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Motivated by recent experiments by Yuri M. Zuev et al. �Phys. Rev. Lett. 102, 096807 �2009��, Peng Wei
et al. �Phys. Rev. Lett. 102, 166808 �2009��, and Joseph G. Checkelsky et al. �Phys. Rev. B 80, 081413�R�
�2009��, we calculate the thermopower of graphene incorporating the energy dependence of various transport
scattering times. We find that scattering by screened charged impurities gives a reasonable explanation for the
measured thermopower. The calculated thermopower behaves as 1 /�n at high densities, but saturates at low
densities. We also find that the thermopower scales with the normalized temperature T /TF and does not depend
on the impurity densities, but strongly depends on the fine-structure constant rs and on the location of the
impurities. We discuss the deviation from the Mott formula in graphene thermopower and use an effective-
medium theory to calculate thermopower at low carrier density regimes where electron-hole puddles dominate.
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I. INTRODUCTION

Thermopower has been used as a powerful tool to probe
transport mechanisms in metals and semiconductors. Often
the measurement of resistivity �or conductivity� is inadequate
in distinguishing among different scattering mechanisms and
the thermopower can then be used as a sensitive probe of
transport properties since it provides complementary infor-
mation to resistivity. In this paper we develop a theory for
the thermopower of graphene with a goal toward elucidating
the comparative importance of various scattering mecha-
nisms in graphene.1

Recently, the thermoelectric properties of graphene have
attracted much experimental attention.2–5 Experimentally2–4

the expected change of sign in the thermopower is found
across the charge neutrality point as the majority carriers
change from electrons to holes. Away from the charge neu-
tral region the density dependence of thermopower behaves
as 1 /�n, where n is the carrier density, and exhibits a linear
temperature dependence in agreement with the semiclassical
Mott formula.6 As the temperature increases, a deviation
from Mott formula is reported.2,3 In this paper we present a
calculation of the thermopower of graphene taking into ac-
count the energy-dependent scattering time for various scat-
tering mechanisms. Understanding thermopower requires a
thorough knowledge of the details of the energy dependence
of transport scattering times.7–9 In metals the Mott formula is
widely used because the Fermi temperature is very high �i.e.,
T�TF�, and the scattering time is essentially energy inde-
pendent leading to a simple linear-in-temperature form for
thermopower that is proportional to the energy derivative of
the conductivity evaluated at the Fermi energy. The Mott
formula, derived mathematically through the Sommerfeld
expansion, is only valid at very low temperatures, T /TF�1.
Previous theoretical works10 on graphene thermopower did
not consider different possible scattering mechanisms, did
not focus on the scattering due to charged impurities, and so
did not consider the additional temperature dependence due
to screening. Moreover, they all considered only the low-
temperature limit using the Mott formula to calculate the
thermopower and so their results are not applicable in the
high-temperature range, in which deviations from the Mott
formula are observed.2–4

We show that scattering by random charged impurity cen-
ters, which is the main scattering mechanism limiting
graphene conductivity,11 also dominates its thermopower. We
find the effects of short-range scattering and phonons to be
negligible in experimental temperature range �T�300 K�.
Substrate acoustic phonons and/or graphene acoustic
phonons can induce a phonon-drag component Qd for the
thermopower. In general Qd depends on the temperature with
a power much higher than 1 �Refs. 8 and 9�: Qd�T4. How-
ever, the measured thermopower2–4 even at the highest tem-
peratures strongly indicates the absence of a phonon-drag
component. This is due to the weak electron-phonon �e-h�
coupling in graphene; we therefore ignore the phonon-drag
contribution. We show that the temperature-dependent
screening effects12 must be included in the theory to get
quantitative agreement with existing experimental data. We
also find that the calculated thermopower scales with T /TF
and manifests no impurity density �ni� dependence, but de-
pends strongly on the impurity location and on the dielectric
constant of the substrate �or equivalently the fine-structure
constant of graphene�. The experimentally observed asym-
metry between electron and hole thermopower is explained
by the asymmetry in the charged impurity configuration in
the presence of the gate voltage. We explain the experimen-
tally observed sign change near the charge neutrality point
�Dirac point� with a simple two-component model, which we
explicitly verify using an effective-medium theory �EMT�
that takes into account the presence of electron-hole
puddles.11

The paper is organized as follows. In Sec. II the general
theory of graphene thermopower is presented by considering
the energy dependence of various transport scattering rates.
Section III presents the results of the calculations. We con-
clude in Sec. IV with a discussion.

