fig. 5, seen, the rotation frequenciye., phase velocityof the per-
that as the amplitude of the external perturbation is rampeturbation is ramped linearly from zero to a final value that is
down, and the electromagnetic locking torque consequentlfour times the “natural frequency” of the target 2/1 island
decreases, the viscous restoring torque rotates the locked ighain inside the plasma. The perturbation amplitude is rap-
land phase toward the stabilizing regidine., towardse idly ramped up at timé=40r, held steady at the normalized
> 1r/2), but that the island chain unlocks before stabilizationvaluey= 0.9, and then rapidly ramped downtat 440r.
is achieved. Indeed, conventional wisdom holds that a mag- Figure 7 shows the phase-velocity response of the satu-
netic island chain caneverlock in a stabilizing phase rela- rated 2/1 island chain inside the plasma to the applied 2/1
tion to a RMP. It follows that magnetic feedback stabilizationrotating RMP pictured in Fig. 6. It can be seen that when the
of tearing modes is only feasible if locking is prevented—rotation frequency(i.e., phase velocifyof the perturbation
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FIG. 7. Normalized 2/1 island phase velocity, versus time, for a plasma-IG. 8. Normalized perturbed plasma toroidal angular velocity profiles just
subject to the 2/1 rotating magnetic perturbation pictured in Fig. 6. Herepefore locking(solid curve, halfway between locking and unlockirighort-
v(® is the “natural frequency” of the island chain. The normalized plasma dashed curve and just before unlockingong-dashed curyefor a plasma
parameters arg=0.1, v=0.01,L=1, andM =0.1. subject to the 2/1 rotating magnetic perturbation pictured in Fig. 6. The
vertical line indicates the location of the 2/1 rational surface. Hef®,is
the “natural frequency” of the 2/1 island chain. The normalized plasma

lies too far below the “natural frequency” of the island Parameters arg=0.1,»=0.01,L=1, andM=0.1.
chain, the chain remains unlocked. In this interval, the

chain’s rotation frequency oscillates about an average value , ) .
that islessthan its natural value: i.e., there is a net breaking!Vely When the perturbatiofocks a resonant island chain
effect. However, once thémagnitude of thedifference be- inside the plasma—upfortyqately, as soon as the |slanq chain
tween the perturbation frequency and the “natural 1nre_locks to the perturbation, it istrongly destabilizedsee Fig. .
guency” of the island chain falls below a threshold value, theg)’ and consequently degrades the plasma energy confine-
island chain suddenlipcksto the perturbation: i.e., its rota- ment. . . .

tion frequency becomes identical to that of the perturbation. _Flgure 9 shows_the normalized width of the 2/_1 island
Locking occurs at timea) in Fig. 7. In the locked interval, Chain. VErsus time, in the presence of the 2/1 rotating RMP
the island chain’s rotation frequency is swept upward by th?/ctured in Fig. 6. As before, the island chain is strongly
perturbation, eventually reaching a value that is almost thre&t@Pilized by the applied perturbation prior to lockifige.,
times its natural value. However, when the difference beprlqrto time(a)]. leeW|se., the chain is stlrongly destabilized
tween the perturbation frequency and the “natural fre—durlng the Io_cked phasg.e., between tllme:éa) a”?' (,b)]'
guency” of the island chain exceeds a second critical Valuelﬂc‘)wever, unlike the previous case, the !slgnd charde;ta-

the island chain suddenlynlocks i.e., it suddenly deceler- bilized k?y the perturpatlon aftgr unlpcklnb.e., after t|r'n.el
ates. Unlocking occurs at tin(@) in Fig. 6. After unlocking, _(b)]. This new effect is a ma_1n|festat|on qf the destabilizing
the island rotation frequency oscillates around a value thdpfluenc_e of the lon polarlzatlon_ currefwhich was not pre-
slightly exceedsts natural value. viously included in our calculatiopslt turns out that when

It is apparent, from Fig. 7, that the threshdidagnitude
of the) difference between the frequency of the external per-
turbation and the natural frequency of the island chain —— .(‘,’). SN .(b{.
needed to trigger locking is substantially smaller than that ‘
required to trigger unlocking. This is another manifestation
of the hysteresis in the locking/unlocking cycle discussed
earlier. Moreover, the explanation for this hysteresis is the
same as before.

