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Leggett modes in a Dirac semimetal

Joseph J. Cuozzo    1,2,6 , W. Yu3,4,6, P. Davids    3, T. M. Nenoff3, D. B. Soh    2,5, 
Wei Pan    2  & Enrico Rossi    1 

Experiments have shown that several materials, including MgB2, iron-based 
superconductors and monolayer NbSe2, are multiband superconductors. 
Superconducting pairing in multiple bands can give rise to phenomena 
not available in a single band, including Leggett modes. A Leggett mode 
is the collective periodic oscillation of the relative phase between the 
phases of the superconducting condensates formed in the different bands. 
The experimental observation of Leggett modes is challenging because 
multiband superconductors are rare and because these modes describe 
charge fluctuations between bands and therefore are hard to probe 
directly. Also, the excitation energy of a Leggett mode is often larger than 
the superconducting gaps, and therefore they are strongly overdamped 
via relaxation processes into the quasiparticle continuum. Here, we show 
that Leggett modes and their frequency can be detected in a.c. driven 
superconducting quantum interference devices. We then use the results  
to analyse the measurements of such a quantum device, one based on  
a Dirac semimetal Cd3As2, in which superconductivity is induced by 
proximity to superconducting Al. These results show the theoretically 
predicted signatures of Leggett modes, and therefore we conclude that  
a Leggett mode is present in the two-band superconducting state of Cd3As2.

The superconducting state is well described by a complex order param-
eter Δ(r) = ∣Δ(r)∣eiϕ(r), characterized by an amplitude and a phase that, 
in general, depend on the position r. The time dependence of Δ(r) 
describes the collective, low energy excitations of a superconduc-
tor. In a standard single-band superconductor there are two types 
of collective excitations: Anderson–Higgs modes, corresponding to 
fluctuations of ∣Δ∣ and pseudo-Goldstone modes, corresponding to 
fluctuations of the phase ϕ. The Fermi surface of a multiband metal is 
formed by several generally disconnected Fermi pockets. In this case, 
at low temperatures, the metal can become a multiband superconduc-
tor characterized by different order parameters Δi for different Fermi 
pockets1–5, as shown schematically in Fig. 1a. It was pointed out6 that 
a multiband superconductor will have additional collective modes 
corresponding to fluctuations of the phase difference between the 
order parameters of different Fermi pockets. So far, evidence of Leggett 
modes has been obtained only via direct spectroscopy techniques in 
MgB2 (refs. 7–11) and, more recently, in an Fe-based superconductor12. 

Using an approach of limited applicability, it had been theorized that in 
Josephson junctions ( JJs) in which one lead is formed by a single-band 
superconductor and the other by a two-band superconductor, signa-
tures of a Leggett mode could be present13.

Here we show, using a different method, how the presence of Leggett 
modes can be observed in JJs and in a.c.-driven superconducting quantum 
interference devices (SQUIDs) in which all the leads are formed from the 
same multiband superconducting material. This opens a new approach 
to the detection and characterization of Leggett modes. In addition, we 
show that measurements on SQUIDs based on the superconducting Dirac 
semimetal (DSM) Cd3As2 display the theoretically predicted unique sig-
natures associated with the presence of a Leggett mode. This adds Cd3As2 
to the list of the few materials exhibiting the presence of Leggett modes 
and points to the unusual multiband character of the superconducting 
state in this material and possibly more generally in DSMs.

For a two-band superconductor, the dynamics of the Leggett mode 
can be described by the effective Lagrangian
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To describe the dynamics of an a.c.-current-biased 2-band JJ, we use 
a resistively and capacitively shunted junction (RCSJ) model21,22. When 
placing a lead on the surface of a DSM, the states of the lead couple 
strongly to the DSM’s surface states and weakly to the DSM’s bulk states. 
In this situation, the supercurrent in the bulk band (band 2) is mediated 
by interband processes (Fig. 1d), and a non-zero ψ0 is expected. In par-
ticular, we expect ϕL = π/2 and ϕR = −π/2 so that ψ0 = π/2. In this scenario, 
the values of ϕL and ϕR are not accidental but are the result of self-tuning 
in JJs based on DSMs in which superconductivity is induced via the prox-
imity effect by a superconductor placed on the surface of the DSM. In 
this case, the current’s lowest energy path to the bulk is via a Josephson 
supercurrent, I (s)12 , between the surface band and the bulk band. Consid-
ering that in general for a JJ, we have the current–phase relation 
I(s) ∝ sin(ϕ), we see that to maximize the supercurrent between surface 
and bulk the system will self-tune in a state in which on the left lead 
ϕL = π/2 and on the right lead ϕR = −π/2, given that on the right lead I (s)12  
has to flow in the opposite direction, from bulk to surface, Fig. 1d (see 
also Supplementary Fig. 1 and Supplementary Section 1). The capaci-
tance between the two leads is very small compared to the normal resist-
ances Ri across the leads, so it can be neglected. Conversely, for the 
interband charge flow within the same lead, we can neglect the resistive 
channel, considering the non-negligible interband capacitance C12. The 
resulting effective RCSJ model is shown in Fig. 1d.

In the presence of the current bias IB = Id.c. + Ia.c. cos(ωt) , the 
dynamics of the RCSJ model shown in Fig. 1c are described by the 
equations

dθA
dτ

= ξdψ
dτ

+ iB(τ) − sinθ1 − i2 sinθ2 (3)

d2ψ̃
dτ2

+
ω2

L

ω2
J
ψ̃ ≈ ̂A0ia.c. cos(ω̂τ) (4)

where ωJ ≡ 2eRI1/ℏ, τ ≡ ωJt, R = R1R2/(R1 + R2), ξ ≡ (R1 − R2)/(R1 + R2), 
ω̂ ≡ ω/ωJ, iB ≡ IB/I1, i2 ≡ I2/I1 and ̂A0 ≡ ω2

LR1/(ω2
J i12(R1 + R2)). In the remain-

der, we set ωL/ωJ = 0.005, ΓL/ωL = 7.5 × 10−5, ̂A0 = 0.0045 , ξ = − 0.6  
and i2 = 1.5.