II. THEORY

The ratio of the measured voltage to the temperature gra-
dient applied across the sample is known as the Seebeck
coefficient �or the thermopower� and is given by Q
=�V /�T, where �V is the potential difference and �T is the
temperature difference between two points of the sample.7 In
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linear-response approximation for the electrical current den-
sity j and thermal current density jQ, we have

j = L11E + L12�− �T� , �1a�

jQ = L21E + L22�− �T� , �1b�

where Lij is defined in terms of the integrals I���: L11= I�0�,
L12=− 1

eT I�1�, L21=− 1
e I�1�, and L22= �1 /e2T�I�2�, where

I��� = e2g�
k

���k�vkvk��k − ����−
� fk

0

��k
�

=	 d	�	 − ����−
� f0�	�

�	
�
�	� . �2�

Here, �k=vF
k
, fk
0 is the equilibrium Fermi distribution func-

tion, � is the relaxation time, � is the chemical potential, g
=gsgv is the total degeneracy �with gs=2 and gv=2 being the
spin and valley degeneracies, respectively�, and 
�	� is the
energy-dependent conductivity of graphene given by


�	� = e2vF
2D�	���	�/2, �3�

where vF is the Fermi velocity and D�	�=g
	
 / �2��2vF
2� is

the density of states. Notice that L11=
�	=0�. From the defi-
nition of the thermopower we have Q=L12 /L11.

Before we calculate the details of the thermopower for
different scattering mechanisms we first consider the low-
and high-temperature behaviors of Q�T�. At low tempera-
tures �T�TF, where TF=EF /kB� we can express I��� as

I��� =
1

4�	
−�

�

dx
x�

tanh2�x/2��
��� +
x


� �
�	�

�	
�

	=�
 , �4�

where =1 /kBT. Thus, we have the well-known Mott
formula6 of thermopower, i.e.,

Q = −
�2

3e

T


���
� �
�	�

�	
�

	=�

. �5�

If the energy dependence of the relaxation time is unimpor-
tant the sign of the thermopower is determined by whether
the carriers are electrons or holes. Assuming the energy-
dependent scattering time to be ��	m we have the ther-
mopower at low temperatures,

Q = −
�2

3e

kBT

TF
�m + 1� . �6�

As explained below different values of m correspond to dif-
ferent scattering mechanisms. In general “m” has weak tem-
perature and density dependence since � behaves only as an
effective power law in energy. Equation �6� indicates that the
thermopower can change sign if m�−1. At high tempera-
tures �T�TF� we can express I��� with an energy-dependent
scattering time �=�0	m as

I��� � EF
�� T

TF
��+m+1�1 −

1

2�+m��� + m + 2���� + m + 1� ,

�7�

where ��z� and ��z� are the gamma and Riemann’s zeta func-
tions, respectively, from which we find

Q � −
kB

e

�m + 2�
2

�2m+1 − 1�
�2m − 1�

��m + 2�
��m + 1�

. �8�

At high temperatures graphene thermopower is independent
on temperature and approaches a limiting value. In Fig. 1 we
show the calculated graphene thermopower for different ex-
ponents m ���	m� as a function of T /TF. As shown in Fig. 1
the dashed lines representing the Mott formula agree with the
full calculations for T�0.2TF. In addition the calculated
thermopower scales as a function of the normalized tempera-
ture �T /TF�.

Now we calculate the thermopower in the presence of
various physical scattering mechanisms. For both neutral
white-noise short-range disorder and acoustic phonon13 scat-
tering, we can express the scattering time as ����=�1 /�, i.e.,
m=−1. Thus, the Mott formula of Eq. �6� indicates that Q
=0, but from the direct calculation of Eq. �2� we have

I�0� = 
1
1

1 + e−� , �9a�

I�1� = 
1�kBT ln�1 + e−�� +
�

1 + e� . �9b�

Then the thermopower becomes

Q = −
1

e
��

T
e−� + O�e−�� . �10�

The thermopower contributions from both neutral scatterers
and acoustic phonons are exponentially suppressed in the
low-temperature limit and can be ignored. For unscreened
charged impurities we have an energy-dependent scattering
time12 ����=�0�. Then we have the following integrals for
t=T /TF�1:
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FIG. 1. �Color online� Hole thermopower for different energy-
dependent scattering times, ��	m. For m�−1 the low-temperature
thermopower becomes negative. Dashed lines show the Mott for-
mula for the corresponding scattering times. Electron results are the
same with an overall negative sign.
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I�0� = 
0�1 + O�e−��� , �11a�

I�1� = 
0EF�2�2

3
t2 + O�e−�� , �11b�

leading to the thermopower

Q = −
2�2

3e

kB
2T

EF
�1 + O�e−��� . �12�

The linear dependence of thermopower on temperature �or
the Mott formula� holds to relatively high temperatures in
graphene for unscreened Coulomb impurities.

