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Quantum geometry, characterized by the quantum geometric tensor, plays a central role in diverse
physical phenomena in quantum materials. This pedagogical review introduces the concept and
highlights its implications across multiple domains, including optical responses, Landau levels,
fractional Chern insulators, superfluid weight, spin stiffness, exciton condensates, and electron-
phonon coupling. By integrating these topics, we emphasize the broad significance of quantum
geometry in understanding emergent behaviors in quantum systems and conclude with an outlook on

open questions and future directions.

Quantum materials can be loosely defined as materials for which quantum
mechanical effects manifest on a macroscopic scale. Two classes of quantum
materials are paradigmatic: superconductors, and quantum Hall systems. For
superconductors, electron-electron interaction is the key ingredient that leads
to a macroscopic manifestation of quantum mechanics: such interaction
causes the electrons to form phase-coherent Cooper pairs and this results in
the Meissner effect and the dissipationless transport of charge current. For a
two-dimensional (2D) electron gas in the integer quantum Hall regime, the
perfect quantization of the Hall conductivity can be understood without
explicitly taking any effects of electron-electron interactions into account. The
integer quantum Hall effect (QHE) can be attributed to the unique topology
of the free-electrons’ ground state'. Such topology is encoded by the Chern
number, C, given by the integral over the Brillouin zone of the Berry curvature
that measures the change of the eigenstate’s phase as the momentum k is
varied. The Berry curvature is part of the quantum geometry of a material. The
QHE is the archetypical demonstration that quantum geometry is one of the
key quantities that make a material a quantum material. As we will discuss in
the remainder of the review, the Berry curvature turns out to be the anti-
symmetric part of a tensor Q, the quantum geometric tensor (QGT)”. In
recent years it has become apparent that the symmetric part of this tensor, the
quantum metric, g, also plays a key role in making a material, quantum. In a
loose sense, the quantum metric appears to be the key quantity to understand
the properties of materials in which both interactions and quantum geometry
lead to macroscopic manifestations of quantum mechanics.

Quantum geometry is the geometric structure that naturally arises in
the space of quantum states when such states depend on continuous
parameters. One classic example of quantum geometry is the geometric
phase of a quantum state under adiabatic evolution, in which case the
continuous parameter is time. Within condensed matter physics, the con-
tinuous parameters are the components of the crystal momentum k, and
quantum geometry refers to the geometric properties of the Bloch states,
more precisely, the periodic part of the Bloch states |1 ), which is the focus

of this review. In this context, quantum geometry is also called band geo-

metry, which includes long-known concepts such as the spread of the

possible Wannier basis and the parallel transport of the electronic states.
The QGT (also called the Fubini-Study metric**) has components:

Q(k) = (@ uell 1] — lu) (g 119y 24, 1)

where k; is the ith component of the Bloch momentum k. For simplicity in
writing Eq. (1) we have considered the case of a well-isolated band. The
antisymmetric part of Q;(k) is iB;(k) = [Q;(k) — Qji(k)]/2 is related to the well
known Berry curvature’” F;(k) as B;(k) = —F;(k)/2, and the symmetric part
Gi(k) = [Q;(k) + Q;(k)]/2 is the quantum metric g given that corresponds to
the metric for infinitesimal distances of the Hilbert-Schmidt quantum

distance dyg(k, k') = 1/1 — [{uy|up ) |*: ds* = >igi(k)dkidk;.

In two dimensions (2D) the integral over the Brillouin Zone (BZ) of
B,(k)/m for the states of an occupied band is quantized and equal to the
Chern number C. Conversely, the integral of g;(k) over the BZ is in general
not quantized. However, in 2D, the positive semidefinite nature of Q
(combined with inequality between trace and determinant) implies the
following inequalities®

Trg(k)=2+/detg(k) = 2|Bxy(k)| 2)

We can introduce the tensor M = (1/7)f 5,d°kQ(k). Because M is a sum of
positive semidefinite tensors, it is itself positive semidefinite, and so
det M = 0. In 2D this leads to the inequality det(Re(M)) > det(Im(M)), that
can be seen as the integral equivalent of Eq. (2), and can be written as

det E / &’k g(k)] > det E / dsz(k)} =C%. (3
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Eq. (3) is a classic example of topology bounding quantum geometry from
below’. The generalization of Eq. (3) leads to the lower bound of quantum
geometry due to the Euler number'*""” (the generalization is most natural in
the Chern gauge for the Euler bands), and the lower bound has also been
derived for obstructed atomic limits" and chiral winding number®.
Recently, the lower bound of quantum geometry has also been derived'® for
the time-reversal protected Z, topology'’’. These topological bounds allow
us to put a lower bound to the geometric contribution to quantities such as
the superfluid weight, as discussed in section “Superconductivity and
superfluidity”.

The quantization in 2D of the integral of B;(k)/(2m) over the BZ, and its
direct relation to the off-diagonal conductivity o,,' made the study of the
physical consequences of the anti-symmetric part of Q(k) one of the most
active areas of research in condensed matter physics for the past 20 years. It
has led to several discoveries, such as topological insulators (TIs) and
superconductors’ ', Weyl and Dirac semimetals (SMs)***°, and, more
recently, higher order topological materials” . Conversely, the study of the
symmetric part of Q(k) has received much less attention largely due to the
fact until recently g(k) had only been shown to contribute to quantities that
are challenging to measure experimentally, like the Hall viscosity” "', and
the ‘Drude weight”, D, of the electrical conductivity of clean systems at zero
temperature” . Theoretical and experimental developments in the last few
years have profoundly changed the situation. First, it was shown that g is
related to nonlinear responses”~". It was further pointed out that g con-
tributes to the superfluid weight (same as superfluid stiffness) [Ds]ij of a
superconductor'***, and that such contribution is significant when the
bandwidth of the bands crossing the Fermi energy is smaller than the
superconducting gap. Both nonlinear responses and [Ds] ; could in prin-
ciple be measured in realistic experimental conditions. In addition, the
realization of magic-angle twisted bilayer graphene (TBG)” ™ and other
twisted materials® ™ introduced experimentally accessible systems with
extremely flat bands exhibiting superconductivity and Fractional Chern
Insulator/Ferromagnetism for which the quantum metric contribution to
the superconducting [Ds]ij or to the magnon stiffness can be large. These
developments have motivated a huge interest in understanding the role of g;;
in quantum materials.

We now discuss more in detail how the quantum metric affects the
properties of condensed matter systems. However, it is worth emphasizing
that, besides condensed matter physics, the quantum metric plays a role in
many other areas of physics, such as metrology, via the closely related
concept of quantum Fisher information®, non-equilibrium dynamics™, and
quantum information science**.

Simple two-bands model
To gain some intuition about quantum geometry, it is useful to consider a
simple two-band model described by the following Hamiltonian

h(6, ) =d(0, ¢) - 0 where 6= (0, 0}, 0.) is the vector formed by the 2 x 2
Pauli matrices and

d = (sin(Jy0) cos(](P(p)7 sin(J»6) sin(]¢<p), cos(J40)). 4)

with J, Jy» two integers. The energy eigenvalues are e, = =*|d(6,
¢)| = £1. The eigenvalues .. do not depend on the variables 6 and ¢ that
parametrize h and therefore describe two flat bands. The variables 6
and ¢ only affect the energy eigenstates: v_ = (sin(J40/2)e™"+?,

—cos(J0/2))", v, = (cos(Jo0/2)e7+?, sin(]ge/ZB)T.

In the limit Jo = ], = 0 also the eigenstates do not depend on 6 and ¢
aand therefore the QGT is identically zero; the Hamiltonian describes a
system with no quantum geometry. If we associate the degree of free-
dom described by the Pauli matrices to a sublattice degree of freedom,
this case can be visualized as the situation in which in each energy
eigenstate the electrons are completely localized on one of the two
“sublattices” (entries of the spinor wavefunction), as shown schemati-
cally in Fig. 1a, c.

When Jp=J, =1 the eigenstates depend on 6 and ¢ and therefore the
two bands possess a non-trivial quantum geometry. Using the expression
above for v_, and the definition Eq. (1) of the QGT (with k; (i = 1, 2) running
over the labels (¢, 0)) for the lowest band we find

sin’0

jsind
Qij((P7 0) = ( '4511'19 14 ) (5)
_IT 1

4

As expected the anti-symmetric part of the QGT is equal to —1/2 the Berry
curvature’. It is straightforward to verify that the inequalities in Eq. (2) are
satisfied. Figure 1b, d illustrate the dependence of the eigenstates on the
variables that parametrize the Hamiltonian: the dependence on 6 and ¢ of
the hybridization of the two degrees of freedom is responsible for a nonzero
QGT. In the case of a sublattice, this can be visualized as a dependence on 0
of the relative weight of the electron wave function between the sublattices,
Fig. 1d.