The dynamics of the SQUID can be obtained starting from  
equations (3) and (4) for each of the two JJs. In the remainder, we will 
denote by X(j)i  the quantity X for band i in arm j of the SQUID, see Fig. 1c. 
We assume the SQUID to be symmetric; the parameters entering the JJs’ 
RCSJ model and the self-inductance L are assumed to be the same for the 
left and right arm of the SQUID. In experiments, some asymmetry between 
left and right JJs is expected. We have checked the effect of asymmetries 
in the SQUID and found that: (1) small asymmetries simply cause the 
structure of the Shapiro steps to be slightly asymmetric with respect to 
the biasing current, (2) large asymmetries can give rise to a complicated 
subharmonic step structure arising from higher harmonic terms and (3) 
asymmetries alone cannot be responsible for suppression of non-zero 
even Shapiro steps before entering the Bessel regime. For the kth band, 
the phase difference η ≡ (θ(2)k − θ(1)k )/2π = Φ̂ + β(i(1) − i(2))  where 
Φ̂ = Φext/Φ0  is the normalized external flux threading the SQUID, 
Φ0 = h/2e, β = I1L/Φ0 and i(j) = I(j)/I1 with I(j) the total current flowing through 
arm j. Using equations (3) and (4) and considering current conservation 
and the flux quantization for η, in the limit β ≪ 1, in terms of the phases 
θs ≡ ∑ijθ

(j)
i /4, ψ = ψ(1) = ψ(2) = ψ0 + ψ̃(t), we find (see Supplementary 

Section 2) that the dynamics of the SQUID are described by the 
equations

dθs
dτ

= ξdψ
dτ

+ 1
2 [iB − is (θs, ψ)] (5)

is(θs, ψ) = 2 cos(πΦ̂) [sin (θs + ψ) + i2 sin(θs − ψ)]

−2βsin2(πΦ̂) [sin(2(θs + ψ)) + i22 sin(2(θs − ψ)) + 2i2 sin(2θs)]
(6)

in conjunction with equation (4).

ℒ = (1/2)C12(ℏ/2e)
2(dϕ/dt)2 + (ℏ/2e)I12 cos(ϕ − ϕ0), (1)

where ℏ is the reduced Planck’s constant, C12 is the interband capaci-
tance, e is the electron’s charge, I12 is the effective interband critical 
Josephson current6 and ϕ0 is the equilibrium value of ϕ. From equation 
(1) we obtain that when ϕ − ϕ0 ≪ 1, ϕ will oscillate with frequency 
ωL = √(2e/ℏ)I12/C12  around ϕ0.

A SQUID, see Fig. 1b, is formed by two JJs connected in parallel and 
encircling a finite size area. Let θi ≡ ϕR

i − ϕL
i  be the difference between the 

superconducting order parameter in the right and left lead for band i.  
Then the current across the JJ’s leads, for a JJ with low-medium transpar-
ency14, is given by I = I1 sin(α1θ1) + I2 sin(α2θ2)  where Ii is the critical 
supercurrent for band i, and αi is equal to 1 for a standard JJ and 1/2 for 
a topological JJ15–17. For biased high-transparency topologically  
trivial JJs, Landau–Zener transitions can induce a current–voltage 
response equivalent to a topological junction18–20.

To understand the effect of a Leggett mode on the dynamics and 
voltage–current (V–I) characteristic of a JJ, we first present a simplified 
analysis of a voltage-biased JJ. A rigorous analysis of the realistic case 
of a current-biased JJ is presented later (see also Supplementary  
Section 1). The dynamics of the relative phase ϕ can induce oscillations 
in the phase difference ψ ≡ (θ1 − θ2)/2. Let ϕR ≡ ϕR

1 − ϕR
2  and 

ϕL ≡ ϕL
1 − ϕL

2, Fig. 1c, so that ψ = (ϕR − ϕL)/2 = ψ0 + ψ̃(t), where ψ0 is 
the equilibrium value of ψ and ψ̃(t) the time dependent part. We can 
write θ1 = θA + ψ, θ2 = θA − ψ, with θA = (θ1 + θ2)/2. In the presence of a 
voltage V across the JJ’s leads, we have dθA/dt + dψ/dt = 2eV/ℏ. We con-
sider the case when V(t) = Vd.c. + Va.c. cosωt. When the Leggett mode 
is driven, directly or indirectly, by a periodic drive, we can assume 
ψ̃ ≈ ̂Aω sin(ωt), with ̂Aω ≈ A0ΓLω/((ω2 − ω2

L)
2 + Γ

2
Lω

2)  the amplitude 
of the mode and ΓL its broadening. In the limit when ω ≈ ωL so that 
̂AωL ≫ Va.c./ω we obtain:

I =
∞
∑
n=0

(−1)n[I1 Jn(α1(2e/ℏ)Va.c./ωL)

sin(θ0 + ψ0 + α1(2e/ℏ)Vd.c.t − nωLt) +

(−1)nI2 Jn(α22 ̂AωL ) sin(θ0 − ψ0 + α2(2e/ℏ)Vd.c.t − nωLt)]

(2)

where Jn(x) is the nth Bessel function of the first kind. When α1 = α2 = 1, 
depending on the value of ψ0, we can have suppression of the odd or 
even Shaprio spikes19. For ψ0 = 0, we have suppression of the odd steps. 
In this case, for ω ≈ ωL the Shapiro steps’ structure is qualitatively the 
same as the one obtained at low frequencies and powers in the presence 
of a topological superconducting channel (α1 = α2 = 1/2), or Landau–
Zener processes in highly transparent junctions18. For small ωL and 
non-negligible ΓL, it might be difficult to pinpoint reliably the cause 
of the missing odd Shapiro steps. However, for the case when ψ0 = π/2, 
equation (2) leads to a suppression of the even Shapiro spikes, a phe-
nomenon that cannot be attributed to the topological nature of the JJ 
or to Landau–Zener processes. In the remainder, we assume α1 = α2 = 1 
and discuss a concrete situation when we can expect ψ0 ≠ 0.

Im(∆) ∆1 = |∆1|e
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Fig. 1 | Leggett modes in SQUIDs. a, Schematic showing the relative phase ϕ between 
the two superconducting order parameters. b, SQUID circuit diagram. The boxes 
represent individual JJs, whose effective RCSJ model is shown in d. c, Diagram showing 
the superconducting phases across a JJ. d, Effective RCSJ model of individual JJ.
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Using equations (4), (5) and (6), we obtain Vd.c. = V̄ = limtf→∞(1/tf) 
∫tf
0 [(ℏ/2e)dθs/dt]dt  where tf is the total integration time. Let’s first 

consider Φ̂mod 2 = 0 and set β = 0.05π. For ∣ω − ωL∣ ≫ 1, the depend-
ence of Vd.c. with respect to Id.c. exhibits the standard Shapiro steps: all 
steps are present if either α1 or α2 is equal to 1, but only even steps are 
present if α1 = α2 = 1/2. For ω = ωL, ψ0 = 0 and α1 = α2, we have that the odd 
steps are strongly suppressed, see Fig. 2a, so that the structure of the 
Shapiro steps resembles the structure expected for a topological JJ for 
which a channel with α = 1/2 dominates. However, for ψ0 = π/2, and 
α1 = α2 = 1, we have the unusual situation that only the even Shapiro 
steps are suppressed, as shown in Fig. 2b. This behaviour is present as 
long as ω = 2πf is within the inverse lifetime, ΓL, of the Leggett mode 
frequency fL = ωL/2π. When ℏωL = 2πℏfL < Δsc we can expect ΓL to be quite 
small. We can calculate the width W of the Shapiro steps by binning the 
y axis of Fig. 2b for a fixed power. Figure 2c shows the width of the  
steps, W, as a function of Vd.c. and a.c. frequency f, assuming ΓL = 0.05fL. 
We see that for ∣f − fL∣ ≪ ΓL, the even steps are suppressed while the odd 
steps are strong; we also note that for f far from the resonance, we 
recover a voltage–current profile in which all the steps are present 
(apart from small corrections due to higher harmonics).

