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What is graphene

One atom thick layer of carbon 
atoms arranged in a 
hexagonal/honeycomb structure.
More precisely it can be seen as a 
triangular Bravais lattice with a 
basis. 

The fact that the Bravais lattice 
has a basis is a key element to 
explain many of the properties of 
graphene.



Graphene as an unrolled nanotube



A brief history

 1564: “Lead pencil” based on graphite was invented

5 µ m

 1946 P. R Wallace writes paper on band structure of graphene

 2004 K.S. Novoselov et al. realize and identify graphene experimentally

 2005 Y.B. Zhang et al observe quantum Hall effect and Berry's phase in graphene

+

scotch Imaging



Is it interesting?

Realization of
graphene



Why is graphene interesting: band 
structure

Each carbon atom as 4 bonds, 1 pz and 3 sp2 
orbitals. The sp2 (s hybridized with p) leads to 
trigonal planar structure with formation of  of a 
σ-bond between carbon atoms. The pz orbitals 
bind covalently with neighbors forming a half 
filled π-band

 Graphene is truly 2D !
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Tight binding model, 
P. R. Wallace (1947)

Bonding

Anti-Bonding
`

 Graphene has 2D Dirac cones 



Dirac cones in graphene

From tight binding model we have that at the corners of the BZ  the 
low energy Hamiltonian is:

kx' ky'

E

Chiral Massless Dirac Fermions

Electrons obey laws of 2D QED!

The Fermi velocity         is ~ 1/300 the speed of light c. We have slow 
ultrarelativistic electrons.

QED with a pencil and some scotch!



Chirality

The sublattice symmetry implies that we have a conserved quantity:

chirality
defined by the operator:

K’ Kbonding

anti-bonding

Courtesy of M. Fuhrer, University of Maryland

The Dirac point is 
protected by the 
conservation of 

chirality.

Transport 
implication:

Back-scattering is 
suppressed.



Klein paradox

If we solve the Dirac equation in presence of a potential barrier :

We find that for particular directions the transmission 
probability, T, is equal to 1,

in particular T=1 for forward scattering:

electrons
holes

electrons
positrons

The never before observed Klein paradox has been 
observed for the first time in graphene



Screening of charge impurities in 
graphene

Shytov et al. PRL (2007);Pereira et al 
PRL (2007); Novikov PRB (2008);...



Undercritical and supercritical 
screening

Shytov et al. (2007)

Difficult to test in QED, 
we need Z > 137. 

But in graphene α ~ 1;
we only need Z ~ 1



Problem: transport at the Dirac point

kx' ky'

E

0

In absence of any disorder

Disorder that does not mix the valleys

Intervalley scattering

Experimentally: σ is a sample dependent constant !



Effect of disorder

Scattering Shifts bottom of the band           shift of Fermi energy

At the Dirac point disorder induces electron-hole puddles

Suggested theoretically   : 

    E.H. Hwang, S. Adam, S. Das 
    Sarma., PRL, 98, 186806 (2007).

Observed experimentally:

J. Martin et al., Nature Physics,
4, 144 (2008)



System

Linear scaling region well explained by 
presence of random charged impurities

Graphene

Average distance of impurities
from the graphene layer

Impurities

Substrate

Back-gate



Thomas-Fermi-Dirac theory

and then: 

Where  Σ is the exchange self energy:

Start from the energy functional E[n] and then minimize it with 
respect to the electron density n. In presence of disorder for the 
total energy we have:

The correlation energy contribution 
is quite smaller and scales as the 
self energy :

;

and of opposite sign



Construction of disorder potential

We assume charge distribution with zero average. A nonzero
average it simply translates in a voltage gate off-set. 

We assume the charge positions to be uncorrelated.

We then calculate C(q) using random number with Gaussian 
distribution and variance equal to impurity density.

Assuming the impurities to be in a layer at distance d we finally
calculate V 

D

c

c



Dirac point: single disorder realization

We can see that many-body effects, exchange, tend to suppress 
the density fluctuations as it can be seen from the “histogram” plot 
of the density distribution.