For the case in which H describes electrons with a two-fold degree of
freedom (sublattice, spin, or a generic orbital degree of freedom) a nonzero
anti-symmetric part of Q; can result in a contribution to off-diagonal
(transverse) transport coefficients. For instance, for Jy=Js=1 our simple
model exhibits a Chern number C = 1* that can be associated with a non-
zero and quantized Hall conductivity, and therefore the presence of delo-
calized electronic states. Similarly, the real part of Q;(k) can result in a
contribution to diagonal (longitudinal) transport coefficients. For instance,
in this example, in the metallic regime, when the band is not completely
filled, one would expect the Drude weight D to be zero given that the band is

Fig. 1 | Schematic spectra and states hybridization () P,
for a simple two-level model in which the two-fold 1
degree of freedom is mapped to a sublattice, {A, /; 1 —
B}. a, b Energy eigenvalues as a function of 0 for the 8 0
case when Jy=Js=0and Jp=J, = 1, respectively. o —1 ——
The colors show the occupation probability of sub- 0
lattice A, P,4. ¢, d Representation of the lowest energy 0.0 0.5 1.0
eigenstate distribution, as function of 6 and ¢, (©) 9 / T
between sublattice A, represented by circles, and TR . T TR Y
. 1 e e 00 . ®@ 0 0000CO0O0OE®
sublattice B, represented by squares, and the color HEHHH H 8888888888
showing the probability occupation of each sub- < HER ] H 8888888888
lattice, for Jo=Js = 0 and Jg = J, = 1, respectively. For =~ 0 E f E E E E E § § §’ S’ § CZ’ E’ E
the probabilities, P4, Pp, on each sublattice we use S cn . seooccosaa
. L . ®@ @0 0000CO0OOEe
the same color scheme used for P, in (a, b). 3333 s sssgggggas
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completely flat and D ~ n/m*, with n the electron’s density and m* the
electron’s effective mass, i.e., the curvature of the bands. However, the fact
that g;(k) is nonzero results in a nonzero Drude weight"**!, current noise™,
and a quantum geometric dipole®, signaling that even if the band is com-
pletely flat, the system can respond, in the ideal case, to an external d.c.
electric field. This is an indication that some states in this band are not
completely on-site localized.

It is interesting to consider the limit Jo=0,Jp=1.In this case, h is
parametrized by only one variable, 8, and therefore the Berry curvature, and
so the anti-symmetric part of Q;(k), are identically zero. Nevertheless, the
quantum metric is still not zero: ggg = 1/4. This simple example is an extreme
case of the important fact that the quantum metric can be nonzero even if
the Berry curvature is zero. As Eq. (2) shows, the quantum metric is only
bounded from below by the Berry curvature.

Localization tensor

The QGT tensor is not limited to the single-band case—it can be defined for
an isolated set of any number of bands. Of common interest is the set of
occupied bands of a band insulator, for which the QGT reads

{ij(k)] = <ak,“mk|Ul - Pk]lak]unk> ) (6)

where P, = >, . [t) (|- (Throughout the review, we will focus on
the case of fully-filled bands unless specified otherwise.) There is a very
physical connection between the QGT in Eq. (6) and the localization of the
electronic wavefunctions. This connection is imprinted in the linear
response of materials when subjected to applied electric or magnetic fields; it
follows naturally from the fact that the QGT defined in Eq. (6), when
integrated over the Brillouin zone and traced over all occupied bands,

o= [ BZ% (o] )

with d the spatial dimension. Q;; can be recast as the ground state dipole-
dipole correlator

Qij = (r(1 — P)rj) = %}Tr[Pr,-(l — P)rjP] 8)

where P=3 " 5> o |W,u) (w,,] is the projector in the occupied
subspace. Here (rl|y, ;) = e”‘"(r|un>k) is the Bloch state for the nth band,
and henceforth, we choose the unit system in which

h=1, ©)

unless specified otherwise The position matrix elements are defined for
Bloch states™

(ki) = S [A(K)] .+ 18,0 Oy

where & = 2n)'0(k —K)/V, V the total volume, and
[A,(l)] I i<unk|8ki [t4,,% ) The projector 1—P guarantees that Eq. (8) is
gauge independent, by removing the diagonal contributions of the position
operator. The integrated geometric tensor Q;;, whose symmetric part and
anti-symmetric parts contain the integrated quantum metric and the Chern
number of the ground state, can be interpreted as a localization tensor
originating in the uncertainty of the position operator in the ground state®.
First discussed by Kohn™, a divergent Q;; would correspond to an infinite
sensitivity of the ground state to a shift in momentum or a twist in boundary
conditions. Among other definitions based on a spectral gap, this definition
based on spatial delocalization of the wavefunction is one of the most suited
ways to discriminate between a metal and an insulator. Its geometrical
interpretation was then put forward by Resta’®, and Souza, Wilkens, and
Martin™.

(10)

The localization tensor has deep consequences in both the constraints
on the basis functions that can be used to describe a given band subspace. To
understand the spatial extent of electronic bands, it is useful to adopt
Wannier states, localized in real space to describe Bloch bands™. They are
defined as

1 _ik-
|WnR> = ﬁ Z e o R+¢(k)|l//nk>

keBZ

where N is the number of lattice sites, and ¢,,(k) is a momentum-dependent
phase redundancy, which can be tuned to optimize the localization of the
Wannier states |w,z ). This localization is characterized by the localization
functional Q = > [(w,0lr?|W,q) — (WolrIw,e)?]”. While not gauge
independent, Q) can be separated into a gauge independent part that
coincides with the trace over spatial indices of the integrated quantum
metric, often referred to as Q; = (V/N)Re(TrQ), and a gauge dependent
part Q (see Supplementary Information A). The gauge-dependent part Q
diverges in the absence of exponentially localized Wannier functions. This
happens for metals, or in the presence of a nonzero Chern number”. An
extended review of these results is presented in Supplementary Informa-
tion A.

Quantum geometry and correlated states
Superconductivity and superfluidity

Superconductivity is fundamentally influenced by the spread of the Wan-
nier states and hence by quantum geometry: the superfluid weight (super-
fluid stiffness) D has a contribution that arises from quantum geometry,
Dy geoms in addition to the conventional one D, given by band
dispersion™:

DS = DSACOHV + Ds.geom N (11)

The superfluid weight relates the DC, long-wavelength supercurrent J to the
static, long-wavelength, transverse vector potential .A:

Ji=~— Z [DJ 4, (12)
i

and needs to be positive-definite for supercurrent to exist. Moreover, in the
simplest picture, large D, = Tr[D,]/d means a large critical current of
superconductivity, j. o D,/ where £ is the coherence length of the
superconductor. In two dimensions, D, also determines the critical
temperature of superconductivity since the Berezinskii-Kosterlitz-
Thouless (BKT) temperature Tgxr depends on D,. In 3D the penetration
depth A is directly proportional to 1//D;. A finite value of A is crucial for
the Meissner effect. Given that D; is the proportionality constant entering
the London equation Eq. (12), the equation responsible for the Meissner
effect, and its relation to Tggr in 2D and to A in 3D, it is a fundamental
defining quantity of superconductivity. Interestingly, D has an intrinsic
connection to quantum geometry.

The quantum geometric contribution of superconductivity
becomes dramatic in a flat Bloch band. The conventional contribution
of superfluid weight D .o,y is inversely proportional to the effective
mass of the band and vanishes in a flat band. Superconductivity in a flat
band is thus completely based on quantum geometric effects. Such
effects arise since D, is defined via the current-current correlator’’, and
the current operator of a multiband system has two parts (m,n are band
indices and i = x, y, z):

<umk|]i|unk> = 6mnak,€nk + (emk - enk)<ak,umk|unk>7 (13)

Here k is the momentum and ¢, gives the dispersion for the nth band. The
last term, which contains a derivative of the Bloch function, connects D to
the quantum geometric quantities defined in the introduction.

npj Quantum Materials | (2025)10:101


www.nature.com/npjquantmats

https://doi.org/10.1038/s41535-025-00801-3

Review

Full formulas of Dy = D cony + Dy geom are available in the literature™**,
The result is the following in the limit of N completely flat degenerate bands,
isolated from other bands by large gaps compared to the attractive interaction
energy scale |U], assuming zero temperature and time-reversal symmetry,
and under so-called uniform pairing condition where pairing is the same in all
the flat band orbitals:

4¢’N ;
[D; = (271)2#;]1) [UIf(1 = HMG™, (14)
; 1
My = { / d”kgij(k)] " (15)

Here, f € [0, 1] is the filling fraction of the isolated flat band, Ny, is the
number of orbitals where the flat band states have a nonzero amplitude, — e
is the electron charge, d is the space dimension, and g;(k) is the quantum
metric defined in the introduction. The label “min” refers to the integrated
quantum metric whose trace is minimal under variation of the orbital
positions while keeping all other parameters, e.g., hoppings, the same.
(Equivalently, it is minimal under the change of Fourier transformation
convention of the atomic basis, which is equivalent to the embedding
choice.) This result is in striking contrast with the simple Bardeen-Cooper-
Schrieffer (BCS) formula for a single band, D, = e?n,/m*, where n is the
density of Cooper pairs (superfluid density) and m* the effective mass. The
result (14)—(15) was essentially derived in ref. 58, but in ref. 98 it was noted
that the M;; of the original wor ** has to be replaced by Mg’in because the
quantum metric is an embedding (or, basis) dependent quantity” while D,
and M}™ are embedding-independent’'”’. These results are derived
within multiband mean-field theory, but the general idea has been
confirmed by exact, perturbative and beyond-mean-field numerical
calculations'>>*!"'"'* of some carefully chosen attractive interacting flat
band models (see the reviews****'” for more examples). We note that in
most of the beyond-mean-field numerical calculations, what one directly
calculates is the stiffness of a SU(2) pseudo-spin ferromagnet, which after
adding additional terms becomes a superconductor. In refs. 106,107, it has
been shown that many of the analytical results presented in’** can be
extended to several cases of non-uniform pairing and the results remain
essentially similar. The effect of closing the gap between the flat band and
other bands has been studied as well, see ref. 108 and references therein.