We can investigate the effect of the Leggett mode on the Shapiro 
steps when the SQUID is threaded by a non-zero magnetic flux Φext. For 
the case when Φ̂mod 2 ≠ 0 , we first note that for Φ̂mod 2 = 1 , the 
second term vanishes. In this case, we find that the SQUID’s V–I curve 
exhibits the same Shapiro steps as for the case Φ̂ = 0. When Φext is a 
half-integer of Φ0, the first term on the right-hand side of equation (6) 
vanishes and the term proportional to β affects the dynamics of the 
SQUID. In this case, when ψ ≈ 0, the factor of 2 in the argument of the 
sine causes the appearance of half-integer Shapiro steps, as in standard 

SQUIDs23 when α1 = α2 = 1 and the appearance of the odd Shapiro steps 
when α1 = α2 = 1/2.

When f ≈ fL, so that ψ̃ is not negligible and Φext is not a multiple of 
Φ0, the SQUID’s V–I features are difficult to predict from a simple analy-
sis of the equations. Numerically, for the case when f = fL, ψ0 = π/2 and 
Φext = Φ0/2, we find that the SQUID has a fairly unique V–I curve, as 
shown in Fig. 3. Contrary to the case of a single JJ, the odd step at 
V = (hf/2e) is absent, and a new fractional step at V = 3/2(hf/2e) appears 
together with a step at V = 4(hf/2e), while the step at V = 3(hf/2e) sur-
vives. Figure 3b shows the range of values of Φext around Φ0/2 for which 
this step structure is present, and Fig. 3c shows how the step structure 
and the width of the steps depend on the a.c. frequency f, for f ≈ fL, when 
Φext = Φ0/2.

The discussion above shows that when the equilibrium phase dif-
ference, ψ0 mod 2π, between the two superconducting order param-
eters is 0, the microwave response of a SQUID in which an undamped 
Leggett mode is present, for ω ≈ ωL, is similar to one obtained when the 
single JJs forming the SQUID have a current–phase relation that is 4π 
periodic, due either to the presence of a topological superconducting 
channel or to Landau–Zener processes. The analysis also shows that 
when ψ0 ≈ π/2, the SQUID’s microwave response, both in the absence 
and presence of an external magnetic flux Φext, exhibits unique qualita-
tive features that cannot be attributed to topological superconducting 
pairing or Landau–Zener processes.

In a DSM such as Cd3As2, the bulk three-dimensional conduction 
and valence electronic bands touch at isolated points, and a projection 
of the spectral density onto a surface Brillouin zone reveals Fermi arcs 
connecting the bulk Dirac points24,25. DSMs with proximity-induced 
superconductivity are predicted to be able to realize exotic non-Abelian 
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anyons that can be used to develop topologically protected qubits26 and 
can be used in microwave single-photon detection for sensing applica-
tions27–29. Another aspect of DSMs that has received less attention in 
the literature concerns the multiband properties of superconduct-
ing DSMs30–32. By placing a superconducting material on the surface 
of Cd3As2, superconducting pairing can be induced in the Cd3As2  
(ref. 30–32). The pairing has been shown to be characterized by two 
order parameters Δ1 and Δ2. Leggett modes result from oscillations 
of the difference between the phases of the superconducting gaps 
of different bands, and therefore their presence is always allowed, 
regardless of the mechanism—intrinsic as in MgB2, or via proximity 
effect as in our devices—responsible for the superconducting pairing. 
In addition, recent experiments on single JJs formed by superconduct-
ing leads based on Al/Cd3As2 have shown compelling signatures of an 
equilibrium phase difference θ1 − θ2 between the two phases across 
the junction, arising from the two superconducting order parameters, 
being equal to π, implying ψ0 = π/2 (ref. 32). Motivated by these results 
and the theoretical analysis above, we have investigated the microwave 
response of a SQUID based on Al/Cd3As2. Details about the fabrication 
and measurement of the device can be found in the Methods section 
and Supplementary Section 5.

At frequency f = 2 GHz and Φext = 0, the SQUID’s measured dV/dI  
exhibits peaks and valleys consistent with the standard Shapiro steps’ 
structure (Fig. 4a). However, for f = 7 GHz and f = 9 GHz, for all the 
microwave powers values considered, the first and third steps are 
clearly visible, but the second step is strongly suppressed (Fig. 4b). Con-
sidering that our device shows no hysteretic features in the current–
voltage characteristic and no evidence of a bias-dependent normal 
resistance, mechanisms for missing Shapiro steps due to hysteresis33 
or bias-dependent resistance34 are not relevant. When the zeroth step’s 
width approaches zero for Ia.c. ≈ Ic, the system begins to enter the ‘Bessel 
regime’, where oscillations in step widths with increasing power Ia.c. > Ic 
regularly occur and can lead to missing steps. Our measurements are 
not in the Bessel regime, given that for f ≈ 9 GHz, (1) the zeroth step is 
clearly non-zero at all powers and (2) the second step is missing at low 
powers, as shown in Fig. 4a,b (see also Supplementary Fig. 8c) and 
does not re-appear as the power increases. We find it is very difficult to 
explain the suppression of even steps at low powers without invoking 
the presence of a Leggett mode.

We can estimate the value of ωL in our device, as discussed in Sup-
plementary Section 3. We find that ωL ≈ 10 GHz is quite smaller than the 
value of ωL ≈ 2.3 THz in MbB2 (ref. 8), due to the high density of states 
of the bands of Cd3As2. We notice, however, that the precise value of 
ωL depends on bands parameters whose accurate estimate is hard to 
obtain from experiments.

Figure 4c shows the voltage across the SQUID as a function of the 
perpendicular magnetic field B in the d.c. limit, Ia.c. = 0. SQUID oscilla-
tions of periodicity 1.8 mT are observed, which correspond to an effec-
tive SQUID ring area of 1.14 μm2. Enveloping the SQUID oscillations is 
the Fraunhofer diffraction pattern of the JJs. Anomalous oscillations can 
also be observed for B such that the flux threading a single JJ, ΦJ = B × AJJ, 
AJJ being the area of the JJ, is a multiple of Φ0/2. The presence of these 
oscillations is consistent with a π-periodic supercurrent in each of the 
JJs forming the SQUID because ψ0 = π/2.

