PHYSICS OF PLASMAS VOLUME 8, NUMBER 6 JUNE 2001

Control of tearing modes in toroidal fusion experiments using
“designer” error fields

Richard Fitzpatrick and Enrico Rossi
Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712

(Received 17 October 2000; accepted 20 February 2001

It is demonstrated that a magnetic island chain formed by a saturated tearing instability in a toroidal
magnetic fusion device can lock to a special class of externally generated magnetic perturbation in
astabilizingphase. The theoretical apparatus needed to design such perturbations is outlined. These
special perturbations—which are termed “designer” error fields—could be used to control the
amplitudes of tearing modes in toroidal magnetic fusion experiments without the requirement of fast
phase modulation. This type of control would be far more feasible in a reactor environment than
conventional active feedback control via external magnetic perturbations20@ American
Institute of Physics.[DOI: 10.1063/1.1365956

I. INTRODUCTION of the conducting structures surrounding the plasma—

. herwi he signals woul hiel from the plasm
Recent experimental results strongly suggest that furthe?t erwise, the signals would be shielded from the plasma by

: - eddy currents. Unfortunately, placing feedback coils this
progress in obtaining thermonuclear reactor grade plasmas tlose to a thermonuclear plasma is essentially impossible in a
either tokamaks or reversed-field pinch&¥FP3g is depen- b yimp

dent on the development of some reliable method for Con[eactor environment—the necessary shielding to protect the

trolling the amplitudes of relatively low mode-number tear- coils from the ”e“”.on and heat ﬂL.JX emanating from the
ing modes, resonant within the plasmaTearing modes are p'a!sma* not to mention the mechan!cal s_upport struct_ure re-
naturally unstable in toroidal magnetic fusion devi€ekey q:med tod.preve.nt the C?('jls f_roml being f_rlppedhoff durlllngla
are driven by radial gradients in the plasma current deﬁsityp asma_disruption, would simply not fit in the available

and plasma pressufend generally saturate at relatively low space. : :
amplitudes (i.c. ~B/BS1%).9‘12 As the name suggests Suppose, for the sake of argument, that it were possible

“tearing modes” tear and reconnect magnetic field lines toto design an external m_agr1etm pertu_rbanon with the s_m_gular
roperty that a magnetic island chain would lock to it in a

produce helical chains of magnetic islands inside the plasmé). bilizi h W Id trol th litude of the i
Such island chains degrade plasma confinement because b?ﬁ fizingphase. Yve could control the amplitude of the 1s-

heat and particles are able to travel radially from one side o nd c:am, uaggl SFJCh % perturba::on, W'th?éjtbthe need ;or
an island chain to the other by flowing along magnetic field'@St Phase modulation, because there would be no need to

lines, which is a relatively fast process, instead of having t®Vercome the phase instability. This type of magnetic feed-

diffuse across magnetic flux surfaces, which is a relatively?@ck would be feasible in a reactor environment, since the
slow proces<? coils needed to generate the perturbation could be placed

Currently, one of the most promising options for control- outside the conducting structures surrounding Fhe .plasma,
ling tearing mode amplitudes in toroidal fusion devices isWhere they could be properly shielded. Our aim in this paper
active feedback by means of externally applied, helical mag'S to demonstrate- thgt the novel scenario just outlined is ac-
netic perturbations. Active control has already been implefually a real possibility.
mented in a handful of tokamak experimettst®with some This paper is organized as follows. In Secs. Il and Ill, we
degree of success. Unfortunately, it is highly doubtfulteke the rigorous perturbation analysis of Thyagaraja
whether an active magnetic feedback system would be fe41982,"* which describes the nonlinear saturation ofram
sible in a reactor environment. As is well known, a magneticnagnetic island chain, and extend it slightly to deal with a
island chain naturally locks to a resonant magnetic perturbadeneral toroidal pinch equilibriunrather than just a toka-
tion in a helical phase such that the perturbation has a destgak equilibrium, island evolution on a resistive time scale,
bilizing effect on the chain. In fact, the stabilizing phase isand nonlinear coupling of the island chainlto,In magnetic
dynamically unstableThe typical time scale for the devel- perturbations(for I>1). We note, in passing, that Norris
opment of the so-calledhase instability” which causes an (1989 has published a paper criticizing Thyagaraja’s ap-
island chain in a stabilizing phase relation with a resonanproach. We fully concur with Thyagaraja’s rebuttal of these
perturbation to switch to a destabilizing relation, is only acriticisms®® In Sec. IV, we demonstrate that as a tearing
few milliseconds. Thus, an active feedback system must beode gradually becomes more unstable, and its saturated
capable of modifying the phase of the applied magnetic peramplitude consequently increases, its island flux surfaces un-
turbation on such a time scale in order to maintain a stabidergo a sequence of nonlinear distortions in which they are
lizing phase relation. This inevitably implies that the coils skewed radially, and, to a lesser extent, elongated in the di-
that generate the feedback signals must be lodagdeany  rection of increasing helical angle. Finally, in Sec. V, we
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show that the nonlinear effects that are responsible for thesend e=r/R,. As is well known, Eq.(2) is singular at the