How should one physically understand the role of the quantum metric
in flat-band superconductivity? One way to gain intuition is to consider the
two-body problem, the Cooper problem'”, in a flat band. In this case there is
a massive degeneracy which, however, is lifted by the interaction between
the two particles: the bound pair becomes dispersive, with an inverse
effective mass given by the quantum metric''’! Similar to the Fermi surface
Cooper problem, the two-body problem in the flat band gives essentially the
same answer as the mean-field approach. Further insight into why quantum
geometry may be critical for pair mobility is provided by its connection to
the localization of Wannier functions, as discussed in the introduction™.
Indeed, by projecting the interacting multiband model to a flat band"* one
can show that interactions induce pair hopping that is linearly proportional
to the interaction U—and overlap integrals of Wannier functions at
neighboring sites. In 2D this relates nicely to the lower bound of super-
conductivity derived in ref. 58: D, > |C| (in appropriate units), where Cis the
spin Chern number of a time-reversal symmetric system; as Wannier
functions cannot be exponentially localized in a topological band™, their
overlaps guarantee interaction-induced motion and eventually super-
conductivity. The role of Wannier functions in superconductivity offers
routes for deriving upper bounds too. For example, the optical spectral
weight of a superconductor and superfluid weight were considered in
refs. 111,112, where quantum geometric quantities appeared as key quan-
tities. For further information and discussion of the large literature on this
topic, we refer to existing review articles”**'””. Here we would like to
mention only a few interesting developments published after these review
articles.

In refs. 113-115, a Ginsburg-Landau theory was developed for
multiband systems, with quantum geometry in focus. According to these
works, in the isolated flat band limit and with uniform pairing, the
coherence length of the superconductor is determined by the minimal
quantum metric. For non-isolated flat bands, the coherence length can be
smaller than the quantum geometry length''’. Furthermore, for strong
interactions the Cooper pair size and the coherence length may be dis-
tinct, resembling the BEC-end of the BEC-BCS crossover'”. In ref. 118 a
definition of the coherence length based on the exponential decay length
of theanomalous Green’s function was used, leading to a result that differs
from the minimal quantum metric. The decay of the pair correlation
function or the anomalous Green’s function can be non-trivial in flat
bands. For example, they may completely vanish beyond a few lattice
sites, instead of exhibiting a continuous decay''*'". This happens in flat
bands that host compactly localized Wannier functions (such as
obstructed atomic limits'*’).

The apparent discrepancy between the coherence length results can be
explained through the subtlety of the definition of this concept in flat bands.
The mean-field anomalous Green’s function and the pair correlation
function may decay rapidly in length scales different from the minimal
quantum metric, however, when one includes fluctuations of the order
parameter and calculates the spread of the pair correlation function, a
coherence length given by the minimal quantum metric is obtained. Fluc-
tuations are included in the Ginzburg-Landau formalism like in the calcu-
lation of the superfluid weight (stiffness), so, naturally, dependence on
quantum geometry emerges from both. Reference'” studied a
superconductor-normal-superconductor (SNS) Josephson junction where
the normal part is a flat band system longer than the coherence length. It was
found that supercurrent over the junction was only possible by contribu-
tions from nearby dispersive bands or by interaction-mediated transport.

One might worry that disorder would kill flat band superconductivity.
However, D; for a flat band, s-wave, superconductor with non-trivial
quantum metric appears as robust against non-magnetic disorder as D, for a
superconductor with dispersive bands and trivial quantum metric"”".
Interestingly, the dispersive band superfluid weight acquires a geometric
contribution in the presence of disorder that at low disorder strengths
compensates the suppression of the conventional contribution; this is
intuitive as disorder hinders conventional ballistic transport given by the
band dispersion. Quantum geometry has been shown to be relevant for
correlations in disordered systems also in other contexts than
superconductivity'”'”. Another salient feature of flat band super-
conductors is that quasiparticles seem to be localized'”. Finally, it is
important to keep in mind that although the quantum geometry of the band
guarantees superconductivity to be possible, sometimes another competing
order, e.g., a charge density wave or phase separation, can win'* even with
attractive interactions. Quantum geometry can also lead to pair-density
wave order instead of superconductivity, signified by a negative superfluid
weight'**'”. Quantum geometry may also affect the Kohn-Luttinger
mechanism of superconductivity because the form factor in the polariza-
tion function responsible for screening depends on the geometric properties
of the wave functions'**'?’; remarkable enhancements of the critical tem-
perature were found in these works for certain model systems.

Spin-wave stiffness

The close analogy between superconductivity and the XY model**""' sug-
gests the connections shown in the previous section between quantum
geometry and the properties of superconductors should be relevant for
ferromagnetic states in which the ground state is characterized by an order
parameter M that breaks a continuous spin, or pseudospin, symmetry. In the
continuum limit, this can be seen by considering the effective Ginzburg-
Landau action of a ferromagnet

1 f
§=Sy(M) + B / drDI[IVM, > + VM, > + [VM,I’]  (16)
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where M is the magnetization and S, is the part of the action that does not
depend on the gradient of M. In Eq. (16), we have assumed the spin stiffness
tensor to be diagonal and isotropic: [DY¥] i = DY 8

Similar to superconductivity, the spin-stiffness [D®)] j can be obtained
within linear response theory by calculating the spin susceptibility, ngs) (q, w),
and then taking the limit w =0, ¢ — 0: [Dgs)]ij = limq_,o)(gj)(q, w = 0).
Starting from a microscopic model, it is straightforward to see that the
expression of ¥“(q, @=0) up to order ¢’ involves the first and second
derivatives of the Hamiltonian with respect to the momentum k. For single-
band systems, such derivatives lead only to the appearance of derivatives
with respect to k of the energy eigenvalues, similarly to the first term of Eq.
(13). However, for multi-band systems, the second term in Eq. (13) appears,
involving the quantum geometry of the Bloch states.

In superconductors, the superfluid stiffness is directly proportional to
the superfluid weight and so it can be directly probed by measuring the
current response to an external vector field. For ferromagnetic states, the
most straightforward way to probe QGT’s effects is by probing the disper-
sion of the low-energy spin-waves, i.e., the Goldstone modes associated to
the continuous symmetry spontaneously broken by the ground state,
something that is not straightforward to do for superconductors'* also due
to the Anderson-Higgs mechanism. For 2D XY ferromagnets, the effect of
the quantum geometry can potentially also be inferred indirectly by mea-
suring T, as discussed in the case of superconductors.

So far the role of quantum geometry in ferromagnetic systems—and
especially in realistic experimental systems has not received much attention.
Recent works have investigated the connection between [Dgs)] i for specific
systems'**”'””. One can obtain an exact solution of the ferromagnetic ground
state and its excitations of a flat band subject to a repulsive interaction in the
condition that makes the projected orbital occupation the same'*® (analo-
gous to the uniform pairing condition for superconductors). In this case, the
single particle charge excitations are flat. However, the spin wave spectrum
can be solved exactly and it can be shown, in this class of models, that the spin
stiffness is the same as the integrated minimal quantum metric'*. In moiré
systems, projected Hamiltonians"*'*’ do not satisfy the uniform pairing
condition, and as such even the single-particle dispersion on top of the
ferromagnetic state at integer fillings involves the quantum distance**. To
exemplify the effect of the quantum metric in ferromagnets in Supple-
mentary Information B we describe the key results for 2D moiré systems'**"**
and saturated ferromagnetism'”’.

Bose-Einstein condensation
Superconductivity is closely related to the physics of Bose-Einstein con-
densation (BEC) of electron pairs, highlighted by the smooth BCS-BEC
crossover and a common mean-fleld ground state for both regimes.
Nevertheless, when it comes to the role of quantum geometry, the BEC limit
may show quite a different phenomenology from that of superconductors.
Quantum geometry describes how the properties of quantum states vary
throughout the Brillouin zone. This raises the question: Does quantum
geometry have any impact on a (BEC) that occupies a single quantum state?
For a non-interacting BEC at equilibrium, quantum geometry is indeed
irrelevant. However, when interactions are introduced and excitations are
considered, quantum geometry begins to play a significant role. Another
natural question is: what is the bosonic counterpart of superconductivity in a
flat band? Specifically, where would bosons condense in a flat band where all
energies are degenerate? Once again, interactions change the scenario. Due
to Hartree-type renormalization of the bands, certain momenta can acquire
slightly lower energies, making them favorable sites for condensation'*"'*.
This leads to an important question: under what general conditions are such
condensates stable? Given that the energies are essentially degenerate, even
minimal interactions might excite particles to arbitrary momenta, poten-
tially destabilizing the condensate.

