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PREFACE 

This text is based on a one semester advanced undergraduate 

course that I have taught at the College of William and Mary. In 

the spring semester of 2005, I decided to collect my notes and to 

present them in a more formal manner. The course covers se-

lected topics on mathematical methods in the physical sciences 

and is cross listed at the senior level in the physics and applied 

sciences departments. The intended audience is junior and se-

nior science majors intending to continue their studies in the 

pure and applied sciences at the graduate level. The course, as 

taught at the College, is hugely successful. The most frequent 

comment has been that students wished they had been intro-

duced to this material earlier in their studies. 

Any course on mathematical methods necessarily involves a 

choice from a venue of topics that could be covered. The empha-

sis on this course is to introduce students the special functions 

of mathematical physics with emphasis on those techniques that 

would be most useful in preparing a student to enter a program 

of graduate studies in the sciences or the engineering discip-

lines. The students that I have taught at the College are the gen-

erally the best in their respective programs and have a solid 

foundation in basic methods. Their mathematical preparation 
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includes, at a minimum, courses in ordinary differential equa-

tions, linear algebra, and multivariable calculus. The least expe-

rienced junior level students have taken at least two semesters 

of Lagrangian mechanics, a semester of quantum mechanics, 

and are enrolled in a course in electrodynamics, concurrently. 

The senior level students have completed most of their required 

course work and are well into their senior research projects. This 

allows me to exclude a number of preliminary subjects, and to 

concentrate on those topics that I think would be most helpful. 

My classroom approach is highly interactive, with students pre-

senting several in-class presentations over the course of the 

semester. In-class discussion is often lively and prolonged. It is a 

pleasure to be teaching students that are genuinely interested 

and engaged. I spend significant time in discussing the limita-

tion as well as the applicability of mathematical methods, draw-

ing from my own experience as a research scientist in particle 

and nuclear physics. When I discuss computational algorithms, 

I try to do so .from a programming language-neutral point of 

view. 

The course begins with review of infinite series and complex 

analysis, then covers Gamma and Elliptic functions in some de-

tail, before turning to the main theme of the course: the unified 

study of the most ubiquitous scalar partial differential equations 

of physics, namely the wave, diffusion, Laplace, Poisson, and 

Schrödinger equations. I show how the same mathematical me-

thods apply to a variety of physical phenomena, giving the stu-
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dents a global overview of the commonality of language and 

techniques used in various subfields of study. As an interme-

diate step, Strum-Liouville theory is used to study the most 

common orthogonal functions needed to separate variables in 

Cartesian, cylindrical and spherical coordinate systems. Boun-

dary valued problems are then studied in detail, and integral 

transforms are discussed, including the study of Green functions 

and propagators. 

The level of the presentation is a step below that of Mathemati-

cal Methods for Physicists by George B. Arfken and Hans J. 

Weber, which is a great book at the graduate level, or as a desk-

top reference; and a step above that of Mathematical Methods 

in the Physical Sciences, by Mary L. Boas, whose clear and sim-

ple presentation of basic concepts is more accessible to an un-

dergraduate audience. I have tried to improve on the rigor of her 

presentation, drawing on material from Arfken, without over-

whelming the students, who are getting their first exposure to 

much of this material. 

Serious students of mathematical physics will find it useful to 

invest in a good handbook of integrals and tables. My favorite is 

the classic Handbook of Mathematical Functions, With Formu-

las, Graphs, and Mathematical Tables (AMS55), edited by Mil-

ton Abramowitz and Irene A. Stegun. This book is in the public 

domain, and electronic versions are available for downloading 

on the worldwide web. NIST is in the process of updating this 
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work and plans to make an online version accessible in the near 

future. 

Such handbooks, although useful as references, are no longer 

the primary means of accessing the special functions of mathe-

matical physics. A number of high level programs exist that are 

better suited for this purpose, including Mathematica, Maple, 

MATHLAB, and Mathcad. The College has site licenses for sev-

eral of these programs, and I let students use their program of 

choice. These packages each have their strengths and weak-

nesses, and I have tried to avoid the temptation of relying too 

heavily on proprietary technology that might be quickly out-

dated. My own pedagogical inclination is to have students work 

out problems from first principles and to only use these pro-

grams to confirm their results and/or to assist in the presenta-

tion and visualization of data. I want to know what my students 

know, not what some computer algorithm spits out for them. 

The more computer savvy students might want to consider using 

a high-level programming language, coupled with good numeric 

and plotting libraries, to achieve the same results. For example, 

the Ch scripting interpreter, from SoftIntegration, Inc, is availa-

ble for most computing platforms including Windows, Linux, 

Mac OSX, Solaris, and HP-UX. It includes high level C99 scien-

tific math libraries and a decent plot package. It is a free down-

load for academic purposes. In my own work, I find the C# pro-

gramming language, within the Microsoft Visual Studio pro-

gramming environment, to be suitable for larger web-oriented 
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projects. The C# language is an international EMCA supported 

specification. The .Net framework has been ported to other plat-

forms and is available under an open source license from the 

MONO project. 

These notes are intended to be used in a classroom, or other 

academic settings, either as a standalone text or as supplemen-

tary material. I would appreciate feedback on ways this text can 

be improved. I am deeply appreciative of the students who as-

sisted in this effort and to whom this text is dedicated. 

Williamsburg, Virginia John Michael Finn 

April, 2005 Professor of Physics 

 finn@physics.wm.edu 
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1.  Infinite Series 

The universe simply is. 

Existence is not required to explain itself.  

This is a task that mankind has chosen for himself,  

and the reason that he invented mathematics. 

1.1  Convergence 

The ancient Greeks were fascinated by the concept of infinity. 

They were aware that there was something transcendental 

beyond the realm of rational numbers and the limits of finite al-

gebraic calculation, even if they did not fully comprehend how to 

deal with it. Some of the most famous paradoxes of antiquity, at-

tributed to Zeno, wrestle with the question of convergence. If a 

process takes an infinite number of steps to calculate, does that 

necessarily imply that it takes an infinite amount of time? One 

such paradox purportedly demonstrated that motion was im-

possible, a clear absurdity. Convergence was a concept that 

mankind had to master before he was ready for Newton and his 

calculus. 

Physicists tend to take a cavalier attitude to convergence and 

limits in general. To some extent, they can afford to. Physical 

particles are different than mathematical points. They have a 
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property, called inertia, which limits their response to external 

force. In the context of special relativity, even their velocity re-

mains finite. Therefore, physical trajectories are necessarily 

well-behaved, single-valued, continuous and differentiable func-

tions of time from the moment of their creation to the moment 

of their annihilation. Mathematicians should be so fortunate. 

Nevertheless, physicists, applied scientists, and engineering pro-

fessionals cannot afford to be too cavalier in their attitude. Un-

like the young, the innocent, and the unlucky, they need to be 

aware of the pitfalls that can befall them. Mathematics is not re-

ality, but only a tool that we use to image reality. One needs to 

be aware of its limitations and unspoken assumptions. 

Infinite series and the theory of convergence are fundamental to 

the calculus. They are taught as an introduction to most intro-

ductory analysis courses. Those who stayed awake in lecture 

may even remember the proofs—Therefore, this chapter is in-

tended as a review of things previously learnt, but perhaps for-

gotten, or somehow neglected. We begin with a story. 

1.2  A cautionary tale 

The king of Persia had an astronomer that he wished to honor, 

for just cause. Calling him into his presence, the king said that 

he could ask whatever he willed, and, if it were within his power 

to grant it, even if it were half his kingdom, he would. 
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To this, the astronomer responded: “O King, I am a humble 

man, with few needs. See this chessboard before us that we have 

played on many times, grant me only one gain of gold for the 

first square, and if it please you, twice that number for the 

second square, and twice that again for the third square, and so 

forth, continuing this pattern, until the board is complete. That 

would be reward enough for me.” The king was pleased at such a 

modest request, and commanded his money changer to fulfill 

the astronomer’s wish. Figure 1-1 shows the layout of the chess-

board, and gives some inkling of where the calculation may lead. 

     … 262 263 

        

        

        

        

        

        

1 2 22 23 24 25 …  

Figure 1-1 Layout of the King’s chessboard. 
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The total number grains of gold is a sequence whose sum is giv-

en by S=1+2+22+23+24+…, or more generally 

 
63

0
2n

n
S

=

=∑ . (1.1) 

Note that mathematicians like to start counting at zero since 
0 1x =  is a good way to include a leading constant term in a pow-

er series. Many present day computer programs number their 

arrays starting at zero for the first element as well. 

 

The above is an example of a finite sequence of numbers to be 

summed, a series of N  terms, defined by an , which can be writ-

ten as 

 
1

0

N

N n
n

S a
−

=

=∑ , (1.2) 

where an denotes the thn  element in the sum of a series of N  

terms, expressed as NS . The algorithm or rule for defining the 

constants in our chess problem is given by the prescription 

 0 11,   and  2n na a a+= = . (1.3) 

Note that a  is used to compactly describe the progression. For 

infinite series, where it is physically impossible to write down 

every single term, the series must be defined by such a rule, of-

ten recursively derived, for constructing the nth term in the se-

ries. 
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Most of us are familiar with computers and know that they store 

data in binary format (see Figure 1-2). A bit set in the thn  place 

represents the number 2n . Our chess problem corresponds to a 

binary number with the bit pattern of a 64 bit integer have all its 

bits set, the largest unsigned number that can be stored in 64 

bits. Adding one to this number results in all zeroes plus the set-

ting of an overflow bit representing the number 642 . Therefore, 

the answer to our chess problem would require ( 642 1− ) grains of 

gold. This is a huge number, considering that there are there are 

only 236.02 10⋅ atoms per gram-mole of gold. 

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111  

Figure 1-2 A 64-bit unsigned-integer bit-pattern with all its bits set 

I could continue the story to its conclusion, but it is more inter-

esting to leave you to speculate as to possible outcomes. Here 

are some questions to ponder: 

• What do you suppose the king did to the astronomer? Was 

this something to lose one’s head over? 

• Most good stories have a point, a moral, or a lesson to be 

learnt. What can one learn from this story? 

• If N  goes to infinity does the series converge? If not, why 

not? 

(Hint: Preliminary test: if the terms in the series an do not tend 

to zero as ,n →∞  the series diverges) 
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1.3  Geometric series 

The chess board series is an example of a , one where successive 

terms are multiplied by a constant ratio r. It represents one of 

the oldest and best known of series. A geometric series can be 

written in the general form as 

 ( )
1

,2
0 0 0

0
, (1 ...)

N
n

NG a r a r r a r
−

= + + + = ∑ . (1.4) 

The initial term is 0 1a =  and the ratio is 2r =  for the chess 

board problem. The sum of a geometric series can be evaluated 

giving solution with a closed form: 

 
1

0 0 0
0

1( , )
1

nN
n

N
rG a r a r a
r

− ⎛ ⎞−= = ⎜ ⎟−⎝ ⎠
∑ . (1.5) 

 Proof by mathematical induction 

There are a number of ways that the formula for the sum a geo-

metric series (1.5) can be verified. Perhaps the most useful for 

future applications to other recursive problems is  Induction in-

volves carrying out the following three logical steps. 

• Verify that the expression is true for the initial case. Letting 

0 1a =  for simplicity, one gets 

 ( )
1

1
1 1
1

rG r
r

⎛ ⎞−= =⎜ ⎟−⎝ ⎠
. (1.6) 
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• Assume that the expression is true for the thN  case, i.e., as-

sume 

 ( ) 1
1

N

N
rG r
r

⎛ ⎞−= ⎜ ⎟−⎝ ⎠
. (1.7) 

• Prove that it is true for the 1N +  case: 

 

1

1

1 1 1

1

1 ,
1

1 1 1 ( 1) ,
1 1 1

1 ) 1 1 .
1 1 1

N
N N

N N

N N N
N

N

N N N N N

N

rG G r r
r

r r r r rG r
r r r

r r r r rG
r r r

+

+

+ + +

+

⎛ ⎞−= + = +⎜ ⎟−⎝ ⎠
⎛ ⎞− − − + −⎛ ⎞= + =⎜ ⎟ ⎜ ⎟− − −⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞− + − − −= = =⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

 (1.8) 

1.4  Definition of an infinite series 

The sum of an infinite series ( )S r  can be defined as the sum of a 

series of N  terms ( )NS r  in the limit as the number of terms N  

goes to infinity. For the geometric series this becomes 

 ( ) lim ( )NN
G r G r

→∞
=  (1.9) 

or 

 ( ) 1( )
1

rG r G r
r

∞

∞
⎛ ⎞−= = ⎜ ⎟−⎝ ⎠

, (1.10) 

where 
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0  1,
1,

1 1 ... .

if r
r f r

diverges

∞

<⎛
⎜→ ∞ >⎜
⎜ + +⎝

 (1.11) 

Therefore, for a general infinite geometric series, 

 
0

0
00

1,
( , ) 1

undefined for 1.

n

n

aa r for r
G a r r

r

∞

=

⎧ = <⎪= −⎨
⎪ ≥⎩

∑  (1.12) 

 Convergence of the chessboard problem 

Let’s calculate how much gold we could obtain if we had a 

chessboard of infinite size. First, let’s try plugging into the series 

solution: 

 

1

0

2 12 (1,2) ,
2 1

1 1.
1 2

NN
n

N N
n

N N

S G

S

−

=

→∞

−= = =
−

→ = −
−

∑
 (1.13) 

This is clearly nonsense. One can not get a negative result by 

adding a sequence that contains only positive terms. Note, how-

ever, that the series converges only if 1r < . This leads to our first 

two major conclusions: 

• The sum of a series is only meaningful if it converges. 

• A function and the sum of the power series that it represents 

are mathematically equivalent within, and only within, the 

radius of convergence of the power series. 
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 Distance traveled by A bouncing ball 

Here is an interesting variation on one of Zeno’s Paradoxes: If a 

bouncing ball bounces an infinite number of times before com-

ing to rest, does this necessarily imply that it will bounce forev-

er? Answers to questions like this led to the development of the 

formal theory of convergence. The detailed definition of the 

problem to be solved is presented below. 

Discussion Problem:  A physics teacher drops a ball from rest 

at a height 0h  above a level floor. See Figure 1-3. The accelera-

tion of gravity g  is constant. He neglects air resistance and as-

sumes that the collision, which is inelastic, takes negligible time 

(using the impulse approximation). He finds that the height of 

each succeeding bounce is reduced by a constant ratio r, so 

1n nh rh −=  

• Calculate the total distance traveled, as a Geometric series. 

• Using Newton’s Laws of Motion, calculate the time nt  needed 

to drop from a height nh . 

• Write down a series for the total time for N  bounces. Does 

this series converge? Why or why not? 
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Figure 1-3 Height (m) vs. time (s) for a bouncing ball 

Figure 1-3 shows a plot of the motion of a bouncing ball (h0=10 

m, r=2/3, g=9.8 m/s2). The height of each bounce is reduced by 

a constant ratio. A complication is that the total distance tra-

veled is to be calculated from the maximum of the first cycle, re-

quiring a correction to the first term in the series. 

The series to be evaluated turn out to be geometric series. The 

motion of the particle for the first cycle is given by 

 

2

0

0 0

0 0 0

( ) ,
2

2 ,

2 / 8 / ,

gty t v t

v gh

t v g h g

= −

=

Δ = =

 (1.14) 

where 0tΔ  is the time for the first cycle, and 
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0
0 0 0 0

0 0

0 0

22 2 ,
1

8 / ,

.
21

n
n

n

hD h h h r h h
r

t h r g t r
t tT

r

= − = − = −
−

Δ = = Δ
Δ Δ= −
−

∑ ∑
 (1.15) 

Both series converge, but the time series converges slower than 

the distance series as illustrated in Figure 1-4 below, since 

 for 1r r r> < . 

 

Figure 1-4 The distance and time traveled by a bouncing ball 
(h0=10 m, g=9.8 m/s2 and r=2/3) 

The bouncing ball undergoes an infinite number of bounces in a 

finite time. For a contrary example, an under-damped oscillator 

undergoes an infinite number of oscillations and requires an in-

finite amount of time to come to rest.  

1.5  The remainder of a series 

An infinite series can be factored into two terms 

 ,N NS S R= +  (1.16) 



12 Infinite Series 

where 

• 1

0

N
N nn

S a−

=
=∑  is the , which has a finite sum of terms, and 

• NR  is the  of the series, which has an infinite number of 

terms 

 N n
n N

R a
∞

=

=∑  (1.17) 

1.6  Comments about series 

• NS  denotes the partial sum of an infinite series S , the part 

that is actually calculated. Since its computation involves a 

finite number of algebraic operations (i.e., it is a finite algo-

rithm) computing it poses no conceptual challenge. In other 

words, the rules of algebra apply, and a program can happily 

be written to return the result. 

• The remainder of a series S , denoted as NR , is an infinite se-

ries. This series may, or may not, converge. 

• The convergence of NR  is the same as the convergence of the 

series S . The convergence of an infinite series is not affected 

by the addition or subtraction of a finite number of leading 

terms. 
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• Computers (and humans too) can only calculate a finite 

number of terms, therefore an estimate of NR  is needed as a 

measure of the error in the calculation. 

• The most essential component of an infinite series is its re-

mainder—the part you don’t calculate. If one can’t estimate 

or bound the error, the numerical value of the resulting ex-

pression is worthless. 

Before using a series, one needs to know 

• whether the series converges, 

• how fast it converges, and 

• what reasonable error bound one can place on the remainder 

NR . 

1.7  The Formal definition of convergence 

 
A series  converges if

for all ( ).
N N

N N

S S R
R S S N Nε ε

= +
= − < >

 (1.18) 

1.8  Alternating series 

Definition: A series of terms with alternating terms is an 

alternating series 

Consider the alternating series A, given by 
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 ( )1 n
n

n
A a= −∑  (1.19) 

An alternating series converges if 

 
1 0

      0, as ,  and      
 , for all    N

n

n n

a n
a a n+

→ →∞
< >

 (1.20) 

An oscillation of sign in a series can greatly improve its rate of 

convergence. For a series of reducing terms, it is easy to define a 

maximum error in a given approximation. The error in NS  is 

smaller that the first neglected term 

 N NR a< . (1.21) 

 Alternating Harmonic Series 

An alternating harmonic series is defined as the series 

 
( )

0

1 1 1 11 .
1 2 3 4

n

n n

∞

=

−
= − + − +

+∑ "  (1.22) 

This is a decreasing alternating series which tends to zero and so 

meets the preliminary test. 

Example:  Series expansion for the natural logarithm 

In a book of math tables one can lookup the series expansion of 

the natural logarithm, which is 

 ( ) ( ) 1 2

0
ln 1

1 2 3

n

n

x x xx x
n

+∞

=

− −
+ = = − +

+∑ "  (1.23) 
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Setting 1,x =  allows one to calculate the sum of an alternating 

harmonic series in closed form 

 ( ) ( )
0

1
ln(2) ln 1 1 0.6931471806

1

n

n n

∞

=

−
= + = =

+∑ . (1.24) 

Finding a functional representation of a series is a useful way of 

expressing its sum in closed form. 

What about ln(0) ? 

 
( )

0

1 1 1ln 1 1 1
1 2 3

ln(0)
n n

diverges

∞

=
− = == + +

+
= −∞

∑ "
 (1.25) 

So, to summarize: 

 

( )

( )

1
1

1
1

n

n

S converges
n

but

S diverges
n

⎛ ⎞−
⎜ ⎟=
⎜ ⎟+⎝ ⎠

−
=

+

∑

∑

 (1.26) 

 (1.27) 

The series expansion for ln(1 )x+  can be summarized as 

 
( )

1

0

( )ln 1 ,
1

0 2.

n

n

xx
n

for x

+∞

=

− −+ =
+

< ≤

∑  (1.28) 

This series is only conditionally convergent at its end points, de-

pending on the signs of the terms. What is going on here? 
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Let’s rearrange the terms of the series so all the positive terms 

come first (real numbers are commutative aren’t they?) 