Figure 8 shows perturbed plasma velocity profiles calcu-
lated just before lockindi.e., at time(a) in Fig. 7], just
before unlocking[i.e., at time(b) in Fig. 7], and at some
intermediate time. Clearly, a rotating RMP is very effective
at injecting toroidal angular momentum into a tokamak
plasma. Note that the driven velocity profile is fairly flat . .
inside the rational surface, but strongly sheared outside. Mo- 0500 " Boc 00 400
mentum injection via rotating RMPs has been successfully t /T
demonstrated on both JFT-2#Mand HBT-EP Jensen and _ _ o _ _
Leanard® have suggested that this mechanism could be usefl, & Normelied widh of e 21 nagnelc dand i, uersus e, o
to control velocity shear within tokamak plasmas. The prin-pere, w is the unperturbed island width. The normalized plasma param-
ciple objection to such a scheme is that it only works effeceters aren=0.1, v=0.01,L=1, andM=0.1.

15 .

W/ W,

05 n
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the island chain is not locked to the external perturbation it is destabilizing phase
subject tatwo distinct “inertial” effects. The first effect is the 2
previously mentioned nonuniform island rotation, which

causes the chain to spend more time in the stabilizing phase

of the external perturbation than the destabilizing phase. The 1
second effect is the destabilizing influence of the ion polar-

ization current associated with perturbed plasma flow in the M
island region. It turns out that the stabilizing influence of >§ 0
nonuniform island rotation is relativelgtrong when the
(magnitude of thefrequency difference between the applied

L

—_
LI R R B B N
TSI B

perturbation and the island ismall and relatively weak

otherwise®® On the other hand, the destabilizing influence of

the ion polarization current is essentially frequency indepen- _ N T
dent[see Eq.(40)]. Hence, the former effect dominates the -1 -0.5 0 0.5 1
latter just prior to lockingwhen the frequency difference is o/ m

relatlvely small, _and vice V_ersaJus_t after unIOCk'ng(When FIG. 10. Locking potentials. The dashed curve shows the locking potential
the frequency difference is relatively lajgeNe conclude v, = cose associated with a single-harmonic RMP. The solid curve
that hysteresis in the locking/unlocking cycle, combined withshows the potential associated with a “designer” perturbation characterized
the different frequency dependences of the two previouslpy P1=1.0.b,==2.92,b3=1.0, andb;5=0.0. In the latter case, the cou-

. . . . . . . r;'])Img parametel takes the value 0.254.
mentioned inertial effects, gives rise to a situation where a
unlocked island chain is inertiallstabilizedwhen it is being
slowed dowrby an external perturbation, and inertiatie- ] . )
stabilizedwhen it is beingsped up-at least, in frequency 2ré specially chosen so as to construct a locking potential
ramp experiments. This conclusion is of great interest, sinc§&Pable of maintaining a resonant island chain stabiliz-

it seems to be in accordance with recent experimental resulf§9 phase. As explained in Ref. 22, the physics basis for
from HBT-EP3® designer perturbations is the fact that nonlinear coupling in

the island region allowgim, jn (wherej=2,3,4,..) magnetic
perturbations to exert small torques onrannisland chain.
V. MULTIHARMONIC RESONANT MAGNETIC Figure 10 shows the locking potential associated with a
PERTURBATIONS three-harmonic designer perturbation characterizedbby
A. Introduction =1.0,b,=—-2.92,b3=1.0, andb;-;=0.0. In Sec. IlIC we
explain how the vacuum, radial, magnetic perturbation that
bations with overtone harmonic componenior the sake of generates f[his potential can pe calculated using_the_ altjove
values. Incidentally, the coupling constantappearing in the

S|m_pI|C|ty, we s_hall restrict our investigation static pertur- transformation36)—(38), takes the value 0.254his value is
bations. For this class of perturbation, we need to employ our

full set of island evolution equation§31)—(33). In particu- chosen to be consistent with the following example calcula-