Quantum geometry also plays a crucial role in Bose-Einstein Con-
densates (BECs). In a weakly interacting BEC within a flat band, the speed of
sound-which must be positive to ensure superfluidity-is proportional to

the interaction energy U and the square root of a generalized quantum
metric'**'*. Note again the linear dependence on the interaction energy U,
typical for flat band phenomena: this is an immediate consequence of the
existence of only one energy scale. This should be contrasted to the case of a
usual dispersive band where the speed of sound is proportional to /U. The
stability of a BEC can be also determined by calculating the fraction of
excitations, due to weak interactions, that result in a finite particle density
outside the condensate state, #.,(k). This is also called the quantum
depletion and was found' to be given by the condensate quantum dis-
tanced (q) (similar to the Hilbert-Schmidt quantum distance dj;s defined in
the introduction), and, in the limit of vanishing interaction, is related to
nex(K) via the equation

2d(q)

where g =k — k. and ;if(q) includes overlaps of the Bloch state at the
condensate momentum k. with states at other momenta. The physical
intuition is that depletion of the condensate to excitations is limited not by
energetic reasons as in dispersive bands, but by a finite quantum distance
between the initial (ground) and the excited state. The result (17) also
implies that quantum excitations on top of the mean-field condensate do
not vanish in the limit of small interactions; flat bands are thus an ideal
platform for studying the beyond-mean-field physics of condensates. The
quantum distance appears instead of the quantum metric because the
quantum depletion includes finite momentum excitations. The quantum
metric on the other hand is an infinitesimal measure and corresponds to
long-wavelength limit quantities such as the speed of sound, and
supercurrent in the case of superconductors. Quantum geometry manifests
also in the superfluid weight of BEC'*"'*,

(17)

th—>0nex(k) =

Exciton condensates

An exciton is a bosonic quasiparticle formed by an electron (e), bound to a
hole (h). At low temperatures, a gas of excitons can form an exciton con-
densate (EC)"**'*’. Due to the effective interaction among excitons, resulting
from the Coulomb interaction, an EC will exhibit superfluidity. An EC can
be regarded as superfluid BEC, see section “Bose-Einstein condensation”.
However, it is also analogous to a superconducting state, or a ferromagnetic
state, as we discuss in this section.

Shortly after the proposal that electron-hole pairs could form an
exciton condensate (EC), it was suggested that spatially separating the
electrons and holes would enhance the stability of the EC by reducing the
rate of electron-hole recombination'”. This can be realized in 2D systems
formed by an e-doped 2D layer and h-doped 2D layer separated by a high-
quality, thin, dielectric film"**"*". In these double-layer structures, when the
doping is sufficiently low, and gates sufficiently far away, so that screening
effects are minimized**'”, an EC can form when the carriers’ intralayer
distance &~ 4/1/n is comparable to the interlayer distance d. In such con-
ditions, the layer degree of freedom can be treated as a pseudospin degree of
freedom, or as the particle-hole degree of freedom of a superconductor. In
the first case the EC can be regarded as an easy-plane ferromagnet (see
section “Spin-wave stiffness”) in the second case as a “charge neutral
superconductor”.

We can define the superfluid weight of an EC, in analogy to the defi-
nition introduced for a superconductor, as the long-wavelength, zero-fre-
quency, response of the system to a transverse vector field having opposite
directions for electrons and holes. For an EC formed in a 2D double-layer this
corresponds to having a vector field A in the top layer and a vector field — A
in the bottom layer. It is then straightforward to derive the expression of
[D,] i 3 done for the superconducting case, (roughly speaking) by reinter-
preting the particle-hole index™***, as the layer index**'**. In this analogy,
the superconducting order parameter A corresponds to the mean-field order
parameter describing the EC, AL |, = (CZ,T Vog(r — 1',d)c, ), where a

(') is a general orbital degree of freedom, T, B are the indices denoting the
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Fig. 2 | Geometric contributions to the superfluid
weight. a Schematics of a double layer formed by two
TBGs in which an EC state is expected to form when
the chemical potential in the top layer y1 is equal and
opposite to the chemical potential in the bottom layer
up. b Dependence on twist angle of the conventional
and geometric contributions to the superfluid weight
D,ofan EC formed in a double TBG, for fixed chemical
potential y = pr= —pp = 0.2 mev. ¢, d Dependence on
u, for different twist angles, of conventional and geo-
metric contributions, respectively, to D;. Adapted from
ref. 154.
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top and bottom layer, respectively, and Viz(r — ', d) is the effective
interlayer Coulomb interaction with d the distance between the layers.

Similar to superconductors, the critical temperature T, for forming an
exciton condensate (EC) is enhanced in flat-band systems. As the bands
become flatter, the conventional contribution to the EC’s superfluid weight
and stiffness is suppressed, reducing the neutral superfluid current and
making the EC unstable to thermal and quantum fluctuations despite a high
T.. This changes when flat bands have nontrivial geometry: a geometric
contribution to the superfluid weight [D;] j emerges, strengthening the
stability of the EC"**'*.

This situation is most apparent in the proposal for an EC formed in a
double layer formed by TMDs', or by an e-doped TBG and h-doped TBG
separated by a thin dielectric layer'™, as schematically shown in Fig. 2a. In
this case, for certain twist angles, the conventional contribution to [DS] j can
even be negative, as shown in Fig. 2b. However, for the same twist angle, the
geometric contribution is positive and very large guaranteeing the stability of
the EC, Fig. 2b-d. We see that for an EC the effect of the quantum geometry
of the bands can be even more significant than for superconductors.

Electron-phonon coupling

One main interaction in solids is the electron-phonon coupling (EPC),
which is crucial for various quantum phases, and in particular for
superconductivity'**'**. It is conceptually intriguing to ask if the EPC has
any clear relation to quantum geometry, in particular in the generic case
where the electrons have a Fermi surface - characteristic of the great majority
of known superconductors. Uncovering this relationship could be crucial
for identifying new superconductors, considering the vast array of topolo-
gical materials"’"'*.

Recently, ref. 167 revealed a direct connection between electron band
geometry/topology and the bulk electron-phonon coupling (EPC). The
study introduces a “Gaussian approximation” where this connection
becomes explicit. Within this approximation, a quantum geometric con-
tribution to the electron-phonon coupling constant A can be naturally dis-
tinguished from an energetic contribution. The EPC is the sum of the two
(up to a cross-term). (See Supplementary Information C for more details).
Explicitly, the geometric contribution is supported by the quantum metric
or an extended orbital-selective version of the quantum metric'''"’, and is
bounded from below by the topological contributions over the electronic
Fermi surface.

The Gaussian approximation can naturally be applied to graphene,
where the short-range hopping and the symmetries make it exact, and
its generalized version can naturally describe another well-known
superconductor, MgB,. Combined with the ab initio calculation,
ref. 167 finds that the quantum geometric (topological) contribution to
A accounts for roughly 50% (50%) and 90% (43%) of the total EPC
constant A in graphene and MgB,, respectively. The large contributions
from quantum geometry to EPC can be intuitively understood: the
quantum geometry affects the real-space localization of the electron
Woannier functions, and then affects how the electron hopping changes
under the motions of ions. This is an important part of the electron-
phonon coupling (and in many cases—such as graphene and MgB,— is
the largest part of EPC).

The analysis for graphene in ref. 167 can be tested by measuring the
phonon linewidth by Raman spectroscopy as well as measuring phonon
frequencies by the inelastic x-ray scattering. Reference 168 found that the
quantum metric modifies the electron-phonon coupling by enhancing
small-angle scattering. The formalism in ref. 167 can in principle also be
applied to other systems such as Weyl semimetals. One major future
direction is to develop a general framework that relates quantum geometry
to the bulk EPC for realistic systems. Such a study may provide new gui-
dance for the future search for superconductors from the perspective of
quantum geometry.

Fractional Chern insulators

Fractional Chern insulators (FCIs) are zero-magnetic-field analogs of
the fractional quantum Hall effect. By definition, FCIs should exhibit
fractionally quantized Hall resistance and vanishing longitudinal
resistance under zero external magnetic field. FCIs were first pro-
posed in toy models'*”™"”!, where fractionally filled nearly flat Chern
bands">'"”? (in zero magnetic field) and repulsive interactions are
identified as the essential ingredients.