 0

0

,
1 ,

2
1 ,

2 1
is undefined.

n

n

S S S

S
n

S
n

S

+ −

∞
+

=

∞
−

=

→ +

= →∞

= − → −∞
+

= ∞ −∞

∑

∑
 (1.29) 

The problem is that a series is an algorithm, the first series di-

verges so one never gets around to calculating the terms of the 

second series (remember we are limited to a finite number of 

calculations, assuming we have only finite computer power 

available to us) 

• Note that infinity is not a real number! 

1.9  Absolute Convergence 

A series converges absolutely if the sum of the series generated 

by taking the absolute value of all its terms converges. Let 

nS a=∑ , then if the corresponding series of positive terms 

 nS a′ =∑  (1.30) 

converges, the initial series S is said to be  Otherwise if S  is 

convergent, but not absolutely convergent, it is said to be  
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Discussion Problem:  Show that a conditional convergent se-

ries S can be made to converge to any desired value. 

Here is an outline of a possible proof: Separate S  into two se-

ries, one of which contains only positive terms and the second 

only negative terms. Since S  is convergent, but not absolutely 

convergent, each of these series is separately divergent. Now 

borrow from the positive series until the sum is just greater than 

the desired value (assuming it is positive). Next subtract from 

the series just enough terms to bring it to just below the desired 

value. Repeat the process. If one has a series of decreasing 

terms, tending to zero, the results will oscillate about and even-

tually settle down to the desired value. 

What is happening here is easy enough to understand: One can 

always borrow from infinity and still have an infinite number in 

reserve to draw upon: 

 na∞± = ∞  (1.31) 

You can simply mortgage your future to get the desired result. 

Some conclusions: 

• Conditionally convergent series are dangerous, the commut-

ative law of addition does not apply (infinity is not a num-

ber). 

• Absolutely convergent series always give the same answer no 

matter how the terms are rearranged. 
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• Absolute convergence is your friend. Don’t settle for any-

thing less than this. Absolutely convergent series can be 

treated as if they represent real numbers in an algebraic ex-

pression (they do). They can be added, subtracted, multip-

lied and divided with impunity. 

 Distributive Law for scalar multiplication 

A series can be multiplied term by term by a real number r  

without affecting its convergence 

 Scalar multiplication 

Scalar multiplication of a series by a real number r  is given by 

 .n nr a ra=∑ ∑  (1.32) 

 Addition of series 

Two absolutely convergent series can be added to each other 

term by term; the resulting series converges within the common 

interval of convergence of the original series. 

 
( )

1 2 1 2

,

.
n n nn

a b n n

a b a b

c S c S c a c b

± = ±

± = ±
∑ ∑ ∑

∑
 (1.33) 
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1.10  Tests for convergence 

Here is a summary of a few of the most useful tests for conver-

gence. Advanced references will list many more tests. 

 Preliminary test 

A series NS  diverges if its terms do not tend to zero as N  goes to 

infinity. 

 Comparison tests 

Comparison tests involve comparing a series to a known series. 

Comparison can be used to test for convergence or divergence of 

a series: 

• Given an absolutely convergent series a nS a=∑ the series 

b nS b=∑  converges if 

 n nb a<  (1.34) 

for n N> . 

• Given an absolutely divergent series ,a nS a=∑  the series 

b nS b=∑  diverges if n nb a>  for n N> . 

• Given a absolutely convergent series ,a nS a=∑ the series 

b nS b=∑  converges if 
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 1 1n n

n n

b a
b a
+ +<  (1.35) 

For n N> . (This test can also be used to test for divergence) 

 The Ratio Test 

This is a variant of the comparison test where the ratio of terms 

is compared to the geometric series: By comparison to a geome-

tric series, the series b nS b=∑  converges if the ratio of succeed-

ing terms decreases as n →∞ . 

 

1define lim

1 the series converges,
1 the series diverges,
0 the test fails.

n

n
n

br
b

r
if r

r

+

→∞
=

<⎧
⎪ >⎨
⎪ =⎩

 (1.36) 

 The Integral Test 

The series b nS b=∑  converges if the upper limit of the integral 

obtained by replacing 
0 0

( )
NN

n
N N

b b n dn→∑ ∫  converges as N →∞ , and 

it diverges if the integral diverges. The proof is demonstrated 

graphically in Figure 1-5, which demonstrates that a sum of pos-

itive terms is bounded both above and below by its integral. The 
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integral can be constructed to pass through all the steps in the 

partial sums at either the beginning or the end of an interval. 

 

0 5 10 15
0

2

4

6

Sum x r,( )

Iplus x r,( )

Iminus x r,( )

x  

Figure 1-5 The Integral test 

1.11  Radius of convergence 

The series 

 
0

( ) n
n

n
S x a x

∞

=

=∑  (1.37) 

defines a an absolutely convergent power series of x within its 

radius of convergence given by 

 

1

1

1

.

lim

lim

n

n n

n

n n

ar x
a

aor x
a

+

→∞

→∞ +

= <

<

 (1.38) 

Within its radius of convergence, the function and its power se-

ries are identical. The power series expansion of ( )S x  is unique. 
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Example:  Definition of the exponential function. 

The exponential function is defined as that function which is its 

own derivative 

 
( ) ( ).de x e x

dx
=  (1.39) 

Let’s show that the series expansion for the exponential function 

obeys this rule: 

 

0

1

1

1
1

1 0

1
0 0

1 on the RHS

( 1)

( 1) .

x n
n

n
x

n
n

n

n n x
n n

n n

n n
n n

n n

e a x

de na x
dx

letting n n

na x n a x e

n a x a x

∞

=

∞
−

=

∞ ∞
′−

′+
′= =

∞ ∞
′

′+
′= =

=

=

′→ +

′= + =

′ + =

∑

∑

∑ ∑

∑ ∑

 (1.40) 

Test for radius of convergence: 

 
( ) ( )1 !

lim 1
!

.

n
x n

n
x

+
< = =

< ∞
 (1.41) 

(In practice, the useful range for computation is limited, de-

pending on the format and storage allocation of a real variable 

in one’s calculator.) 
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 Evaluation techniques 

• if 1x ≤  this series is converges rapidly 

• if 1f x >  use a b a be e e+ =  to show 

 
( )

0

1 ,

.
!

x
x

n
x

n

e
e

x
e

n

−

∞
−

=

=

−
=∑

 (1.42) 

Alternating series converge faster, it is easy to estimate the er-

ror, and if the algorithm is written properly one shouldn’t get 

overflow errors. Professional grade mathematical libraries 

would use sophisticated algorithms to accurately evaluate a 

function over its entire useful domain. 

1.12  Expansion of functions in power series 

The power series of a function is unique within its radius of cur-

vature. Since power series can be differentiated, we can use this 

property to extract the coefficients of a power series. Let us ex-

pand a function of the real variable x about the origin: 
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( )

( ) ( )

( )
( )
( )
( )

0

( )

0

0

(1)
1

(2)
2

( )

;

0 ;

0 ,

0 ,

0 2 ,

0 ! .

n
n

n

n
n

n
x

n
n

f x a x

define

df f x
dx

then
f a

f a

f a

f n a

∞

=

=

=

=

=

=

=

=

∑

 (1.43) 

This results in the famous Taylor series expansion: 

 ( )
( ) ( )

0

0
.

!

n
n

n

f
f x x

n

∞

=

=∑  (1.44) 

Substituting x x a→ −  a, we get the generalization to a McLau-

ren Series 

 ( )
( ) ( ) ( )

0
.

!

n
n

n

f x a
f x x a

n

∞

=

−
= −∑  (1.45) 

Taylor’s expansion can be used to generate many well known se-

ries, such as the exponential function and the binomial expan-

sion. 

 The binomial expansion 

The binomial expansion is given by 



Infinite Series 25 

 ( )
0

1 ( , ) 1,p n

n
x B p m x x

∞

=

+ = <∑  (1.46) 

where p  is any real number. For integer p , the series is a poly-

nomial with 1p +  terms. The coefficients of this series are 

known as the binomial coefficients and written as 

 
( )

!( , ) .
! !

p p pB n m
n p n p n n

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (1.47) 

For non-integer p , but integer m , the coefficients can be ex-

pressed as the repeated product 

 
1

0

1( , ) ( ).
!

n

m

B n m p m
n

−

=

= −∏  (1.48) 

 Repeated Products 

 occur often in solutions generated by iteration. A repeated 

product of terms mr  is denoted by the expression 

 
1

0 1 3 1
0

.
N

m N
m

r r r r r
−

−
=

= ⋅ ⋅∏ "  (1.49) 

The  is an example of a repeated product 

 
1

! .
n

m

n m
=

=∏  (1.50) 

Discussion Problem:  Sine and cosine series 

Euler’s theorem, given by 
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 cos sin ,ie iθ θ θ= +  (1.51) 

is counted among the most elegant of mathematical equations. 

Derive the series expansion of sin x  and cos x  using the power 

series expansion for xe  and substituting x ix→ , giving 

 
( )
( )

2 1

0

1
sin

2 1 !

n n

n

x
x x

n

+∞

=

−
= < ∞

+∑  (1.52) 

and 

 
( )
( )

2

0

1
cos .

2 !

n n

n

x
x x

n

∞

=

−
= < ∞∑  (1.53) 

Then use the definition of the exponential, as the function which 

is its own derivative ( /x xde dx e= ) to prove 

 

sin cos ,

cos sin .

d x x
dx

d x x
dx

=

= −
 (1.54) 

1.13  More properties of power series 

• Power Series can be added, subtracted, and multiplied within 

their common radii of convergence. The result is another 

power series. 

• Power Series can also be divided, but one needs to avoid di-

vision by zero. This may restrict the radius of convergence of 

the result. 
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• Power series can be substituted into each other to generate 

new power series. For example, one can substitute 2x x→ −  

into the exponential function to get the power series of a 

Gaussian function: 

 ( )2 2
2

0

( 1) , .
!

n n
x

n

xe x
n

∞
−

=

−= < ∞∑  (1.55) 

1.14  Numerical techniques 

Example:  Calculating the series for ln(1 )x+ using long division 

 
( )

( )

2

0
1

0
0 0

1ln(1 ) .
1

By long division:
1

1 1                ( ) ,

ln(1 ) ( ) .
1

n

n
n

x n

n n

d x
dx x

x x
x x

x
x x dx

n

∞

=

+∞ ∞

= =

+ =
+

− + −
+ = −

− −
∴ + = − =

+

∑

∑ ∑∫

 (1.56) 

Example:  Evaluation of indeterminate forms by series expan-

sion: 

 
( ) ( )

2

0 0

0 0

1 1lim 1 1 1 ... ,
! 2

1 ,
1! 1!

x n

x n

n n

n n

e x xx
x x n

x x x
x n n

− ∞

→ =

∞ ∞

= =

⎛ ⎞ ⎛ ⎞− = − = − − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −
= =

+ +

∑

∑ ∑
 (1.57) 
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1.15  Series solutions of differential equations 

The equation 

 ( )
0

( ) ( )
iN

i
i

dA x y x S x
dx=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑  (1.58) 

defines an thN  order linear differential equation for ( )y x . If the 

source term ( ) 0S x = , the equation is said to be homogeneous. 

Otherwise, the equation is said to be inhomogeneous. We will 

concern ourselves with solutions to homogeneous equations at 

first. A linear homogenous equation has the general form 

 
0

( ) ( ) 0
iN

i
i

dA x y x
dx=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑  (1.59) 

A thN  order differential equation has N  linearly-independent so-

lutions { }( )iy x , and by linearity, the general solution can be 

written as 

 
0

( ) ( )
N

i i
i

y x c y x
=

=∑  (1.60) 

If the coefficients ( )iA x  can be expanded in a power series about 

the point 0x = , one can attempt to solve for ( )iy x  in terms of a 

power series expansion of the form 

 
0

( ) n
i im

n
y x a x

∞

=

=∑  (1.61) 
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Since the function is linear in y , the resulting series expansion 

will be linear in the coefficients ina , and the self-consistent solu-

tion will involve recursion relations between the coefficients of 

various powers of m . 

 A simple first order linear differential equation 

Consider the first order differential equation 

 
( ) ( )dY x Y x

dx
= −  (1.62) 

We already know the solution, it is given by 

 0( ) xY x Y e−=  (1.63) 

Since the equation is of first order, there is only one linearly in-

dependent solution so the above solution is complete. Let’s try 

expanding this function in a power series 

 ( )1
1

0 1 0
( ) ; ( ) 1n n n

n n n
n n n

Y x a x Y x na x n a x
∞ ∞ ∞

′−
′+

′= = =

′ ′= = = +∑ ∑ ∑  (1.64) 

Where the last term involves making the change of va-

riables 1n n′= +  

Substituting into equation (1.62) gives 

 ( ) 1
0 0

1 n n
n n

n n
n a x a x

∞ ∞
′

′+
′= =

′ + = −∑ ∑  (1.65) 

But n′ and n are dummy variables and we can compare similar 

powers of x  by setting n n′ = , giving the series solution 
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 ( ) 1
0

1 0.n
n n

n
n a a x

∞

+
′=

⎡ ⎤+ + =⎣ ⎦∑  (1.66) 

The above expression can be true for arbitrary x  only if term by 

term the coefficients vanish: 

 ( ) 11 0.n nn a a++ + =  (1.67) 

This gives rise to the recursive formula 

 ( ) ( )
1

1 ;  or ,
1

n n
n n

a aa a
n n

−
+ = − = −

+
 (1.68) 

with the solution 

 ( ) ( )
0

1
1 .

! !

n
n o

n
aa Y
n n

−
= − =  (1.69) 

The series solution is given by 

 
( )

0 0
0

1
( ) .

!

n
n x

n
Y x Y x Y e

n

∞
−

=

−
= =∑  (1.70) 

 A simple second order linear differential 

equation 

Here is a second order differential equation for which we al-

ready know the solution: 

 
2

2( ) ( ) ( ).dY x Y x Y x
dx

′′ = = −  (1.71) 
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In this case, there are two linearly independent solutions and 

the general solution can be written as 

 ( ) ( )0 1( ) cos sinY x a x a x= +  (1.72) 

 However suppose we didn’t know the solution (or at least its se-

ries expansion which amounts to the same thing.) How would go 

about finding two linearly independent solutions? Here symme-

try comes to our help. The operator 2 2/d dx  is an even function 

of x , so the even and odd parts of ( )y x are separately solutions 

to equation (1.71). This suggests that we try to find series solu-

tions of the form 

 2
2

0
( ) ;  for 0,1n s

n s
n

Y x a x s
∞

+
+

=

= =∑  (1.73) 

If 0s =  we get an even function of x ; and if 1s = , an odd func-

tion of x . Substituting this series into equation (1.71) gives 

 

( )( )

( )( )

2 2
2

2

2
2 2

0

2
2

0

( ) 2 2 1

2 2 2 1  (letting 2)

n s
n s

n

n s
n s

n

n s
n s

n

Y x n s n s a x

n s n s a x n n

Y a x

∞
+ −

+
=

∞
′+

′+ +
′=

∞
+

+
=

′′ = + + −

′ ′ ′= + + + + = +

= − = −

∑

∑

∑

(1.74) 

Comparing terms of the same power of x  gives the recursion 

formula 

 ( )( ) 2 2 22 2 2 1 n s n sn s n s a a+ + ++ + + + = −  (1.75) 

with solution 
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 ( ) ( )
2

2 1
2 !

n s
n s

aa
n s+ = −
+

 (1.76) 

If 0,s =  this gives a cosine series normalized to the value of 0a ; 

and if 1s = , a sine series normalized to 1a , with the sum yielding 

the general solution given by equation (1.72). 

By making the substitution x mx→ , we get the differential equa-

tion 

 2( ) ( )Y x m Y x′′ = −  (1.77) 

with solutions 

 ( ) ( )( ) cos sinm m mY x a mx b mx= +  (1.78) 

Some quick comments: 

• In both of the above examples, we should have used the ratio 

test to find the radius of convergence of the series solutions, 

but we have already shown that the exponential, sine and co-

sine functions converge for all finite x . 

• The power series expansion fails if the equation has a singu-

larity at the expansion point. Using the Method of Forbenius 

in the next section, we will see how to extend the series tech-

nique to solve equations that have nonessential singularities 

at their origin. 
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1.16  Generalized power series 

When a power series solution fails, one can try a generalized 

power series solution. This is an extension of the power series 

method to include a leading behavior at the origin that might in-

clude a negative or fractional power of the independent variable. 

A second order linear homogeneous differential equation of the 

form 

 ( ) ( ) 0y f x y g x y′′ ′+ + =  (1.79) 

is said to be regular at 0x =  if ( )xf x  and 2 ( )x g x can be written in 

a power series expansion about 0x = . That is, the singularity of 

( )f x is not greater than 1x− and the singularity of ( )g x is not 

greater than 2x−  at the origin of the expansion. Such a differen-

tial equation can be solve in terms of at least one generalized 

power series of the form 

 
0

( ) n s
n

n

y x a x
∞

+

=

=∑  (1.80) 

where 0 0a ≠ , The leading power sx can be a negative or non in-

teger power of x . 

The statement that 0a  is the first nonvanishing term of the se-

ries, requires that terms 1 2,,a a− − " vanish. This constraint defines 

an quadratic indicial equation for s  that can be solved to deter-

mine the two roots 1,2s . 
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  Fuchs's conditions 

Given a regular differential equation of the form 

( ) ( ) 0y f x y g x y′′ ′+ + = , with solutions 1,2s  for the indicial equa-

tion: 

• If 2 1s s−  is non-integer, 1s  and 2s  define two linearly inde-

pendent generalized power series solutions to the equation. 

• If 2 1s s−  is integer-valued, the two solutions may or may not 

be linearly independent. In the second case, the larger of the 

two constants is used for the first solution 1( )y x  and a second 

solution can be found by making the substitution 

 2 1( ) ( ) ln( ) ( )y x y x x b x= +  (1.81) 

where ( )b x  is a second generalized power series. 

Example:  Solve by the method of Forbenius: 

 2 22 0.x y xy x y′′ ′+ + =  (1.82) 

Note that the differential operator is an even function of x . This 

suggests that we try a solution of the form 

 2
2

0
( ) ,n s

n
n

y x a x
∞

+

=

=∑  (1.83) 

where 0a  is the first nonvanishing term. Substituting (1.83) into 

(1.82) gives 
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( )( ) ( )2 2

2 2
0 0

2 2 2
2 2 2

0 1

2 2 1 2 2

,

n s n s
n n

n n

n s n s
n n

n n

n s n s a x n s a x

a x a x

∞ ∞
+ +

= =

∞ ∞
+ + +

−
= =−

+ + − + +

= − = −

∑ ∑

∑ ∑
 (1.84) 

which yields the recursion formula 

 ( ) 2 2 22 (2 1) n nn s n s a a −+ + + = −⎡ ⎤⎣ ⎦ . (1.85) 

Letting 0n =  gives the indicial equation 

 ( ) 0 2( 1) 0s s a a−+ = − =⎡ ⎤⎣ ⎦  (1.86) 

or 

 0, 1s = − . (1.87) 

Equation (1.85) can be rewritten as 

 
( )

( )2 0

1
,

2 1 !

n

na a
n s
−

=
+ +

 (1.88) 

giving the solutions 

 
( )
( )

2
0 0 0

0

1 sin( ) ,
1 !

n
n

n

xy x a x a
n x

∞

=

−
= =

+∑  (1.89) 

 
( )
( )

2 1
1 0 0

0

1 cos( ) .
!

n
n

n

xy x a x a
n x

∞
−

−
=

−
= =∑  (1.90) 

The general solution is given by 

 
sin cos( ) x xy x A B

x x
= +  (1.91) 
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In this case, the solutions can be expressed in terms of elemen-

tary functions. A solution could have been found by substituting 

( ) /y u x x=  and solving for ( )u x  to obtain ( ) sin cosu x A x B x= +  

 



 

2.  Analytic continuation 

By venturing into the complex plane, 

the geometric sense of multiplying by -1 can be replaced 

from the operation of reflection, which is discrete, 

 to that of rotation, which is continuous.  

The result is almost miraculous. 