distortions profoundly modify the island dynamics in the m/n rational surface minor radiusrg, which satisfies

presence of a special class of externally generated magnet(r;) =0, whereF(r)=mBy(r) —ne(r)B,(r). This singu-

perturbation. A perturbation of this class is made up predarity is resolved by the presence of a thin nonlinear/nonideal

dominantly ofIm,In (wherel>1) helical magnetic fields, region(i.e., a magnetic island chaieentered on the rational

with a much smallem,n component. It is possible to adjust surface.

the relative amplitudes and phases of these components in

such a manner that an,n island chain of sufficiently large

amplitude will lock to the perturbation in a stabilizing phase.

We call such a perturbation a “designer” error field. Here,

we use the term “error field,” rather loosely, to refer to a Let x=(r—rg)/rs. The most general solution of E)

static, externally generated, magnetic perturbation. in the vicinity of the rational surface that is consistent with
Incidentally, we note that Chet al?® have previously the physical requirement thaf™" be continuous across the

published a paper investigating the effectlof,In external island region is written as

magnetic perturbations on the growth of eamn magnetic

island. Both the method adopted and the results obtained in  y™"(x) =y ™"

the Chu paper differ substantially from those reported here.

C. Asymptotic behavior of ™" in the vicinity of the
rational surface

14+ (A™ —Ng—A)X+Npx In|x|

X
x2 In|x|) + A\If""”u +0(x?),

No(No— A
+0(0 l) 5

Il. PRELIMINARY ANALYSIS 2
A. Plasma equilibrium )

Consider a large aspect rafibzero8,22 plasma equilib-  Where

rium whose unperturbed magnetic flux surfaces map(@lut reg’

mosb concentric circles in the poloidal plane. Such an equi- 0= ( ra—2mne/(m2+n262)) ) (6)

librium is well approximated as a periodic cylinder. Suppose s

that the minor radius of the plasmaasStandard cylindrical m2—n2e2

polar coordinatesr(#,z) are adopted. The system is as- Ni= mz) , 7
r

sumed to be periodic in the direction, with periodicity
length 2rR,, whereR, is the simulated plasma major ra-
dius. It is convenient to define a simulated toroidal angle
:Z/Ro.

The equilibrium magnetic field is written B
=[0,By(r),B4(r)], whereVIB=o(r)B.

and '=d/dr. Here, ™" represents theeconnected mag-
netic fluxat them,n rational surface, whereas¥™" is a
measure of then,n helical current flowing in the vicinity of
this surface. The quantitA™" has no particular physical
significance. Note thal’™", A¥™" andA™" are all com-
plex quantities.

B. Newcomb’s equation

The magnetic perturbation associated withram tear-  D- Island region

ing mode(i.e., a mode withm periods in the poloidal direc- Let us assume the existence ofram helical quasiequi-
tion, andn periods in the toroidal directigrean be written as  jiprium in the immediate vicinity of the rational surface. This
b(r,t)=b™"(r t)€¥, (1) is equivalent to the assumption that all quantities in this re-

) ) . gion are functions of, ¢, andt alone. The equations govern-
where/=m#—n¢ is a helical angle. Of course, the physical ing the quasiequilibrium are

perturbation is the real part of the above expression. In this

paper, it is assumed tham>0 andn#0. The linearized V-B=0, 8
magnetic flux functiony/™"(r,t)=—irb™" satisfies New-
comb’s equatio? V-V=0, 9
d/ dyg™" o
il I Sk S N VIOB= ugd, (10
dr(f i ) gy™"=0, 2 o
Where JOB=0, (11
r E+VOB=nJ, 12
(0= e, @ ’ "
whereE, B, J, andV are the electric field, magnetic field,
1 r(neB,+mBy) do current density, and plasma velocity, respectively, gnid
g(N=++ (m%+ %3 (mB,—neB,) dr the (constant parallel electrical resistivity in the vicinity of
) the rational surface. Note that plasma inertia, viscosity, and
2mneo ro @) pressure are all neglected in this calculation. Without loss of

+ - , . )
(m?+n2%€?)?  m?+n?e? generality, we can write
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V=CV xOn+V,n, (14

wherey, x, B, andV, are functions of, ¢, andt only. Here,
C(r)y=(m?+n?e?) Y2 whereas n(r)=C(0,ne,m). Note
thatB-V¢=V-Vx=0, soy and y are themagnetic flux func-
tion and velocity streamfunctignrespectively. Incidentally,
we are able to express tlig and V fields in above forms
because all of the Fourier harmonics included in our calcu-

(9
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Py,

C +n-(VOB _&n
F

— OH,
Mo

(29

where = iy— iy and SH=H—H,.