In Fig. 4d we present as a colour plot the measured dV/dI as a func-
tion of V̄  and B in the presence of an a.c. component of the current with 
f = 9 GHz and relative power −22 dBm. Besides the periodicity of the 
Shapiro steps with respect to B, with a period consistent with the perio-
dicity observed in the d.c. limit, Fig. 4c, we observe interesting features 
for B ≈ 1 mT corresponding to Φext = Φ0/2. To more clearly identify these 
features, we show in Fig. 4e the dV/dI traces for B = 0 mT and B = 1 mT. 
We see that for B = 1 mT, that is, Φext = Φ0/2, both the first and second 
Shapiro steps are suppressed and a 3/2 subharmonic step emerges, 
features that are remarkably consistent with the theoretical results 
shown in Fig. 3. To better understand the evolution of the Shapiro steps’ 

structure with Φext when f = 9 GHz, in Fig. 4f we plot the measured width 
of the steps at V = hf/2e and V = (3/2)(hf/2e) as a function of B. We see 
that when B ≈ 1 mT, Φext = Φ0/2, the width of the first step is suppressed, 
whereas the width of the 3/2 step is enhanced around B ≈ 1 mT. The 
evolution of the 1 and 3/2 steps with Φext is in good qualitative agree-
ment with the theoretical results, shown in Fig. 4g.

Our theoretical and experimental results show how the response 
to microwave radiation of JJs and SQUIDs formed by multiband super-
conductors can be used to identify the presence of Leggett modes 
in such superconductors. By showing that qualitative signatures in 
the response due to Leggett modes appear only when the microwave 
frequency is close to the frequency of the Leggett mode, and when, 
at equilibrium, the phase difference between superconducting order 
parameters is not zero, the results also allow experimentally obtaining 
an estimate of the Leggett mode’s frequency and its broadening and of 
the relative phases between superconducting gaps, all quantities that 
are otherwise challenging to measure experimentally. When the density 
of states is large, the energy of the Leggett mode can be well below the 
superconducting gap making it underdamped and therefore more 
easily observable and more relevant for the low energy behaviour of 
the superconductor. This should make our results, and more generally 
the physics of Leggett modes, relevant for the superconducting states 
of flat band systems, such as the recently realized twisted bilayers, that 
in the metallic phase have multiple bands crossing the Fermi energy. 
Finally, our results suggest that the superconducting state induced in 
the DSM Cd3As2 by the proximity of a standard s-wave superconductor 
might be characterized by a non-zero difference between the phases 
of the order parameters35, making such state very interesting from a 
fundamental point of view and for possible technological applications.
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Methods
Fabrication
Mechanical exfoliation is used to obtain flat and shiny Cd3As2 thin flakes 
of thickness ~200 nm from an initial bulk ingot material29, synthesized 
via a chemical vapour deposition method36. The SQUID structure is 
fabricated by first depositing the Cd3As2 thin flake on a Si/SiO2 substrate 
with a 1-μm-thick SiO2 layer. Next, e-beam lithography is used to define 
300-nm-thick Al electrodes. Additional details about the device can 
be found elsewhere32.

Measurements
To measure the sample resistance, an approximately 11 Hz 
phase-sensitive lock-in amplifier technique is used with an excitation 
current of 10 nA. To measure the differential resistance, a large direct 
current up to ±2 μA is added to the a.c. current. The entire device is 
immersed in a cryogenic liquid at a temperature of approximately 
0.25 K, well below the device’s superconducting transition tempera-
ture. To measure the microwave response of the device, an Agilent 
83592B sweep generator is used to generate microwaves, which are 
conducted through a semirigid coax cable.

Simulations
The numerical integration of the dynamical equations has been per-
formed using the adaptive Runge–Kutta methods of order four and five.

Data availability
The data that support the findings of this study are publicly available 
at https://doi.org/10.6084/m9.figshare.24871635 (ref. 37). Source data 
are provided with this paper.

Code availability
All the codes used to obtain the numerical results presented are avail-
able upon reasonable request.
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1

SUPPLEMENTARY INFORMATION

I. DYNAMICS OF A TWO-BANDS JOSEPHSON JUNCTION IN THE PRESENCE OF A LEGGETT
MODE

Let’s consider a Josephson junction (JJ) where each of the superconducting electrodes are two-band superconductors
with phases φ1, φ2. Let the intraband phase differences across the junction be θi = φRi −φLi . To describe the interband
dynamics in the JJ, we consider the resistively and capacitively shunted junction (RCSJ) model shown in Fig. 1 (d).
For the ac Josephson effect we have that the voltage V across a weak link, denoted by crosses in Fig. 1 (d), is given
by V = ~ϕ̇i/2e, where ϕ is the phase difference across the weak link of the superconducting order parameters. Let
φL = φL1 − φL2 , φR = φR1 − ψR2 and θi = φRi − φLi . From Kirchhoff’s voltage law applied to the loop formed by the
weak links in Fig. 1 (d) we obtain

φ̇L + θ̇2 − φ̇R − θ̇1 = 0 (S1)

and then θ̇2 − θ̇1 = φ̇R − φ̇L.
Let IL12, IR12 be the interband critical dc Josephson current on the left side and right side, respectively, of the circuit

shown in Fig. 1 (d) of the main text, and CL12, CR12 the left-side, right-side, interband capacitances. From charge
conservation we obtain

IL12 sinφL +
~
2e
CL12φ̈

L = I2 sin θ2 +
~

2eR2
θ̇2 (S2)

IR12 sinφR +
~
2e
CR12φ̈

R = −(I2 sin θ2 +
~

2eR2
θ̇2) (S3)

If we assume CL12 = CR12 ≡ C12 and IL12 = IR12 ≡ I12, it is clear that φR = −φL. Then, from Eq. (S1) we obtain

ψ ≡ θ1 − θ2
2

= φL = −φR. (S4)

Equation (S4) establishes the direct relation between phases across the Josephson junction, θi, and the phases φR, φL,
characterizing the Leggett modes in the two superconducting leads. In particular Eq. (S4) implies that the dynamics
of the Leggett modes will in general affect the dynamics of the phases across the JJ.