2.1  The Fundamental Theorem of algebra 

Complex variables were introduced into algebra to solve a fun-

damental problem. Given a polynomial function of order N of a 

real variable x, how do we find its roots (zero crossings)? The 

equation to be solved can be written as 

 
0

( ) 0
N

n
N n

n
f x a x

=

= =∑  (2.1) 

The problem may not have a real-valued solution, it may have a 

unique solution, or it may have up to N distinct solutions, which 

are called the N  roots of ( )Nf x . 

The problem can be reduced to the question of whether we can 

fully factor the function into N  linear products . That is, does an 

algorithm exist that gives us uniquely 
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( )( )( ) ( )

( )
0 1 2 1

0

( ) ...

0

N N N

N

N m
m

f x a x x x x x x x x

a x x

−

=

= − − − −

= − =∏
 (2.2) 

This problem does have a solution, but only if we allow for the 

possibility of complex roots. This is the Fundamental Theorem 

of Algebra, which asserts that a polynomial of order N  of a 

complex variable z  can always be completely factored into its N  

roots, which are complex in general 

 ( ) ( )
0 0

.
NN

n
N n N m

n m

f z a z a z z
= =

= = −∑ ∏  (2.3) 

 Conjugate pairs or roots. 

If the coefficients of the power series are all real, the non-real 

roots always come in complex conjugate pairs. (Note that 

( )( ) 2* 2
0 0 0 02Re( )z z z z z z z z+ + = + +  has real parameters. ) 

 Transcendental functions 

If the power series is infinite, it has an infinite number of com-

plex roots. Such functions are said to be transcendental. 

2.2  The Quadratic Formula 

Let’s apply this to the quadratic formula given by 
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2

2

( )( ) 0

4
2

ax bx c a x x x x
where

b b acx
a

+ −

±

+ + = − − =

− ± −=

 (2.4) 

Here a, b, c are real coefficients. The roots x±  are real if 

( )2 4 0b ac− ≥ , and are complex if ( )2 4 0b ac− < . For the later case 

we can rewrite the equation as 

 
24 .

2
b i ac bx

a±
− ± −=  (2.5) 

 Definition of the square root 

Consider the plot of the quadratic function 2y x=  shown in Fig-

ure 2-1. 

 

3 1 1 3
3

1

1

3

5

7

9

y x( )

0

5

1−

x  
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Figure 2-1 Plot of the quadratic 2y x=  

2y x=  is well defined for all x . However, the inverse function 

1
2x y= , shown in Figure 2-1, has two real solutions for 0y > , one 

for 0y = , and none for 0y < . 

1 1 3 5 7 9
4

2

0

2

4

y

y^
1/

2

 

Figure 2-2 Plot of the half- root of y 
1
2y y= ±  

The square root function is the principal branch of 
1
2y , which 

returns the positive branch of the function, i.e. 0y ≥  for all 

positive y. 

 Definition of the square root of -1 

There are 2 roots of ( )1/ 21− . The roots are labeled as 

 ( )
1
21 ,i− = ±  (2.6) 
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where 1i = −  is considered to be the primary branch of the 

square root function. Since i  is not a real number, it represents 

a new dimension (degree of freedom). Just as one cannot add 

meters and seconds, we can not add numbers on the real axis to 

those along the imaginary axis i .To fully understand the mean-

ing of i , one first needs to appreciate the geometric interpreta-

tion of multiplication. 

 The geometric interpretation of multiplication 

The set of real numbers is isomorphic to a one dimensional vec-

tor function x , called the number line. Every real number x  cor-

responds to a vector as labeled x  on this line. Multiplication of 

the vector x  by the positive number r , written as ( )f x rx= , 

changes the length of the vector x  by the ratio r  (see Figure 

2-3). Multiplication of x  by r− : can be thought of as multiplica-

tion by r , followed by multiplication by ( 1)− : 

( ) ( 1( ))f xd rx rx= − = −  (see Figure 2-3) . The latter operation re-

flects the orientation of the vector about the origin, an improper 

operation. By extending the number line into a two-dimensional 

plane, called the complex plane, a second interpretation of mul-

tiplication by ( 1)− is possible, it can represent a rotation by π  

radians. This is important because rotations, unlike reflections, 

can be done continuously. The square 2( 1) 1− =  is understood as 
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two rotations by π , which brings us back to starting point. 

( )r r− − = . And i  can be written as the phase rotation 1ie π = − . 

The geometric interpretation of ( )2 1i± = −  is that i  is the rota-

tion that when doubled produces a rotation by π radians. The 

possible answers are / 2ie iπ± = ± , where / 2 1ii e π= = − , is the prin-

cipal branch of the square root function. 

 

Figure 2-3 Multiplication of a point a on the real number line by a 
real number( 2± ) 

Shown in Figure 2-3 is multiplication of a vector a  by(+2) and (-

2). The concept of multiplication on the real number line is one 

of a scale change plus a possible reflection (multiplication by -1). 

Reflection is an improper transformation as it is discontinuous. 

On the complex plane this reflection is replaced by a rotation of 

180D . 

2.3  The complex plane 

A complex number c can be thought of as consisting of a vector 

pair of real numbers (a, b) on a two dimensional plane called the 

complex plane. A complex vector c can be written as 



Analytic continuation 43 

 .c a ib= +  (2.7) 

Addition of complex numbers is the same as addition of 2-

dimensional vectors on the plane. The plane represents all poss-

ible pairs of real numbers. Let x be an arbitrary number on the 

real axis, and y be a arbitrary number along the imaginary axis, 

then an arbitrary point on the complex plane can be referred to 

as 

 .z x iy= +  (2.8) 

The complex plane can be quite “real” in that the properties of 

“real” vectors constrained to a 2-dimensional plane can be quite 

well represented as complex numbers in many applications. The 

modulus z  of a complex number z  is its geometric length 

2 2z x y= + . 
2z z z∗= , where z∗  is the complex conjugate of z  

(see Figure 2-4). 

Definition: The complex conjugate of z is the complemen-

tary point on the plane given by changing the sign of i . 

 *z x iy= −  (2.9) 

Complex Conjugate Pairs

x

y
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Figure 2-4 Conjugate pairs of vectors in the complex plane x iy± . 

2.4  Polar coordinates 

Like any 2-dimensional vector pair, ( , )x y , the transformation of 

a complex number into polar coordinates is given by the map-

ping 

 
cos ,
sin ,

x r
y r

θ
θ

=
=

 (2.10) 

using 

 ( )cos sin .iz r r iθ θ θ= = +  (2.11) 

Therefore, a complex number can be thought of as having a real 

magnitude 0r >  and an orientation θ  wrt (with respect to) the 

x axis. Note that the phase angle is cyclic, i.e. periodic, on inter-

val 2π  

 ( 2 ) .i n ie eθ π θ+ =  (2.12) 

Example:  Using  

 cos sin ,ixe x i x= +  (2.13) 

• Derive the series expansion of sin x  and cos x  using the pow-

er series expansion for 
xe  and substituting x ix→ . 

• Use the definition of the exponential, as the function which is 

its own derivative ( /x xde dx e= ), to prove 
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sin cos ,

cos sin .

d x x
dx

d x x
dx

=

= −
 (2.14) 

2.5  Properties of complex numbers 

Complex numbers form a division algebra, an algebra with a 

unique inverse for every non-zero element. Complex numbers 

form commutative, associative groups under both the opera-

tions of addition and multiplication. The distributive law also 

applies. 

Definition:  Addition and subtraction of complex numbers 

Given 

 1 1 1 2 2 2and ,z x iy z x iy= + = +  (2.15) 

then, 

 ( ) ( )3 1 2 1 2 1 2 .z z z x x i y y= ± = + ± +  (2.16) 

Definition: Multiplication of complex numbers 

 ( )3 1 2 1 1 2 2 1 2 1 2 1 2 2 1( ) ( ) ( ),z z z x iy x iy x x y y i x y x y= ⋅ = + ⋅ + = − + +  (2.17) 

which in polar notation becomes 

 ( )3 1 2 1 2( )
3 3 1 2 1 2 .i i i iz r e re r e r r eθ θ θ θ θ+= = ⋅ =  (2.18) 

The geometric interpretation of complex multiplication is that it 

represents a change of scale, scaling the length by 3 1 2r r r= , and a 
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rotation of one number by the phase of the other, with the final 

orientation being the sum of the two phases 1 2θ θ+ . 

Definition: Division is defined in terms of the inverse of a 

complex number 

 

( )

1
1 2 1 2

*
1

*

1

/

in polar notation we get
1i i

z z z z

zz
z z

re e
r

θ θ

−

−

− −

= ⋅

=

=

 (2.19) 

Example:  Calculate ( )2 /(1 )i i+ + . 

*

2
1

2 2 4 1 5 / 2
1 1 1 1

ilet z
i

i ithen z z z
i i

+=
+

− + += = ⋅ = =
− + +  

Example:  Calculate 2 2z i=  

First try it by brute force 

( ) ( ) ( )22 2 2 2z x iy x y i xy= + = − +
 

This leads to two real equations 

2 2 0,
2 2.
x y
xy
− =
=

 

Substituting 1/y x= into the first equation, we get 
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1
4

2
2

4

1 0,

1 0,

Re 1 1,

1 1.

x
x

x

x

y
x

⎛ ⎞− =⎜ ⎟
⎝ ⎠

− =

⎛ ⎞
= = ±⎜ ⎟

⎝ ⎠

= = ±

 

Therefore 

( )1 .z i= ± +  

Of course, the easy way is to calculate ( )
1
2

2i  directly, the way to 

do so will be made clear in the next section below 

2.6  The roots of 1/ nz  

The principal root of 
1

1 1n = , since 1 1n =  for the identity element. 

Using polar notation, the thn  distinct root of 1 is given by 

 

( )

( )

11 2 2 /1 ,

with distinct roots for 
0,1... 1 .

nn i m i m ne e

m n

π π= =

= −
 (2.20) 

That is, the roots are unit vectors whose phase angles are equally 

spaced from the identity element 1 in steps of 2 / nπ  as shown in 

Figure 2-5. This allows us to calculate the nth root of z 
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( )

11 1 / 2 /

,

0,1,...( 1).
1 ,nn n n i m

i

i nz z r

let z re
then

for m
e

n
e θ

θ

π

=
⋅ =

−
=

=

 (2.21) 

Definition: The principal root of 1/ nz  is defined as 

1/ /n i nn z r e φ= . All other roots are related by uniformly spaced 

phase rotations of magnitude 2 / nπ  

For example: 3 / 28 8 iz i e π= = has the solution 

 
( ) ( ){ }/ 6 2 /3 / 6 4 /3/ 6

/ 6

2 , 2 ,2 ,

cos30 sin 30 .

i ii

i

z e e e

where e i

π π π ππ

π

+ +=

= +D D
 

The cube roots of1

+120 deg

-120 deg

0 deg

 

Figure 2-5 The n roots of 
1

1n  on the unit circle 
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Shown in Figure 2-5 The n roots of 
1

1n  on the unit circle are the 

cube roots of one. The concept of complex multiplication in-

volves a phase rotation plus a change of scale. The identity ele-

ment 1 is the principle root of 
1

1n . The other 1n−  roots are equal-

ly spaced vectors on the unit circle. The cube roots of 1 are those 

phase vectors that, when applied 3 times, rotate themselves into 

the real number 1. 

2.7  Complex infinite series 

A complex infinite series is the sum a real series and an imagi-

nary series. The complex series converges if both real series and 

the imaginary series separately converge 

 ( ) .c n n n n nS c a ib a i b= = + = +∑ ∑ ∑ ∑  (2.22) 

A complex series converges absolutely if the series of real num-

bers given by n na ib+  absolutely converges. 

Proof: Clearly, by the comparison test, n na c≤  and n nb c≤ , 

so if cS  converges absolutely, then the component series aS  and 

bS  converge absolutely. 

The radius of convergence r of a complex power series n
nc z∑  is 

given by 

 
1

lim .n

n
n

cr z
c→∞

+

= <  (2.23) 
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Example:  Find the radius of convergence of the exponential 

function: 

By analytic continuation ze  is found by substituting z  for x  in 

the power series representation of xe  

 
0 !

n
z

n

xe
n

∞

=

=∑  (2.24) 

The radius of convergence is given by 

 

1
!lim lim 1 .1
1!

n n

nz n

n
→∞ →∞

< = + = ∞

+

 (2.25) 

2.8  Derivatives of complex functions 

To understand the meaning of a complex derivative, first let us 

remind others of the definition of the derivative for a function 

( )f x of a real variable x . The derivative /df dx  of a real valued 

function of x exits iff (if and only if) the limit  

 ( )
0

( ) ( )/ lim
x

f x f xdf x dx ε
ε→

+ −=  (2.26) 

exists, and the limit is the same whether approaches zero from 

below or above x . 
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Example:  The derivative of a function is undefined where the 

slope is undefined. Figure 2-6 shows a plot of the absolute value 

of x, where the derivative is undefined at the origin x=0. 

x

ab
s v

al
ue

 o
f x

f x( )

x
 

Figure 2-6 A plot of the absolute value of x. 

Definition: The derivative of a function of a complex vari-

able at a point 0z  is given by 

 
0

0 0

0

( ) ( )( ) lim
z

z z

f z z f zdf z
dz zΔ →

=

+ Δ −=
Δ

 (2.27) 

Provided that the limit exists and is independent of the path 

taken by zΔ in approaching 0z . 

This is much more stringent condition that for the real deriva-

tive. There are an infinite number of paths that zΔ  can take in 

going to zero. This viewed as important enough so that the exis-

tence of the complex derivative is given a special name: 

Definition:  A function of ( )f z who’s derivative exists in 

the vicinity of a point 0z  is said to be analytic at 0z  

Note that z  is an analytic function of itself: 
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( )

0
lim 1
z

z z z
zΔ →

+ Δ −
=

Δ
 (2.28) 

It follows (using the binomial expansion) that the derivative of 

nz  is also analytic: 

 

( )

( )

1 2

0

1
1

0 0

( ),

lim lim .

n
n n m m n n

m

n nn n
n

z z

n
z z z z z nz z O z

m

z z zdz nz z nz
dz z z

− −

=

−
−

Δ → Δ →

⎛ ⎞
+ Δ = Δ = + Δ + Δ⎜ ⎟

⎝ ⎠

+ Δ − Δ= = =
Δ Δ

∑
 (2.29) 

Clearly this means that all power series in z are analytic within 

their radius of convergence. Note that  

• Inverse powers z : nz− , are singular at the origin, so are not 

analytic in the vicinity of 0z = . 

• Inverse power series in z , can be thought of as power series 

in ( )1/ z . 

 ( )1

0
.n

n
n

f z c z
∞

− −

=

=∑  (2.30) 

By the ratio test such series converge for 1lim 1n

n
n

c
c z

+

→∞
< , or for 

 1lim ,n

n
n

cz r
c
+

→∞
> =  (2.31) 

that is, they represent functions that are analytic outside of 

some radius of convergence. 



Analytic continuation 53 

2.9  The exponential function 

The exponential function is unusual in to it has a special syntax 

( ) ze z e= ; some of its most important properties are listed below. 

 
( )1 21 2

0
1

!
2.718281828...

z
z

z zz z

n
z

n

de e
dz

e e e
ze z
n

e e

+

∞

=

=

=

= < ∞

= =

∑
 (2.32) 

Proof: The first equation is simply the definition of the expo-

nential function as the function that is its own derivative. The 

power series for ze  comes from substituting the series into the 

differential equation. We have already done this in the section 

on infinite series, just substitute x z→  in the proof. The proof 

that ( )1 21 2 z zz ze e e +=  can be derived by substituting the series for 

the function in the expression, then rearranging the terms. An 

outline of a proof follows: 

 
( ) ( )

( ) ( )

1 2

1 2

2 2
1 2 1 1 2 2

0 0

2 2
1 2 1 1 2 2

2
1 2 1 2

1 2

0

1 ... 1 ...
! ! 1 2 1 2

21 ...
1 2

1 ... ...
1 2

.
!

n m
z z

n m

n
z z

n

z z z z z ze e
n m

z z z z z z

z z z z

z z
e

n

∞ ∞

= =

∞
+

=

⎛ ⎞⎛ ⎞
= = + + + + + +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞+ + += + + +⎜ ⎟
⎝ ⎠
⎛ ⎞+ +
⎜ ⎟= + + + +
⎜ ⎟
⎝ ⎠

+
= =

∑ ∑

∑

 (2.33) 
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A more formal proof can be made using the binomial theorem. 

From that it follows that 

 ( )
1

nnz z nz

n

e e e
=

= =∏  (2.34) 

Then, by extension, for any number c , we define 

 ( )cz cze e=  (2.35) 

These properties, given in (2.33) and (2.35), are the justification 

for using a power law representation for ( )e z . 

2.10  The natural logarithm 

The natural logarithm is the inverse of the exponential function. 

Given zw e= , 

 ln( ) .w z=  (2.36) 

Multiplying 1 2 1 2( )
1 2

z z z zw w e e e += =  gives 

 1 2 1 2 1 2ln( ) ln ln .w w z z w w= + = +  (2.37) 

ln( )z  can easily be evaluated using polar notation. Let 

( 2 )i i mz re reθ θ π+= = , then 

 ( ) ( ) ( )( 2 ) ( 2 )ln ln ln .i m i mre r eθ π θ π+ += +  (2.38) 

Therefore, ln( )z  is defined as 

 ( )ln ln 2 for all m=0, 1,...z r i i mθ π= + + ±  (2.39) 
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and the  of the logarithm is defined as 

 ( )ln ln , .z r iθ π θ π= + − < ≤  (2.40) 

For example, 

 ( ) ( )/ 2ln ln / 2 2 .ii e i i mπ π π= = +  (2.41) 

For all integer m . Therefore, the logarithm is a multivalued 

function of a complex variable. 

2.11  The power function 

The power function is defined by analytic continuation as 

 ( )ln( ) ln .
ww z w zz e e= =  (2.42) 

For example, 

 ( ) ( )2 / 2 2ln ln ( 2 2 ) .
ii mi i i e i i mi e e e e
π π ππ π − ++= = = =  (2.43) 

Note that all the roots of ( )ii  are real. 

This definition results in the expected behavior for products of 

powers: 

 ( ) ( )1 2 1 21 1 2 lnln lnw w w z w www w z w zz z e e e z+ += = =  (2.44) 

2.12  The under-damped harmonic oscillator 

The equation for the damped harmonic oscillator is given by 
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 0,mx bx kx+ + =�� �  (2.45) 

where 2 2/  and /x dx dt x d x dt= =� �� . This equation can be thought of 

as the projection onto the x axis of motion in a 2dimensional 

space given by z x iy= +  

 0.mz bz kz+ + =�� �  (2.46) 

Let’s try a solution of the form ( ) utz t e= . This leads to the qua-

dratic equation 

 2 0,mu bu k+ + =  (2.47) 

With solutions 

 
2 4

2
b b mku

m±
− ± −=  (2.48) 

If 2 4 0,b mk− <  

 
24

2
b i mk bu

m±
− ± −=  (2.49) 

The solution oscillates: 

 ( ) ( )* / 2 / 2( ) 2 cos 2 sin .i t i t bt m bt mx t ce c e e t t eω ω α ω β ω− − −= + = +  (2.50) 

• The complex solutions are weighted sums of decaying spirals 

one of which rotates clockwise and the other counter-

clockwise (Figure 2-7). This diagram could also represent a 

2-dimensional phase space plot of position vs. momentum 

p mv=  for a 1-dimensional problem. In that case the point 
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that they decay into is the stable point of the equations of 

motion ( 0x p= =� � ) which is often called the attractor. 

 

Figure 2-7 Decaying spiral solutions to the damped oscillator in 
the complex plane. 