The complete set of island equatiofise., Egs.(16),

(19), and(25)] takes the form

asy 1
ot

ax oY dx Iy

ar ¢ dL or

| |

lation share the same helicity: i.e., the same ratio of poloidal _ l{H —HO[1+HDx+0(x2)]} (26)
to toroidal mode numbers. Mo ’
It is easily demonstrated that
Py 1oy 2n%e> gy (m?+n?€?) i’y
J =T 52T o 2. 2.2 2 Y
EH:C_lﬁ, (15 ar? r ar  r(m?+n%e?) or r a
at
2mne G 27
and * r(m?+n2e?) (
5 Cazzp Cayp _dCay C 1 (321,0 dG
I R T Y2 H=C g, (28)
2mne . .
+C? B, (16) E. Normalized boundary conditions
A A Let
whereE;=n-E, andJ,=n-J. It is also possible to show that
v =gimin, (29)
By=CG(¥), (17
AP =AM, (30)
modi=CH(¥), (18)
A|:Alm|lnq,lm,|n_ (31)
dG
H=G dv’ (190 Our fundamental normalizations are
Now, we can write ~ 4
PXO=g (32
1
*© Im In
(r t)
Y1, =ho(r) Z e's, (20 X
- X= , 33
P (33
H(r,,t)=H (r)+z (r v elld, (21) whereW(t) is assumed to beeal, and
v
Wherezpo(r):—ﬂsF(r’)dr’ andHgy(r)=o(neB,+mBy). M:”:ﬁ<1 (34
Taylor expansion off, andH, aboutr =rg yields s
is our expansion parameter. Let
Po(X)=—rgFO X—2+F<1>i3+0(x4) (22) ~
0 s 2 6 ’ W =uV2p v, for 1>1, (35)
Ho(x)=H@[1+HWx+0(x*)], (23 AW = u2In u Y20 AT, for >0, (36)
ith ~
w A= p2In w2y A, for I>1, 37)
F(0) = <%[ra(m2+n262)—2mne]) (24) Here,‘iﬁ , A\iﬁ , andA, are all designed to b®(1) quanti-
ne ties.

s

Finally, the scalar product af with the perturbed Ohm’s sion for the normalized magnetic flux function at the bound-

law gives ary

Equations5), (20), and(22) yield the following expres-

of the island region:
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X2

WX, O)=— [ (7— cosg) + u2In w2\ X cos+

Iz+2

|)I |—XE(Ir

+O(M)]-

Here, the subscriptsandi refer to real and imaginary parts,

respectively. MoreoverA=A™"—\,—\;~0O(1), and
Ay= ro 39
> \ro—2mne/(m*+n’e?) ] (39
S
F. Normalized island equations
Let
2
~ A rsuH
() v, (40)
~ MoX
=——" 41
X , (41)
~ o~ TuG
Bi(#)= (42

X
(Ao—A1h2+N—1) I

smlg’

Control of tearing modes in toroidal fusion . . . 2763

3
—NoXIn|X|cos{—(A), X cos¢

I)r

—1/2]

X?
+ulnu No(Np—Ny) = cosg |X|E1 cosl¢
o0 \’I\f - )
sl¢+ XE —sml§+)\0X|22 ( I')rcoslg—)\ II)'sinlg
(38)

I1l. ASYMPTOTIC MATCHING
A. Introduction

Our task, in this section, is to solve the island equations,
(43)—(45), and asymptotically match this solution to the
boundary conditiori38). Let us, first of all, adopt the follow-
ing expansions:

¥=to+ uIn w2+ p it pin w2y,

+0(u), (48)

J= jo"‘ w?In ,ufllzjl-l- ,u,llzjz-l- min ,UfllZ:]3+ O(u),
(49)
By=Bjo+O(k). (50)

Note thatl;‘|0=§x2—})/x3. Incidentally, it is clear from Eq.
(45) that B;;=B;,=B;3=0. In the following, the terms on
the right-hand side of Eq48) will be referred to as zeroth-

Equations(26)—(28) reduce to the following set of normal- order, first-order, second-order, and third-order terms, re-

ized island equations:

PR ox o o dx
_ 1/2 _ g XYY TV IX
pinphaoY—p (ax gl ox ag)
=J— N+ u Y2\ 6X) +O(n), 43
. Py . I
J:_W+)\3[1_M1/2(1_>\1)X]B||_Mllz)\lﬁ+O(M),
(44)
J=B dB, (45)
wI=Bra
Whereéfﬁ= Syl 4, and
- 2mne 46
=\ e 48
with
27 du 12
R R—1/2 E_ (47
In dt

Here, = rs,U«o/ﬂ is the resistive evolution time scale in the

spectively. We shall develop our matched island solution or-
der by order.