As it has been demonstrated theoretically11,14 and
experimentally15 the dominant transport mechanism in
graphene is the screened Coulomb scattering from charged
impurities. The result of Eq. �12� for unscreened Coulomb
scattering is much higher than the thermopower observed in
experiments2–4 and cannot explain the behavior of Q close to
the Dirac point. An accurate quantitative agreement between
theory and experiment can only be achieved by taking into
account the screening of the charged impurities and the
strong spatial inhomogeneity that these impurities induce
close to the Dirac point. For the screened charged impurity
scattering, the energy-dependent scattering time ��	k� is
given by11

1

���k�
=

�ni

�
	 d2k�

�2��2� vi�q�
��q,T�

�2

���k − �k���1 − cos ���1

+ cos �� , �13�

where � is the scattering angle, vi�q�=2�e2 exp�−qd� / ��q�
is the Fourier transform of the two-dimensional �2D� Cou-
lomb potential in an effective background lattice dielectric
constant �, and d is the average distance of the charged im-
purities from the graphene layer. In Eq. �13�, 	�q��	�q ,T� is
the 2D finite-temperature static random phase approximation
�RPA� dielectric �screening� function appropriate for
graphene,12 given by 	�q ,T�=1+vc�q���q ,T�, where
��q ,T� is the graphene irreducible finite-temperature polar-
izability function and vc�q� is the Coulomb interaction. There
is an important direct T dependence of thermopower, not
captured in the Mott formula, arising from the temperature-
dependent screening.12 The temperature-dependent conduc-
tivity due to screening effects decreases quadratically at low
temperatures.12 This mechanism produces a thermopower
quadratic in temperature rather than linear as in the simple
Mott formula. Thus, we predict a nonlinear quadratic tem-
perature correction in the graphene thermopower compared
with the linear Mott formula.

III. RESULTS

In Fig. 2�a� we show the calculated thermopower of holes
in graphene due to different scattering mechanisms. Note
that electron results are the same with an overall negative
sign. The thermopower due to screened charged impurity is
about half of that due to the unscreened charged impurities
and increases in a concave manner due to temperature- and

energy-dependent screening. On the other hand, the ther-
mopower due to neutral scatterers is exponentially sup-
pressed in the low-temperature regime. Figure 2�b� shows
the calculated thermopower for the screened charged impu-
rity scattering as a function of density for different tempera-
tures. As we expect the density dependence shows 1 /�n be-
havior at high densities. This power law behavior breaks
down and saturates at low densities. The saturation value
�Qs� does not depend on temperature. The theoretical Qs is
just a function of interaction �fine-structure� parameter rs
=e2 /��vF and the location of impurities d. In Figs. 2�c� and
2�d� we show Q�T� for the case of screened charged impuri-
ties for different values of rs and d, where d is the location of
the charged impurity measured from the graphene sheet. In
general the thermopower increases when the substrate dielec-
tric constant ��� increases or the charged impurities move
away. Thus, we predict that the thermopower of suspended
graphene will decrease compared with the thermopower of
graphene on a substrate for the same impurity density be-
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FIG. 2. �Color online� �a� Q as a function of temperature for
different scattering mechanisms. Solid, dashed, and dotted-dashed
lines represent unscreened Coulomb, screened Coulomb, and neu-
tral scatterers, respectively. �b� Q for the screened charged impurity
scattering as a function of density for different temperatures. �c� Q
for different rs=0.1,0.85,2.2 with d=0 and �d� for different d
=0,5 ,10 Å with rs=0.85. Here, d is the location of the charged
impurity measured from the graphene sheet. In �a�–�d� we use n
=5�1011 cm−2. In �e� and �f�, Q in the presence of screened
charged impurities for different densities is shown. In �e� we use
parameters corresponding to graphene on SiO2 with mobility �
=104 cm2 /V s, and in �f� to suspended graphene with mobility �
=2�105 cm2 /V s.
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cause of the reduction in the dielectric constant. In Figs. 2�e�
and 2�f� we show the calculated thermopower for systems
with different mobilities due to screened charged impurity
scattering for graphene on SiO2 substrate and for suspended
graphene.

In recent experiments2–4 it has been observed that close to
the Dirac point Q does not follow the 1 /�n scaling predicted
by the Mott formula. The reason for this deviation is that
close to the Dirac point the quenched disorder induces strong
density fluctuations that break up the density landscape in
electron-hole puddles.11,16–19 To account for the main fea-
tures of the thermopower close to the Dirac point, we can use
a simple two-component model in which the electron density
ne and the hole density nh depend on the doping n according
to the phenomenological equations: ne= �nrms+n� /2 and nh
= �nrms−n� /2 for 
n
�nrms, where nrms is the root mean
square of the density fluctuations. For exfoliated graphene
we have nrms�ni.