. tion). It can be seen, from Fig. 10, that nonlinear coupling
lar, we must explicitly calculate the form of therque func- S :
. between the fundamental and overtone harmonics in the is-
tion, T(¢) (see Sec. I ¢

land region generates a locking potential thatraslically
different from a conventional potential. In particular, the
B. Locking potentials minima of the potential now lie on thigoundaryof the de-
stabilizing region, rather than at iteidpoint Adopting the
usual rule of thumb that the locking angle is restricted to the
lower half of the potential, it certainly seems plausible that
p-our designer perturbation could lock a resonant island chain
j ,|o|>/2). Let us investigate fur-

Let us now considemultiharmonicRMPs (i.e., pertur-

Now, a torque function is most conveniently described in
terms of its associateldcking potential-see Eq.(39). Fig-
ure 10 shows the locking potential; .= — cose, associ-
ated with a conventional single-harmonic RMP. In the a ) 1= X
sence of plasma rotation, we would expect a resonarf @ Stabilizing phasé.e.
magnetic island chain to lock to such a perturbation at théher'
minimumof the potential. This is equivalent to saying that
the chain always locks in thenost destabilizingphase,¢
=0—see Eq(40). Plasma rotation tends to shift the locking
angle away fromp=0 (see Fig. 5 However, as a general Let us apply the designer perturbation discussed above
rule of thumb, the locking angle is restricted to thever half ~ to the example plasma described in Sec. IV B. Of course, the
of the potential: i.e., the regiol,,<0. This observation fundamental harmonic of the perturbation is 2/1. Moreover,
leads to the well-known result that a resonant island chaiithe perturbation is assumed to be static. Finally, the ampli-
always locks to a single-harmonic RMP indestabilizing tude of the perturbation is ramped from zero to a normalized
phasei.e., || < /2. value ofy=1 betweert=10r andt=20r. The perturbation

In Ref. 22, we introduced the concept of a “designer” amplitude is subsequently held steadyyat1l. The chosen
RMP. This is a multiharmonic perturbation in which the am-plasma parameters arg=0.1, »=0.01, L=0.35, andM
plitudes and phases of the overtone harmonic componentsO.

C. Designer perturbations

Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASCE license or copyright; see http://pop.aip.org/pop/copyright.jsp



4498 Phys. Plasmas, Vol. 8, No. 10, October 2001 Fitzpatrick, Rossi, and Yu

L1 .(‘.'). _ strength of the nonlinear coupling in the island region both

' ProrTrTr T decreaseas the island width decreases. It follows that if a
designer perturbation reduces the width of its target island
chain by too great a factor then it ceases to be effective.

VI. SUMMARY AND DISCUSSION

i ] We have derived an improved set of island evolution
08 - equations that incorporate the latest advances in MHD
I ] theory—see Sec. lll. These equations describe the resistive/
[ ] viscous-MHD dynamics of a nonlinear magnetic island chain
L J3) SIS T I RS R i -rati i -
0 0 20 00 50 200 (_embeddgd in a large aspe_ct ratio, I@veircular cross sec
t /T tion, toroidal pinch pIa;rT)am the presence of a program-
mable, externally applied, resonant magnetic perturbation
FIG. 11. The normalized width of the 2/1 magnetic island chain, versus RMP). Our equations are fairly simple in form, and, hence,
time, for a plasma subject to the designer perturbation shown in Fig. 1ocan be very rapidly intearated. Indeed. none of the example
Here, W, is the unperturbed island width. The normalized plasma param- . yrap y .g . ' P
calculations described in this paper took more than about 60
s of CPU(central processor unitime on an ordinary desk-
top computer. In fact, it would be quite feasible to employ
Figure 11 shows the normalized 2/1 island width, versusur equations during theal timeanalysis of data from RMP

time, in the presence of the designer perturbation describegkperiments.

eters arep=0.1, »=0.01,L=0.35, andM =0.

above. The island chain locks to the perturbation at tiene We have performed a number of example calculations
Note, however, that the island widtlecreasesfter locking.  using our equations. The purpose of these calculations is to
This behavior—which is unprecedentedwithin MHD illustrate the typical behavior of solutions to our equations in
theory—suggests that the island chain does indeed lock texperimentally relevant parameter regimes.