B. Zeroth-order matching
To zeroth-order, Eqg43) and (44) yield

- o

Jo=ho= = =57 +X3Bjo.- (52)
It follows that

Py

xz - L (52)
Matching to Eq.(38) at O(1) gives

- X2

Po= —(7— cosl |. (53

As is well known, the above flux function maps out a chain
of magnetic islands, centered on the rational surface, of
maximum radial width,

W=4u'r . (54)

vicinity of the rational surface. In accordance with Ruther-The separatrix lies ap0= — 1. Moreover, the island O points

ford (1973° and Thyagarajg1981),*! we assume thak,
~0(1).

and X points lie at=j2m and {=(2j — 1), respectively,
wherej is an integer(See Fig. 1. Note that
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=, =g -4-2 0 2 4
X

FIG. 1. Island flux surfaces calculated from E#01), using the parameters FIG. 2. Island flux surfaces calculated from Ef01), using the parameters
listed in Table I. The stability index for the fundamental harmonic takes thelisted in Table I. The stability index for the fundamental harmonic takes the

valueE,=0. valueE;=5.
51}/o=cos§. (55 (f(s,0.0))
f(s,0,0) df
C. First-order matching (996l 9X) 2’ for =1,
To first order, Eqs(43) and (44) yield ) 1o [F(s,Q,0)+(—s,Q,0)] d¢
N f -—, for Q<1,
) o 2[(aylaX)] 2m
Ji=— ——5=0. (56)
axX (61)
Matching to Eq.(38) at O(u?In u~Y?) gives whereX(s,€,{g)=0. It is easily demonstrated that
z,A{/l: —\pX cos{. (57) ﬁﬁ_:ﬂ_ 3_&@ _
X 9 X aL 0, (62)

This higher-order term gives rise to a slight distortion in the
island structure, displacing the X points radially in oneirrespective of the form of.
direction, and the O points in the opposite directi¢Bee
Fig. 2)

E. Higher-order matching

Flux-surface averaging of E¢43) yields

D. Flux-surface averaging L (X) (5:#)
_ 12y A ~172
It is helpful to define a set of island coordinates: I =rotp )‘0<1> pIn p = Ny 1y (63
s=sgnXx), (58  Let
0= _&1, (59) 3(2)::]2+ ,U,llzln /1/_1/233. (64)
{=mb-né. (60) It follows that
To lowest order, the island separatrix liestat 1. Theflux- 3. = X _ 121 12\ (cos)o) 65)
. . =M M m Y ,
surface average operatdr--) is defined as (L (1)(0)
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where the subscript0)/(1) on a flux-surface average indi-
cates that the average in question must be calculatedith

evaluated to zeroth/first order.
As is easily demonstrated, to first order,

X=52(Q+cost)— u?In u= ¥\, cost, (66)
o
X =2(Q+cos!). (67)
¢
It follows that
- (X)) (cos{) (o)
3=\ 120 1 240 ) O (6g)
@70 (1) ) Y (Do
F. Second-order matching
Equation(698) yields
A X)o
Jo,=\ (69)
Do
At large | X], this expression reduces to
3 Sg 12 -1/2 1/
Jo=N\o| X— + u*?In Y22 cos¢ +O(ut?)
o ! 70

Control of tearing modes in toroidal fusion . . . 2765
A 1
J3~0| 37| (75)
According to Eq.(44),
- P o
Ja+ )\gcos§=—W—)\1W. (76)

Here, we have included the:{'2In x~*?) contribution from
the large|X| expansion ofl,. Hence,

52'://3 -
W:_‘]3_)\O()\O_)\1)COS§- (77)
Let
b=zt No( Ao 1)—cos§ XE I)rcoslg“
Z (A
JrXIZ2 ( II)'smIg’Jr)\OXE I)rcoslg
—)\OXE ')'smlg. (78)
It follows that
Py
&—)I’Z(IS—:—Jg. (79

The second term on the right-hand side should properly bﬂccordmg to Eq (38) at large|X|,

included in the largéX| expansion ofl;.
According to Eq.(44),

5’2://2 'ﬂo
X2 N3(1=N)XBjg—N1— X

P,
= — W_I—[)\l)\z )\2+ 1]X

32: -

(71)

Hence, at largéX|,

i, N COSL 1

(72)

Integrating, and matching to E¢38) at O(x'?), we obtain
3

~ X
Y2=—[ho=Aihatha—1] 5=+ hoX In|X|cosZ

I)r

+(A), X cos¢— (A); Xsm§+2 cosl ¢
W),
( I)'sinlg. (73
= |
G. Third-order matching
Equation(68) yields
(cos¢) o)
J3=—Ng———, 74
3 5 <1>(0) ( )
wherexs=\3+\,.