Recall that the fractional quantum Hall effect requires two
ingredients: Landau levels (from an external magnetic field) and
repulsive interactions. As the repulsive interaction (e.g., Coulomb
interaction) is ubiquitous, the special ingredient for the FQH is the
Landau level. Therefore, one of the routes (but not the only one) to
realizing FCIs is to mimic Landau levels without external mag-
netic fields.

npj Quantum Materials | (2025)10:101


www.nature.com/npjquantmats

https://doi.org/10.1038/s41535-025-00801-3

Review

In this route, quantum geometry plays an important role in assessing
how closely a realistic set of bands approximates the Landau levels. Besides
its exact flatness and nonzero Chern numbers, the nth Landau level (n =0, 1,
2, 3, ...) is characterized by the following three geometric properties: (i)
uniform (in momentum space) quantum metric, (ii) uniform (in momen-
tum space) Berry curvature, and (iii) the trace of the quantum metric equals
(2n+1) times the absolute value of the Berry curvature™'”. This
momentum independence of the LL quantum geometry enabled detailed
analytical understanding of the LL physics even in the presence of strong
electron-electron interactions'””. Therefore, the best system for FCIs is the
one that hosts nearly flat Chern bands that nearly satisfy those three geo-
metric properties of the Landau levels. References 176-179 suggest that a flat
Chern band is already favorable to realize FCIs even as long as an integrated
version of (iii) is satisfied, even if (i) and (ii) conditions are strongly violated.
(Seealso refs. 8,180-183). Reference 176,177 promote a concept called “ideal
Chern bands”, which motivate the study of analogy in other topological
bands, such as ideal Euler bands'’. However, the claims in refs. 176,177 are
made for special short-range interactions instead of generic repulsive
interactions and for continuum rather than tight-binding models. In
practice, as long as a realistic model hosts nearly flat Chern bands near the
Fermi level, it is reasonable to consider the possibility of realizing FCIs in
such a system, as shown in Supplementary Information D. Besides the way
of mimicking Landau levels, one may also carefully desire the interaction to
realize FCI in bands with zero Chern number'®.

Moiré systems are natural platforms for FCIs, since the quantum
interference owing to moiré superlattice can easily lead to nearly flat
topological bands. Upon spontaneous magnetizing due to interactions,
these bands become nearly flat Chern bands. Remarkably, last year, FCIs
were experimentally realized in twisted bilayer MoTe, at fillings —2/3 and
—3/5, as well as integer Chern insulator at filling —1**"**""". Theoretically,
the system indeed hosts nearly flat Chern bands that have relatively uniform
quantum metric and Berry curvature in each spin subspace'”*"". Upon spin
polarization (Stoner magnetization), the appearance of FCIs follows heur-
istically from the connection to a single Landau level ***"***. However, as
shown in ref. 205, the understanding of the spin properties requires more
bands to be considered, i.e., band mixing is essential.

Following the first discovery of FCIs in twisted bilayer MoTe,, clear
evidence of FCIs was later observed in thombohedral multi-layer graphene-
hexagonal boron nitride superlattice (at fractional electron fillings)*'>™*",
which has almost-fully-connected conduction bands. The theoretical
understanding of experimental observations at fractional fillings in those
systems requires careful study of various issues, such as the interaction
scheme and the roles of temperature and disorder*'**,

Physical responses

The quantum mechanical uncertainty in the position of electrons in solids,
quantified by the QGT Q;(k) in Eq. (1) or its integrated version Qij in
Eq. (8), leads to physical responses, which will be discussed in this section.
For this section, we will resume 7% explicitly.

Polarization fluctuations
Following fluctuation-dissipation theorems”*”, the quantum fluctuations
of a material’s polarization lead to dissipation in the presence of an external
field. The electric polarization in solids is obtained™* by the expectation
value of the position operator p; = e(r;), which can be reduced using Eq.
(10) to the integral over the single band Berry connection [A,(k)] ., in the
Brillouin zone. The position fluctuations in the ground state captured by the
QGT are therefore associated with polarization fluctuations™’. They are also
hence associated with dissipation in the presence of perturbations that
couple with the dipole operator, i.e., in the presence of an applied electric
field £,(t) = &,¢"*, which modifies the polarization of the medium by the
polarizability p,(t) = ijv(t)f) (®).

To draw the parallel between electric dipole fluctuations of the ground
state and quantum geometry, it is convenient to introduce time-dependence
to the integrated QGT Eq. (8): Q;(t — t') = (r,(t)(1 — P)r,(t'))”***. This

captures the fact that virtual interband (dipole) transitions leading to a
nontrivial Q;; are modified in the presence of £;(¢) by how much time the
state populates the virtual bands and how much the position operator has
evolved with the static Hamiltonian H. At t = 0 it reduces to the integrated
QGT (8), but away from the time origin, it has the expression

Q;() = DO+, fBZ(Z,T)d Fu(1=Fo)
x([og0)] +ifby] e

with @k = (€uk — €11)> €nx the dispersion of the nth band, and f, the
occupation factor of the nth band at k. Here

(18)

o], -
o], =

4,0, [40)] +ie)

(19)
[4),,, [40)] —Go),

R =0 =

are the interband metric and curvature matrix elements. It also contains a
Fermi surface contribution, Dy(t), from the second term in the position
operator of Eq. (10). The Fermi surface contribution is normally single-band
and only present for metals Dy(t) = F;; + itD;, containing the Drude
weight D; = [, % kO, Ok € from the dispersion curvature at the
Fermi surface; as well as a divergent piece due to the discontinuity at
zn)" (fnk) (9, €u1)(9g €,). The latter term
appears in the real and symmetric part of the geometric tensor, and explains
the divergence of the metric for metals, even in single-band metals™”. The
singularities coming from the Fermi surface get regularized by the
introduction of a scattering time 7. Finally we note that Q,(f) in Eq. (18)

03(1) + Q% (1),

the Fermi surface Fy= f 87

has Hermitian and anti-Hermitian components, Qij(t) =
which can in principle be independently measured™’.

Nondissipative geometric response

The relationship between Q;; and response functions such as the electric
susceptibility y;(w) or the electric conductivity 0;}(w) follows naturally in the
geometric picture. Namely, the antisymmetric (in both ij and + 1) Qi’(¢) =
(Qy(t) Qﬂ( £)/() is directly related to the polarizability,
@) = (me¥)O(£) Q™ (t)****°. Noticing that J() = 9,p,(t), it follows that the
conductivity can be written compactly as™’

oy(t) =7E0()2,Q5(). (20)

which fully reproduces the Kubo formula™. We introduce back 7 explicitly.
The two response functions are simply related in the frequency domain by
0i{w) = —iwy;(w). It becomes particularly apparent that for insulators
without a Fermi surface, D;; = 0, the response at frequencies below the gap,
and therefore non-dissipative, is strictly geometric, containing both long-
itudinal contributions with origin in the interband quantum metric matrix
elements, g, and Hall contributions from B;;. To make it more apparent, we
can expand Eq. (20) for ingap frequenc1es,

e /.BZ(Zﬂ)demnk([gt](k)} +iloo] ) @1)
<Lt ol b0

al-]-(w) =

Since fuk = (fur — frnke) is anti-symmetric in band indices, it is apparent that
each order in frequency it selects either the symmetric (quantum metric) or
antisymmetric (Berry curvature) geometric matrix elements. Namely, in the
DC limit, only the Berry curvature contributes. In two dimensions, we
obtain the celebrated Thouless-Kohmoto-Nightingale-Nijs formula
0;=€;°C/h' with ¢; the Levi-Civita symbol. At linear order in w, the
non-dissipative geometric response—the static polarizability, or capacitance
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of the insulator, y;—emerges from the matrix element of the quantum
metric weighted by the inverse energy gaps™:

2
0i(w) = % <Ceij + iy + - ) (22)

Sum rules of dissipative response

In this part, we discuss several sum rule for band insulators. First note that,
integrating the conductivity tensor oj(w) over all frequencies (up to w
dependent factors) can realize the instantaneous, ¢ = 0, response. This rea-
lization leads to a sum rule that relates the integrated quantum metric

d'k 1
_ (=-lo. 1o. 23
1= [ ®=3(2+ 2] (3)
to the integrated real part of the longitudinal conductivity as
n Re| 0”((0)
gl =5 / dw Z (24)

which is now recogonized as the Souza-Wilkens-Martin (SWM) sum rule™.
The quantum geometry can also be found in the static structure factor™***>**

1
32499+ -
7

Importantly, dissipation also occurs from the magnetic dipole moment of
the medium, leading to Hall response. The simplest example is the Hall
counterpart of the SWM sum rule, which is exactly the Kramers-Kronig
counterpart of the DC Hall conductivity** or the dichroic sum rule’” which
captures the orbital magnetic moment of bound electrons permitted by the
Berry curvature”*”". Here o; Hw) = [04(w) — 0;(w)]/2.

Let us here present the generalization of these results by utilizing
Eq. (20) in ref. 237. Different sum rules can be constructed by weighting
different powers 7 of frequency. Each # captures an instantaneous property
of the medium characterizing a given moment of the zero point motion of
the ground state, or the various time derivatives of Q(t),

abs
/ a0 T oy,

The absorptive (or Hermitian) part of the conductivity a;bs = Reok. (@) +
zIma (w) (with o} (w) [0(w) + 0(w)] ]/2) contains a symmetrlc and
real part due to couphng of & ahgned with the dipole moment of the
dielectric medium, but also a Hall contribution from the coupling with the
magnetic dipole, perpendicular to the field. Importantly in the sum rules §”,
the entire Qij tensor Eq. (18) appears, not only Q?js, and therefore, sum rules
are sensitive to geometric quantities absent in nondissipative linear
response, such as the integrated quantum metric™.