11,17 In the two-component model the ther-
mopower becomes

Q = �Le
12 + Lh

12�/�Le
11 + Lh

11� , �14�

so that, for unscreened charged impurities, we find

Q = −
kB

2

e

2�2

3

T

vF
��

��
ne
 − �
nh


ne
 + 
nh
  . �15�

Thus, if there is an equal number of electrons and holes the
thermopower goes to zero, and the overall sign is decided by
the majority carriers. Using the two-component model for
the screened charge impurities case for Q�n�, we find the
results shown by the dashed line in Fig. 3.

In the presence of charge impurities the density profile
close to the Dirac point, where the total carrier density n
�nrms�ni,

17 is quantitatively described by the Thomas-
Fermi-Dirac �TFD� theory.19 Using the TFD results the trans-
port properties of graphene close to the Dirac point can be
accurately calculated using the EMT. The EMT approach is
valid when the mean free path is much smaller than the size
Lp of the typical e-h puddle and the resistance across the
puddle boundaries is smaller than the resistance inside the
puddles. It turns out that these two conditions are equivalent
and satisfied whenever Lp�1 /�ni.

19 For current experiments

this inequality is always satisfied because Lp is on the order
of the sample size19 and ni�1010 cm−2. The fact that the
resistance due to the puddle boundaries can be neglected
relies on �a� the Klein paradox20 and �b� the fact that for
large values of Lp the length of the puddle boundary is very
large. Denoting by angular brackets the disordered averaged
quantities, for the diagonal transport coefficients in two di-
mensions, the effective-medium coefficients Leff

ii are implic-
itly given by the equation21

�Lii�r� − Leff
ii

Lii�r� + Leff
ii � = 0. �16�

Adapting to two dimensions the results presented in Ref. 22,
the effective-medium off-diagonal coefficient L12 is given by

Leff
12 = − 2Leff

11Leff
22� L12�r�

�L11�r� + Leff
11��L22�r� + Leff

22��
��L11�r�Leff

22 + Leff
11L22�r� + Leff

11Leff
22 − L11�r�L22�r�

�L11�r� + Leff
11��L22�r� + Leff

22� �−1

,

�17�

where Lij�r�=Lij(n�r�). Using Eqs. �16� and �17� and the
probability distribution given by the TFD theory, we can
calculate the effective-medium thermopower Qeff=Leff

12 /Leff
11

at �and away from� the Dirac point. The results for Qeff as a
function of n at T=300 K for rs=0.8, d=1 nm, and ni
=1012 cm−2 are shown by the solid lines in Fig. 3; in squares
�circles� are the results obtained with �without� the effect of
the exchange term on the density distribution. We note that
the two-component model is excellent in describing the main
features of the realistic EMT Q�n� close to the Dirac point.

IV. CONCLUSION

In conclusion we have developed a complete theory for
the diffusive thermopower of 2D graphene. Quantitative
agreement between our theory and existing graphene experi-
mental thermopower data is a strong indication that the
dominant carrier scattering mechanism operational in 2D
graphene monolayers is the screened Coulomb scattering by
random charged impurities located in the graphene environ-
ment. Other defects23 �resonant scatterers and midgap states�
which also give the linear density-dependent conductivity
predict a logarithmic correction in density-dependent ther-
mopower. However, there is no direct observation of this
correction in the measured thermopower.2–4 At high densities
the Mott formula applies well to the measured thermopower
because of the high Fermi temperature, but it fails in the
low-density limit. We explain the sign change of the ther-
mopower in the low-density regime by using both a two-
component model and a realistic effective-medium theory,
which correctly describes transport in the presence of the
strong carrier density inhomogeneities that characterize the
graphene density landscape close to the Dirac point. We
make a number of specific predictions for graphene ther-
mopower �e.g., nonlinearity in temperature, existence of a
saturation thermopower at low densities, and nontrivial de-
pendence on the background dielectric constant and on the
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FIG. 3. �Color online� Q due to the screened charge impurities
as a function of density close to the Dirac point for T=300 K, ni

=1012 cm−2, rs=0.8, and d=1 nm, obtained using the two-
component model and the EMT with and without exchange energy.
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impurity location�, which should be tested experimentally in
order to conclusively settle the issue of dominant carrier
scattering mechanism in graphene.

We would also like to note that we recently become aware
of the related works.24,25
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