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Abstract

Filling factor �=1 incompressible states in ideal bilayer quantum Hall systems have spontaneous interlayer phase coherence
and can be regarded either as easy-plane pseudospin ferromagnets or as condensates of excitons formed from electrons in
one layer and holes in the other layer. In this paper we discuss e4orts to achieve an understanding of the two di4erent types
of transport measurements (which we refer to as drag and tunneling experiments, respectively) that have been carried out in
bilayer quantum Hall systems by the group of Jim Eisenstein at the California Institute of Technology. In a drag experiment,
current is sent through one of the two-layers and the voltage drop is measured in the other layer. We will argue that the
7nding of these experiments that the voltage drop in the drag layer is di4erent from that in the drive layer, is an experimental
proof that these bilayers do not have quasi-long-range excitonic order. The property that at �=1 the longitudinal drag voltage
increases from near zero when spontaneous coherence is initially established, then falls back toward zero as it becomes
well established, can be explained as a competition between the broken symmetry and the gap to which it gives rise. In the
tunneling experiment, current is injected in one layer and removed from the other layer. The absence of quasi-long-range
order likely explains the relatively small tunneling conductance per area found in the these measurements.
? 2003 Published by Elsevier B.V.
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1. Introduction

Among the broken symmetry states that occur in
many-particle systems, those in which long range
phase coherence is established, either for bosons (see
for eg. Ref. [1]) or for pairs of fermions [2], have
special signi7cance because of the quantum nature of
their macroscopic order and because of the sometimes
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startling phenomenology. In semiconductors, the pos-
sibility of long-range phase coherence due to Bose
condensation of electron–hole bound states (excitons)
was 7rst raised [3] nearly 40 years ago. The physics of
excitonic Bose condensation is interesting in bilayer
systems in which excitons can form from electrons
in one layer and holes in the neighboring layer. This
case is especially exciting because the possibility of
making separate electrical contact to the two layers
enables novel probes of super?uid transport phenom-
ena. In the quantum Hall regime, because of Landau
level degeneracy, magnetoexcitons can emerge from
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electrons and holes that both originate from the con-
duction band, vastly simplifying the task of realizing
the high-density electron–hole ?uids in which these
phenomena are expected to be most robust. Excitonic
Bose condensation in this case, it turns out, is expected
to occur when the total Landau level 7lling factor of
the bilayer system is near �=1. Although the anoma-
lous transport properties discovered in bilayer quan-
tum Hall systems [4] near this 7lling factor are thought
[5] (for recent work see Ref. [6]) to follow from exci-
tonic condensation and spontaneous phase coherence,
it has not yet been possible to provide a complete in-
terpretation of the observations.
In the present paper we concentrate on drag trans-

port experiments, in which current ?ows in only one
layer, but voltages are measured in both layers. The
key observation in these experiments is that the lon-
gitudinal and Hall voltages measured in the current
carrying layer and the electrically open layer are simi-
lar. This property suggests that the current is carried
by quasiparticles that have weight in both layers even
though interlayer tunneling amplitudes are negligibly
small. It is naturally accounted for by a BCS-like
mean-7eld theory of bilayer excitonic Bose condensa-
tion in which quasiparticles that are a coherent combi-
nation of states localized in separate layers are analo-
gous to the coherent electron-plus-hole quasiparticles
of superconductors; the inde7nite layer index of these
quasiparticles follows from the state’s broken symme-
try in the same way as the inde7nite charge of BCS
quasiparticles follows from superconducting order. In
this picture, because the quasiparticles carry current
that is divided equally between the layers, the drag ex-
periment constraint that net current ?ow only through
one layer forces an excitonic supercurrent through the
bilayer. However, as we explain in greater detail be-
low, the experimental observation that the voltages
measured in the two layers are similar but not iden-
tical implies [7] that this collective super?ow is not
completely dissipationless. In the phenomenology that
we explain below, dissipation is accounted for by the
?ow of vortices in the order-parameter 7eld.

