Graphene: massless electrons in the ultimate flatland

Enrico Rossi

Virginia Tech. Feb. 2nd 2009

Collaorators

Sankar Das Sarma

Shaffique Adam

Euyheon Hwang

http://www.physics.umd.edu/cmtc/

Close collaboration with experimental groups

UNIVERSITY OF

Michael Fuhrer

Jianhao Chen Chau Jang

Ellen Williams

Work supported by:

What is graphene ?

From Graphite to graphene

Graphene

One atom thick layer of carbon atoms arranged in honeycomb structure.

Triangular Bravais lattice with a basis. Lattice degeneracy key element to explain many of the properties of graphene.

Graphene as an unrolled nanotube

A brief history

• 1564: "Lead pencil" based on graphite was invented

- 1946 P. R. Wallace writes paper on band structure of graphene
- 2004 K.S. Novoselov et al. realize and identify graphene experimentally

Band structure

Carbon atom orbitals.

Tight binding model, P. R. Wallace (1947)

Graphene has 2D Dirac cones

Is it interesting?

Why is graphene so interesting?

2D Crystal

ABSENCE OF FERROMAGNETISM OR ANTIFERROMAGNETISM IN ONE- OR TWO-DIMENSIONAL ISOTROPIC HEISENBERG MODELS*

N. D. Mermin[†] and H. Wagner[‡] Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York (Received 17 October 1966) Phys. Rev. Lett. **17**, 1133(1966)

Crystalline Order in Two Dimensions*

N. D. Mermin[†]

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York (Received 1 July 1968)

This result excludes conventional crystalline long-range order in two dimensions

Phys. Rev. **176,** 250 (1968)

Fluctuations in 2D destroy the lattice

Why graphene can exist

"...the bound can be so weak to allow two-dimensional systems of less than astronomic size to display crystalline order." Mermin Phys. Rev. (1966)

L < 10 m. R.C. Thompson e arxiv:0807.2938 R.C. Thompson et al.

Graphene is the ultimate flatland!

Dirac cones in graphene

From tight binding model we have that at the corners of the BZ the low energy Hamiltonian is:

The Fermi velocity \mathcal{V}_F is ~ 1/300 the speed of light c. We have **slow** ultrarelativistic electrons.

2D !

QED with a pencil and some scotch!

Experimental consequences

 Direct experimental observation of Dirac cones in ARPES experiments;

• Unusual half-integer Quantum Hall Effect;

• Puzzling transport results.

Electronic Transport: Questions

Toward a Graphene Pentium processor Mobility: $\mu = \sigma/(e n)$

High mobility

Good!

Minimum of conductivity

Bad!

K.S. Novoselov et al, Science **306**, 666 (2004)

Y. Zhang et al. Nature **438**, 201 (2005)

Why minimum of conductivity is puzzling

Experimentally: σ_{min} is a sample dependent constant !

1) Linear relation between σ and n

We need a scattering potential that gets stronger as n becomes smaller

The finite minimum conductivity remains unexplained

Thomas-Fermi-Dirac theory

Developed a theory that is:

- Microscopic
- Nonperturbative

It includes:

- Disorder potential due to charge impurities;
- Nonlinear screening;
- Exchange and correlation effects;

Build the energy functional E[n], $n(\mathbf{r})$ is the carrier density .

$$E[n] = E_{kin}[n(\mathbf{r})] + E_H[n(\mathbf{r})] + E_{exch}[n(\mathbf{r})] - \int_A \mathbf{V_D} n(\mathbf{r}) d^2r - \mu \int_A n(\mathbf{r}) d^2r$$

 $V_{\rm D}$ is the disorder potential generated by charged. The only inputs are:

- The charge impurity density n_{imp}
- Their average distance, d, from the graphene layer

both reliably extracted from transport experiments at high doping.

Dirac point: single disorder realization

ER and S. Das Sarma, Phys. Rev. Lett. **101**, 166803 (2008)

J. Martin et al., Nat. Phys. **4**, 144 (2008)

Disorder breaks the carrier density landscape in electronhole puddles

Disorder averages results at the Dirac point

ER and S. Das Sarma, Phys. Rev. Lett. **101**, 166803 (2008)

Carrier density properties

Small region of size ξ , ~10 nm, fixed by non-linear screening, and high density. $\delta Q \sim 2e$. Result in agreement with recent STM experiment [V. Brar et al. unpublished]

Wide regions of size ~ L (sample size) and low density. $\delta Q \sim 10e$.

The density across the electron-hole puddles boundaries (p-n junctions) varies on length scales, D, of the order of $\lambda_F = 2\sqrt{\frac{7}{\gamma}}$

Inhomogeneous conductivity

The inhomogeneous character of the n will be reflected in inhomogeneous transport properties such as the conductivity, σ .

Locally

Natural approach: Effective Medium Theory.

[Bruggeman Ann. Phys (1935), Landauer J. Appl. Phys. (1952)]

Can we use it in graphene?

Two conditions:

- 1) The mean free path, I, must be much smaller than the size of the homogeneous regions
- 2) The resistance across the homogeneous regions must be much smaller than the resistance inside the regions.

Conductivity vs. gate voltage

- Finite value of the conductivity at Dirac point;
- Recovers linear behavior at high gate voltages;
- Describes crossover;
- Shows importance of exchange-correlation at low voltages.

Minimum conductivity vs. impurity density

Dependence of conductivity on impurity density in qualitative and quantitative agreement with experiments.

• r_s controls: strength of disorder; strength of interaction, exchange.

Strongly affects the density profile.

• r_s controls **strength of scattering**.

Affects scattering time

$\mathbf{r}_{_{\mathrm{s}}}$ dependence of the minimum conductivity

Conclusions

- Graphene has many interesting properties
- Unusual transport properties: minimum of conductivity
- Presented microscopic and non-perturbative theory to characterize strong density fluctuations
- Showed how strong density fluctuation explain the minimum of conductivity.

Graphene unique playground to learn about 2D masless Dirac electrons

Many interesting physical phenomena.

Great potential for technological applications.