the perturbation in astabilizing phase This suggestion is For the case of a statici.e., nonrotating single-
confirmed by Fig. 12, which shows the helical phase of theharmonic RMP(see Sec. IV § we find that the island chain
island chain versus time. locks to the perturbation when the perturbation amplitude

Note, from Fig. 11, that the designer perturbation onlyexceeds a certain critical value, amdlockswhen the pertur-
reduces the island width by a modest amolir#., about bation amplitude falls below a second, much smaller, value.
20%). We find that any attempt to obtain a greater reductionThe main cause of thisysteresisin the locking/unlocking
in island width invariably fails—either the island chain un- cycle is the viscous evolution of the perturbed plasma veloc-
locks or the locking angle drifts into the destabilizing region.ity profile. It turns out that the profile is generally quite dif-
This behavior is easily understood. A designer perturbatiorfierent(and, hence, the viscous restoring force acting on the
only works properly provided it is able ttock its target island chain is quite differepjust prior to locking, and just
island chain, and provided that the nonlinear coupling in theprior to unlocking. This observation underscores the need to
island region is sufficiently strong to generate a favorablytreat the viscous coupling between the island chain and the
shaped locking potential from the component harmonics oplasma in a fairly sophisticated manner. Simply assuming
the perturbation. Unfortunately, the locking torque and thethat a fixed-width region of the plasma corotates with the

island chain invariably leads to highly inaccurate estimates

of locking and unlocking thresholds.
T T T When the island chain is not locked to the external per-
turbation it generally experiences a r&hbilizing effect.
This effect is often misinterpreted as a manifestation of the
supposed stabilizing influence of the ion polarization current
associated with perturbed plasma flow in the island region
(this effect is actually destabilizingln fact, the explanation
is generally much simpler. As the island chain rotates past
the perturbation, it experiences an oscillating electromag-
netic torque. This torque causes the island rotation to become
nonuniform The nonuniformly rotating island chain spends
more time in the phase in which it is stabilized by the exter-
e nal perturbation than in the opposite phase. Consequently,
50 100 150 200 the chain experiences a net stabilizing effect. As demon-

t/ T strated in our example calculations, this effect becomes par-

FIG. 12. Helical phase of the 2/1 magnetic island chain, versus time, for z;“CUIarly strong as the |OCklng threshold is approached. On

plasma subject to the designer perturbation shown in Fig. 10. The normakh€ Other hand, the effect is fairly weak well away from the
ized plasma parameters ate=0.1, »=0.01,L=0.35, andM =0. locking threshold.

asoyd Suizij1qoisap
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Our example calculations also show that the island chaiishear to suppress plasma turbulence. As we have seen, rotat-
is strongly destabilizedas soon as it locks to a single- ing RMPs are a very effective means of injecting angular
harmonic RMP. This occurs because the chain always locksomentum into a toroidal plasnisee Sec. IV . Moreover,
in a destabilizing phasendeed, conventional wisdom holds the driven velocity profiles are highly sheared in the outer
that a magnetic island chain must always lock to a RMP in &egions of the plasma. The usual objection to the Jensen and
destabilizing phase. Leonard scheme is that RMP momentum injection only

For the case of a single-harmonic, constant amplitudgyorks efficiently when the perturbatidocksa resonant is-
RMP whose rotation frequency is ramped steadily upwardang chain within the plasma. However, as soon as the island
(see Sec. VD, we find that the island chailocksto the  chain locks to a conventional single-harmonic RMP, it is
perturbation when thémagnitude of thedifference between  gongly destabilized, and consequently grows, leading to a
the rotation frequency and the “natural frequency” of the yegradation in plasma confinement. Suppose, however, that
island chain falls below a critical value, anshlockswhen |, o implement the Jensen—Leonard scheme with rotating,

the same freque_nc_y difference e_xceeo!s a second, mu‘fﬁultiharmonic RMPs that are specially designed so as to
greater, value. This is another manifestation of the hysteresigck resonant magnetic island chainsrieutral phases: i.e

in the locking/unlocking cycle discussed above. Moreoverm phases such that the islands are neither stabilized nor de-

the basic explanation is the same. As before, the island Cha's'llabilized by the perturbations. From what we have seen in
is strongly destabilized when it locks to the perturbation. y pert o . .
our example calculations, this seems eminently feasible. In