Density rms and correlation length,
as function of impurity density

0
A   : area fraction over which

ER and S. Das Sarma, Phys. Rev. Lett. (2008)



Small region of size ξ, ~10 nm, 
fixed by non-linear screening, 
and high density. δQ ~ 2e. 
Result in agreement with 
recent STM experiment [V. Brar 
et al. unpublished]

Wide regions of size ~ L 
(sample size) and low 
density. δQ ~ 10e. 

Carrier density properties



Inhomogeneous conductivity 
The inhomogeneous character of the n will be reflected in inhomogeneous transport 
properties such as the conductivity, σ,  and the mean free path, l. Because in 
presence of disorder the density is strongly inhomogeneous, and different from zero 
almost everywhere, we assume the RPA-Boltzmann expression [Ando J. Phys. Soc. 
(2006); Nomura & MacDonald, PRL (2006); Hwang, Adam, Das Sarma, PRL (2007); 
Cheianov & Falko, PRL (2006), Adam et al. PNAS (2007)] to be valid locally also at the 
Dirac point:

For r   =0.8 is F(r  ) = 10.ss



Effective medium theory 
We use the Landauer-Bruggeman [Bruggeman Ann. Phys (1935), Landauer 
J. Appl. Phys. (1952)] Effective Medium Theory. In this approach an effective 
medium conductivity, σ    , is calculated requiring that the spatial average 
of the electric field fluctuations induced by the inhomogeneity of σ is equal 
to zero. In 2D this requirement translates into the equation:

eff

For graphene this equation, after disorder averaging, takes the form:

We know P(n): obtained using the Thomas-Fermi-Dirac approach.

ER, S. Adam, S. Das Sarma, arxiv:0809.1425



In general we have seen that ξ is ~10 nm, smaller than the typical l. 
However:

 ξ characterizes small regions that are quite sparse and, in first 
approximation, we can assume their contribution to the conductivity to be 
small;
 
 Close to the Dirac point most of the sample is characterized by wide 
regions with small density. Because is                            ;      in this regions l 
is quite smaller than the length scale over which n varies.

Effective medium theory: regime of validity

The Effective Medium Theory is valid when:

From Boltzmann-RPA result

a)

b) Resistive contribution due to boundaries between e-h puddles is small.,
[Cheianov & Falko, PRB (2006); Cheianov et al, PRL (2007); Fogler et al. PRB 
(2008)].

This contribution becomes less important with the size of the e-h puddles.



Up to high carrier densities densities
fluctuations dominate

The density probability distribution 
has bimodal character

Dirac-point physics dominates over finite range of gate voltages

Results away from the Dirac point.



EMT: conductivity vs. gate voltage 

 Finite value of the conductivity at Dirac point;
 Recovers linear behavior at high gate voltages;
 Describes crossover;
 Shows importance of exchange-correlation at low voltages.

S. Adam et al.
PNAS (2007)



EMT: minimum conductivity vs. impurity density 

Dependence of conductivity on impurity density in qualitative
and quantitative agreement with experiments.

No exchange

With exchange

S. Adam et al.
PNAS (2007)



Tuning rs

C. Jang et al. PRL (2008)

Vacuum Ice

Graphene



How rs enters the theory
  rs affects the ground-state carrier distribution:

 rs controls the scattering time:

S. Adam et al. PNAS (2008).
E. Hwang et al. PRB (2008).

and therefore the local value of the conductivity



EMT: rs dependence of the minimum conductivity 

Experiment: C. Jang et al PRL (2008)



Conclusions

 Close to the Dirac-point, disorder induced density inhomogeneities are extremely  
   important to understand graphene properties, especially transport.

 We understand transport in current samples close to Dirac point;

 Interactions not strong enough to cause long-range order but essential 
  to understand transport close to the Dirac point;

 Many things not covered and still largely unexplored: bilayers; graphene
  nanostructures, ...

 Graphene is interesting.
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