2. Phenomenology

In bilayers DC transport is characterized by a 4× 4
conductivity tensor since its labels have both layer and

two-dimensional Cartesian indices. For balanced lay-
ers, invariance under interchange of layer indices guar-
antees that even (+) and odd (−) channel response
functions decouple. For isotropic layers these 2× 2
tensors are characterized by their Hall and longitudi-
nal conductivities so that there are four independent
linear response coeKcients:

j±; x = �±
ET; x ± EB; x

2
+ �H±

ET;y ± EB;y
2

;

j±;y =−�H±
ET; x ± EB; x

2
+ �±

ET;y ± EB;y
2

; (1)

where j±; � ≡ jT; � ± jB; � and T and B label top and
bottom layers, respectively. These relations can be
inverted to 7nd the four corresponding independent re-
sistivity coeKcients, 	± and 	H±. In the absence of ex-
citonic condensation, apart from the weak inter-layer
scattering processes that give rise to small drag volt-
ages under normal circumstances and are neglected
here, currents in a layer produce an electric 7eld only
in the same layer implying that 	+ = 	− and 	H+ =
	H−. When an excitonic Bose condensate with quasi
long-range order is present, i.e. at temperatures be-
low the Kosterlitz–Thouless temperature, the odd (−)
channel linear response Hall and longitudinal resistiv-
ities should vanish because [7] any di4erence in elec-
tric 7eld between the layers would be shorted out by
electron–hole pair condensate super?ow. Experiments
demonstrate that the even (+) and odd (−) chan-
nel resistivities in bilayers di4er dramatically only for
closely spaced layers and only for � ≈ 1, thus strongly
supporting the belief that collective excitonic trans-
port is occurring in these systems. However, experi-
ments also show that the odd channel resistivities do
not vanish. It is these 7nite but non-zero odd channel
resistivities that we concentrate on in this paper, since
we believe that they are very revealing probes of the
order that occurs in the system.
Weakly resistive transport in two-dimensional

super?uids is normally understood in terms of
Magnus-force driven vortex motion. Vortex ?ow leads
to a steady rate of change of interlayer phase that dif-
fers at di4erent points in the sample, and therefore via
the Josephson relationship, gives rise to an odd (−)
channel electric 7eld. There are two reasons we ex-
pect vortex-motion induced dissipation to be signi7-
cant in quantum Hall bilayers. First of all, vortices in
�= 1 quantum Hall super?uid carry electrical charge
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e∗ = e=2, and the 7nite-energy integer-charge ele-
mentary excitations of quantum Hall bilayers can be
thought of, at least approximately, as being composed
of bound vortex pairs [8,9] with opposite vorticity.
When the 7lling factor of a quantum Hall bilayer devi-
ates from �=1, many charges of this nature are nucle-
ated in the incompressible state background. Even at
�= 1, long-length scale inhomogeneity in the system
will nucleate charged quasiparticles. Measurement of
a 7nite odd channel linear resistivities suggests that in
real samples some of these vortices are free even in
the absence of the Magnus force associated with pair
condensate currents; free vortices will always lead
to voltages linear in current. The second unique fea-
ture of quantum Hall super?uids which opens up an
opportunity for vortex transport to play an important
role is that the quantum Hall e4ect causes both even
(+) and odd (−) channel longitudinal quasiparticle
resistivities to vanish in the limit of zero temperature,
even when there is no collective transport. In e4ect,
in quantum Hall ferromagnets, we are able to look at
vortex-?ow dissipation in a conductor which is nearly
dissipation-free even in the normal state.

3. SCBA calculations

We argue below that it is possible to separate quasi-
particle and condensate contributions to transport co-
eKcients in these systems. This argument is based
partly on microscopic self-consistent Born approxima-
tion calculations for disordered quantum Hall super-
?uids that we now discuss. The point of view taken
below in assessing the experimental results is based
primarily on the type of result presented in this sec-
tion, which, in turn, is based on an approximation for
charge and pseudospin response in quantum Hall su-
per?uids explained in detail in previous work [10,11].
The discussion presented here is purely qualitative.
These calculations treat interactions via a generalized
RPA approximation and disorder via a self-consistent
Born approximation. In this treatment, excitonic su-
per?uidity (incorrectly [6]) occurs at any layer separa-
tion d no matter how large, but the phase transition be-
tween ordered and disordered states can be (correctly)
driven by increasing the degree of disorder in the sys-
tem. In the ordered state, the occupied quasiparticle
states spontaneously develop interlayer phase coher-
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Fig. 1. Symmetric quasiparticle density-of-states, 	sym(!) for a
bilayer system with �=1 and di4erent degrees of disorder, charac-
terized by di4erent values of �sb. �sb is the exchange self-energy
that favors symmetric quasiparticles over antisymmetric quasipar-
ticles when the coherence phase angle is set to zero, a quantity
that is proportional to the order parameter in SCBA+HF theory.
For � = 1, the antisymmetric quasiparticle density-of-states satis-
7es 	asym(−!) = 	sym(!). The odd (−) channel conductivity is
7nite only when both densities of states are 7nite at the Fermi
energy ! = 0.