The total solution for z(t) is the weighted sum of the 2 complex 

solutions 

 ( ) .u t u tz t c e c e+ −
+ −= +  (2.51) 

The solution can be made real by taking the projection onto the 

real axis 

 
*

( ) .
2

z zx t +=  (2.52) 

This forces c±  to be conjugate pairs, giving the solution 

 ( ) ( )( ) cos sin .tz t a t b t e λω ω −⎡ ⎤= +⎣ ⎦  (2.53) 

The equation of the under damped oscillator can be rewritten as 

 ( )( ) cos ,tx t A t e λω ϕ −= +  (2.54) 
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where A  is the amplitude, ω  is the oscillation frequency , λ  is 

the decay rate, and ϕ  is a phase angle that depends on the initial 

conditions (see Figure 2-8).The constants α  and β  are fixed by 

specifying the initial conditions 

 0 0(0) ;   and  / (0) .x x dx dt v= =  (2.55) 

0 1 2 3
1

0

1
Underdamped Hamonic Oscillator

t (sec)

A
m

pl
itu

de

A cos w t⋅ φ+( )⋅ e λ− t⋅⋅

A e λ− t⋅

A− e λ− t⋅

t
 

Figure 2-8 The behavior of the damped oscillator x(t), on the real 
axis. 

2.13  Trigonometric and hyperbolic functions 

All the trigonometric and hyperbolic functions are defined in 

terms of the exponential function .ze  
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2.14  The hyperbolic functions 

cosh z and sinh z are defined as the even and odd parts of the 

exponential function: 

 

2

0

2 1

0

( ) ,
2 2 !

( ) .
2 2 1!

z z n

n

z z n

n

e e zcosh z
n

e e zsinh z
n

− ∞

=

− +∞

=

⎛ ⎞+= =⎜ ⎟
⎝ ⎠
⎛ ⎞−= =⎜ ⎟ +⎝ ⎠

∑

∑
 (2.56) 

A large number of identities have been tabulated for these func-

tions, let’s look at a few 

 

2 2

2 2

( ) ( ) 1,
( ) ( ),

( ) ( ),

(2 ) ( ) ( ),
(2 ) 2 ( ) ( ).

cosh z sinh z
d cosh z sinh z

dz
d sinh z cosh z

dz
cosh z cosh z sinh z
sinh z cosh z sinh z

− =

=

=

= +
=

 (2.57) 

The proofs all follow easily from the definitions of the functions. 

Some selected proofs follow: 

Example:  Prove 
2 2cosh sinh 1z z− = : 

 

2 2
2 2

2 2 2 2

2 2

2 2
4 4

4 1.
4

z z z z

z z z z z z z z

z z

e e e ecosh z sinh z

e e e e e e e e

e e

− −

− − − −

−

⎛ ⎞ ⎛ ⎞+ +− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ + − += −

= =

 (2.58) 
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Example:  Prove that sinh / coshd z dz z= : 

 
( ) ( ).

2 2

z z z zdsinh z d e e e e cosh z
dz dx

− −⎛ ⎞ ⎛ ⎞− += = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.59) 

Example:   Prove that sinh 2 2sinh coshz z z=  

 
2 2

2 ( ) ( ) 2 (2 ).
2 2 2

z z z z z ze e e e e esinh z cosh z sinh z
− − −⎛ ⎞⎛ ⎞+ − −= = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
(2.60) 

2.15  The trigonometric functions 

The trigonometric functions are defined as the mapping z ize e→  

giving 

 

( )

( )

( )

0
2

0
2 1

0

cos( ) sin( ),
!

cos( ) ( ) ,
2 !

sin( ) ( ) .
2 1!

n
iz

n
n

n
n

n

iz
e z i z

n

iz
z cosh iz

n

iz
z isinh iz i

n

∞

=

∞

=

+∞

=

= = +

= =

= − = −
+

∑

∑

∑

 (2.61) 

Again a large number of identities have been derived for these 

functions, and a few of these are 
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2 2

2 2

( ) ( ) 1,
( ) ( ),

( ) ( ),

(2 ) ( ) ( ),
(2 ) 2sin( ) cos( ).

cos z sin z
dcos z sin z

dz
dsin z cos z

dz
cos z cos z sin z
sin z z z

+ =

= −

=

= −
=

 (2.62) 

The proofs are similar to the proofs for the hyperbolic functions. 

Here is an example proof, made by direct substitution: 

 
2 2 2 2 2

2 2

cosh ( ) sinh ( ) cos ( ) sin ( )

cos ( ) sin ( ) 1.

iz iz z i z

z z

⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦
⎡ ⎤= + =⎣ ⎦

 (2.63) 

It is reassuring to know that all the familiar trigonometric iden-

tities, that we commonly use in real analysis, carry over essen-

tially unchanged into the complex plane. 

2.16  Inverse trigonometric and hyperbolic functions 

The inverse trigonometric and hyperbolic functions can be ex-

pressed in terms of the natural logarithm. However, it takes 

some practice to get good at this. 
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Example:  Find ( )arcsinh z
: 

 

( )

( )

( )

1

2

2

2 2

2

2

sinh( ) ,
2 2

arcsinh ,

,
2 1,

2 1 0,

1,

1,

ln 1 .

z z

z

z

e e u uw z

z w

u e
wu u

u wu

u w w

u e w w

z w w

− −− += = =

=

=
= −

− − =

− = +

= = ± +

= ± +

 (2.64) 

Solving for z  

 ( )1 2sinh ( ) ln 1z w w w−= = ± +  (2.65) 

but which of the signs is correct? That depends on the problem 

to be solve. For example, one can find, in a book of math inte-

grals, the following formula: 

 1

2
0

sinh ( )
1

x dx x
x

−⎛ ⎞
=⎜ ⎟

−⎝ ⎠
∫ >0 for x>0, (2.66) 

implying that the positive branch is the correct one for the case 

x>0. 
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2.17  The Cauchy Riemann conditions 

If a function ( , ) ( , ) ( , )f x y u x y iv x y= +  is analytic in a region, the 

real and imaginary parts of the function satisfy the following 

constraints, called the Cauchy Riemann conditions: 

 ;u v u v
x y y x

∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂

 (2.67) 

By saying that ( , )f x y  is analytic in a region we mean that the 

derivative exists and is unique at each and every point in the re-

gion. The existence of the derivative implies, by the chain rule, 

the existence of the partial derivatives with respect to x and y. 

Let us consider ( ) /df z dz  calculated two different ways, first by 

holding y  constant, then by holding x  constant. In the first case 

we get 

 
( , ) .

y const

df x y f u vi
dz x x x=

∂ ∂ ∂= = +
∂ ∂ ∂

 (2.68) 

Secondly, holding x constant gives 

 
( , ) 1 .

x const

df x y f u v v ui i
dz i y i y y y y=

⎛ ⎞∂ ∂ ∂ ∂ ∂= = + = −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (2.69) 

But the two expression are the same; therefore comparing the 

real and imaginary parts, we get the Cauchy-Riemann condi-

tions. The Cauchy-Riemann conditions are both necessary and 

sufficient conditions for a function to be analytic in a region. 

Basically, the proof follows from rotational invariance: these 
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conditions have to be met on every straight line path chosen to 

approach the limit. Any other well behaved path can be approx-

imated by a straight line over a small enough interval. 

Example:  Using the Cauchy Riemann conditions it is easy to 

show that z x iy∗ = −  is not an analytic function of z , applying 

them we get 

 
x y
x y

∂ ∂≠ −
∂ ∂

 (2.70) 

So z∗  is not an analytic function of z . 

2.18  Solution to Laplace equation in two dimensions 

The Laplace equation in 2dimensions can be written as 

 
2 2

2 2 ( , ) 0.x y
x y

⎛ ⎞∂ ∂+ Φ =⎜ ⎟∂ ∂⎝ ⎠
 (2.71) 

It is easy to show that, for real Φ  the general solution take’s the 

form 

 ( , ) ( ) ( ).x y f x iy g x iyΦ = + + −  (2.72) 

Where 

 ( )( ) ( )g z f z ∗∗ =  (2.73) 

Proof: By direct substitution, show that ( )f z  is a solution: 
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2 2 2

2 2 2

2 2 2
2

2 2 2

2 2 2 2

2 2 2 2

( ) ( )

, ,

, ,

0.

f x iy f z
f df z df f d f z d f
x dz x dz x d z x d z
f df z df f d f z d fi i i
y dz y dz y d z y d z

f f d f d f
x y d z d z

+ =

∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂

∂ ∂∴ + = − =
∂ ∂

 (2.74) 

The proof for ( )g z∗ , is similar, but, more directly, since the op-

erator is real, if ( )f z  is a solution, then ( )( ) ( )f z g z∗ ∗′=  must al-

so be a solution. If ( , )x yΦ  represents a real potential, then the 

solution takes the self-conjugate form 

 ( )( , ) ( ) ( ) .x y f z f z ∗Φ = +  (2.75) 

 





 

3.  Gamma and Beta Functions 

A function that calls itself 

is like a dog chasing its tail. 

Where will this nonsense end? 

3.1  The Gamma function 

The coefficients of infinite power series are often given in terms 

of recursive relations. For example the series solution 

x n
ne a x=∑  to the differential equation for the exponential func-

tion /x xde dx e=  leads to the following recursive formula: 

 1
1 ,n na a
n −= ⋅  (3.1) 

with a solution 

 0
1 .
!na a

n
=  (3.2) 

Normalizing to 0 1a =  gives 

 
0

,
!

n
x

n

xe
n

∞

=

=∑  (3.3) 

where 
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1

! .
n

m

n m
=

=∏  (3.4) 

The factorial function occurs in the definition of Taylor’s Expan-

sion as well as in the definition of trigonometric and hyperbolic 

functions. This particular combinatory formula is so useful that 

it becomes desirable to extend its definition to non-integer val-

ues of n . The key property of the factorial is its : 

 ( )! 1 !.n n n= ⋅ −  (3.5) 

It is this property that we wish to maintain as we extend it into 

the domain of real numbers. 

 Extension of the Factorial function 

The Gamma function represents the extension of the factorial 

function. Its definition must satisfy two key requirements: 

 
( 1) !         for integer 0,
( 1) ( )   for all real . 
p p p
p p p p

Γ + = >
Γ + = Γ

 (3.6) 

It is sufficient to define ( )pΓ  in the interval [ ]1,2p =  as recur-

sion can be used to generate all other values. However, there ex-

ists a definite integral that has all the required properties and 

which is valid for all positive p . This integral is what is used to 

define ( )pΓ for 0p > . This integral is given by 

 1

0

( ) p tp t e dt
∞

− −Γ = ∫  (3.7) 
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It is easy to demonstrate by integration by parts that 

 1

0 0
0 0

(2) 0 1t t t tt e dt te e dt e
∞ ∞

∞ ∞− − − −Γ = = + = − =∫ ∫ =1! (3.8) 

And, also by integration by parts, 

 1

0
0 0

( 1) ( ).p t p t p tp t e dt t e p t e dt p p
∞ ∞

∞− − − −Γ + = = + = Γ∫ ∫  (3.9) 

Therefore, by recursion, (3) 2 (2) 2!Γ = Γ = , etc. The integral (3.7) 

meets all the necessary requirements to be the extension of the 

factorial function (3.4). By explicit integration, we find 

 
0

(1) 1 0!te dt
∞

−Γ = = =∫  (3.10) 

which defines 0!, and 

 1

0

(0) 1! .tt e dt
∞

− −Γ = − = = ∞∫  (3.11) 

In fact, , since by using ( ) ( 1) /p p pΓ = Γ +  

 

1( 1) ( 1 1) (0) ,
1
1 1 1( 2) ( 1) (0) ,  et etc.
2 ( 2) ( 1)

Γ − = Γ − + = −Γ = −∞
−

⋅Γ − = ⋅Γ − = ⋅Γ = ∞
− − ⋅ −

 (3.12) 
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 Gamma Functions for negative values of p  

Evaluation of the Gamma function for negative p is given by re-

peated applications of the relationship 

 ( )1( ) 1 ,p p
p

Γ = Γ +  (3.13) 

until ( )p nΓ +  returns a positive number. 

A plot of the Gamma function and its inverse is shown in Figure 

3-1 

4 0 4
20

0

20

Γ x( )

x  

4 0 4
5

0

5

1

Γ x( )

x  

Figure 3-1 Plot of the Gamma function and its inverse 
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The gamma function has a shallow minimum between 1 2p< <  

(see Figure 3-2 ). It blows up exponentially for large p and is di-

vergent at p=0. For negative p, the function diverges for all neg-

ative integers. The inverse of ( )pΓ , on the other hand, is quite 

well behaved. For positive p, it has a single maximum between 

1 2p< < . For negative p, it oscillates, with zeros at every non-

positive integer value. It is the inverse 1/ !n  that most often oc-

curs in many series expansions, 

 

Figure 3-2 The Gamma function represents a recursive mapping of 
its value in the interval [1,2] of the real number line. 

An important identity of the Gamma function is 

 ( ) (1 ) .
sin

p p
p

π
π

Γ Γ − =  (3.14) 

This identity is useful in relating negative values of p  to their 

positive counterparts. Note also that sin 0pπ =  for integer p . 
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Example:  Show that (1/ 2) .πΓ =  

Use (3.14), letting 1/ 2p = , 

 
( ) ( ) ( ) ( )
( )

21 1 1
2 2 2

1
2

1 ,
sin / 2

.

π π
π

π

Γ Γ − = Γ = =

∴Γ =
 (3.15) 

Example:  Find ( 3 / 2).Γ −  

Use the recursive property of the gamma function: 

 

( ) ( )

( ) ( ) ( )3 1 1
2 2 23 3 1

2 2 2

1 / ,

1 1 1 4 .
3

p p p

π

Γ = Γ +

⎛ ⎞⎛ ⎞
Γ − = Γ − = Γ =⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠

 (3.16) 

 Evaluation of definite integrals 

An important use of Gamma functions is in the evaluation of de-

finite integrals. In fact, its definition for positive p  can be 

thought of as defining the normalization of a family of integrals. 

By making a change of coordinates, the normalization of many 

other useful integrals can be found. 

Example:  Transformation of coordinates 2.t x=  

 ( ) 2

2

2 11

0 0

; 2 ;

( ) 2 .pp t x

t x x t dt xdx

p t e dt x e xdx
∞ ∞

−− − −

= ⇒ = =

Γ = =∫ ∫
 (3.17) 
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Therefore, 

 
22 1

0

( ) 2 .p xp x e dx
∞

− −Γ = ∫  (3.18) 

Example:  Find the normalization of a the Normal Gaussian Dis-

tribution 

The Normal Distribution of a statistical measurement of a quan-

tity X , centered at a mean 0X  and having a random rms error 

spread σ , is given by 

 
2 / 2( ) ,xy x Ne−=  (3.19) 

where ( )0 /x X X σ= − . This distribution is normalized such that 

 
2 / 2( ) 1.xy x dx N e dx

∞ ∞
−

−∞ −∞

= =∫ ∫  (3.20) 

Since the integrand is symmetric we can rewrite this as 

 
2 / 2

0

1 .
2

xe dx
N

∞
− =∫  (3.21) 

Let’s make the change of variable 

 

2

1/ 2

/ 2 2 ,
1 ,
2

x x x x

dx xdx dx x dx−

′ ′= ⇒ =

′ ′ ′= ⇒ =
 (3.22) 

Then, by substitution, 
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 ( )2 / 2 1/ 2 1
2

0 0

1 1 1 ,
22 2

x xe dx x e dx
N

∞ ∞
′− − −′ ′= = Γ =∫ ∫  (3.23) 

which leads to the following formula 

 ( )1
2

2 1 1 .
2 2

N
π

= =
Γ

 (3.24) 

Therefore, the “normalized”  is given by 

 
2 2/ 2 / 21 1( ) ; 1.

2 2
x xy x e e dx

π π

∞
− −

−∞

= =∫  (3.25) 

3.2  The Beta Function 

Another statistical combination that often reoccurs is 

represented by the binomial coefficients, given by 

 
( )

! .
! !

n n
m n m m
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
 (3.26) 

In probability theory, they denote the number of ways one can 

arrange n objects taken m at a time. These coefficients have al-

ready been seen in the Binomial formula for integer powers of n, 

 ( )
0

.
n

n n m m

m

n
A B A B

m
−

=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
∑  (3.27) 

Again, one would like to extend this formula to the real number 

domain. This is done by defining the Β (Greek capital beta) 

function given by 
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( ) ( )( , ) .
( )
p q

p q
p q

Γ Γ
Β =

Γ +
 (3.28) 

Clearly, the Beta function is symmetric under interchange of in-

dices 

 ( , ) ( , ),p q q pΒ = Β  (3.29) 

and, for integer values of p n=  and q m= , 

 
!( )! 1 !( )!( 1, 1)

( 1)! 1 ( )!
n m n mn m

n m n m n m
Β + + = =

+ + + + +
 (3.30) 

 ( )
1 .

1 ( 1, 1)
n m

m n m n m
+⎛ ⎞

=⎜ ⎟ + + Β + +⎝ ⎠
 (3.31) 

The Beta function is useful in the determining normalization of 

many common integrals. Among them are the canonical forms 

 

( ) ( ) ( )

( ) ( )

( )
( )

2 1/ 2 2 1

0

11 1

0
1

0

for 0, 0 :

, 2 sin cos ,

, 1 ,

, .
1

p q

p q

p

p q

p q

p q d

p q x x dx

yp q dx
y

π
θ θ θ

− −

− −

−∞

+

> >

Β =

Β = −

Β =
+

∫

∫

∫

 (3.32) 

These three integral forms are related to one another by the 

transformations 

 ( )2sin / 1 .x y yθ= = +  (3.33) 

A number of other definite integrals that can be put into one of 

these forms. 
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The following proof that the above functions are indeed equiva-

lent to the defining equation for the Beta function makes use of 

the fact that the integration over the surface of a quadrant 

0 ,0x y< < ∞ < < ∞  is integration over a quarter-circle. When we 

change to polar coordinates the range of angles is 0 / 2θ π< < , 

giving 

 
2 22 1 2 1

0 0

( ) ( ) 4 .p x q yp q x e dx y e dy
∞ ∞

− − − −Γ Γ = ∫ ∫  (3.34) 

 

( )

( ) ( ) 2
/ 2

2 1 2 1 2( ) 1

0 0

cos , sin , :

4 cos sin ,p q p q r

Letting x r y r dxdy rdrd

d r e dr
π

θ θ θ

θ θ θ
∞

− − + − −

= = =

= ∫ ∫
 (3.35) 

and therefore, 

( ) ( ) ( ) ( )2 1 2 1

0

2 ( ) cos sin ( ) ( , ).p qp q p q d p q B p q
π

θ θ θ− −Γ Γ = Γ + = Γ +∫ (3.36) 

3.3  The Error Function 

The Error function (Figure 3-3) can be considered as an incom-

plete integral over a gamma function or “”.  are defined as the 

partial integrals of the form 

 1

0

( , ) .
t

p tt p t e dtγ − −= ∫  (3.37) 

Often, it is desirable to use the normalized incomplete gamma 

functions instead 
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1

0( , ) .
( )

t
p tt e dt

t p
p

γ

− −

=
Γ

∫�
 (3.38) 

For example, the normalization of the Gaussian integral is given 

by 

 
2

0

(1/ 2) 2 .xe dx
∞

−Γ = ∫  (3.39) 

and the error function is defined as the normalized incomplete 

integral 

 

2

20

0

2
2( ) .

(1/ 2)

x
x

x
x

e dx
Erf x e dx

π

−

−= =
Γ

∫
∫  (3.40) 

This integral can be expanded in a power series, giving 

 
( ) 2 1

0

12( ) ,
!(2 1)

n
n

n
Erf x x

n nπ

∞
+

=

−
=

+∑  (3.41) 

which is useful for small x. 

The  is defined as 

 ( ) 1 ( ).erfc x erf x= −  (3.42) 

The Error function is closely related to the likelihood of error in 

a measurement of normally distributed data. However, like 

many standard mathematical functions, the normalization is 

slightly different from how physicists would like to see it de-
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fined. Its relation to the Gaussian probability distribution is giv-

en by 

 ( ) 2 / 21, .
2 2

x
x

x

xP x x e dx erf
π

′−

−

⎛ ⎞′− = = ⎜ ⎟
⎝ ⎠∫  (3.43) 

This returns the probability that a measurement of normally dis-

tributed data falls in the interval [ , ]x x− . Books of mathematical 

tables will tabulate at least one of these two functions, if not 

both. 