We now obtain the dynamics of the current biased JJ shown in Fig. 1 (d) taking into account the presence of a
Leggett mode. When a bias current IB is applied across the junction, charge conservation gives

IB = I1 sin θ1 + I2 sin θ2 +
V1
R1

+
V2
R2

(S5)

where Ii is the critical Josephson current for the ith band and Vi/Ri is the current through the resistive channel in
the ith band. Let θA ≡ (θ1 + θ2)/2. Considering Eq. (S4), we can write θ1 = θA + ψ, θ2 = θA − ψ and then

IB = I1 sin θ1 + I2 sin θ2 +
~

2eR

(
θ̇A − ξψ̇

)
(S6)

where R = R1R2/(R1 +R2) is the parallel resistance of the resistors R1 and R2, ξ = (R1 −R2)/(R1 +R2) quantifies
the asymmetry in resistance between the bands. Defining ωJ ≡ 2eRI1/~, τ ≡ ωJ t, we can write Eq. (S6) as

dθA
dτ

= ξ
dψ

dτ
+ iB − sin θ1 − i2 sin θ2 (S7)

where currents have been normalized with respect to I1: iB = IB/I1 and i2 = I2/I1. Equation (S7) is the key
equation to describe the behavior of the 2-band JJ, and SQUID (see next section), in the presence of a Leggett mode.
The key modification due to the Leggett mode is the term ξdψ/dτ . The evolution in time of ψ(t) depends on several
microscopic details that are beyond the level of the effective description used here. We have assumed ψ(t) to follow
the dynamics of a harmonic oscillator driven by a periodic term due to the microwave radiation. Below we show that,
in first approximation, this simplified evolution is also consistent with the RSCJ model shown in Fig. 1 (d).

We can rewrite Eq. (S3) in the form:

d2ψ

dτ2
+

Rω2
L

ω2
J i12(R1 +R2)

dψ

dτ
+
ω2
L

ω2
J

sinψ =
ω2
LR1

ω2
J ii2(R1 +R2)

[iB + (R2/R1)i2 sin(θA − ψ)− sin(θA + ψ)] . (S8)



2

where i12 ≡ I12/I1, ωL =
√

(2e/~)I12/C12 is the Leggett mode’s frequency, and iB = idc + iac cos(ωτ) Equations (S7)
and (S8) completely define the dynamics of the two-bands JJ described by the effective RCSJ circuit shown in
Fig. 1 (d). Eq. (S8) is equivalent to the equation for a damped, driven, oscillator; the right hand side of the equation
being the driving term. To qualitatively understand the effect of a resonant Leggett mode, in first approximation, we
can neglect the damping term proportional dψ/dτ , and the term idc + (R2/R1)i2 sin(θA − ψ) − sin(θA + ψ) on the

right hand side of the equation. Then by linearizing the sinψ around the equilibrium value ψ0 for ψ̃ ≡ ψ − ψ0 we
obtain the simple equation

d2ψ̃

dτ2
+
ω2
L

ω2
J

ψ̃ =
ω2
LR1

ω2
J ii2(R1 +R2)

iac cos(ω̂τ) (S9)

describing a harmonic oscillator periodically driven by a force of amplitude Â0iac, with Â0 ≡ ω2
LR1/(ω

2
J i12(R1 +R2)).

Here ω̂ ≡ ω/ωJ . In our calculations the effect of the damping term is taken into account by considering a finite
broadening, ΓL, of the Leggett mode’s resonance frequency.

X X
I12

<latexit sha1_base64="XchM07tZCz1fhVIoR6HU9vS3Yy0=">AAAB/3icbVDLSsNAFJ3UV62vqKCIm8EiuCpJF9qNUHTjwkUF+4AmhMl00g6dJMPMRCgxC3/FjQtF3PoX4k43bv0Mp4+Fth64cDjnXu69x+eMSmVZH0Zubn5hcSm/XFhZXVvfMDe3GjJOBCZ1HLNYtHwkCaMRqSuqGGlxQVDoM9L0++dDv3lDhKRxdK0GnLgh6kY0oBgpLXnmjsN71LuEp9AJBMKpw2mWljPPLFolawQ4S+wJKVYrX2+7n997Nc98dzoxTkISKcyQlG3b4spNkVAUM5IVnEQSjnAfdUlb0wiFRLrp6P4MHmqlA4NY6IoUHKm/J1IUSjkIfd0ZItWT095Q/M9rJyqouCmNeKJIhMeLgoRBFcNhGLBDBcGKDTRBWFB9K8Q9pHNQOrKCDsGefnmWNMol+7hkXek0zsAYebAPDsARsMEJqIILUAN1gMEtuAeP4Mm4Mx6MZ+Nl3JozJjPb4A+M1x/E85m1</latexit>

�L =
⇡

2 I12
<latexit sha1_base64="cqHziwFyucrKNjsvtOBxSniS5y4=">AAACAHicbVDLSsNAFJ3UV62vqIsibgaL4MaSdKHdCEU3LqvYBzQhTKaTduhkEmYmQgnZ+CtuXCji1q8Qd7px62c4fSy09cCFwzn3cu89fsyoVJb1YeQWFpeWV/KrhbX1jc0tc3unKaNEYNLAEYtE20eSMMpJQ1HFSDsWBIU+Iy1/cDHyW7dESBrxGzWMiRuiHqcBxUhpyTOLTtyn3jU8g8dOIBBOnZhmaSXzzJJVtsaA88SeklKt+vVW/Pzeq3vmu9ONcBISrjBDUnZsK1ZuioSimJGs4CSSxAgPUI90NOUoJNJNxw9k8FArXRhEQhdXcKz+nkhRKOUw9HVniFRfznoj8T+vk6ig6qaUx4kiHE8WBQmDKoKjNGCXCoIVG2qCsKD6Voj7SOegdGYFHYI9+/I8aVbK9knZutJpnIMJ8mAfHIAjYINTUAOXoA4aAIMM3INH8GTcGQ/Gs/Eyac0Z05ld8AfG6w8875ny</latexit>