Sum rules naturally divide into longitudinal and Hall contributions,
where each 77-time moment of Q;; corresponds to a convolution with Wl b
In insulators, all moments are given exclusively in terms of geometric matrix
elements and explicitly given by

S(q) = (25)

(26)

Szvij = (27)

/ St = L) 0]

and

me d'k

Sthi=— / ——f (1= [bilk} wh L. 28
b= 2 [ ) [0 i (28)

These fluctuation moments reflect various instantaneous properties of bound

electrons in periodic lattices™ and have been dubbed quantum weights in

ref. 248. Let us now focus on 2D (d = 2), where g has no units. Starting with the
zeroth moment of longitudinal fluctuations $ Lj = Te / hg,], it captures
exactly the integrated quantum metric, which is exactly the SWM sum rule™. In
Chern insulators or Landau levels, where projected of the position operators in
orthogonal directions do not commute, the zeroth moment of Hall fluctua-
tions is nonzero S?{J-j = —(me?/2h)Cel. Aty = 1, quantifying the speed of the
polarization fluctuations is the f-sum rule, defining the total spectral weight,
S} = ne?n/2m; and the dichroic sum rule*”, defining the orbital magnetic
moment S}, = y,,, measured in ref. 249. Shot noise, that is zero temperature
current fluctuations appear in the second fluctuation moment S; and S, ™.
Intriguingly, and also noticed early on™, metals and insulators don’t show
remarkably different behavior in current fluctuations S” with # > 0. However,
89, proportional to the integrated quantum metric, can qualitatively distin-
guish the two, completing the effort of Kohn to unambiguously distinguish a
metal from an insulator”.

Spectral transfer and optical bounds

In metals not all S” are well defined, but we can focus on the well-behaved
first moment of the longitudinal response, the f~sum rule Si. This sum
rule relates to nondissipative response by expanding the conductivity Eq.
(20) to frequencies far above optical transitions, o;(w) ~ iw? ,/w. Here
w? = 4nne? /m*™*", containing the electron density n and optlcal mass
m. The optical mass is defined by S}, which has a Fermi surface con-
tribution given by the Drude weight D;;, thelinear in  part of the Q;(#) Eq.
(18), and a geometric component from the oscillations in Q; (t) There-
fore, it is natural to separate the spectral weight into the charge stiffness n/
m* obtained by the dispersion curvature at the Fermi level e*n/ mi =
D; and a geometric contribution from interband optical transitions,
ne*n/2nt = 37w, 4l8;(K)] 2 where > is a shorthand for the
sum and prefactor of Eq.(27). Therefore, we have that the optical mass of
electrons, defined by the sum rule and therefore indicating the instan-
taneous mass of electrons (usually the bare electron mass™*) relates to the
Fermi surface electron mass and the geometric mass by

L_1, 1
m;  mt ms

ij ij ij

(29)

The geometric contribution generally makes the electrons lighter at short
time scales”. In the extreme example of flat bands with nontrivial quantum
geometry, in which quantum interference creates a band with m* = oo, the
mass is purely geometric. This means that although semiclassical transport
would be dictated by infinitely heavy electrons that do not conduct, at short
time scales the electrons behave as if they have their original mass before the
quenching of the band dispersion. A consequence, as discussed extensively
above, is that electrons may still form a superconducting or excitonic
condensate.

The transfer of weight from the Fermi surface mass m™ to the geo-
metric mass m¢ can be best appreciated in Fig. 3 where we consider a square
lattice tight-binding model and show the evolution of the total spectral
weight and optical mass S;}. The hoppings are tuned such that the bands
evolve smoothly into a Lieb lattice. In this process, the Drude peak gets
progressively reduced while the geometric mass is built up to the point that
exactly in the Lieb limit, the band is perfectly flat and contributes only to the
geometric weight.

By looking at the different geometric responses within a unified fra-
mework, some identities become apparent. First, an insulator has a spectral
gap E,, which means the energy djfferences are bounded by @,k > Eglh. It
follows that for #>0, SL i =Y wmnk g,](k) > (né? /n? V)E”g Simi-
larly S, > (4n%e? / )E{C. The signs are reversed for the negatlve powers of
1. Focusing on the f — sum rule 57 = 1, we have we?nd /m > (ne? /W*) TrGE,,
which gives A’nd /m > TrGE,, where d is the spacial dimension. This fact
was pointed out by Klvelson in 1982°* for 1D insulators.

Combining these results with the trace condition Eq. (2) it can be
observed that in the presence of a Chern number, it also holds that the
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Fig. 3 | Transfer of optical spectral weight Re 0, (w) from the Fermi surface
(Drude weight) to high frequencies from destructive interference in a frustrated
hopping lattice (Lieb). After cutting the hopping ¢, the resulting Hamiltonian has a
flat band with no Drude weight, which was distributed to higher energies in the form
of dipolar transitions between the flat and dispersive bands.

244

energy gap is bounded by the inverse Chern number E, < 27n/(m|C|)
More optical weight upper and lower bounds have been discussed since
focusing on their geometric and topological origing™**3%*#:24:235:299:252

Let us conclude this discussion with the example of free electrons in
two dimensions under a magnetic field. From Kohn’s theorem®”,
Galilean invariance requires that all optical transitions happen exclu-
sively across consecutive Landau levels separated by the cyclotron fre-
quency w,. In this case, all sum rules become saturated”®. In fact, they
can be compactly expressed by SZ- = "TEZCw?(Sij + 27e;;) with §;; the
Kronecker delta and ¢;; the Levi-Civita symbol, which saturates all the
bounds®”. In this case, all responses are quantized, including DC con-
ductivity, capacitance, or magnetic moment. The quantum geometric
effect on the optical response was also studied in the presence of
correlations®"** and various other systems™"**>",

Landau levels
Semiclassical quantization of electronic states into Landau levels (LLs)
under a magnetic field can be described by the generalized Onsager’s rule:

Sole) = ZneB(n +1_ M)

2 2n)?

(30)

where Sy(€) is the momentum space area of the closed semiclassical orbit at
the energy e, B is magnetic field,—e is the electron charge, n is a nonnegative
integer, and y.p is the quantum correction due to Berry phase, magnetic
susceptibility, and other band properties”*>. The semiclassical approach
can successfully describe the band energy and the geometric properties of
Bloch states in metallic systems with energy dispersion. This includes free
electron gas with parabolic dispersion and Dirac electrons with linear
dispersion®”’. However, when applied to dispersionless flat bands, the
implication of Eq. (30) is subtle since semiclassical orbits are ill-defined.
Naively, one may expect vanishing LL spacings due to the infinite effective
mass, and thus no response of flat bands to the magnetic field.

However, when a flat band exists in multi-band systems with sizable
interband coupling, this naive expectation completely breaks down. Here,
the presence of a finite interband coupling indicates that the flat band is not
from the decoupled atomic states. In this section, we will first review how the
LLs are affected by interband coupling™*. In particular, we discuss the role of
interband Berry connection and symmetry of the system at zero magnetic
field on the LL spectra. After that, we discuss the anomalous magnetic
responses of singular flat bands in which the flat band has a quadratic band
crossing with another parabolic band at which the Bloch wave function
becomes singular’””. The geometric idea to describe the LL of singular flat

bands can be further generalized to describe the LL spectra of generic
quadratic band crossing”’. We will discuss the complication when the flat
band is made to be weakly dispersive and explain how the geometric effect
can be extracted. Based on it, we revisit the magnetic responses of the Bernal
stacked bilayer graphene®”.

Isolated flat bands
The Landau level spread of isolated single flat bands can be described by
using the modified semiclassical approach developed by M.-C. Chang and Q.
Niu””®. Contrary to Onsager’s approach, where the band structure at zero
magnetic field €, is used to define the closed semiclassical orbits and the
corresponding area Sy(¢), the modified semiclassical approach’” employs
the modified band structure given by

E, p(k) = €, + p,(K)B, €3]
where B = Bz is the magnetic field, # is the band index, and p, (k) is the
orbital magnetic moment of the n-th magnetic band in the z-direction
whose explicit form is

u, (k) = eIm<8xun(k)| e — H(k)] |E)yun(k)>, (32)

where H(k) is the matrix Hamiltonian in momentum space. Hence, the
second term on the right-hand side of Eq. (31) indicates the leading energy
correction from the orbital magnetic moment coupled to the magnetic field.
In usual dispersive bands, the B-linear quantum correction is negligibly
small in weak magnetic field limit compared to the zero-field bandwidth.

In the case of a flat band with zero bandwidth, on the other hand, the
B-linear quantum correction always dominates the modified band structure
E, p(k) in Eq. (31) even in weak magnetic field limit. Moreover, the modified
band dispersion of an isolated flat band is generally dispersive so that the
relevant semiclassical orbits can be defined unambiguously. As a result, one
can obtain the LL spreading of the isolated flat band in the adjacent gapped
regions by applying the semiclassical quantization rule to E, z(k), which
naturally explains the LL spread of the isolated flat band. Especially, around
the band edges of E,, z(k), one can define the effective mass m™, which is
inversely proportional to B, from which Onsager’s scheme predicts Landau
levels with a spacing eB/m* « B~. The resulting LL spectrum is bounded by
the upper and lower band edges of E,, 5(k), and thus the total magnitude A of
the LL spread is given by A = max E, 5(k) — min E, p(k). This result is
valid as long as the band gap Eg,, between the isolated flat band and its
neighboring band at zero magnetic field is large enough, ie,
E,p > max |E, p(k)|. The generic behavior of an isolated flat band under a
magnetic field is schematically described in Fig. 4 where one can clearly
observe that the LL spread of the isolated flat band start filling the gaps at
zero-field above and below the isolated flat band.