0 2 4

0

1

erf x( )

erfc x( )

x  

Figure 3-3 The Error function and the complementary Error func-
tion 

3.4  Asymptotic Series 

Figure 3-3 shows that the error function converges to its sum 

rapidly. Indeed the challenge is to measure error probabilities 

that are small but non-zero at large x. For example, there is a 

major difference between saying “a proton never decays” and 
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that of saying “a proton rarely decays”. Since the universe is still 

around, the probability must be very, very small; but if we want 

to quantify this probability, then we must be able to calculate 

small deviations from zero. 

Taylor’s expansion in terms of a convergent power series works 

well for small x. But, at large x, it is convenient to expand the 

function in inverse powers of x. However, in this case it turns 

out that that expansion doesn’t converge. For problems like 

these, the concept of an asymptotic series was created. 

Let’s look at how we might calculate the complementary func-

tion from first principles. Define 

 
22( ) 1 ( ) .t

x

erfc x erf x e dt
π

∞
−= − = ∫  (3.44) 

We can try to solve this by integrating by parts by making the 

substitutions 

 ( )
2

2 2 2 221 1, ,
2 2

t
t t t ttee e dt e dt d e

t t t

−
− − − −−= = =  (3.45) 

in 

 

2 2 2

2 2

2

2

2 2 1 1
2 2

2 1 1 ,
2 2

t t t

xx x

x t

x

e dt e e dt
t t

e e dt
x t

π π

π

∞∞ ∞
− − −

∞
− −

⎛ ⎞−= +⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

∫ ∫

∫
 (3.46) 

where 
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2 2

2 2

1 1 .
2 2

t t

x x

e dt e dt
t x

∞ ∞
− −<∫ ∫  (3.47) 

Therefore, after the first integration by parts, the fractional error 

in the remainder is less than 2

1
2x

. This is a small error if x is 

large enough. We can repeat the process if we are not satisfied, 

getting the asymptotic series 

 
( ) ( )

2

2 32 2 2

1 1 3 1 3 5( ) 1 .
2 2 2

xeerfc x
xx x xπ

− ⎛ ⎞⋅ ⋅ ⋅⎜ ⎟− + − +
⎜ ⎟
⎝ ⎠

∼ "  (3.48) 

For a number of iterations, integration by parts improves the er-

ror, but, after a while, the error begins to grow again (there is a 

double factorial hiding in the numerator). Therefore, there are 

an optimum number of integration by parts to make. The series, 

with the partial sum NS taken to infinity, does not converge. 

Nevertheless the error in the finite series (for fixed N ) goes to 

zero as x →∞ . This is the difference between the definition of a 

convergent series and an asymptotic series. A convergent series 

is convergent for a given x, i.e., holding x constant, one takes the 

limit N →∞ ; The asymptotic series holds N constant and takes 

the limit x →∞ . 

Definition: A series f(x) is said to be an asymptotic series 

in
nx−
, written as 

 
0

( ) ,n
n

n

af x
x

∞

=
∑∼  (3.49) 
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if the absolute value of the difference of the function and the 

partial sum goes to zero faster than Nx− for fixed N  as x →∞  

 
0

lim ( ) 0.
N

Nn
nx n

af x x
x→∞ =

− ⋅ →∑  (3.50) 

It is possible for as series to be both convergent and asymptot-

ic—e.g., all power convergent series in x can be said to be 

asymptotic as ( )0x → —but the non-convergent case is the most 

interesting one. 

Asymptotic series often occur in the solution of integrals of the 

following kind: 

 1( ) ( )u

x

I x e f u du
∞

−= ∫  (3.51) 

Or of the type 

 2 ( ) ,u

x

uI x e f du
x

∞
− ⎛ ⎞= ⎜ ⎟

⎝ ⎠∫  (3.52) 

where ( )/f u x  is expanded in a power series in /u x . 

 Sterling’s formula 

 is a good example of a non-convergent asymptotic series. It is 

given by 

 2 3

1 1 139( 1) 2 1 .
12 288 51840

x xp x x e
x x x

π − ⎧ ⎫Γ + ⋅ ⋅ + + − +⎨ ⎬
⎩ ⎭

∼ "  (3.53) 
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If p  is as small as 10, stopping after the second term gives an 

error on the order of 50 ppm. For very large p , 

 ! 2 p pp p p eπ −⋅∼  (3.54) 

is a good approximation to the factorial function, where the ∼  

indicates that the ratio of the two sides approaches 1 as p →∞ . 

Discussion Problem:  The Exponential Integral 

The integral 

 ( )
t

x

eEi x dt
t

−∞
= ∫  (3.55) 

is called the Exponential Integral. Note that it diverges as 0x → . 

• Find the asymptotic expansion for the exponential integral. 

• Express 
0
1/ ln(1/ )

x
t dt∫  as an exponential integral. 

 



 

4.  Elliptic Integrals 

When Kepler replaced the epicycles  

of the ancients with ellipses, 

he was onto something special. 

Books of integral tables tabulate and catalog integrals in terms 

of families with a certain generic behavior. For example, a large 

number of integrals can be categorized as a rational function of 

x  times a radical of the form 2ax bx c+ +  The solution of inte-

grals of this general form almost always can be expressed in 

terms of elementary trigonometric functions or hyperbolic func-

tions. For example, substituting sinx θ= , 

 

( )
2 2

21
2

sin 21 cos
2 4

arcsin( ) 1 .

x dx d C

x x x C

θ θθ θ− = = + +

= + − +

∫ ∫
 (4.1) 

Or a similar example: 

 
2

1 arcsin .
1

dx x
x

θ= =
−∫  (4.2) 

Elliptic functions were introduced to allow the solutions to the 

large class of problems of the form 

 ( ),R x y dx∫  (4.3) 
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where ( ),R x y is any rational function of x  and y , and 

 4 3 2( ) .y x ax bx cx dx e= + + + +  (4.4) 

The more complete math tables will have many pages of exam-

ples of integrals of this type, solved in terms of one of three 

standard forms of elliptic integrals, called the elliptic integrals of 

the 1st, 2nd, and 3rd kinds. We will look at some detail at the first 

2 kinds of elliptic integral. The elliptic integral of the 3rd kind is 

less frequently seen in elementary physics texts. These integrals 

are usually expressed in one of two standard forms, called the  

form and the  forms of the integrals. The Elliptic integral of the 

2nd kind is related to the arc length of an ellipse, which lent its 

name to this class of integrals. Therefore we will examine the in-

tegrals of the second kind first. 

4.1  Elliptic integral of the second kind 

The Jacobi form for the incomplete elliptic integral of the 2nd 

kind is given by 

 
2 2

2
0

1( , )   for 0 1.
1

x k xE k x dx k
x

−= ≤ ≤
−∫  (4.5) 

Note that ( )( )2 2 21 1k x x− −  has 4 real roots at 1, 1/ .x k= ± ±  

Letting sin ,x φ=  the Legendre form of the integral is given by 
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 2 2

0

( , ) 1 sin   for 0 1.E k k d k
φ

φ φ φ= − ≤ ≤∫  (4.6) 

A plot of the Legendre form, shown in Figure 4-1, is illustrative 

of the general behavior. The integrand is periodic on interval 

[ ]0,π , so the functions are sometimes said to be “doubly-

periodic” in φ . The integral is a repeating sum of the form  

 ( , ) 2 ( ) ( , )E k n nE k E kφ π φ+ = +  (4.7) 

where ( )E k is the  given by 

 
1 / 22 2

2 2

2
0 0

1( ) ( , / 2) 1 sin   .
1

k xE k E k dx k d
x

π

π φ φ−= = = −
−∫ ∫  (4.8) 

By symmetry about / 2π , it is only necessary to tabulate the 

integral from [ ]0, / 2π . 

 ( )
( , / 2) 2 ( ) ( , ),

0 / 2 .
E k E k E kφ π φ

φ π
+ = −

≤ ≤
 (4.9) 

 The integral over an even integrand is an odd function so 

 ( ) ( ), , .E k E kφ φ= −  (4.10) 

Combining the above results gives 

 ( ) ( ) ( ), 2 ,  for 0 / 2.E k n nE k E kπ φ φ φ π± = ± ≤ ≤  (4.11) 
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0 90 180 270 360
0

Elliptic Integral of the Second Kind
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1 k2 sin φ( )2⋅−

E k φ,( )

4

φ

deg
 

Figure 4-1 Elliptic Integral of the second kind (k=sin(60 deg)) 

Example:  Calculate the arc length of a segment of an ellipse. 

An ellipse has a semi-major axis of length a  and a semi-minor 

axis of length b  (see Figure 4-2). Aligning the ellipse with the 

semi-minor axis along the x-axis, it can be described by the fol-

lowing two parametric equations: 

 
cos ,
sin .

x b
y a

φ
φ

=
=

 (4.12) 

1 0 1
1

0

1
ellispse

1

1−

a sin θ( )⋅

11− b cos θ( )⋅  

Figure 4-2 diagram of an ellipse with 1, 0.5a b= =  
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An element of arc-length can be written as 

 

2 2 2 2 2 2

2 2
2

2

sin cos

1 sin 1 sin ,

ds d x d y b a d

a ba d a k d
a

φ φ φ

φ φ φ φ

= + = +

−= − = −
 (4.13) 

where ( )21 /k b a e= − =  is the eccentricity of the ellipse; 0k =  

is a circle; and 1k =   is a vertical line. 

Integrating along φ  gives 

 ( )2 2

0

1 sin , .a k d aE e
θ

φ φ φ− =∫  (4.14) 

The circumference of the ellipse is found by integrating over a 

complete revolution 

 ( ) ( ), 2 4 .C aE k aE kπ= =  (4.15) 

Verify: 

 
0, circle, 4 (0) 2 ,
1, straight line, 4 (1) 4 .

k C aE a
k C aE a

π= = =
= = =

 (4.16) 

Since the orbits of planets are ellipses, ( ),E k φ  is a very valuable 

function. 

There are several ways common ways of calculating ( ),E k φ : 

• Look up the tabulated value in a book of integral tables (the 

common way, before the invention of personal computers). 

• Use a high level math program like Maple or Mathematica. 
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• Use a scientific programming library, and your favorite pro-

gramming language. 

• Expand the integral in a power series in 2sin θ  (converges ra-

pidly for small k ). 

4.2  Elliptic Integral of the first kind 

The elliptic integral of the first kind occurs in the solution of 

many classical mechanics problems, including the famous one of 

the simple pendulum. Whole books have be written about it. The 

Jacobi form of the integral is given by 

 
( )( )2 2 2

0

1( , )   for 0 1.
1 1

x

F k x dx k
x k x

= ≤ ≤
− −

∫  (4.17) 

And, letting sinx φ= , the Legendre form is given by 

 ( ) 2 2

0

, 1 sin   for 0 1.F k k d k
θ

φ φ φ= − ≤ ≤∫  (4.18) 

The  is given by 

 
/ 2

2 2
0

1( ) ( , / 2)  .
1 sin

K k F k d
k

π

π φ
φ

= =
−∫  (4.19) 

Figure 4-3 shows a plot of the elliptic integral of the 1st kind, for 

sin 60 .k = D  The same kind of symmetry arguments used in dis-

cussing the Integrals of the 2nd kind apply here, F  is doubly pe-
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riodic in φ , and, by symmetry, only the values between [0, / 2]π  

need to be tabulated. In general 

 ( ) ( ) ( ), 2 ,  for 0 / 2.F k n nK k F kπ φ φ φ π± = ± ≤ ≤  (4.20) 

Table 4-1 tabulates the values of the complete elliptic integrals 

of the first and second kind. When 0k = , one has a circle and the 

value of the integral is / 2π . For 1,k =  the complete elliptic 

integral of the 1st kind diverges. 

0 90 180 270 360
0

Ellipitic Integra of the First Kind

phi (deg)

1

1 k2 sin φ( )2⋅−

F k φ,( )

4

φ

deg
 

Figure 4-3 Elliptic Integral of the first kind (k=sin(60 deg)) 

Integrands of Elliptic Integrals are periodic on interval 180 deg 

and are symmetric about half that interval; therefore, they are 

generally only tabulated in the interval [0, 90] deg. 

Table 4-1 Complete Elliptic Integrals of the first and second kind  

Complete Elliptic Integrals of the 1st and 2nd kind 
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ψ  (sin( ))E ψ  (sin( ))K ψ  

0 1.571 1.571 

5 1.568 1.574 

10 1.559 1.583 

15 1.544 1.598 

20 1.524 1.62 

25 1.498 1.649 

30 1.467 1.686 

35 1.432 1.731 

40 1.393 1.787 

45 1.351 1.854 

50 1.306 1.936 

55 1.259 2.035 

60 1.211 2.157 

65 1.164 2.309 

70 1.118 2.505 
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75 1.076 2.768 

80 1.04 3.153 

85 1.013 3.832 

90 1 ∞ 

 

Example:  By substituting ( ) ( )maxsin / 2 sin sin / 2 sinkθ φ θ φ= = , 

and using ( )2cos 1 2sin / 2θ θ= − , show that ( ),F k φ  can be writ-

ten as 

 ( )
0 max

1,
2 cos cos

dF k
θ θφ

θ θ
=

−∫ . (4.21) 

Proof: Work the problem backwards from the result: Begin 

by calculating the change in derivatives: 

 
( ) ( )

( )

1sin / 2 cos / 2 sin cos ,
2

2 cos .
cos / 2

d d kd k d

kd d

θ θ θ φ φ φ

φθ φ
θ

= = =

=
 (4.22) 

Next, make the necessary substitutions into the integral: 
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( )( ) ( )( )

( ) ( ) ( )

( )

( )

2 2
0 max

2 2 2 2
0 0max

2 2 2
0 0 0

2 2 2
0 0 0

1 ,
2 1 2sin / 2 1 2sin / 2

1 1 ,
2 2sin / 2 sin / 2 sin / 2

1 1 1 2 cos ,
2 2 cos 2 cos cos / 2sin

.
cos / 2 1 sin / 2 1 sin

dF

d d
k

d d d k
k kk k

d d d
k

θ

θ θ

φθ θ

φ θ θ

θ
θ θ

θ θ
θ θ θ

θ θ φ φ
φ φ θφ

φ φ φ
θ θ ϕ

=
− − −

= =
− −

= = =
−

= = =
− −

∫

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 (4.23) 

4.3  Jacobi Elliptic functions 

A rich literature has grown around the topic of the elliptic 

integral of the 1st kind, with a specialized language and names 

for functions. To see where this language comes from consider 

the simpler circular integral which can be obtained by letting 

0k = in the Jacobi form: 

 
( )

( )
2

0

10, arcsin ,
1

sin .

x

u F x dx x
x

sn u x

φ

φ

= = = =
−

= =

∫  (4.24) 

Now let’s generalize this terminology for 0k ≠ , in which case 

u φ≠ . We call φ  the amplitude of u  

 ( )amp u φ= . (4.25) 

and denote the inverse function 1F −  by the special name  so that 
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( )

( ) ( )( )

1

2 2 2
0

2 2
0

1,
1 1

1 ,
1 sin

sin sin .

x

u sn x F k dx
x k x

d
k

sn u x amp u

φ

φ

φ
φ

φ

−= = =
− −

=
−

= = =

∫

∫  (4.26) 

sn  is pronounced roughly as “ess-en”. (Try saying three times 

fast: “ess-en u is the sine of the amplitude of u”). A plot of ( )sn u  

vs. u  looks very similar to a sine wave as seen in Figure 4-4. 

0 5 10
1

0

1

sn u k,( )

u  

Figure 4-4 A plot of ( ) sinsn u x φ= =  

Just as a number of trigonometric identities have been devel-

oped over the years, the same is true for the elliptic functions. 

Several of the more basic relationships are given by: 

 2 2 2( ) cos 1 sin 1 sn ( ) 1 ,cn u u xφ φ= = − = − = −  (4.27) 

 
1

2 2 2 2( ) 1 sin 1 snd dudn u k k u
du d
φ φ

φ

−
⎛ ⎞= = = − = −⎜ ⎟
⎝ ⎠

, (4.28) 

 ( ) sin cos ( ) ( )d d dsn u cn u dn u
du du du

φφ φ= = = . (4.29) 
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Example:  The simple pendulum 

 

Figure 4-5 Simple Pendulum 

The simple pendulum (Figure 4-5) satisfies the conservation of 

energy equation 

 ( )
2

maxcos cos 0,
2

I mglθ θ θ+ − =
�

 (4.30) 

where 2.I ml=  Solving, 

 
1

0 0max

1 / ,
2 cos cos

d g ldt
θ θ

θ θ
=

−∫ ∫  (4.31) 
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( )

( )
( )( )

0
0 max

max

0
max

0

0

1 ( , ) ,
2 cos cos

sin / 2 sin ,
sin / 2,

sin / 2 ( ) , ,
sin / 2

sin / 2 , ,

2arcsin , .

dt F k u

k
k

x sn u sn t k

k sn t k

k sn t k

θ θω ϕ
θ θ
θ ϕ

θ
θ ω

θ
θ ω

θ ω

= = =
−

=
=

= = =

=

=

∫

i

i

 (4.32) 

The  depends on its amplitude and is given by 

 ( )( ) ( )( )0 max maxsin / 2 ,2 4 sin / 2 .T F k Kω θ π θ= = =  (4.33) 

Let’s put in some numbers, choosing 

 2
0

max

max

1 kg,
1 m,

/ 9.8 / s 3.13 rad/s,

60 ,

sin / 2 sin 30 1/ 2.

m
L

g l

k

ω
θ

θ

=
=

= = =

=

= = =

D

D

 (4.34) 

Then, the period of the pendulum is 

 

( )

( )

( )

0

0

1/ 2,2 ,
1 4 1/ 2 ,

1 4 1.686 2.15 s,
3.13

T F k

T K

T

ω π

ω

= =

=

= =

 (4.35) 

Compare this to the small amplitude limit 

 0
0

2 2.01 s.
smallOsc

T π
ω

= =  (4.36) 
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Note the 7% difference from the small oscillation behavior. Nev-

er use a simple pendulum to tell time! The analytic solution to 

the simple pendulum for the conditions studied is shown in Fig-

ure 4-6. 

 

0 1 2 3
90

45

0

45

90
simple pendulum K=1/2 AND K=1/4

time (s)

an
gl

e 
(d

eg
)

 

Figure 4-6 Plot of angle vs. time for the simple pendulum. Note 
that the zero crossing time of the period depends on the ampli-

tude. 

4.4  Elliptic integral of the third kind 

For completeness, here is the definition of the Elliptic Integral of 

the 3rd kind: The Legendre form of the Incomplete Integral is 

 
( )2 2 2

0

( , , ) .
1 sin 1 sin

dk n
n k

φ φφ
φ φ

Π =
+ −∫  (4.37) 

And, the Complete Integral is given by 

 
( )

/ 2

2 2 2
0

( , , / 2) .
1 sin 1 sin

dk n
n k

π φπ
φ φ

Π =
+ −∫  (4.38) 
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5.  Fourier Series 

Time is measured in cycles. 

The earth rotates around the sun. 

Atoms oscillate. Patterns repeat. 

5.1  Plucking a string 

What happens when one plucks a string on a stringed instru-

ment? The fundamental harmonic is given by the length of the 

string, its mass density and its tension. Depending on where we 

pluck the string, one can choose to emphasize different harmon-

ics. After this point, it starts to get complicated, as the shape and 

nature of the sound board will further modify the sound. This 

problem will be analyzed in some detail when we study the wave 

equation. But in general, if one does a Fourier decomposition of 

the wave form, only multiples of the fundamental frequency will 

contribute. In the case of a plucked string, the boundary condi-

tions are due to the clamping of the string, which removes all 

other frequencies. Is this effect real, or is it a mathematical con-

nivance? It is definitely real, one can hear it. The human ear is a 

pretty good frequency analyzer. In this section we will explore 

how to decompose a periodic function into its Fourier series 

components. These components are a solution to an eigenvalue 
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problem. The eigenfunctions represent the possible normal 

modes of oscillation of a periodic function. In the case of the 

plucked string, the motion is periodic in time. In other cases, we 

might be dealing with a cyclic variable, say the rotation angle of 

a planet as it makes its path around its sun. We begin with the 

simplest of models: a one dimensional rotation angle. If one de-

fines a field on a circle, consistency requires that a rotation by 

2π must give the same field. 