�R = �⇡
2

surface
states

surface
states

bulk
states

bulk
states

no
rm
al

re
gi
on

IB

1L

2R

1R

2L

<latexit sha1_base64="A5jv6YaX1Q2hZ1A33GYb2UVcffI=">AAAB83icbVC7SgNBFL3rM8ZX1FKRwSBYhV0LtQzaSKoEzAOyS5idTJIhs7PDzGwgLCn9BRsLRWzt8x12foM/4eRRaOKBC4dz7uXee0LJmTau++WsrK6tb2xmtrLbO7t7+7mDw5qOE0VolcQ8Vo0Qa8qZoFXDDKcNqSiOQk7rYf9u4tcHVGkWiwczlDSIcFewDiPYWMn3B1jJHmulpdKolcu7BXcKtEy8OckXT8aV78fTcbmV+/TbMUkiKgzhWOum50oTpFgZRjgdZf1EU4lJH3dp01KBI6qDdHrzCJ1bpY06sbIlDJqqvydSHGk9jELbGWHT04veRPzPayamcxOkTMjEUEFmizoJRyZGkwBQmylKDB9agoli9lZEelhhYmxMWRuCt/jyMqldFryrgluxadzCDBk4hjO4AA+uoQj3UIYqEJDwBC/w6iTOs/PmvM9aV5z5zBH8gfPxAx1klW8=</latexit>'JJ
<latexit sha1_base64="IsA2NTP/2G85Hj46DgwyRWaEois=">AAACC3icbZC9S8NAGMYvftb6FXUQcTlaBKeSdNAuQtHFwaGC/YAmlMv10h69XMLdpVBCdhf/FRcHRVzdxU0XV/8ML20HbX3g4Mfzvi/vvY8XMSqVZX0YC4tLyyurubX8+sbm1ra5s9uQYSwwqeOQhaLlIUkY5aSuqGKkFQmCAo+Rpje4yOrNIRGShvxGjSLiBqjHqU8xUtrqmAVniETUpx0bnkEng6sMfIFw4kQ0TcppxyxaJWssOA/2FIrVytfb/uf3Qa1jvjvdEMcB4QozJGXbtiLlJkgoihlJ804sSYTwAPVIWyNHAZFuMr4lhUfa6UI/FPpxBcfu74kEBVKOAk93Bkj15WwtM/+rtWPlV9yE8ihWhOPJIj9mUIUwCwZ2qSBYsZEGhAXVf4W4j3QOSseX1yHYsyfPQ6Ncsk9K1rVO4xxMlAOHoACOgQ1OQRVcghqoAwxuwT14BE/GnfFgPBsvk9YFYzqzB/7IeP0B8NueIA==</latexit>

'1 = �L =
⇡

2

<latexit sha1_base64="h0b4XCetRMlLkz7Zkj/4OxILt5A=">AAACDHicbZC7SgNBFIZn4y3GW9RCxGYwCDaG3QiaRgjaWEYxF8guYXYymwyZnV1mZgNh2Qew8VVsLBSxtRY7bWx9DGeTFJr4w8DHf87hzPndkFGpTPPDyMzNLywuZZdzK6tr6xv5za26DCKBSQ0HLBBNF0nCKCc1RRUjzVAQ5LuMNNz+RVpvDIiQNOA3ahgSx0ddTj2KkdJWO1+wB0iEPdo+hmfwyE7pWpPtCYRjO6RJXEp0l1k0R4KzYE2gUCl/ve18fu9W2/l3uxPgyCdcYYakbFlmqJwYCUUxI0nOjiQJEe6jLmlp5Mgn0olHxyTwQDsd6AVCP67gyP09ESNfyqHv6k4fqZ6crqXmf7VWpLyyE1MeRopwPF7kRQyqAKbJwA4VBCs21ICwoPqvEPeQzkHp/HI6BGv65Fmol4rWSdG80mmcg7GyYA/sg0NggVNQAZegCmoAg1twDx7Bk3FnPBjPxsu4NWNMZrbBHxmvP27onl8=</latexit>

'3 = ��R =
⇡

2

<latexit sha1_base64="N4cXcoewhWk1XXsCIWCufbGT15E=">AAAB/XicbVDJSgNBEO2JW4xbXG6KNAbBU5jJQb0IQS8eEzALJMPQ0+kkTXp6hu6aQByCJ//DiwdFvJrv8OY3+BN2loMmPih4vFdFVT0/ElyDbX9ZqaXlldW19HpmY3Nreye7u1fVYawoq9BQhKruE80El6wCHASrR4qRwBes5vduxn6tz5TmobyDQcTcgHQkb3NKwEhe9qDZJyrqcq+Ar3ATugyIV/CyOTtvT4AXiTMjueLRqPz9eDwqednPZiukccAkUEG0bjh2BG5CFHAq2DDTjDWLCO2RDmsYKknAtJtMrh/iU6O0cDtUpiTgifp7IiGB1oPAN50Bga6e98bif14jhvalm3AZxcAknS5qxwJDiMdR4BZXjIIYGEKo4uZWTLtEEQomsIwJwZl/eZFUC3nnPG+XTRrXaIo0OkQn6Aw56AIV0S0qoQqi6B49oRf0aj1Yz9ab9T5tTVmzmX30B9bHDylYmBY=</latexit>

'2 = ✓2

<latexit sha1_base64="8tYt3QdmD3JDxpDlJH70TbDNGJY=">AAAB/nicbVDJSgNBEO1xjXEbFU+KNAbBi2FGRL0IQS8eEzALZIahp9OTNOlZ6K4JhCHgxQ/x4kERr/kOb36DP2FnOWjig4LHe1VU1fMTwRVY1pexsLi0vLKaW8uvb2xubZs7uzUVp5KyKo1FLBs+UUzwiFWBg2CNRDIS+oLV/e7dyK/3mFQ8jh6gnzA3JO2IB5wS0JJn7js9IpMO9y7wDT5zoMOAeLZnFqyiNQaeJ/aUFEqHw8r309Gw7JmfTiumacgioIIo1bStBNyMSOBUsEHeSRVLCO2SNmtqGpGQKTcbnz/AJ1pp4SCWuiLAY/X3REZCpfqhrztDAh01643E/7xmCsG1m/EoSYFFdLIoSAWGGI+ywC0uGQXR14RQyfWtmHaIJBR0Ynkdgj378jypnRfty6JV0Wncogly6AAdo1NkoytUQveojKqIogw9o1f0ZjwaL8a78TFpXTCmM3voD4zhD5mtmE4=</latexit>

'4 = �✓1

<latexit sha1_base64="QgqgPCOEJJ4SaF89Fn12ZRgm9+A="></latexit>

X

i=1,4

'i

������
B=0

= 0 mod 2⇡ =) ✓1 � ✓2 = ⇡ mod 2⇡

a

b

Figure S1. a Schematic currents across a JJ based on a DSM. b Schematic of phases across a JJ based on a DSM.

In this model the current flows into the bulk of the DSM only via the surface states, as shown by the schematic
circuit of Fig. 1(d). The lowest energy path for the current to flow into the bulk is via a Josephson supercurrent, Is,
between the surface band and the bulk band. Considering that in general Is ∝ sinϕ, where ϕ is the difference between
the phases of the superconducting order parameters, we see that to maximize the supercurrent between surface and
bulk the system will self-tune in a state for which φ ≈ π/2 on the left lead, and φ ≈ −π/2 on the right lead, given
that in the left lead the interband current (I12) flows from surface to bulk and in the right lead it flows from bulk to
surface, see Fig S1 (a). Another possibility is that finite phase differences, φ ≈ π/2 on the left and φ ≈ −π/2 on the
right (or vice-versa), between bands 1 and 2 might arise due to the establishment of time-reversal broken symmetry
states as suggested in Ref.1.