However, during the interval when the chain is not locked it~ i . ) ;
this case, it would be possible to tailor the plasma rotation

is subject tawo competing “inertial” effects. The first is the U : X ) o
stabilizing effect of nonuniform island rotation discussed Profile via rotating RMPs without directly destabilizing the

above. It turns out that the strength of this effect is a stronglysland chains within the plasma. Such a scheme is probably
decreasing function of thénagnitude of thedifference be- Not reactor relevangsince the RMP coils would have to be
tween the perturbation’s rotation frequency and that of thé?laced inside the first wall to avoid eddy-current shieldiing
island chain. The second effect is thestabilizinginfluence ~ however, it could well lead to some invaluable experimental
of the ion polarization current associated with perturbednsights into the relationship between velocity shear and tur-
plasma flow in the island region. It turns out that this effect isbulence.
essentially frequency independent. Under certain circum- The second application of designer RMPs relateseio-
stances, the combination of hysteresis in the lockingktlassical tearing modegNTMs) in tokamaks. As is well
unlocking cycle, and the different frequency dependences déinown, a NTM is anintrinsically stabletearing mode that
the two above-mentioned inertial effects, leads to a situatiopossesses metastable statén which a nonlinear island
in which the island chain istabilizedwhen the perturbation chain is maintained in the plasma by the perturbed bootstrap
rotatesmore slowlythan the chain, andestabilizedvhen the  current®” A NTM is ordinarily stable, but can be kicked into
perturbation rotatesore quickly This behavior seems to be jts metastable state by the transient magnetic perturbations
in accordance with recent experimental results fromgenerated by sawtooth crashes, ELMsdge-localized
HBT-EP . . ) modes, etc. However, a NTM magnetic island generally
For the case of a static, multiharmonic RM$ee Sec. only needs to be squeezed by a moderate amount in order to
V), we find that nonlinear coupling in the island region, com-tjgqer the reverse transition to its stable state. Suppose that

bined with a judicious selection of the amplitudes and phaseg, apply a static, multiharmonic RMP to a tokamak plasma

of the different harmonics that constitute the RMP, allow theg it 1o NTMs. Suppose, further, that the RMP is specially
island chain to lock to the perturbation irstabilizing phase

We t RMP ble of achieving thi | foat a “d designed so as to lock resonant island chainsstahilizing
ve er”m a capable ot achieving this novelleat a “de-,, e \When a resonant NTM is triggered, it will grow, lock
signer” perturbation, just to emphasize that a harmonic mp{)

: o the RMP in a stabilizing phase, anghopefully) be
must be chosemery carefully In our example calculations, . .
. . . squeezed out of existence. As we have seen, designer pertur-
we employ a three-harmonic designer perturbatioe., a

particular mix of 2/1, 4/2, and 6/3 magnetic fieldsinfortu- bations can only squeeze locked island chains by a moderate

nately, we find that our designer perturbation can OnIyamount—fortunately, this is all that is generally required to

squeeze a locked magnetic island chain by a modest amounigPilize NTMs. The beauty of this scheme is that the applied
before the chain either unlocks, or slips into a destabilizind?F'M IS StatiG so its generating coils can be placeatside
phase relation with respect to the perturbation. The problerf' first wall, which is highly reactor relevant. Moreover, no
is that both the locking torque—required to maintain thedetection equipment or feedback- circuits are requwe@. In
chain at constant phase—and the nonlinear coupling in theontrast, magnetic feedback using conventional, single-
island region—required to permit locking in a stabilizing harmonic RMPs requires fast phase modulation of the ap-
phase—both decrease as the island width is reduced. plied perturbation, in order to prevent locking—since island

Despite the limitation discussed above, designer RMP§hains always lock to conventional RMPs in a destabilizing
have a number of interesting potential applications to theohase'" Unfortunately, such rapid phase modulation of a
magnetic fusion program. The first application relates to thdRMP would almost certainly require generating field coils
idea of Jensen and Leondraf employing rotating RMPs to  located within the first wall (otherwise, the perturbation
control velocity shear inside tokamaks. The eventual aimwould be shielded from the plasma by eddy currgntgich
would be to enhance confinement by driving enough velocityis not reactor relevant.
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