5.2  The solution to a simple eigenvalue equation 

In solutions to partial differential equations in cylindrical or 

spherical coordinates, the technique of separation of variables 

often leads to the following very simple equation for the azimul-

thal coordinate φ  

 
( ) ( )

2
2

2

d f
m f

d
φ

φ
φ

= −  (5.1) 

where ( )f φ satisfies periodic boundary conditions 

 ( ) ( )2f fφ π φ+ =  (5.2) 

The solutions of this equation are very well known —think “sim-

ple harmonic oscillator”— The exponential form of the solution 

is 

 ( ) , 0, 1, 2,im
m mf c e mφφ = = ± ± "  (5.3) 
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The requirement that ( )mf φ  be periodic on interval 2π  restricts 

the eigenvalues to positive and negative integers. The case 0m =  

is a special case in that 0m = ±  represents the same eigenvalue. 

Often it is convenient to solve the equation in terms of sine and 

cosine functions. Using cos sinime m i mφ φ φ± = ± , we find the real 

solutions to the eigenvalue equation to be 

 ( )
( ) ( )

0                  m=0
2

cos sin    m=1,2,3,         
m

m m

a
f

a m b m
φ

φ φ

⎧
⎪= ⎨
⎪ +⎩ …

 (5.4) 

Here, the counting runs only over non-negative integers, since 

sin( )mφ− and cos( )mφ− are not linearly independent from 

sin( )mφ and cos( )mφ  

 Orthogonality 

The eigenfunctions solutions of this equation are orthogonal to 

each other when integrated over interval 2π . First, let us prove 

this for the complex form of the series, normalizing the func-

tions by setting 1mc = : 

( ) ( )

( )

*

2

0
i m mim im i m m

m m
i m m

m m

f f d e e d e d e m m

π π π
πφφ φ φ

π π π φ
π

π

φ φ φ′−′− ′−
′

− − − ′−
−

′=⎧
⎪

= = = ⎨ ′= ≠⎪
⎩

∫ ∫ ∫ (5.5) 

The proof for sine and cosine series is slightly more complicated. 

If m m′≠ , the sine and cosine functions can be re-expanded into 
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terms involving ime φ± , and orthogonality follows from the above 

equation: 

 

( ) ( ) ( ) ( )

( ) ( )

sin sin sin cos

cos cos 0

m m d m m d

m m d m m

π π

π π
π

π

φ φ φ φ φ φ

φ φ φ

− −

−

′ ′=

′ ′= = ≠

∫ ∫

∫
 (5.6) 

For m m′= , one can use the fact that ( ) sin 2mφ  is odd on interval 

[ ],π π−  to show 

 ( ) ( ) ( )1 sin cos sin 2 0
2

m m d m d
π π

π π

φ φ φ φ φ
− −

= =∫ ∫  (5.7) 

Also, by symmetry, using the fact that sine and cosine functions 

are the same up to a phase shift, 

 
( ) ( )2 2

2 2

sin cos 1 2

2sin cos
2

m m d d

m d m d

π π

π π
π π

π π

φ φ φ φ π

πφ φ φ φ π

− −

− −

+ = =

= = =

∫ ∫

∫ ∫
 (5.8) 

Finally, normalize the 0m =  term to unity (1 cos(0)= ), giving 

 

( ) ( )1sin 1cos 0

1 2

m d m d

d

π π

π π
π

π

φ φ φ φ

φ π

− −

−

′ ′= =

=

∫ ∫

∫
 (5.9) 

In quantum mechanics (QM), it is conventional to normalize the 

square integrated eigenfunctions to unity. However, this is not 
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often the case in classical physics. The special functions of ma-

thematical physics have a variety of sometimes bewildering 

normalizations, all of which made sense to the people who first 

studied them. The definition of Fourier series long predated 

QM. The above normalization is standard in the literature. 

5.3  Definition of Fourier series 

A, ,  function ( )f x  which is periodic over interval [ ],π π− , and 

where the positive-definite integral ( ) 2
f x dx

π

π−
∫ is finite, can be 

expanded in a series of sine and cosine functions having the 

general form 

 ( ) ( ) ( )0

1 1

cos sin
2 n n

n n

af x a nx b nx
∞ ∞

= =

= + +∑ ∑  (5.10) 

The function has a finite number of maxima and minima 

The function has a finite number of step-wise discrete disconti-

nuities 

The coefficients of the series are given by 

 

( )

( )

1 ( )cos    for 0,1,2

1 ( )sin     for 0,1,2

n

n

a f x nx dx m

b f x nx dx m

π

π
π

π

π

π

−

−

= =

= =

∫

∫

…

…
 (5.11) 
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The infinite series converges to the function where it is conti-

nuous and to the midpoint of the discontinuity where it is step-

wise discontinuous. 

 Completeness of the series 

In what sense can the function, which may be discontinuous af-

ter all, be said to be equal to a series consisting of only conti-

nuous functions? Note the limitation of the discontinuities to a 

finite number of discrete points. These points have zero weight 

when the function is integrated. The series and the function can 

be said to be equivalent up to an interval of zero measure. That 

is, 

 
2lim ( ) ( ) 0NN

f x f x dx
π

π
→∞

−

− =∫  (5.12) 

where ( )Nf x is the partial sum of the infinite series. 

 Sine and cosine series 

If a piece-wise continuous, periodic function f(x) is an even 

function of x, it may be expanded in a Fourier Cosine series on 

interval [ , ]π π− +  

 ( ) ( )0

1

cos
2c n

n

af x a nx
∞

=

= +∑  (5.13) 
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If a piece-wise continuous, periodic function f(x) is an odd func-

tion of x, it may be expanded in a Fourier Sine series on interval 

[ , ]π π− +  

 ( ) ( )
1

sins n
n

f x b nx
∞

=

=∑  (5.14) 

 Complex form of Fourier series 

A real-valued function can also be represented as a complex in-

finite series. Let ( ) / 2m m mc a b± = ∓ , then 

 ( ) inx
n

n
f x c e

∞

=−∞

= ∑  (5.15) 

With coefficients given by 

 
1 ( )

2
inx

nc e f x dx
π

ππ
−

−

= ∫  (5.16) 

Note for 0m ≠  

 

2 2

2 2
cos sin

imx imx imx imxm m m m
m m

imx imx imx imx

m m

m m

a ib a ibc e c e e e

e e e ea b
i

a mx b mx

− −
−

− −

− +⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ −= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +

 (5.17) 
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5.4  Other intervals 

Often the interval is of arbitrary length 2L  rather than 2π  . 

Usually it is preferable to keep the interval symmetric over 

[ ],L L− . This involves making a change of variable 

 ( )
/ /

/
x x L
dx L dx

π
π

′ =
′=
 (5.18) 

Making these changes we find 

 

( ) 0

1 1
cos sin

2

1 ( )cos

1 ( )sin

n

n

n n
n n

L

L
L

L

a n x n xf x a b
L L

n xa f x dx
L L

n xb f x dx
L L

π π

π

π

∞ ∞

= =

−

−

′ ′⎛ ⎞ ⎛ ⎞′ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
′⎛ ⎞′ ′= ⎜ ⎟

⎝ ⎠

′⎛ ⎞′ ′= ⎜ ⎟
⎝ ⎠

∑ ∑

∫

∫

 (5.19) 

5.5  Examples 

 The Full wave Rectifier 

The full wave rectifier takes a sinusoidal wave at line frequency 

and rectifies it using a bridge diode circuit. Figure 5-1 shows a 

schematic of a full wave rectifier circuit. Positive and negative 

parts of the line cycle take different paths through this diode 

bridge circuit, but the current always flows through the resister 

in a unidirectional manner, rectifying the signal. The result is 
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usually filtered, by adding a capacitor to the output line, to give 

an approximation of a D.C. circuit, but for many purposes this 

first step is sufficient. 

 

I

R

 

Figure 5-1 Diagram of a full wave rectifier circuit 

The initial wave is a pure sine wave at the base line frequency. 

After rectification (Figure 5-2), this frequency disappears and 

one is left with a hierarchy of frequencies starting at double the 

base frequency. Let’s look at the base wave form as it appears on 

an oscilloscope, locked to the line frequency. It is given by the 

periodic function 

 sin sinline of w t θ π θ π= = − < ≤  (5.20) 

where ow tθ = . After rectification, but before filtering, the mod-

ified wave form is given by 
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 sinoutf θ=  (5.21) 

2 0 2
0

1

Full Wave Rectifier

theta

ab
s(

si
n(

th
et

a)
)

 

Figure 5-2 The output of a full wave rectifier, before filtering 

Note that the original wave form was an odd function of θ , 

while the rectified function is an even function of θ . The original 

frequency has completely disappeared, and one is left with har-

monics based on a new fundamental of double the frequency. 

Even symmetry under a sign change in θ  implies that we can 

expand the solution in terms of a Fourier Cosine Series: 

 
0

sin cosout n
n

f a nθ θ
∞

=

= =∑  (5.22) 

The amplitudes of the frequency components are given by 

 
1 cosn outa f n d

π

π

θ θ
π −

= ∫  (5.23) 

However, since the integrand is even, we need calculate only the 

positive half cycle 
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0 0

2 2cos sin cosn outa f n d n d
π π

θ θ θ θ θ
π π

= =∫ ∫  (5.24) 

This integral can easily be solved by converting to exponential 

notation 

 
1

0

2
2 2

i i in in

n
e e e ea d

i

θ θ θ θ

θ
π

− −⎛ ⎞⎛ ⎞− += ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∫  (5.25) 

However, it is even easier to look up the answer in a book of 

integral tables: 

 
( ) ( )

0 0

cos (1 ) cos (1 )
sin cos

2(1 ) 2(1 )
n n

n d
n n

ππ θ θ
θ θ θ

⎛ ⎞− +
= −⎜ ⎟− +⎝ ⎠

∫  (5.26) 

The integral vanishes for odd n, and the result can be written as 

 2

1 even4
1

0  odd 
n

n
a n

nπ

⎧− ⎪= −⎨
⎪⎩

 (5.27) 

The first term is positive and gives a DC offset 

 01 2 0.637
2 2out out

af f d
π

π

θ
π π−

= = = ≈∫  (5.28) 

 

 01( ) ( )
2 2

L

L

af x f x dx
L −

= =∫  (5.29) 

The evaluated series can be written as 
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( )

( )( )
0

0 2
1

4cos 22sin( )
2 1n

nw t
w t

nπ π

∞

=

= −
−

∑  (5.30) 

And the allowed frequencies are 

 02w nw=  (5.31) 

Successively amplitudes fall off as ( )( )21/ 2 1n − , which means 

that the energy stored in the frequency components falls off as 

( )( )221/ 2 1n − . 

Clearly, the series is convergent since by the integral test 

 2

4 / 1 0
4 1 ndn
n n

π
π→∞⎯⎯⎯→ →

−∫  (5.32) 

By adding a capacitor on the output side of the full wave rectifi-

er, one can short circuit the high frequency components to 

ground. If the capacitor is large enough, the output of the circuit 

is nearly D.C. 

 The Square wave 

The square wave (shown in Figure 5-4) and its variants (i.e., the 

step function, etc) are often found in digital circuits. The wave 

form is given by 

 
1 0

( )
1 0

f
θ π

θ
π θ

+ < <⎧
= ⎨− − < <⎩

 (5.33) 
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This function has stepwise singularities at { }0,θ π= ± . By the 

Fourier Series Theorem the series will converge to the midpoint 

of the discontinuity at those points. This function is an odd func-

tion of θ , so it can be expanded in a Fourier Sine series 

 ( )
1

sinSquareWave n
n

f b nθ
∞

=

=∑  (5.34) 

Where 

 
0 0

1 2 2sin sin sinn SW SWb f n d f n d n d
π π π

π

θ θ θ θ θ θ
π π π−

= = =∫ ∫ ∫  (5.35) 

The solution is 

 
( )

0

42 cos( ) cos(0) n odd 2 cos
0 n even

n

n

n
b d n n

n n

π π
θ π

π π

⎧− −− ⎪== = = ⎨
⎪⎩

∫  (5.36) 

The frequency decomposition of the square ware is shown in 

Figure 5-3. The Fourier series expansion of this wave form is 

given by 

 ( ) ( )( )
0

4 sin 2 1
2 1SW

n
f n

n
θ

π

∞

=

= +
+∑  (5.37) 



112 Fourier Series 

Square wave frequency amplitudes
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Figure 5-3 Square wave frequency components 

 Gibbs Phenomena 

The Square Wave converges slower than the first series we stu-

died, and it is not uniformly convergent, as seen in Figure 5-4(4 

and 20 terms are plotted). In fact, one can expect extreme diffi-

culties getting a good fit at the discontinuous steps. Any finite 

number of terms will show in the vicinity of the discontinuity. 

The amplitude of this overshoots persists, but  as the number of 

terms increases. As we approach an infinite number of terms, 

this overshoot covers an interval of negligible measure. This is 

the meaning of the expression that the series and the function 

are the same up to . Mathematically, this is expressed by 

 
2lim ( ) ( ) 0NN

f x f x dx
π

π
→∞

−

− =∫  (5.38) 
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This behavior is not unique to the square wave. Similar over-

shoots occur whenever there is a discontinuity. This behavior at 

stepwise discontinuities is referred to as the . 
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Figure 5-4 The Gibbs Phenomena 

If one uses a good analog scope to view a square wave generated 

by a pulse generator, odds are that you won’t see any such beha-

vior. In part, this is because the analog nature of the scope. But 

there are more fundamental reasons. These pertain to how the 

signal is measured and how it was originally generated. If one 

has a fast pulse generator, but a slow scope, then, at the highest 
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time resolutions, one sees a rise time in the signal due to the re-

sponse of the scope. If one has a fast scope, but a limited genera-

tor, one resolves the time structure of the source instead. Piece-

wise step functions are not physical. They are approximations 

that allow us to ignore the messy details of exactly how a sudden 

change happened. In time dependent problems, this is called the 

impulse approximation. 

For another example, consider a spherical capacitor, with one 

conducting hemisphere at positive high voltage and the second 

at negative high voltage. The step in voltage at the interface ig-

nores the necessary presence of a thin insulating barrier sepa-

rating the two regions. Such approximations are fine, as long as 

one understands their limits of validity. 

Find the Fourier series expansion to the step function given by 

 
1 0

( )
0 0

x
f x

x
π

π
< <⎧

= ⎨ − < <⎩
 (5.39) 

Hint: Note that it can be written as a sum of an even function 

and an odd function. 

 Non-symmetric intervals and period doubling 

Although the interval for fitting the period is often taken to be 

symmetric, it need not be so. Consider the saw-tooth wave, 

shown in Figure 5-5, initially defined on the interval[0, ]L . 

 ( ) ; 0f x x x L= < <  (5.40) 
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Figure 5-5 A linear wave defined on interval[0,L] 

One can double the period and fit it either as n even function 

(Cosine Transform) or as and odd function (Sine Transform). If 

we are interested only a fit within this region, there are several 

ways of fitting this function. The most common technique is 

called : The interval is doubled to the interval [ ],L L− and the 

function is either symmetrized or anti-symmetrized on this 

greater interval. The rate of convergence often depends on the 

choice made. 

• Symmetric option (Triangle wave) 

The symmetrized function represents a triangle wave of the 

form 
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 ( )     for f x x L x L= − < <  (5.41) 

Fitting this with a Cosine Series, gives 

 
0

1 2cos cos
L L

n
L

n x n xa x dx x dx
L L L L

π π
−

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  (5.42) 

Integrate by parts using ( )udv d uv vdu= −∫ ∫ ∫ or look up in 

integral tables 

 2

cos sincos ax x axx axdx
a a

= −∫  (5.43) 

This gives the solution 

 2 2
0

(2 1)cos
4( )

2 (2 1)n

n x
L L Lf x x

n

π

π

∞

=

+⎛ ⎞
⎜ ⎟
⎝ ⎠= = −

+∑  (5.44) 

Note that after the first term, which gives the average value of 

the function, only terms odd in n  contribute. Figure 5-6 shows 

that after the addition of the first cosine term, the fit to a trian-

gle wave is already a fair approximation. 
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Figure 5-6 Fit to a triangle wave (2 and 10 terms) 

• Antisymmetric option (sawtooth wave form) 

The antisymmetrized function is a sawtooth waveform 

 ( )     for f x x L x L= − < <  (5.45) 

The solutions can now be expressed as a Fourier Sine Series 

 
0

1 2sin sin
L L

n
L

n x n xb x dx x dx
L L L L

π π
−

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  (5.46) 

Integration by parts gives 

 2

sin cossin ax x axx axdx
a a

= −∫  (5.47) 

With the solution 



118 Fourier Series 

 
( ) 1

0

1 sin
2( )

n

n

n x
L Lf x x

n

π

π

+
∞

=

⎛ ⎞− ⎜ ⎟
⎝ ⎠= = ∑  (5.48) 

Figure 5-7 shows the Fourier series fit to the sawtooth wave 

form. Note that the Gibbs phenomenon has returned. Compar-

ing the two solutions, the triangle wave converges faster 2

1
n

∼ , 

while the sawtooth wave converges only as 
1
n

∼ . The principle 

difference, however, is that the triangle wave is continuous, 

while the saw tooth has discontinuities at π± . Given the choice 

of symmetrizing or anti-symmetrizing a wave form, pick the 

choice that leads to the best behaved function for the problem at 

hand. 
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Figure 5-7 Fourier series fit to sawtooth wave(4 and 20 terms) 

• Combinations of solutions 

If one sums the even and odd series, the wave form remains un-

changed for positive x , but cancels for negative x . This allows 

us solve for the function 

 
0

( )
0 0
x x L

f x
L x
< <⎧

= ⎨ − < <⎩
 (5.49) 

giving 

 
( )

2 2
0 0

(2 1)cos 1 sin
2( )

4 (2 1)

n

n n

n x n x
L L LL Lf x

n n

π π

π π

∞ ∞

= =

+⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= − +

+∑ ∑  (5.50) 

Since the function no longer has definite parity under reflection, 

a combined Fourier (Cosine + Sine) Series is required. 

5.6  Integration and differentiation 

Like Taylor series, Fourier Series can be differentiated or inte-

grated. The effect is easiest to demonstrate using the complex 

form of the series. 

 Differentiation 

One can take the derivative of a series within its radius of con-

vergence, giving 
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 ( ) ( ) ( )inx inx
n n

n n

d df x f x c e in c e
dx dx

∞ ∞

=−∞ =−∞

′ = = =∑ ∑  (5.51) 

Because of the added factor of n in the numerator, ( )f x′ con-

verges slower than ( )f x . 

 Integration 

One can integrate a series within its radius of convergence, giv-

ing 

 ( )
inx

inx n
n

n n

c ef x dx c e dx const
in

∞ ∞

=−∞ =−∞

= = +∑ ∑∫ ∫  (5.52) 

Because of the added factor of n in the denominator ( )f x′ con-

verges faster than ( )f x . 

The constant of integration can be tricky. it depends on where 

the lower limit of integration is placed, as that affects the aver-

age value of the function. Often the integral is taken from the 

origin 0x = , and the upper limit is either positive or negative x . 
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Example:  Evaluate the integral of the square wave 

 

( ) ( ) ( )( )

( ) ( )( )

( )
( )( )

( )( )
( )

0

10 0

2 0
1

2
1

1 0 4 sin 2 1
1 0 2 1

4( ) sin 2 1
2 1

4 cos 2 1
2 1

4cos 2 1

2 1
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n

x

n

n

n

x
f n

x n

f d n d
n

n
n

n
C

n

θ

θ

θ θ
π

θ θ θ θ θ
π

θ
π

θ

π

∞

=

∞

=

∞

=

∞

=

+ >⎧ ⎫
= = +⎨ ⎬− < +⎩ ⎭

= = +
+

−= +
+

− +
= +

+

∑

∑∫ ∫

∑

∑

 (5.53) 

But this integral must be the triangle wave previously defined 

over the interval [ , ]π π− ,therefore the answer should be 

 
( )

2
0

cos (2 1)4( )
2 (2 1)sawtooth

n

n
f x x

n
θπ

π

∞

=

+
= = −

+∑  (5.54) 

Therefore, the constant of integration is 

 
2

C π=  (5.55) 

If we didn’t know the answer ahead of time, one can fix the con-

stant by evaluation at a carefully chosen value of θ  

 

( )
( )

( )

2
1

2
1

40 0
2 1

4
22 1

n

n

f C
n

C
n

π
π

π

∞

=

∞

=

−= = +
+

= =
+

∑

∑
 (5.56) 
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Reversing the procedure, we see that the method allows us to 

calculate the sum of a difficult looking series of constants in 

closed form. This is a common use of Fourier Series. 