Interestingly, the LL spreading of isolated flat bands is a manifestation
of the non-trivial wave function geometry of the flat band arising from inter-
band couplings”*. One can show that the modified band dispersion of the
isolated flat band is given by

¢ 1

Eyp(l) = —2m 0= Im ;emkw(k» (33)
in which
(k) = (O, (), () (1, ()13, ()
(34)

= [AR,A®]

where ¢ = h/e, ¢ = BA, is the magnetic flux per unit cell, and Ay is the unit cell
area assumed to be A, = 1. Here, we assume that the n-th band is the isolated
flat band at zero energy without loss of generality so that €, in Eq. (33)
should be interpreted as the energy of the m-th band with respect to the flat
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Fig. 4 | Landau level spread of an isolated flat band. a The band structure of a 2D
system in the absence of a magnetic field. The second band with the energy e, =0
corresponds to the isolated flat band. The inter-band coupling ¢,, )(:”yz of the isolated
flat band with the other dispersive band of the energy ¢,,, (m = 1, 3,4) is indicated by a
dashed vertical arrow. b The modified band dispersion E,,, g (m =1, ..., 4) in the
presence of the magnetic field. The corresponding Landau levels are shown by red
solid lines. The LL spread of the isolated flat band is represented by the green arrow.
[Adapted from ref. 274].

band energy. We note that [A,(k)] am = 11, (k)[9;u,(K)) indicates the
cross-gap Berry connection between the n-th and m-th bands (n # m), and
x;"(k) is the corresponding fidelity tensor that describes the transition
amplitude between the n-th and m-th bands. We note that [A;(k)] um 18
gauge-covariant while (k) is gauge-invariant, thus directly related to
physical observables. Hence, Eq. (33) indicates that the modified band
dispersion of the isolated flat band is given by the summation of the transition
amplitudes " (k) between the isolated flat band and the m-th band weighted
by the energy €, of the m-th band as illustrated in Fig. 4. This means that the
immobile carriers with infinite effective mass in an isolated flat band can
respond to the external magnetic field through the inter-band coupling,
characterized by the cross-gap Berry connection, to dispersive bands.

The LL spread of an isolated flat band is strongly constrained by the
symmetry group of the system”". The B-linear correction to the modified
band dispersion E, g(k) vanishes when the system respects the chiral C or
space-time-inversion Iy symmetries in the zero magnetic flux. The LL
spreading is proportional to B’ for a flat-band system with I, symmetry in
the zero magnetic field, while the LL spreading is forbidden in the presence
of chiral symmetry. Interestingly, although Isr symmetry would be broken
as the magnetic field is turned on, the LL spreading is strongly constrained
by Isy symmetry. We further find that max E, 3(k) = — min E, 3(k) when
the system respects time-reversal T or reflection R symmetry, at the zero
magnetic field, thus the minimum and maximum values of the LL spreading
have the same magnitude but with the opposite signs.

Singular flat band with quadratic touching

Next, let us consider the LL spectrum of singular flat bands in which a flat
band has a band crossing with other dispersive bands at a momentum where
the flat band wave function develops a singularity’””~*'. As a minimal model
of a singular flat band, we consider a two-band model describing a flat band
crossing quadratically with a parabolic band. Explicitly, we consider the
most general form of two-band continuum quadratic Hamiltonian given by

Hok) = foK)og+ > f,Ka,,

a=xy,z

(35)

where o,’s are Pauli matrices and oy is the 2 x 2 identity matrix. The
quadratic functions fo—.,,.(k) take the form of f, (k) = a,k? + byk.k, +
cak§ with real coefficients {a,, b,, ¢,}. A flat band touching with another
parabolic band can be obtained by imposing the band flatness condition
det[H (k)] = 0. If the resulting flat band wave function develops dis-
continuity at the band crossing point, we obtain a singular flat band.
Otherwise, we have a non-singular flat band.

The singular band crossing point can be characterized by the

canting structure of the pseudospin s(k)=3,_  f.(k)/
\/ fx(k)2 + fy(k)2 + fz(k)z& around the band crossing point. The

canting structure arises due to the singularity at the band crossing point
where the pseudospin direction cannot be uniquely determined. The
strength of the singularity can be characterized by the maximum
canting angle A6 of the pseudospin around the band crossing point.
Interestingly, the canting angle between two pseudospins at the
momenta k, k' is related to the Hilbert-Schmidt quantum distance

dgs(k, k) =4/1 — I(uk|uk/)|2 of the perodic parts of the relevant Bloch

states |uy), |u ) as AB(k, k") = 2sin™! (dy5(k, k). Denoting the max-
imum value of dys as d, max) - S0, either A,
ord, .. canequivalently measure the strength of the singularity”””. In the
perspective of the quantum distance, the singularity at the band
crossing point prevents Bloch wave functions from getting close to each
other even in the limit k — 0 yielding nonzero d,,,.

A singular flat band under a magnetic field develops an anomalous
LL structure, which directly manifests the quantum geometry of the
wave function associated with the singularity at the band crossing
point”>*””. Figure 5b, c show the generic LL spectra of a non-singular
flat band and a singular flat band, obtained by solving Eq. (35) under
magnetic field. One can see that the non-singular flat band does not
respond to the magnetic field, and all of its LL states are located at the
same energy (that of the zero field flat band) without any spread. On
the other hand, the singular flat band develops its LL spreading in the
empty region (i.e., with energy below that of the flat band). In both
cases, the parabolic band develops a conventional LL structure with
equal energy spacing w,.

One can define the total LL spread A of the singular flat band as the
difference between the energy of the singular flat band and that of the lowest
LL (E,) assuming that the flat band has lower energy than the parabolic
band. One striking observation”” is that there is a universal relationship
between A/w.and d, ., independent of model parameters used to define the
quadratic Hamiltonian in Eq. (35), given by

max

gives AB,,, = 2sin™" (d

- (36)
where &(x) is a monotonically increasing curve shown in Fig. Se.
The existence of the universal function &(x) can be proved analy-
tically as well as numerically. Therefore, measuring A/w,, d,, of
the singular flat band can be experimentally extracted. Eq. (36)
implies that A/w, is determined solely by d,,,., and the LL spreading
of singular flat bands is characterized by two distinct energy scales
A and w,, contrary to the case of non-singular flat band with just
one energy scale w.. Describing the LL generation of singular flat
bands in the empty region is completely beyond the scope of
semiclassical analysis, arising from the level repulsion between the
LL spreading from the singular flat band and those from the
parabolic band, which is encoded in the maximum quantum
distance.

Quadratic band crossing and bilayer graphene

Now we relax the flat band condition and consider the LL spectrum of a
general two-band quadratic band crossing Hamiltonian H (k) in Eq. (35)
with f,_o,, (k)= a k + bok.k, + cakf,. After a series of unitary

axy
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Fig. 5 | Landau level spectrum of a singular d ——=
flat band. a The band structure of a flat band with a 0 0
quadratic band-crossing. Here m; and m, are the W_0.001
maximum and minimum effective masses of the uj_0'2 -
dispersive band. b and ¢ show the LL spreading for a ; - &1’:: 25421 -0.002 .
non-singular flat band (NSFB) and singular flat rrrFrléf'band'(E=0) 0.4 p4—p31 0 50100
band (SFB), respectively. d LL spreading of various NS 06 P7—p50
flat band models (denoted by the labeling [pm] with LLs of NSFB Llso "FB "0 20 40 n 60 80 100
an integer m in the inset) as functions of the LL index b 0.4 c 3 g 0.02 A e (.12 -
n. Inset shows their 1/n dependences for n>> 1. 16 Ih‘” c 25 [ho 0 B ém(x)_?'cm X +3x/40
€ The universal relationship between A/w,and d, .. 12 0.2/No LL 2 §0.08 ¢ Numerics ]
Numerical data (diamond symbols) are from the 50 % 0 splitting Llj1 5 -0.02 E = it
flat band models. [Adapted from ref. 275]. 8 1 -0.04 E, T0.04 e
0.2 . : : =3x/40
4 0 0.5 v (x)
04 0 -0.06 Eo 0
0 : 05 0 02 04 06 08 1
Fig. 6 | Effect of quantum distance on Landau ( a) E=+1 (b) 5 =-1

levels. The evolution of the Landau levels EX of a

quadratic band crossing Hamiltonian in Eq. (38) asa
function of the maximum quantum distance d,,,
fora&=+1and b &= —1, respectively, with w = 1.