AT)),;
s|§—|x|21 ( 2||) sinlZ. (80)

At this stage, we have matched all terms in E2f), except
for those involvingA W, .

H. Evaluation of A,

It is clear from Eq.(74) that33::]3(x,cos§). Hence, it
follows from symmetry, and Eq80), that

(A¥));=0, (8D)
for all 1>0. In other words, tha‘if, are real quantities. Let

AT, =1A s, (82)
for all I >0. Furthermore, let

I3 I S~

Ja _ ol )+2 J3,(X)cosl ¢, (83)

)\5 2 =1

Vs Po(X) &

li_s 0( ) Z P (X)cosl¢. (84)

5

It follows from Eg. (79) that

&P _ 3 85

oz (85
for 1=0,...¢c. Hence,

dp dp = 2]003 X)dX=A 86

Wx axl. - . (X)dX=A,. (86)
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TABLE I. Data calculated for am=2,n=1 tearing mode in a large aspect
ratio (i.e., e,—0), zeroB tokamak equilibrium characterized hy= o[ 1
—(r/a)?]>"® The values of the safety factor at the center and edge of th
plasma areqy=0.85 andq,=3.2, respectively. Alsor,=0.778%, c

=1.15, and\ = —8.515.
Poloidal Toroidal

I mode number mode number A = A
1 2 1 +1.6454 +2.826 1.964
2 4 2 +1.7058e-1 —5.148 1.502
3 6 3 —3.3174e-2 —-10.06 1.009
4 8 4 +1.2816e-2 —14.52 0.6193
5 10 5 —6.4520e-3 —18.81 0.3580
6 12 6 +3.7622e-3 —23.00 0.1987
7 14 7 —2.4113e-3 —-27.15 0.1071
8 16 8 +1.6539e-3 —31.25 5.646e2

Here, we have made use of the fact tﬁgxtis an even func-
tion of X. Note that we require\,=0 for self-consistent
matching. It follows that

f J coslZdZdX.
0J-m
(87)

o 2

0 a
Finally, changing to island coordinates, we obtain
= {C0S cosl
(€0s{)(0)(cosl £} (o) 40

4,[71 <1>(0)

Computation of the above integral gives thevalues listed
in Table I. Note thatA =0, in accordance with our earlier
requirement.

35(Q)
N5

A

(89)

|. Evaluation of AW,
Equations(36), (47), (54), and(82) yield
o W drg\ T d(Wiry)
Arg w 2 dt

for >0, assuming that’; is real. Let us now relax this
restriction. Suppose that

qllzlille*iq’ll

A\I’|:|A|\I’l

} . (89

(90

where\ifl and ¢, are both real. As is easily demonstrated,

TR d(W/I’S)

2 dt

the generalization of Eq89) is
s )

W
(91

for 1>0. For the casé=1, the above formula is similar to
that obtained previously by ThyagardfaHowever, the ex-
tension of this formula to covdr>1 is a new result.

ﬂ>+

A\P|=IA,\i'1e‘“‘Pl[)\§( W

IV. NONLINEAR ISLAND COUPLING

A. Introduction

Our aim in this section is to investigate the growth and

saturation of am,m tearing mode in light of Eq(91). In

R. Fitzpatrick and E. Rossi

mental or | =1, harmonic—to the varioubn,In harmonics
(wherel >1)—which we shall refer to asvertong or | >1,
armonics—via nonlinear effects in the island region.

B. Perturbed magnetic field

The perturbed magnetic field in thmuter region(i.e.,
everywhere apart from the island regiaran be written as

SB=CV syn, (92
where
o S Im,In
5¢(r,a,¢,t)=|21 wé'l. (93)

Here, zjb'm"“(r) represents the normalizein,In tearing
eigenfunction. In other words,/'™'"(r) is areal, continuous
solution to Newcomb’s equatiof2), which is well behaved
asr—0, and satisfieg/™'"(rg)=1 andy'™'"(c)=0. Here,

we have assumed the presence of a conducting shell located,
outside the plasma, at minor radius-c. This prescription
uniquely specifies/'™'"(r). In general,/™'"(r) possesses

a gradient discontinuity at=rg. The real quantity,

S Im,In st
E|=(rdl// (r))

dr
can be identified as the standdirtear stability indeX for the
Im,In tearing mode. In this paper, it is assumed tBat-0
andE; <0 (for I>1). In other words, the fundamental har-
monic is linearly unstable, whereas the overtone harmonics
are linearly stable.