Example:  Find the value of the Zeta function ( )mς  for m=2 

The Zeta function is defined as the series of constants 

 ( )
1

1
m

n
m

n
ς

∞

=

=∑  (5.57) 

Therefore  

 ( )
2

2
1

1 1 12 1
4 9 6n n

πς
∞

=

= = + + + =∑ "  (5.58) 

To prove this identity, the trick will be to find some Fourier se-

ries that gives this as a constant series for some value of its pa-

rameter. Let’s try 

 2( )f x x xπ π= − < <  (5.59) 

This the even series given by 

 

( ) ( )

( ) ( )

( )

2 2

0

3 2
2

0
0 0

2

2 3
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1 2

2 2 2
3 3

2 2 2cos sin

4 1

n

n

o

n

a x cos nx dx x cos nx dx

xa x dx

x xa nx nx
n n n

n

π π

π
ππ

π

π π

π
π π

π

−

= =

= = =

⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= −

∫ ∫

∫
 (5.60) 
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or 

 ( )
2

2

1

2( ) 4 1 cos
6

n

n
f x x nxπ ∞

=

= = + −∑  (5.61) 

Letting x π= , and using ( )cos 1 nnπ = − , we get 

 
( ) ( )

( )

2 2
2

2
1

2 2

14 4 2
3 3

22
3 4 6

n
f

n
π ππ π ς

π πς

∞

=

= = + = +

= =
⋅

∑
 (5.62) 

5.7  Parseval’s Theorem 

We have already defined the mean (expectation) value of a 

Fourier series as 

 ( ) 01
2 2

af f x dx x
π

π

π π
π −

= = − < <∫  (5.63) 

Let’s now calculate the expectation value of 
2f .using the com-

plex series notation 
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1
2
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2
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in im
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in im
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f f f dx f fdx
L
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π
θ θ

π

π
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∗ ∗

− −

∞ ∞
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∞ ∞
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∞ ∞ ∞
∗ ∗

=−∞ =−∞ =−∞
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=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
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∫ ∫

∑ ∑∫

∑ ∑ ∫

∑ ∑ ∑

 (5.64) 
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This is Parseval’s Theorem. For classical waves, the wave’s ener-

gy density is proportional to the square of the amplitude of 

wave. Therefore, Parseval’s Theorem can be interpreted as 

meaning that the energy per cycle of a particular frequency is 

proportional to the square of its amplitude integrated over a pe-

riod. In Quantum mechanics, the norm of a wave function is 

usually normalized to unit probability. For this case, the theo-

rem is equivalent to saying that the partial probability of finding 

a particle in a frequency eigenstate n  is given by the square of its 

amplitude. 

Definition: Parseval’s Theorem 

The expectation value of the square of the absolute value of a 

function when averaged over its interval of periodicity is given 

by 

 
2 2* 1 1

2 2

L L

n
nL L

f f f dx f fdx c
L L

∞
∗

=−∞− −

= = = ∑∫ ∫  (5.65) 

If the function is real-valued, then the sum can be written as 

 ( )
2

2 2 20

12 n n
n

af a b
∞

=

= + +∑  (5.66) 

2 0f ≥  so * 0f f >  unless the function vanishes everywhere, 

except possibly on an interval of null measure. This definition is 

used to define the norm of a square-integrable function space. 

The norm of a function is just the sum of the norms of its com-

ponent eigenfunctions. 
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 Generalized Parseval’s Theorem 

Parseval’s theorem can be generalized by defining the as 

 

1 1
2 2

in im
n m

n m

n n
n

f g f gdx f e g e dx

f g

π π
θ θ

π ππ π

∞ ∞
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∞
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=−∞

= =

=

∑ ∑∫ ∫

∑
 (5.67) 

5.8  Solutions to infinite series 

We have already seen one way to find the sum of a series and 

have shown that ( )
2

2
6
πς = . Here is a second way, using Parsev-

al’s Identity. Note that 

 
3 2

2 2 2

0 0

1 2 2 2
3 3
xx x x x dx x dx

ππ π

π

π
π π π

∗

−

= = = = =∫ ∫  (5.68) 

However x  is just the functional form of a sawtooth wave, and 

we have already solve that series. Letting the interval L π= , then 

the Fourier Sine series normalizes to 

 ( ) ( )
0

1 2
( ) sin ,

n

n n
n

f x x b nx b
n

∞

=

−
= = =∑  (5.69) 

Then, by Parseval’s Identity 
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 (5.70) 

 



 

6.  Orthogonal function spaces 

The normal modes of the continuum 

 define an infinite Hilbert space. 

6.1  Separation of variables 

The solution of complicated mathematical problems is facili-

tated by breaking the problem down into simpler components. 

By reducing the individual pieces into a standard form having a 

known solution, the solution of the more complex problem can 

be reconstructed. For example, partial differential equations are 

often solvable by the technique of separation of variables. The 

resulting are  that can be solved by the general techniques that 

we will explore in the following sections. The general solution to 

the original partial differential equation of interest can then be 

constructed from a summation over all product solutions to the 

eigenvalue equations that meet certain specified boundary re-

quirements imposed by physical considerations. 

6.2  Laplace’s equation in polar coordinates 

An illuminating example is the solution to  in two space dimen-

sions. The equation takes the form 
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 2 0∇ Ψ = . (6.1) 

where 2∇  is  and Ψ  can be interpreted as a static potential func-

tion in electromagnetic or gravitational theory, and as a steady 

state temperature in the context of thermodynamics. Let’s try 

separating this equation in polar coordinates. The equation can 

be rewritten as 

 ( )
2 2

2 2 2

1 1 , 0r
r r r r

φ
φ

⎧ ⎫∂ ∂ ∂+ + Ψ =⎨ ⎬∂ ∂ ∂⎩ ⎭
. (6.2) 

Then, we look for product solutions of the form 

 ( ) ( ) ( ),r f rφ φΨ = Φ . (6.3) 

Separation of variables leads to the following coupled set ordi-

nary differential equations 

 ( )
2

2 2

1 0f r
r r r r λ

λ⎧ ⎫∂ ∂+ − =⎨ ⎬∂ ∂⎩ ⎭
. (6.4) 

 ( )
2

2 0λλ φ
φ

⎧ ⎫∂ + Φ =⎨ ⎬∂⎩ ⎭
. (6.5) 

We are not interested in all solutions to this eigenvalue problem, 

only those that make physical sense. In this case, φ  is a cyclic 

variable, and the requirement that the solution be single-valued 

(i.e. uniquely defined) imposes the periodic boundary condition 

 ( ) ( )2mφ π φΦ + = Φ . (6.6) 

This restricts the eigenvalues to the denumerable set 
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 2 0;  integer 0, 1, 2,...m mλ = ≥ ∀ = ± ± . (6.7) 

The solutions, therefore, are of the form 

 ( ), ( ) im
m

m
r f r e φφ

∞

=−∞

Ψ = ∑ . (6.8) 

For fixed r , the solution is a , which forms a complete function 

basis for periodic functions in φ . 

It is easy to show (by direct substitution) that the radial solu-

tions are 

 
( )

( )
0 0

0 0 0

  for 0,

ln /            for 0.

m m

m m m
r rf r A B m
r r

A B r r m

−
⎛ ⎞ ⎛ ⎞

= + ≠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + =

 (6.9) 

Here 0r  is some convenient scale parameter to allow the coeffi-

cients { },m mA B  to all have the same units. The general solution 

to Laplace’s equation in 2-dimensions is therefore given by 

 ( ) ( )0 0
0 0

, ln /
m m

im
m m

m

r rr B r r A B e
r r

φφ
−∞

=−∞

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟Ψ = + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ . (6.10) 

The series solution can be interpreted as representing a multi-

pole expansion of the potential function ( ),r φΨ . 

We will return to this solution when we discuss partial differen-

tial equations in more detail in the following chapters. In partic-

ular, we will need to discuss what type of boundary conditions 

lead to consistent, sable, and unique solutions to the partial dif-
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ferential equation of interest. The product solutions, neverthe-

less, illustrates some general features of the separation of varia-

ble technique that are worth pointing out at this point: 

• Separation of variables in partial differential equations natu-

rally leads to ordinary differential equations that are solu-

tions to an . 

• The allowed eigenvalues are constrained by the  imposed on 

the equations. 

• The function basis generated by the eigenvalue equations 

forms a for the class of functions that satisfy the same boun-

dary conditions. 

• The complete solution to the partial differential equation is a  

to the eigenvalue equations where the coefficients are chosen 

to match the physical . 

6.3  Helmholtz’s equation 

Let us next consider a class of second order partial differential 

equations, which contains some of the most famous named sca-

lar equations in physics. These include 

• Laplace’s equation 

 ( )2 0.∇ Ψ =r  (6.11) 

• The wave equation 
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 ( )
2

2
2 2

1 , 0.t
v t

⎛ ⎞∂∇ − Ψ =⎜ ⎟∂⎝ ⎠
r  (6.12) 

• The diffusion equation 

 ( )2 1 , 0.t
tλ
∂⎛ ⎞∇ − Ψ =⎜ ⎟∂⎝ ⎠

r  (6.13) 

• The non-interacting Schrödinger’s equation 

 ( )
2

2 , 0.
2

i t
m t

⎛ ⎞− ∂∇ − Ψ =⎜ ⎟∂⎝ ⎠
r= =  (6.14) 

These equations differ in their time behavior, but their spatial 

behavior is essentially identical. They all are linear functions of 

Laplace’s operator 2∇ . After separating out the time behavior, 

they lead to a common differential equation, known as Helm-

holtz’s equation 

 ( ) ( )2 2 0.k∇ + Ψ =r  (6.15) 

Or, in some cases, to the modified Helmholtz’s equation 

 ( ) ( )2 2 0.k∇ − Ψ =r  (6.16) 

Laplace’s equation refers to the special case 2 0.k =  The addition 

of a local potential term ( )U r  to Helmholtz’s equation changes 

the details of the solution, but not the general character of the 

boundary conditions. 

The Laplacian operator is special in that it is both translationally 

and rotationally invariant. It is also invariant under the discrete 
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symmetries of mirror reflection and parity reversal. As a conse-

quence of its high degree of symmetry, separation of variables 

can be carried out in at least 18 commonly used coordinate 

frames. Here we will consider only the three most obvious ones, 

those employing Cartesian, spherical and cylindrical coordi-

nates. The functions that result from its decomposition include 

the best known and studied equations of mathematical physics. 

Helmholtz’s equation can be written symbolically in the opera-

tor form 

 ( )2 2 2 2 .x y zD D D k+ + Ψ = ± Ψ  (6.17) 

From which we see that the operator has an “elliptical” signature 

( ) ( ) ( )2 2 2/ / /X a Y b Z c+ + . This signature totally determines the 

allowed choices of Boundary conditions. 

An Elliptic Differential Equation has a unique (up to a constant), 

stable solution if one or the other (but not both) of the following 

two sets of Boundary conditions are met. 

• The function is specified everywhere on a closed spatial 

boundary. (Dirichlet Boundary conditions), or 

• The derivative of the function is specified everywhere on a 

closed spatial boundary (Neumann Boundary conditions). 

Other choices of boundary conditions either under-specify or 

over-specify the constraints or lead to ambiguous or inconsis-

tent results. The  depends on the dimensionality of the equation: 
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• In three-dimensions, the boundary is a closed surface; 

• In two dimensions, it is an enclosing line; 

• In one dimension, it is given by the two end points of the 

line. 

If the volume to be enclosed is infinite, the enclosing surface is 

taken as the limit as the radius R →∞  of a very large boundary 

envelope. 

6.4  Sturm-Liouville theory 

After separation of variables in the Helmholtz Equation, one is 

left with a set of second order ordinary differential equations 

having the following linear form: 

 
( ){ } ( ) ( ) ( ) ( )

( ) ( )

2

2

.

d dL y x A x B x C x y x
dx dx

W x y xλ

⎛ ⎞
= + +⎜ ⎟
⎝ ⎠

=
 (6.18) 

L L∗=  denotes a real-valued, linear second order differential op-

erator, , ,A B C  are real-valued functions of the dependent varia-

ble x , λ  is an eigenvalue, ( )W x is a weight function, and ( )y xλ  

is the eigenfunction solution to the eigenvalue equation. 

This equation is assumed to be valid on a closed inter-

val [ , ]x a b⊂ . The eigenvalue solutions of the above equation are 

real if the linear operator can be written in the  
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 ( ){ } ( ) ( ) ( ) ( ) ( )d dL y x A x C x y x W x y x
dx dx

λ⎛ ⎞⎛ ⎞= + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (6.19) 

This requires the constraint 

 ( ) ( )B x A x′= . (6.20) 

An equation that can be put in such a form is said to be a Sturm-

Liouville differential equation. If the equation is not in a self-

adjoint form, an integrating factor can often be found to put it 

into such a form. In the standard notation for Sturm-Liouville 

equations the functions A  and C  are referred to as the func-

tions P  and Q  respectively, so that the equation is often written 

in the standard form 

 ( ){ } ( ) ( ) ( ) ( ) ( )d dL y x P x Q x y x W x y x
dx dx

λ⎛ ⎞⎛ ⎞= + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (6.21) 

The  ( )W x  usually arises from the Jacobean of the transforma-

tion encountered in mapping from Cartesian coordinates to 

some other coordinate system. This weight is required to be pos-

itive semi-definite. That is, it is except at a finite number of dis-

crete points on the interval [ , ]x a b⊂  where it may vanish. It de-

fines a norm for a function space such that 

 ( ) 0
b

a

N W x y ydx∗= ≥∫ . (6.22) 

The class of functions that have a finite norm N  are said to be  
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 Linear self-adjoint differential operators 

A linear differential operator is said to be self-adjoint on interval 

[ ],a b  if it satisfies the following criteria 

 { } { }*
2 1 1 2

b b

a a

y L y dx y L y dx∗ =∫ ∫  (6.23) 

with respect to any normalizable functions iy  that meet certain 

specified boundary conditions at the end points of the interval. 

Sturm-Liouville differential operators are self-adjoint for Dirich-

let, Neumann, and periodic boundary conditions (B.C.). First 

note that the term ( )Q x ( )mς  where Q  is a real-valued function 

is automatically self-adjoint 

 2 1 1 2( ) ( ) ,
b b

a a

y Q x y dx y Q x y dx∗ ∗=∫ ∫  (6.24) 

since functions commute. 

Next, integration by parts gives 

 
2 1

2 1
2 1

( )

( ) ( ) .

b

a
b b

a a

d dy P x y dx
dx dx

dy dydy P x y P x dx
dx dx dx

∗

∗
∗

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∫

∫
 (6.25) 

Likewise, 
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1 2

2 1
1 2

( )

( ) ( ) .

b

a
b b

a a

d dy P x y dx
dx dx

dy dydy P x y P x dx
dx dx dx

∗

∗
∗

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∫

∫
 (6.26) 

Subtracting (6.26) from (6.25) gives 

 { } { }* 1 2
2 1 1 2 2 1 .

bbb b

aa a a

dy dyy L y dx y L y dx y P y P
dx dx

∗
∗ ∗− = −∫ ∫  (6.27) 

This clearly vanishes if the functions or their derivatives vanish 

at the limits [ ],a b  (i.e., for Dirichlet or Neumann B.C.). It also 

vanishes if the upper and lower limits have the same value (i.e., 

for periodic B.C.) and also  that 

 ( ) ( ) 0.P a P b= =  (6.28) 

This latter case occurs for certain types of spherical functions, 

such as the Legendre polynomials. An important theorem is that 

the eigenvalues of a self-adjoint differential operator are real. 

The proof follows from the use of the conjugate of a Sturm-

Liouville equation 

 ( ){ } ( ) ( ) ( ) ( ) ( ).d dL y x P x Q x y x W x y x
dx dx

λ∗ ∗ ∗ ∗⎛ ⎞⎛ ⎞= + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (6.29) 

(Note that the operator L  and the weight function W  are real). 

Therefore, 

 { } { } ( )*
2 1 1 2 1 2 2 1 0.

b b b

a a a

y L y dx y L y dx Wy y dxλ λ∗ ∗ ∗− = − =∫ ∫ ∫  (6.30) 
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Letting 1 2y y=  gives 

 ( )1 1 1 1 0,
b

a

Wy y dxλ λ∗ ∗− =∫  (6.31) 

but the norm 1 1 0
b

a

Wy y dx∗∫ ;  unless 1 0y ≡ ; therefore, 

 1 1 .λ λ∗=  (6.32) 

 Orthogonality 

The eigenfunctions of different non-degenerate eigenvalues are 

orthogonal to each other with respect to weight W . The proof 

follows, from (6.30) 

 ( )1 2 2 1 0.
b

a

Wy y dxλ λ ∗− =∫  (6.33) 

If 1 2 ,λ λ≠ this implies that 

 2 1 0.
b

a

Wy y dx∗ =∫  (6.34) 

Given a set of linearly independent, but degenerate, eigenfunc-

tions nψ  with the same eigenvalue, one can always construct a 

“diagonal” basis of eigenfunctions nφ  that are orthogonal to each 

other with respect to weight .W  One procedure, attributed to 

Schmidt, is to construct the basis { }nφ from the sequence 
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1 1

2 2 21 1

3 3 31 1 32 2

1

1

,
,

,

.
n

n n nm m
m

c
c c

c

φ ψ
φ ψ φ
φ ψ φ φ

φ ψ φ
−

=

=
= −
= − −

= −∑

"
 (6.35) 

The coefficients of the thn  term is chosen such that nφ  is ortho-

gonal to all previously orthogonalized eigenfunctions. 

 0 .
b

m n
a

W dx m nφ φ∗ = ∀ <∫  (6.36) 

For example, 

 

( )1 2 1 2 21 1

1 2 21 1 1

1 2

21

1 1

0,

.

b b

a a

b b

a a
b

a
b

a

W dx W c dx

W dx c W dx

W dx
c

W dx

φ φ φ ψ φ

φ ψ φ φ

φ ψ

φ φ

∗ ∗

∗ ∗

∗

∗

= −

= − =

=

∫ ∫

∫ ∫

∫

∫

 (6.37) 

When the functions are to be normalized as well as orthogona-

lized, this algorithm is referred to as the . 
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 Completeness of the function basis 

Any piece-wise continuous function, with a finite number of 

maxima and minima, that is normalizable on an interval [ ],a b  

and which satisfies the same B.C. as the eigenfunctions of a self-

adjoint operator on that interval can be expanded in terms of a 

complete basis of such eigenfunctions. 