Here, £ = £1 is related to the valley index of gra- 2 \ 2 /
phene. [Adapted from ref. 277]. 1
1 _//
3z 0 3z 0
R oy
-1 \ -1

-3 _//
1 0 1
dmax dmax

transformations, the Hamiltonian can be transformed to
Ho(k) = [q,(k; + k) + q,(k; — K3) + q5(2k. .k, )]0,

+ [bz(kgzc - kﬁ) + b3(2kxky)]01 + [63(2kxky)]0.2
+ [al(k;zc + k;) + az(kﬁ - k)zz) + a3(2kxky)]037

(37)

thus, the number of the Hamiltonian parameters reduced from twelve to
nine””. Interestingly, among the nine parameters, six correspond to the
mass tensors of the two dispersive quadratic bands, while the other three
describe the interband coupling”’, meaning that the two parabolic bands are
from decoupled atomic states in the absence of the interband coupling. In
particular, considering that the wave function geometry of H 4 (k) appears in
the form of an elliptic shape on the Bloch sphere, the three interband
coupling parameters determine the major d; and minor d, diameters of the
elliptic curve and the orientation of the ellipse represented by an angular
variable ¢*"***. When the flat band condition is additionally imposed in a
way that one of the two bands becomes flat since it generates five constraint
equations among the nine parameters, only four of them become inde-
pendent and correspond to the three mass tensors of the parabolic band and
one interband coupling parameter, which is nothing but the maximum
quantum distance’”.

Moreover, one can show that the flat band condition is nothing but the
condition that the energy eigenvalues of the two-band Hamiltonian have a
quadratic analytic form™°. Under such quadratic form condition, the gen-
eric two-band Hamiltonian has only one interband coupling parameter,

which is equivalent to the maximum quantum distance, and the corre-
sponding wave function trajectory on the Bloch sphere is a circle whose
diameter is equal to the maximum quantum distance”***.

The LL spectrum of generic two-band quadratic band crossing
Hamiltonians is also significantly influenced by the three interband cou-
pling parameters. One can reveal the role of the interband coupling in the LL
spectrum by comparing two quadratic bands with identical mass tensors but
different interband couplings”’. To demonstrate the role of the interband
coupling in the LL spectrum of quadratic band crossing Hamiltonian, let us
consider the following model Hamiltonian”

>

> fok)ag,

a=0,x,y,z

Hy(k) = (38)

where f, (k) = —dvV1 — d’k}, f (k) = dk.k,, f (k) = k} /2 + (1 — 2d°)
kJZ, /2, and fy(k) = 0. Here, the parameter d is defined as d = &d,,, in which
&=+1,and d,, is the maximum quantum distance. The energy eigenvalues
of H(k) remain fixed tobe e, ;, = + %(ki + k;) regardless of the value of
d within the range —1 <d<1. When d,_,, = 1, the Hamiltonian in Eq. (38)
corresponds to the low energy Hamiltonian of the Bernal stacked bilayer
graphene, and £ =+1 denotes the valley index.

In Fig. 6, the d,,, -dependence of LLs is depicted””’”. When d,,, = 0,
the LLs EX' are equivalent to those of the conventional parabolic bands
€™ = +w(N +3) with the cyclotron frequency w=eB/m but start to
deviate from ™ as d, increases. When d, . reaches one, they become
X — 4 o\ /N(N — 1), the LL of the bilayer graphene. The degeneracy
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of LLs between EX(d, .. = 1) and EiX(d,,,. = 1) leads to the absence of a
zero energy plateau in the quantum Hall effect. Since such degeneracy of LLs
occurs only when d, .. = 1, the zero energy plateau is absent only when
d,.x = 1 while it exists in other cases with d,, = 17"

One can verify that the degeneracy at d,,, = 1 exists for both
& =+1. However, depending on &, the origin of zero LLs is different””’. For
& =41, the two zero energy levels come from the upper band, while for
&= —1, the two zero energy levels come from the lower band. Further-
more, whend, , = lord , = 0,theLLsaresymmetric with respect to
E=0, as shown in Fig. 6a, b. This result arises from chiral symmetry,
represented by the operator o,, which satisfies 0,Hy(k)o, = —Ho(k),
exclusively whend, ,, = lord,,, = 0.This symmetry holds even in the
presence of a magnetic field. In fact, the chiral symmetry is crucial for the
degeneracy observed at d,,,, = 1. Thus, the presence of the zero energy
plateau necessitates chiral symmetry as well as d, = 1. It is worth
noting that although chiral symmetry is not crystalline but approximate
symmetry’”, it is an excellent symmetry of bilayer graphene, and thus
the absence of the zero energy plateau can be experimentally
demonstrated™*.

max

Outlook

The exploration of quantum geometry in condensed matter physics is in its
early stages, with many avenues for further research (see ref. 65). While the
equilibrium behavior of quantum geometric superconductivity under
assumed attractive interactions is fairly well understood, simple analytical
results are mainly confined to the isolated flat band limit. A significant
challenge is that interactions in real materials are predominantly repulsive
due to Coulomb forces, making ferromagnetism the primary instability in
flat bands with quantum geometry. This is evident in kagome metals™”,
where most systems become ferromagnetic despite the presence of flat
bands at the Fermi level, with only one known low-temperature
superconductor.

Further research is needed to identify conditions (if any) where flat-
band superconductivity is favored over flat-band ferromagnetism, extend-
ing beyond current models. Numerical studies show that superconductivity
with purely attractive interactions is enhanced by nearby bands adjacent to
flat bands™”*'***. Analytical insights into non-isolated flat bands and
especially repulsive interactions would be highly beneficial. Additionally,
understanding how flat bands and quantum geometry affect various
superconducting phenomena—such as critical currents, coherence lengths,
vortex properties, Josephson junctions, Andreev reflections, and non-
equilibrium responses—is crucial. While research in these areas is still
emerging' """ early indications suggest that flat-band quantum
geometric superconductivity could offer new functionalities like devices
with suppressed quasiparticle currents'**. However, definitive experiments
and proposals are still lacking, and most current evidence remains
circumstantial.

The exploration of quantum geometry in non-equilibrium phenomena
should extend beyond superconductivity to include non-Hermitian systems.
Collaborations between condensed matter physics and photonic or artificial
quantum systems are particularly promising™ . Several experimental
observations of the QGT have been reported in the latter systems™* .
Connecting current knowledge on quantum geometric effects in super-
conductivity and Bose-Einstein condensates via BCS-BEC crossover
studies'® would be valuable. To fully grasp the significance of quantum
geometry on correlated states, additional experiments and thorough
theoretical analyses using realistic models are necessary. Notably, recent
experiments have begun exploring quantum geometric effects in TBG
superconductivity’”, although the extent to which flat band quantum
geometry or other, renormalized bands contribute to the physics is
unknown. Exploring the effect of quantum geometry in unconven-
tional magentism is also a worthy direction®”. In fractional Chern
insulators™'*>~"?"2127° it js expected that both the Berry curvature and
quantum geometry will lead to new effects, but a clear theoretical
demonstration of this and an experimental observation are missing.

Additionally, the first direct observations of quantum geometric quantities
in solid-state systems are emerging” "' (albeit”” in an ionic system).

To expand the impact of quantum geometry in materials research, a key
challenge is to define, extract, and apply quantum geometric concepts in ab
initio calculations and machine learning methods. These concepts are
already utilized in the Wannier approach to electronic structures, serving as
indicators for Wannier spread. However, dealing with entangled bands
requires addressing issues like divergences in the QGT due to band touchings
and extracting QGT from numerical Green’s functions. Expanding the range
of quantum geometric tools beyond the QGT—such as incorporating
quantum distance or the real-space-local quantum metric**"'*'¥’-may be
necessary.

It is important to note that the QGT is a embedding-dependent
quantity”; in the case of Bloch states, it depends on Fourier
transformation conventions. While some physical observables are
embedding-dependent and can be proportional to the QGT, others are
embedding-independent and cannot. For instance, the superfluid
weight is proportional to the minimal quantum metric*®, which resolves
this issue. Embedding-independent measures like quantum distance
and the real-space-local quantum metric*'"'*'” suggest that new,
physically relevant quantum geometric quantities remain to be dis-
covered. Furthermore, we would like to mention that the geometric
properties of Bloch states are not completely captured by the QGT. In
general, all gauge-invariant properties of the Bloch states fall under the
concept of quantum geometry. Therefore, finding new quantities that
can capture physically-relevant geometric information beyond QGT,
such as the orbital-selective quantum metric in"'*'?, is one interesting
and important future direction.

This review highlighted the role of the single-particle QGT in
condensed matter physics, focusing on the geometric properties of the
Bloch states. Remarkably, properties of many-body systems—even
those that are strongly interacting—can often be described approxi-
mately, and sometimes exactly’”*'*******using the easily computed
single-particle QGT. Looking forward, it is promising to explore the
physical significance of many-body quantum geometry. For example,
the many-body QGT has been predicted to provide a bound on the
Drude weight in gapped systems® and to characterize many-body
localization®”. Recent works demonstrate the relation between many-
body quantum geometry and entanglement™**”’, which means many-
body QGT could become valuable in characterizing highly correlated
quantum materials where mean-field approaches fail, where the many-
body QGT is calculated for many-body states by reinterprating k in
Eq. (6) as the phase of the twisted boundary condition. In this context,
calculating the many-body QGT and other quantum geometric quan-
tities using current and future quantum computers™**”’ is important. In
summary, quantum geometry has garnered significant attention®’”",
and its study is expected to yield more interesting results within and
beyond condensed matter physics in the future.
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