(94

C. Asymptotic matching

Equation(91) encapsulates the nonlinear physics in the
inner region i.e., the island region. Standard asymptotic
matching between the inner and outer regions yfelds

AV\=E Y, (95

for all [>0.
For the fundamental harmonits=1, Eqgs.(91) and (95)
reduce to the well-knownRutherford island evolution

equation’
A1 d(Wiry) 5 W 4rg
7TRT—E1—)\OA1 4—rs In W . (96)

The second term on the right-hand side of the above formula
is a nonlinear saturation term similar in form to that first
obtained heuristically by Whitet al. (1977 and rigorously
by Thyagaraja1981).!

According to Eq.(96), a linearly unstablen,n tearing
mode for which

NZA
0<E;< Oe L

(97)

particular, we shall be interested in quantifying the couplinggrows algebraically on eesistivetime scale, and eventually

of the m,n harmonic—which we shall refer to as tlfignda-

saturatesat an island widthV,, satisfying
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(%),n(“_fs) _ B ©8) 1.0
4rs Wo )\OAl
Of course, we requir@Vy<<r in order for the “thin island”
ordering adopted in the earlier part of this pages., u<<1) |\
to remain valid. O 5 ;

For the overtone harmonic$>1, Egs.(91) and (95) *
reduce to

_,\Il__lE_lﬁe*ilm (99)

v, (—E) Ay ’
whereW; and ¢, are defined in Eq(90). The above expres-
sion specifies the amplitude and phase of the overtone har-
monics generated, from the fundamental harmonic, via non-
linear coupling in the island region. In general, the
amplitudes of thd>1 harmonics are significantly smaller
than that of thd =1 harmonic, sincéE A <(—E;)A, (for
[>1). It follows, from Eq.(93), that the perturbed magnetic
field in the outer region consists of da=1 field, plus a
relatively small admixture of>1 fields.

o —

¢/

D. Island flux surfaces

The magnetic flux function in the island region is written
[see Eq(20)] as

y=ot oy (100 FIG. 3. Island flux surfaces calculated from E§01), using the parameters

~ - . . listed in Table I. The “skew” term has been neglected. The stability index
Let = y/W,. It follows that for asaturatedisland chain, for the fundamental harmonic takes the vakiie= 10.

“ X2 , E, ,
PY(X,l')=— (7—0034 ) - mXcosg’
|>1), as previously assumed. In the following, we shall treat
E, as avariable parameter, while assuming that all of the
other parameters listed in Table | remain fixed. This treat-
, ) ment is justified, to some extent, becauseg is far more
where {’={— ;. Note that the second term on the right- qensitive to slight localto the rational surfagechanges in
hand side of the above expression corresponds toythe the current profile than any of the other parameters. For in-
correction calculated in Sec. Il C. R stance, we note that the overtone harmonic stability indices,
It can be seen that the island flux functigitX,Z), de-  E, (for 1>1), listed in Table I, lie fairly close to their
fined in EQ.(10Y), is parametrized bfz,—the linear stability  vacuum values—2Im (i.e., the values obtained by com-
index of the fundamental harmonic. For a weakly UnStab|Ep|ete|y neglecting the effect of the plasma curjent
tearing mode that saturates at a relatively low amplitigie, Figure 1 shows island flux surfaces calculated using for-
is small, and the nonlinear correctionsdi.e., the second mula(101), and the parameters listed in Table I, for a low-
and third terms on the right-hand side of E§01)] are un-  amplitude, saturated tearing mode characterizeH 5y0. In
important. However, as the mode becomes more unstabl@is case, the nonlinear corrections are negligible, and the
and, consequently, saturates at a higher amplitédein-  flux surfaces map out a conventional chain of symmetric
creases, and the nonlinear correctionsytdbecome more magnetic islands. Figure 2 shows the corresponding flux sur-
significant. faces for a higher-amplitude tearing mode characterized by
As an illustration of the effect of these nonlinear correc-E;=5. It can be seen that the nonlinear corrections have the
tions, let us consider a saturated=2, n=1 tearing mode in  effect of radially skewingthe island chain, such that it is
a large aspect ratig.e., ec—0), zero8 tokamak equilibrium  flattened on the inner side of the rational surface, and dis-
characterized byr(r)=og[1—(r/a)?]>"% The values of tended on the outer side. This “skew” in the island structure
the “safety factor” at the center and edge of this equilibriumis generated by the “current gradient” tere., the second
areqgy=0.85 andq,= 3.2, respectively. Furthermore, the ra- term on the right-hand sidlén Eq. (101). In order to visual-
dius of the 2, 1 rational surface ig=0.778%&, the radius of ize the much smaller distortions in island structure generated
the conducting shell is=1.15, and the saturation param- by the overtone harmonic terii.e., the third term on the
eter \o takes the value-8.515. The values of the linear right-hand side in Eq. (101), we have suppressed the
stability indices,E,, for the fundamental and overtone har- “skew” term in Fig. 3, and increase&, to 10. It can be
monics are listed in Table |. Note, thB{>0 andE;<O0 (for ~ seen that the overtone harmonic distortion acteltngate