The presence of interband phase differences approximately equal to ±π/2 is also consistent with the anomalous
behavior in the dc response of the SQUID that we present in Fig. 4 (b). As for the case of a single JJ 2, the SQUID’s
response in the dc limit can be attributed to a π-phase overall difference between the two effective channels connecting
the left and right leads, see Fig. S1 (b).
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II. DYNAMICS OF A SQUID FORMED BY TWO-BANDS SUPERCONDUCTING LEADS AND IN
THE PRESENCE OF A LEGGETT MODE.

In this section we derive the equations that we use to simulate the dynamics of a two-bands SQUID in presence of
a resonant Leggett mode. We assume the SQUID to be symmetric:

C
(1)
12 = C

(2)
12 ≡ C12; R

(1)
i = R

(2)
i ≡ Ri; I

(1)
i = I

(2)
i ≡ Ji;

I
(1)
12 = I

(1)
21 = I

(2)
12 = I

(2)
21 ≡ I12,

where X
(j)
i denotes quantity X in band i, and arm (j) of the SQUID. Normalizing as usual the currents with I1, from

charge conservation and magnetic flux quantization we have:

i(1) + i(2) = iB (S10)

i(1) − i(2) =
θ
(2)
i − θ

(1)
i

2πβ
− Φ̂

β
+
m

β
(S11)

where β ≡ I1L/Φ0, Φ̂ ≡ Φext/Φ0, and m is an integer that without loss of generality we can set equal to zero. For
the total current in arm (j) we have:

i(j) =
~

2eR1I1

dθ
(j)
1

dt
+

~
2eR2I1

dθ
(j)
2

dt
+ sin(θ

(j)
1 ) + i

(j)
2 sin(θ

(j)
2 ). (S12)

Let’s now define

ψ(1) ≡ θ
(1)
1 − θ

(1)
2

2
; ψ(2) ≡ θ

(2)
1 − θ

(2)
2

2
; η1 ≡

θ
(2)
1 − θ

(1)
1

2π
; η2 ≡

θ
(2)
2 − θ

(1)
2

2π
; θs =

1

4

∑

ij

θ
(j)
i . (S13)

Because the flux quantization condition is the same for both bands, we have η1 = η2 ≡ η, and ψ(1) = ψ(2) ≡ ψ. ψ is
the phase associated to the Leggett mode and its dynamics is given by Eq. (S9). By using Eq. (S12) to express i(j)

in Eqs. (S10), (S11) we obtain the following dynamical equations for θs and η

dθs
dτ
− ξ dψ

dτ
=
iB
2
− 1

2
is(θs, ψ, η) (S14)

2π
dη

dτ
= − η

β
+

Φ̂

β
+ id(θs, ψ, η) (S15)

where

is(θs, ψ, η) = sin θ
(1)
1 + sin θ

(2)
1 + i2[sin θ

(1)
2 + sin θ

(2)
2 ]

= sin(θs + ψ − πη) + sin(θs + ψ + πη) + i2[sin(θs − ψ − πη) + sin(θs − ψ + πη)]; (S16)

id(θs, ψ, η) = sin θ
(1)
1 − sin θ

(2)
1 + i2[sin θ

(1)
2 − sin θ

(2)
2 ]

= sin(θs + ψ − πη)− sin(θs + ψ + πη) + i2[sin(θs − ψ − πη)− sin(θs − ψ + πη)] (S17)

is is the supercurrent fraction of the total current across the SQUID. In the limit β � 1 we can assume4

η = Φ̂ + βη̃ +O(β2). (S18)

From Eq. (S15), for η̃, we find:

η̃ = 2 sin(πΦ̂)[cos(θs + ψ) + i2 cos(θs − ψ)] +O(β)] (S19)

Replacing in the equation (S16) for is the expression for η obtained by combining Eqs. (S18), (S19), we obtain, to
linear order in β:

is(θs, ψ) =2 cos(πΦ̂)[sin(θs + ψ) + i2 sin(θs − ψ)]−
2β sin2(πΦ̂)[sin(2(θs + ψ)) + i22 sin(2(θs − ψ)) + 2i2 sin(2θs)]. (S20)

Notice that up to linear order in β is only depends on θs and ψ.
Equations (S14), (S20), and (S9) completely determine the dynamics of the SQUID. To numerically integrate these

non-linear differential equations we used an adaptive fourth-order Runge-Kutta method. The parameters of the model
used in the simulations are given in Table I.
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ωL/ωJ ΓL/ωL Â ξ i2 β

0.005 7.5 · 10−5 4.5 · 10−3 -0.6 1.5 0.05π

TABLE I.

III. ESTIMATION OF ωL

We can estimate the value of ωL =
√

2eI12
~C12

in our device by considering that in the experiment the critical current

Ic ≈ 1µA so that I12 ≈ 1.5Ic/(1 + 1.5) = 0.6 µA, and estimating the interband capacitance C12 given by the the
quantum capacitances (C1, C2) in series of the two bands: 1/C12 = 1/C1 + 1/C2. Ci = e2νi with νi the density of

states of band i. For surface states, assuming a quadratic dispersion εk ≈ ~2

2m∗k
2, we obtain ν1 =

LxLy

π
m∗

~2 where
m∗ is the effective mass and LxLy is the area of proximitized Dirac semimetal. For bulk states, assuming a linear

dispersion εk ≈ ~vF k, we have ν2 =
LxLyLz

π2

ε2F
(~vF )2 , where Lz is the sample’s thickness. We have m∗ ≈ 0.8me

5 and

LxLy ≈ 1 µm2 so that ν1 ≈ 3.2 × 103 meV−1. Considering that Lz ≈ 200 nm, ~vF ≈ 0.3 meV·µm6,7, and εF ≈ 200

meV, we find ν2 ≈ 2 × 104 meV−1. We then obtain C−112 = 1
e2

(
ν1+ν2
ν1ν2

)
≈ 1

e2ν1
since ν1 � ν1, and, finally, ωL ≈ 10

GHz, remarkably close to the value for which experimentally the suppression of the even Shapiro steps is stronger.

IV. ADDITIONAL THEORETICAL RESULTS

In Fig. S2 we present additional numerical VI curves in the case where ψ0 = 0. Here, we see, as mentioned in the
main text, the missing steps are odd integer multiples of (hf/2e). The ac frequency range in Fig. S2a-d is chosen to
cover the approximate half-width of the Leggett mode resonance in the amplitude Aω = A0ΓLω/((ω

2−ω2
L)2 +Γ2

Lω
2),

illustrating the robustness of the missing steps over a bandwidth proportional to the inverse lifetime of the Leggett
mode.

Figure S2. Shapiro steps at various ac frequencies for Φ = 0 and using the same parameters as those used to generate other
calculations except that here the intrinsic phase between the two bands in a given junction is zero (rather than π).