ence. For coherence angle equal to zero and balanced
bilayers, the quasiparticles experience an anomalous
self-energy of collective origin that acts like a strong
interlayer tunneling term (real with amplitude �sb=2)
which establishes the interlayer coherence, in addition
to the random potentials that exist in each layer. With-
out disorder the Landau level density-of-states 	(!)
of the quasiparticles would consist of two delta func-
tion pieces, the symmetric and antisymmetric branches
separated in energy by �sb. The ordering energy com-
petes with the random potential by broadening the
Landau levels and limiting the extent to which the
quasiparticles can take advantage of a di4erence in
potential between the layers. The densities of states in
Fig. 1 are plotted for three di4erent disorder strengths,
or equivalently, three di4erent order parameter values.
In the presence of disorder all quasiparticle states have
greater weight in one layer than in the other and have
mixed character when projected onto symmetric and
antisymmetric states. The order parameter of the bi-
layer can be de7ned as the di4erence per Landau level
orbital of quasiparticle symmetric and antisymmetric
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Fig. 2. Odd (−) channel conductivity (in arbitrary units) and order
parameter as a function of 7lling factor for a 7xed random potential
strength. The conductivity and the order parameter are symmetric
around � = 1. These results follow from SCBA calculations of
linear response functions for a model with a random disorder
potential in each layer and no correlations between the potentials
in the di4erent layers. A 7nite odd (−) channel conductivity
requires quasiparticles that can carry di4erent currents in the two
layers and is reduced as order develops because the degree of
layer polarization of typical quasiparticles is proportional to �=�sb,
where � is the Landau level width.

projections summed over all occupied levels. By this
measure, the order parameter at �=1 approaches one
as the disorder in the system weakens. In the SCBA,
an arti7cial gap in the quasiparticle density of states
arises when the disorder is suKciently weak; in a more
realistic calculation the quasiparticle density of states
at the Fermi energy would decline continuously with
the strength of the order but never vanish.
In the normal state, current is carried independently

in the two layers, implying that the even (+) and odd
(−) channel conductivities are identical; currents pro-
duce voltages only in the layer in which they ?ow. In
the ordered state, the strong e4ective tunneling am-
plitude leads to quasiparticle states that tend to have
their charge evenly divided between the two layers.
These quasiparticle states tend to carry currents that
are also nearly equally divided between the two layers,
causing the odd (−) channel conductivity to be much
smaller than its even (+) channel counterpart. The
odd (−) channel conductivity and the order parameter
are plotted as a function of 7lling factor in Fig. 2; we
see here that the odd channel conductivity is strongly
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Fig. 3. Odd (−) channel conductivity (in arbitrary units) as a
function of order parameter M0. These results are calculated for
various 7lling factors and two di4erent disorder strengths. The
approximate coincidence of these two curves demonstrates that the
order parameter M0 which depends on the same two variables, is
the most important factor in determining the conductivity value.

suppressed near �= 1, where the spontaneous coher-
ence is most well developed. In Fig. 3 we plot the odd
(−) channel conductivity as a function of the order
parameter for two di4erent disorder strengths and var-
ious 7lling factors, demonstrating that the suppression
is more strongly connected to the degree of order than
it is to either the 7lling factor or the disorder potential
strength. Since the density of states at Fermi energy is
strongly suppressed near �=1, both conductivities are
actually reduced in the ordered state, but the odd chan-
nel conductivity is reduced much more signi7cantly.
Because we expect (and know from experiment)

that Hall angles are very large in the quantum Hall
regime, the longitudinal resistivities in each channel
should be nearly proportional to the longitudinal con-
ductivities. The di4erence between even (+) and odd
(−) channel conductivities explained above should
therefore lead to the same relative magnitudes for even
(+) and odd (−) channel longitudinal resistivities,
and therefore, to electric 7elds that have the same sign
in drive and drag layers. This is opposite to what is
observed experimentally. We believe that the experi-
mental observations can be explained only by posit-
ing a condensate contribution to the currents carried
through the system.
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4. Condensate conductivity