B A

l !
_Z'z —E) A—lcoslg , (101
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the island flux surfaces along the direction\$. Km(ne)=—|ne|K . 1(]ne)) + mK(|ne|), (108
We conclude that as a tearing mode gradually becomes

more unstable, and its saturated amplitude consequently irf? Furth —a/R. ande.—c/R
creases, its island flux surfaces undergo a sequence of noti2ns: Furthermores, =a/Ry ande.=c/Ro. . .
For =1, Egs.(91) and (105 can be combined to give

linear distortions in which they are skewed radially, and, to ah field dified Rutherford island luti
lesser extent, elongated in the direction of an increasing hé.— € .error- Ield moditie utherford island evolution equa-
lical angle. As we shall see, the nonlinear effects that ardom
responsible for these distortions can profoundly modify the A,  d(Wiry) ) Arg
island dynamics in the presence of a particular class of ex- S5 TR g —E1— Ao | Inl

. ] 2 dt Arg w
ternally generated magnetic perturbation.

herel,, and K, represent standard modified Bessel func-

Ayd,
1

A. Introduction where o= ¢;— a; is the island phase relative to that of the

In the previous section, we demonstrated that a saturatdd=1 error field. Note that, to lowest order, only the-1
m,n tearing mode is weakly coupled to overtone magneticcomponent of the error field has any influence on the island

perturbations—i.e., perturbations whose mode numbers anidth.

J’_

V. MULTIHARMONIC ERROR FIELDS Coso, (109

Im,In (for I>1)—via nonlinear physics in the island region. Now, the net toroidal electromagnetic torque exerted on
It seems plausible, therefore, that such a mode shoulfe island region by the error field takes the fétm
respond_—albeit, W_eakly_—to an externally_generated_l 27°R, n o AW
magnetic perturbation—i.e., an>1 “error field.” Obuvi- 6T = Im (110

] ¢ EM “ m2+ n2e2 i< |
ously, anm,n mode will also respond strongly to dr=1 0 s'=

error field. Let us investigate the dynamics of mm mag-  Equations(91), (105, and (109 can be combined with the
netic island chain in the presence of a stationary error fieldbove expression to give

that is a superposition df=1 andl>1 magnetic perturba-
i 2772R0 n
¢ EM™

Lo M2+ n2el Al‘bl‘l’l[ sing
S

B. Error-field characteristics - A~

s hat, in the ab f pl h field A B A

uppose that, in the absence of plasma, the error-fie — 2 T T e

takes t[r)fe) form P =2 Aydy (—B) Ay

sin(lcp—5|)J, (112

where §,=a,—la,, and

8Byac=CV 81, . (102 ;
Let E,=E,+ Ay cos¢. (112
. de b
Q= f# jg | 6yad C, 0, ¢)ef"(m07"¢)5 o (103 Note that thd >1 components of the error field contribute to
be(l time9g thelm,In Fourier harmonic of the error-field flux the féggﬁjmg to the above analysis, the 1 components of

function, &y, evaluated just inside the conducting shell e external error field are able to penetrate freely into the
(|:e., atr=c). It is simplest to imagine that the error field IS island region, and beyonfi.e., into the plasma coyeThe
either generated externally, and filters through thin gaps ifeason for this is that the presencel of1 flux in the island

the shell, or is produced via a helical displacement of thgegion gives rise to a shape distortion of the island flux sur-

shell. We can write faces, but does not drive magnetic reconneciisee Sec.
q)lzci)lefial, (104) V). Of course, flux surface shape distortiolns tlake place on
. the (effectively instantaneolishydromagnetic time scale,
whered; and e, are both real. whereas reconnection proceeds on a much slower time scale.
Note, however, that this result is strongly dependent on the
C. Asymptotic matching orderings made in Sec. Il. In particular, on the assumption

éhat the amount of>1 flux in the island region ismall

In the presence of the error-field, standard asymptoti compared to the amount b1 flux [see Eq(35)].

matching yield&*
A\I’|:E|\P|+A|q)| f (105)

D. Island dynamics
for >0, where

~ s o oo Since we are neglecting both plasma flow and viscosity
™M (@)l9(m*+neg) in this paper, we expect the island chain to simply lock to the