3
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In Fig. S3, we present calculations of Shapiro step widths of the nth step corresponding to V = n(hf/2e) in the
case where ψ0 = π/2. Fig. S3a-b show the step width ac frequency dependence near the Leggett mode frequency and

for Φ̂ = 0 and Iac/Ic = 0.05, where a normalized Aω is shown in black for reference. Clearly, deviations from the
conventional Shapiro step dependence follows the resonant Leggett amplitude. Fig. S3c show the power dependence
of steps for Φ̂ = 0 and f = fL. We see the gap is suppressed at Iac ≈ 0.25 Ic, which is much smaller than expected
in the conventional case. Furthermore, the step width dependence of odd steps exhibit resonant features appearing
consecutively with increasing power and disappering with the gap closure. Once the gap is closed, step widths exhibit
oscillations in power, similar to the conventional Bessel regime.

In Fig. S3d-e, we show the step width ac frequency dependence near the Leggett mode frequency and for Φ̂ = 1/2
and Iac/Ic = 0.05, where a normalized Aω is shown in black for reference. We observe a weakening of the gap near
the Leggett frequency, similar to the zero-flux case, but the gap actually becomes enhanced at the Leggett frequency.
In Fig. S3f, we present the power dependence of steps for Φ̂ = 1/2 and f = fL. We find similar resonant behavior of
odd steps at low power, but the features are difficult to distinguish between oscillations at higher powers associated
with the typical Bessel oscillations.

Figure S3. a-b Step width dependence on ac frequency for Φ = 0 and Iac = 0.05Ic. The bold black line represents the
Lorenzian corresponding to the Leggett mode linewidth. c Step width dependence on ac power for Φ = 0 and f = fL. d-e
Step widths dependence on ac frequency for Φ = Φ0/2 and Iac = 0.05Ic. f Step width dependence on ac power for Φ = Φ0/2
and f = fL.

We can increase bandwidth to include 7 GHz assuming fL ≈ 9 GHz by decreasing the lifetime of the Leggett mode
in our simulations (i.e. increasing ΓL by a factor of 10). The results are shown in Fig. S4. The bandwidth where odd
steps are enhanced and even steps are suppressed has increased, but even steps are not completely suppressed. In
reality, thermal fluctuations may wash out such weak even steps.

V. EFFECT OF THERMAL FLUCTUATIONS

At low temperatures hysteresis effects can give rise to trivial missing steps3. To show that thermal fluctuations are
responsible for the smearing of the Shapiro steps we have considered a model in which their effect is included via a
fluctuating noise current in the RSJ model8:

Ic sin(φ) +
~

2eR

dφ

dt
= Ibias + Icρ(T, t) (S21)

〈ρ〉 = 0, 〈ρ(t)ρ(t′)〉 =
2kBT

eIcR
δ(t− t′). (S22)

Using parameters similar to the ones for our device we have obtained results like the ones shown in Fig. (S5): the left
panel shows results for the case T = 0, and the right panel the results for the case when T ≈ 750 mK. We can see that
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f (
f L)

Figure S4. Shapiro step width W as a function of microwave frequency f and V̄ near the Leggett frequency with Γ = 0.5.

thermal effects smear the Shapiro steps and the resistance of Shapiro steps tends to increase with voltage. Notice that
even though thermal fluctuations suppress the steps, and therefore the dips of the dV/dI curve, even at the relative
large temperature of 750 mK, they do not convert a dip into a maximum. For this reason thermal fluctuations are
extremely unlikely to be the cause of the peaks that we observe for V = 2(hf/2e) in the experimental dV/dI profiles.

ρ(T, t) = Icρ̃(T, t)
⟨ρ̃⟩ = 0

⟨ρ̃(T, t)ρ̃(T, t′ )⟩ = 1.6 δ(t − t′ )

ρ(T = 0,t) = 0
1 2 345

6 1 2 3
45

(×40) dV
dIdc ( hf

2eIdc )
(×20) dV

dIdc ( hf
2eIdc )

Ic = 1 μA, R = 85 Ω, f = 4 GHz

Falco et al. PRB 10, 1865 (1974)

Peng et al. PRB 94, 085409 (2016)

Ic sin(ϕ) + ℏ
2eR

dϕ
dt

= Ibias + ρ(T, t)

⟨ρ⟩ = 0 ⟨ρ(t)ρ(t′ )⟩ = 2T
R

δ(t − t′ )

a b

Figure S5. Illustrate thermal fluctuation effects on Shapiro steps.
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VI. DEVICE CHARACTERIZATION

Fig. S6a shows an SEM image of the SQUID device used in the experiment. The scale bar is 5 µm. For each
Josephson junction in the SQUID, the width is 600 nm, and the gap 150 nm. The size of the middle open square
is about 800nm x 800nm. For IV and differential resistance measurements, the ac/dc current runs from contact 1 to
contact 3. The dc/ac voltage is measured between contacts 2 and 4. In Fig. S6b, we present the I-V curve measured
at B = 0T. The critical current is ∼ 1.1 µA. In Fig. S6c, we show I-V curves as a function of out-of-plane magnetic
fields, at a higher temperature of T = 0.39K (compared to Fig. 4a in the main text). In this plot, red color represents
positive Vdc, blue negative Vdc. In the green color regime, Vdc = 0. A typical feature, i.e., the envelop of the SQUID
oscillatory pattern being modulated by the Fraunhofer diffraction pattern of the single Josephson junction, is clearly
seen.

1&2

3&4

a b c

Figure S6. a An SEM image of the SQUID device used in the experiment. b The I-V curve measured at B = 0T. c The I-V
curves as a function of out-of-plane magnetic fields, at a higher temperature of T = 0.39K.
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Figure S7. Measured critical currents for positive and negative current biases where dashed lines correspond to the dashed
lines in Fig. 4c.
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VII. ADDITIONAL EXPERIMENTAL RESULTS

In Fig. S8 we present additional measurements of dV/dI and VI curves at zero magnetic field. In Fig. S8a, we show
the differential resistance at 2 GHz for various microwave powers. We see that steps 0, ± 1, ± 2 are clearly observed
before dissipative effects wash out higher steps. The measured VI curves are shown in Fig. S8b, where the steps are
not easily resolved with the naked eye (hence, the need for dV/dI measurements). Fig. S8c shows VI curves at 9 GHz,
showing a large first steps, the clear suppression of the second step, and a weak third step.

a b c

Figure S8. a The differential resistance at 2 GHz for a few microwave power levels. At this low frequency, both even and odd
Shapiro steps are seen. b The corresponding I-V curves at 2 GHz. c The I-V curves at 9GHz. The even Shapiro steps are
suppressed, as shown in the differential resistance in Fig. 4 of the main text.
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Figure S9. Magnetic field response data from Fig. 4 (c) where a smaller range of dV/dI and a more dynamic colorbar are used
to illustrate the discontinuous jump between 1 and 3/2 steps.
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