Electron–hole pairs can carry opposing currents in
the two layers and therefore a condensate can con-
tribute to the odd channel conductivity. However, any
vortices that are not pinned, will ?ow in the presence
of a condensate current and produce odd channel elec-
tric 7elds. These electric 7elds will also drive extended
state quasiparticles to carry current as discussed in the
previous section. When vortices are unpinned, their
thermal and quantum ?uctuations must lead to a loss of
long-range phase coherence. The observation of odd
channel electric 7elds therefore suggests that the bi-
layers that have been studied have unpinned vortices.
Since the quasiparticles and the condensate phase

(through its Josephson relation) see the same electric
7eld, it follows that their conductivities �Q and �C add,
i.e. they can be regarded as two separate contributions
that carry odd channel current in parallel:

�− = �Q− + �C−;

�H− = �QH− + �CH− : (2)

The discussion in the previous section allowed only
for �Q−. The observed sign of the longitudinal Hall
voltage implies that �−��+, and since we have ar-
gued that �Q− must be smaller than �+, this implies
that �−≈�C−. Measuring the odd channel longitudinal
conductivity should therefore provide a direct mea-
surement of condensate current in the bilayer.
As emphasized above, we do not believe that it is

possible to interpret the experiments without positing
such a collective current. �Q− is small when order is
well developed partly because the quasiparticles of the
bilayer in an ordered system experience an in-plane
pseudospin 7eld that reduces the degree of layer po-
larization due to ?uctuations in the local di4erence
between random potentials in the two layers. Because
the quasiparticles have little layer polarization even in
the presence of disorder �Q−=�+ is ∼ (�=�qp)2 where
� is the Landau level width and �qp is the mean-7eld
charge gap.
The quantum Hall e4ect occurs in the even (+)

channel, not in the odd (−) channel. We should there-
fore expect that the odd (−) channel Hall conductiv-
ity vanishes in the limit of zero temperature if both
quasiparticles and vortices are localized in this limit.
Indeed, this property is already suggested by current

experiments, since the Hall voltages measured in drive
and drag layers seem to approach each other at very
low temperatures. From the SCBA linear response the-
ory for the quasiparticle conductivities, it is clear that
for � ≈ 1 the quasiparticle Hall angles will be simi-
lar and large in both even and odd channels, i.e. that
�H+��+ and �QH− ��Q−. We do not, however, have a
clear idea at present of the Hall angle for the conden-
sate conductivity, which is related to the relationship
between vortex ?ow and condensate current direc-
tions. We believe that further experiments, analyzed
with the picture explained here, should allow this sub-
tle issue, long controversial (see for eg. Ref. [12]) in
the case of superconductors, to be settled for the case
of quantum Hall ferromagnets.

5. Other open issues

We have seen that the drag experiments in bilayer
quantum Hall systems simultaneously provide strong
evidence that collective transport by an electron–hole
pair condensate occurs in these systems, and that it is
accompanied by dissipation suggesting that unpinned
vortices are always present. The presence of free vor-
tices may help explain the surprisingly small inter-
layer conductance that can be inferred from the tun-
neling experiments. In our view the well developed
even (+) channel quantum Hall e4ect that is seen
in these systems is evidence of a large local order
parameter. If there were long-range order, this prop-
erty would [13] be diKcult to reconcile with the ex-
perimentally measured layer to layer conductance per
electron which is many orders of magnitude smaller
than e2=h. When current is injected on one side of one
layer and extracted from the opposite side of the other
layer, the overall resistance is still limited by weak
hopping between the layers. It appears that collective
tunneling of electrons between the layers is strongly
suppressed [6]. Experiments [4] can give us results for
the temperature-dependent vortex-?ow resistivity, do
give us results for the height and width of the low-bias
peak in the tunneling conductance, and do give us re-
sults for the in-plane 7eld scale at which the tunneling
I–V characteristic changes character. The challenge
for theory is to provide a common explanation for
all these phenomena which, it appears, must have a
common origin.
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