A= e im(ines) —km(nedimine) 29 error field in astablephase characterized 7, gy—0. The
simplest method of distinguishing stable and unstable phases
Here, . . . . . )
is to write an island equation of motion that incorporates
im(ne)=|ne|l.1(|nel)+miy(|nel), (107  phenomenological inertia and damping terms. For instahce,
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d? d ” 10 ' ' '
vt Ly sine+E,S Ia sin(l<,c>—5|))=0. -
=2

dt® dt
(113

Here, . and v are positive constants, and the term in large
parentheses represents the normalized toroidal electromag- >
netic torque. Incidentally, we are assuming that the second

term on the right-hand side of E(L12) is small, for the sake

of simplicity, so that we can make the approximatigp

=E,. It is helpful to associate bcking potentialwith the

normalized torque. This is achieved by writing the above -5 =t t
equation in the form -1.0 -05 00 05 1.0
T
(Fe  de  dView_ (114 v
dt® dt de ' FIG. 4. The locking potentialy o (¢), calculated from Eq(117) for E;
. . . =0, 1, and 3.

The potentiaV,, () is given by

Vioek( @)= —C0S¢—E; >, a,coglo—4)). (115 gffect on the chai_n wheqevefw/2<gp<w/2, and a stabi!iz—

=2 ing effect otherwise. It is clear, therefore, that the island

The island dynamics is now trivial: the island chain locks to€hain locks to the error field in theost destabilizing phase

the error field at a phase that corresponds to a logaimum ~ Of course, this is a well-known result. _
of the above potential. Note that as the chain becomes intrin-  For the medium amplitude casg; =1, nonlinear cou-
sically more unstablé.e., asE; gets bigger, and, therefore, Pling in the island region allows the=1 harmonics of the
grows to a larger saturated amplitude, the contribution of th&r field to contribute to the locking potential. The modifi-
I>1 harmonics of the error field to the locking potential cation of the potential is profound. The low-amplitude lock-
increases. ing point, =0, becomes unstablée., ¢=0 is now a maxi-

It is fairly straightforward to reconstruct the error field Mum, rather than a minimum, of the potenfiaind there are

that generates the locking potential specified in Bd5. WO new locking points Iocatfad in thetabilizing regipmi.g.,
For instance, the normalized radial error figld vacuum | ©/>72. For the large-amplitude casg; =3, the situation
just inside the shell takes the form is, more or less, the same, except that the locking points have

rotated even farther into the stabilizing region.
- . AiAq We conclude that the locking potentidl1?) has a num-
OB Va"(‘PO):S'n‘PO_,ZZ al(-E) msm(kpo—&,), ber of remarkable properties. At low amplitude, a resonant
(116 island chain locks to this potential in the maistabilizing
phase-which is the conventional result. However, as the
chain grows to larger amplitude, the potential is modified by
nonlinear effects in such a manner that the locking p@iet,
the minimum of the potentialgradually rotates, until it is
located in astabilizing phase. Of course, the parameters in
Consider am=2, n=1 tearing mode in a large aspect EQ.(117) have been carefully chosen to produce just such an
ratio (i.e., es—0), zero tokamak equilibrium that is char- effect.
acterized byo(r)=oy[1—(r/a)?]?>7% q,=0.85, andq, Figure 5 shows the normalized, radial, vacuum magnetic
=3.2. TheA,, E;, and.A, values for such a mode are listed
in Table I. Let us investigate the dynamics of the associated

o0

where ¢o={— a4. Here, the field is conveniently normal-
ized such that it$=1 component has amplitude unity.

E. Example calculation

2,1 saturated magnetic island chain moving in the following x1000 2
locking potential:
Vioek(¢) = —Cc0Se—E(—1.4612 cos &+ 0.5 cos J). !
(117 g
Note that this potential is generated from an error field that %‘ 0
contains justhreehelical harmonics: namely=1, 2, and 3.
Figure 4 plots the above potential for the case of a small-, -1r
medium-, and large-amplitude island chain—i.e., Egr=0,
E,=1, andE;=3, respectively. -2 X . .
For the small-amplitude casg; =0, thel>1 harmonics -1.0 -0.5 0.0 05 1.0
of the error field make no contribution to the locking poten- ¢0/ﬂ

tial, which is consequently a pure sinusoid with a minimum

at ¢=0. Hence, we expect the i5|an_d chain to |0C|“Paitp-_ FIG. 5. The normalized, radial, vacuum magnetic perturbation, calculated at
Note, from Eq.(109), that the error field has a destabilizing r=c, which generates the locking potent{afl?.
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perturbation, calculated just inside the shell, which generatetearing mode amplitudes in a reactor environment. Our
the locking potential117). This perturbation can be written analysis is, by no means, comprehensive. Undoubtedly, a lot
as more research will be needed in order to transform the ideas
contained in this paper into reality. Nevertheless, our initial

9B vad #0) = SiN o+ 189.75 sin 2o+ 1456.8 5in Joo . results are extremely exciting!

(119
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