 ( ) ( )
all

cn nf x y x
λ

=∑  (6.38) 

If the basis is an orthogonal one with normalizations given by 

 ( )
b

n n n
a

N W x y y dx∗= ∫  (6.39) 

one can invert the problem to solve for the coefficients, giving 

 ( )1 ( )
b

n n
n a

c W x f x y dx
N

∗= ∫  (6.40) 

The proof of inversion can be obtained by using the orthogonali-

ty condition 

 ( )
b

m n n nm
a

W x y y dx N δ∗ =∫  (6.41) 

 Comparison to Fourier Series 

In retrospect, we see that our development of Fourier Series is a 

direct application of Sturm-Liouville Theory. Letting 
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 2( ) ( ) 1; ( ) 0;P x W x Q x mλ= = = = −  (6.42) 

in the Sturm-Liouville equation and assuming periodic B.C. on 

interval [ ],π π− gives 

 ( )
2

2
2 0mm φ

φ
⎧ ⎫∂ + Φ =⎨ ⎬∂⎩ ⎭

 (6.43) 

having eigenfunctions 

 , for integer ime mφ  (6.44) 

in terms of which, we can expand any piece-wise continuous, 

normalizable, periodic function as an infinite series 

 ( ) im
n

m
f x c e φ

∞

=−∞

= ∑  (6.45) 

By orthogonality, we can solve for the coefficients giving 

 ( )1
2

im
nc f e d

π
φ

π

φ φ
π

−

−

= ∫  (6.46) 

This generalization would be a lot of work to go through just to 

solve a single eigenvalue equation, but it saves time in the long 

run. We no longer need to prove reality of the eigenvalues, or-

thogonality of the eigenfunctions, and completeness of the func-

tion basis in an ad-hoc manner for every eigenvalue equation 

that we encounter. 

Discussion Problem:  Generalization of Parseval’s theorem 

Show that Parseval’s theorem can be generalized to the form 
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2 2( ) ( ) .

b

n n
na

W x f x dx N c=∑∫  (6.47) 

And that the average of the norm of 
2( )f x with respect to 

weight W  can be written as 

 

2

2
( ) ( )

,
( )

b

a n
nb

n W

a

W x f x dx
Nf f c
N

W x dx

∗ = =
∫

∑
∫

 (6.48) 

where 

 ( ) .
b

W
a

N W x dx= ∫  (6.49) 

If / 1n WN N = , for all eigenfunctions, the eigenfunctions are said 

to be normalized. The norm of a function can then be written as 

 
2.n

n
f f c∗ =∑  (6.50) 

 Convergence of a Sturm-Liouville series 

Although we will not formally prove completeness here, it is use-

ful to define the sense in which we mean that the function and 

its series expansion are equal. Partitioning the series into a finite 

partial sum NS  of N terms and an infinite remainder NR , then 

the function and the series are the same in the sense that the 

norm of the remainder tends to zero as N →∞  
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 ( ) ( ) ( )2 2
lim ( ) lim ( ) 0.

b b

N nN N
a a

W x R x dx W x f x S x dx
→∞ →∞

= − =∫ ∫  (6.51) 

In plain English, this means that the series converges to the 

function wherever the function is continuous and the Weight 

function non-zero, and the function differs from the series only 

at a finite number of discrete points (i.e., only on intervals of 

null measure). This of course is essentially the same criteria that 

we applied to the convergence of Fourier Series. 

 Vector space representation 

Those familiar with quantum mechanics will recognize that a  is 

just a special case of a . Hermitian operators have real eigenva-

lues and form complete function spaces. By treating the basis 

functions as representing independent degrees of freedom, one 

can define an infinite-dimensional vector space with coeffi-

cients{ }nc . This is, in fact, the classical origins of Hilbert space, 

which preceded the development of quantum mechanics. Let us 

expand functions with respect to a normalized eigenfunction ba-

sis: 

 

( )
.

( )

b

n m
a

n m nmb

a

W x dx

W x dx

φ φ
φ φ δ

∗

∗ = =
∫

∫
 (6.52) 
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Each eigenfunction can be thought of as defining an indepen-

dent degree of freedom of the system, one which projects out an 

orthogonal state with normalization  

 .nmn m δ=  (6.53) 

An arbitrary state in this infinite dimensional space can be writ-

ten as 

 

( )

1

2

†
1 2

,

... ,

n
n

n
n

c
f c n c

f f n c c c∗ ∗ ∗

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= = = ⎣ ⎦

∑

∑
#  (6.54) 

where the basis vectors define projection operators for the am-

plitude coefficients 

 , ,n nn f c f n c∗= =  (6.55) 

and the norm of an arbitrary vector is given by 

 
2.n

n

f f c=∑  (6.56) 

The connection between the  and the  is given by relating the in-

ner product of the vector space with the weighted integral over 

the overlap of two functions. 

 

( ) ( ) ( )
.

( )

b

a
n n b

n

a

W x A x B x dx
A B a b A B

W x dx

∗

∗ ∗= = =
∫

∑
∫

 (6.57) 



144 Orthogonal function spaces 

This last expression is recognizable as the extension of Parsev-

al’s theorem applied to an arbitrary set of normalized orthogon-

al functions. 

The interpretation of the meaning of the norm of a Hilbert space 

depends on the physical context. In quantum mechanics, the 

normalization has a probabilistic interpretation, and the total 

single particle wave function is normalized to unit probability. 

In classical wave mechanics, the square of the wave amplitude 

can be related to its energy density. Parseval’s theorem can then 

be interpreted to state that normal (orthogonal) modes of oscil-

lation contribute independently to the energy integral. The total 

energy of a wave is the incoherent sum of the energies of each 

normal mode of oscillation. 

 



 

7.  Spherical Harmonics 

Consider a spherical cow 

—Introductory physics problem example 

We live on the surface of a sphere. The stars and planets are ap-

proximate spheroids, as are atomic nuclei, at the other limit of 

the size scale. The three-dimensional character of space, along 

with the assumption that one is dealing with localized sources, 

leads one naturally into considering using spherical coordinates. 

Various irreducible classes of rotational symmetries arise out of 

the rotational invariance of three-dimensional space. It is no 

surprise, then, that the spherical functions are ubiquitous in ma-

thematical physics. Of these, the most important are the spheri-

cal harmonics ( ),lmY θ φ , which represent the angular eigenfunc-

tions of Laplace’s operator in a spherical basis. These, in turn, 

are products of the Fourier series expansion ime φ  for the cyclic 

azimulthal angle dependence and the associated Legendre poly-

nomial eigenfunction expansion ( )coslmP θ  for polar angle beha-

vior. 
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7.1  Legendre polynomials 

The  and their close cousins, the , arise in the solution for the po-

lar angle dependence in problems involving spherical coordi-

nates. The Legendre polynomials deal with the specific case 

where the solution is azimuthally symmetric; the associated Le-

gendre polynomials deal with the general case. After separation 

of variables in the Helmholtz equation, using spherical coordi-

nates ( ), ,r θ φ  and assuming no φ  dependence, one is left with 

the following differential equation 

 ( ) ( )21 ( ) 1 ( ).l l
d dx y x l l y x
dx dx

− = − +  (7.1) 

Here cosx θ=  so the domain of the equation is the interval 

1 1x− ≤ ≤ . We recognize this equation as being a Sturm-Liouville 

equation with 2( ) 1P x x= − , ( ) 0Q x = , ( ) 1W x = , having real ei-

genvalues ( 1)l lλ = − + . Because ( 1) 0P ± =  at the end points of 

the interval, any piecewise-continuous, normalizable function 

can be expanded in a Legendre’s series in the interval [ 1,1]− . By 

substituting cosx θ= , Legendre’s equation can be written in the 

form 

 ( )1 sin 1 .
sin l l

d d y l l y
d d

θ
θ θ θ

= − +  (7.2) 
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Discussion Problem:  Origin of the spherical harmonics and 

the associated Legendre equation: 

Starting with Helmholtz’s equation in spherical coordinates (see 

Figure 7-1 for a sketch of the coordinate system) 

 

2 2

2 2 2 2

2

2 1 1 1sin
sin sin

( , , )

d d d d d
dr r dr r d d d

k r

θ
θ θ θ θ φ

θ φ

⎧ ⎫⎡ ⎤⎪ ⎪+ + +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

= − Ψ

 (7.3) 

show that separation of variables leads to the angular equation 

 ( ) ( )
2

2 2

1 1sin , ( 1) , .
sin sin

d d d Y l l Y
d d d

θ θ φ θ φ
θ θ θ θ φ

⎧ ⎫
+ = − +⎨ ⎬

⎩ ⎭
 (7.4) 

(You don’t need to solve the radial part to show this). Show by 

further separation of variables that 

 ( ), ( ) im
lmY P x e φθ φ ∝ , (7.5) 

where ( )lmP x  are the Associated Legendre polynomials given by 

 ( ) ( )
2

2
21 ( ) ( ) 1 ( ).

1lm lm lm
d d mx P x P x l l P x
dx dx x

− − = − +
−

 (7.6) 

The ordinary Legendre polynomials are related to the associated 

Legendre polynomials by 0( ) ( )l lP x P x=  
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Figure 7-1 A spherical coordinate system 

 Series expansion 

Laplace’s differential operator is an even function of x . There-

fore, for every l , there will be two linearly-independent solu-

tions to the eigenvalue equation that can be separated into even 

and odd functions. It will turn out that only one of these series 

will converge for the allowed values of l . Let us rewrite the equ-

ation, putting terms that couple to the same power of x  on the 

right-hand side, 

 2 2 ( 1)y x y xy l l y′′ ′′ ′= + − + . (7.7) 

Substituting n
n

n
y a x=∑  gives the series expansion 
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 2

2 0 0 0

( 1) ( 1) 2 ( 1)n n n n
n n n n

n n n n

n n a x n n a x na x l l a x
∞ ∞ ∞ ∞

−

= = = =

− = − + − +∑ ∑ ∑ ∑  (7.8) 

or 

 ( ) [ ]2
0 0

2 ( 1) ( 1) ( 1) ,n n
n n

n n

n n a x n n l l a x
∞ ∞

+
= =

+ + = + − +∑ ∑  (7.9) 

giving the recursion relation 

 
[ ]

( )2

( 1) ( 1)
,

2 ( 1)n n

n n l l
a a

n n+

+ − +
=

+ +
 (7.10) 

which decouples even and odd powers of x . 

We can test the series to determine its radius of convergence, 

giving 

 
( )

[ ]
2

2

2 ( 1)
lim lim 1

( 1) ( 1)
n

n n
n

n nax
a n n l l→∞ →∞

+

+ +
< = =

+ − +
 (7.11) 

Therefore the range is the open interval ( 1, 1)− + . However, the 

convergence of the series at the end points is still in doubt. A 

more careful analysis shows that the ratio nr  approaches 1 from 

above for large n , and it turns out the series diverges at the end 

points 1x = ± . This appears to be a disaster, if one fails to ob-

serve that the series terminates for integer values of l . More 

specifically, the even series terminates for even l , and the odd 

series terminates for odd l . When n l= , the coefficient 2na +  and 

all further terms in the series vanish, see Eq. (7.10). Therefore, 

the boundary conditions at 2 1x =  are satisfied by setting 
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 0,1, 2l = " . (7.12) 

The solutions that converge at the end points of the interval  are 

finite polynomials of order l , called the Legendre polynomials, 

which have an even or odd reflection symmetry given by 

 ( )( ) 1 ( )l
l lP x P x= − −  (7.13) 

For historic reasons they are normalized to 1 at 1x =  

 (1) 1lP = . (7.14) 

Figure 7-2 shows a plot of the first six Legendre polynomials. By 

direct substitution in the recursion relation (7.10) and using the 

normalization constraint (7.14), the first few polynomials can be 

written as 

 ( )
( )

0

1

21
2 2

31
3 2

1,
,

3 1 ,

5 3 .

P
P x

P x

P x x

=
=

= −

= −

 (7.15) 

You should verify these expressions for yourselves. Let’s calcu-

late 2 ( )P x  as an example. There are two nonzero terms in the 

expansion, 0 2&a a . They are related by 

 
[ ]
( )2 0 0 0

( 1) 6 3 .
2 (1) 2
l l

a a a a
− + −= = = −  (7.16) 

Therefore, 
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( ) ( )
( )
( ) ( )

2
2 0

2 0

21
2 2

3 1 ,

1 1 2,

3 1 .

P x x a

P a

P x x

= − +

= ⇒ = −

∴ = −

 (7.17) 

Note that a Legendre polynomial of order n  is a power series in 

x  of the same order n . The Legendre polynomials are bounded 

by 

 ( ) 1.lP x ≤  (7.18) 

This can be useful in estimating errors in series expansion. A 

useful formula is 

 ( )
( ) ( )/ 2

0                   for odd 
0 1 !!

1  for even   
!!

l l

l
P l

l
l

⎧
⎪= −⎨

−⎪⎩

 (7.19) 

 Orthogonality and Normalization 

Since Legendre’s equation is a Sturm-Liouville equation, we 

don’t have to prove orthogonality, it follows automatically. The 

norm of the square-integral is given by 

 
1

1

2 .
2 1l l llPP dx
l

δ′ ′
−

=
+∫  (7.20) 

The proof will be left to a discussion problem. 

A Legendre series is a series of Legendre polynomials given by 
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 ( ) ( )
0

, 1.n n
n

f x a P x x
∞

=

= ≤∑  (7.21) 

By orthogonality, the series can be inverted to extract the coeffi-

cients 

 
1

1

2 1 ( ) ( ) .
2n l

na f x P x dx
−

+= ∫  (7.22) 

A polynomial of order N  can be expanded in a Legendre series 

of order N : 

 
0 0

( ).
N N

m
m n n

m n
b x a P x

= =

=∑ ∑  (7.23) 

The proof follows from the linear independence of the Legendre 

polynomials. Since a Legendre series of order N  is a polynomial 

of order N , the above expression leads to 1N +  linear equations 

relating the na  and mb  coefficients. By linear independence, the 

equations have a non-trivial solution. Since a Legendre series 

expansion is unique, the solution obtained is the only possible 

solution. Solving for na  by brute force we get 

 
1

01

2 1 .
2

N
m

n n m
m

na P b x dx
=−

+= ∑∫  (7.24) 
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Example:  Expand the quadratic equation 2ax bx c+ +  in a Le-

gendre series: 

 
( )2 21

0 1 2 2

2
2 1 0 2

3 1

3 1 .
2 2

ax bx c a a x a x

a x a x a a

+ + = + + −

= + + −
 (7.25) 

Therefore, 

 2 1 0
2 1, ,   and  .
3 3

a a a b a c a= = = +  (7.26) 

Discussion Problem:  A spherical capacitor consists of two 

conducting hemispheres of radius .r  The top hemisphere is held 

at positive voltage and the bottom hemisphere is held at nega-

tive voltage. The potential distribution is azimuthally symmetric 

and is given by 

 ( )
0

 for 1>x>0
 for 0>x>-1

oV
V x

V
+⎧

= ⎨−⎩
 (7.27) 

Calculate the Legendre series for this potential distribution. 
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Figure 7-2 Legendre Polynomials 

 A second solution 

The second solution to Legendre’s equation for integer l  is an 

infinite series that diverges on the z-axis, where cos 1x θ= = ±  

(Figure 7-3). Although not as frequently seen, it is permitted for 

problems with a line-charge distribution along the z-axis. The 

solutions are labeled ( )lQ x  and have the opposite symmetry to 

the ( )lP x , 

 ( ) 1( ) 1 ( )l
l lQ x Q x+= − − . (7.28) 

A closed form solution for ( )lQ x  can be found by substituting 
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1 1( ) ( ) ln ( )
2 1l l l

xQ x P x B x
x

+⎛ ⎞= +⎜ ⎟−⎝ ⎠
 (7.29) 

into Legendre’s equation, where ( )lB x  is a second polynomial to 

be solved for. The first few terms are tabulated below: 

 

0

0

2

0

3 2

0

1 1ln ,
2 1

1ln 1,
2 1
3 1 1 3ln ,

4 1 2
15 3 1 5 2ln .

4 1 2 3

xQ
x

x xQ
x

x x xQ
x

x x x xQ
x

+⎛ ⎞= ⎜ ⎟−⎝ ⎠
+⎛ ⎞= −⎜ ⎟−⎝ ⎠

− +⎛ ⎞= −⎜ ⎟−⎝ ⎠
− +⎛ ⎞= − +⎜ ⎟−⎝ ⎠

 (7.30) 
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Figure 7-3 Legendre’s polynomials of the second kind 

Legendre polynomials are a good starting point for the study of 

orthogonal functions, because a number of its properties can be 

generalized to other orthogonal functions. There exists a diffe-
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rential form called Rodriquez formula that can be used to gener-

ate the polynomials. There is a generating function that serves 

the same purpose. Finally, there are recursion relations connect-

ing Legendre polynomials to each other. Once one sees how 

these various identities apply for Legendre’s polynomials, one 

can easily accept the existence of other such formulae for other 

orthogonal functions at face value, and apply them in a similar 

manner. 

7.2  Rodriquez’s formula 

Rodriquez’s formula for Legendre polynomials is given by 

 ( ) ( )21 1
2 !

l l

l l l

dP x x
l dx

= −  (7.31) 

The proof uses Leibniz’s rule for differentiating products. 

 Leibniz’s rule for differentiating products 

The thn  derivative of a product of two terms is given by the bi-

nomial expansion 

 
0

( ) ( )( ) ( ) .
n n m mn

n m m
m

nd d U x d V xU x V x
mdx dx dx

−

−
=

⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  (7.32) 

Proof: Let /D d dx= . 

Then, 
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 ( ) ( ) ( ) ( ) ,u vD UV DU V U DV D D UV= + = +  (7.33) 

where uD  denotes the derivative’s action on the function U , and 

vD  denotes the derivative’s action on the function V . Then 

 ( ) ( ) ( )
0

n
nn n m m

u v u v
m

n
D UV D D UV D D UV

m
−

=

⎛ ⎞⎛ ⎞
= + = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  (7.34) 

or 

 ( ) ( )( ) ( )( )
0 0

.
n n

n n m m n m m
u v

m m

n n
D UV D U D V D U D V

m m
− −

= =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  (7.35) 

The proof that Rodriquez’s formula is correct involves 

• Showing that ( )lP x  is a solution to Legendre’s equation, and 

• Showing that ( )1 1lP =
. 

To prove the first part let ( )2 1
l

v x= − , then 

 ( ) ( )( ) 12 2 21 2 1 1 2 .
ldvx lx x x lxv

dx
−

− = − − =  (7.36) 

Differentiating this expression 1l +  times by Leibniz’s rule gives 

 

( ) ( )

( )

1 2 1

2 2 1

1

1 2

1 1 1
1 2 2

0 1 2

1 1
2 2 ,

0 1

l l

l l l

l l

dvD x D lxv
dx

l l l
x D v xD v D v

l l
l xD v l D v

+ +

+ +

+

⎛ ⎞− = ⇒⎜ ⎟
⎝ ⎠

+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
+ +⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (7.37) 
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where 

 
( )1 1 1 1

1, 1,
0 1 2 2

l l l l l
l

+ + + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (7.38) 

which gives 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2
2

2

( 1)1 2 1 2
2

2 1 2 .

l l l

l l

d d l lx D v l x D v D v
dx dx

dlx D v l l D v
dx

+− + + +

= + +
 (7.39) 

Simplifying and changing signs 

 
( ) ( ) ( ) ( )

( ) ( )

2
2

2

2

1 2 ( 1) 0,

1 ( 1) 0.

l l l

l

d dx D v x D v l l D v
dx dx

d dx l l D v
dx dx

− − − + + =

⎛ ⎞− + + =⎜ ⎟
⎝ ⎠

 (7.40) 

This is the Legendre equation, which completes the proof of the 

first part. The second part of the proof involves factoring 

( )( )2 1 1 1x x x− = + −  and applying Leibniz’s rule to the product, 

then setting the result to 1x = . Only one term in the product 

survives: 

 
( ) ( ) ( ) ( )

( ) ( )

1
1

0

1 1 1  terms of order 1
2 !
1 2 ! 1 1.

2 !

l ll
l lx

x

l
l

P x x D x x
l

l x
l

=
=

= + − + −

= − =
 (7.41) 
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Example:  Calculate 2 ( )P x  from Rodriquez’s formula: 

 
( ) ( ) ( )

( ) ( )

2 22 2
2 2 2

3 2

1 11 4 1
2 2! 8
1 1 3 1 .
2 2

d dP x x x x
dx dx

d x x x
dx

⎡ ⎤= − = −⎣ ⎦

= − = −
 (7.42) 

Example:  Show that 
mx  is orthogonal to lP  if l m> : 

Proof: One possible proof is to use Rodriquez’s formula and 

integration by parts. Direct integration is easier. Expanding mx  

in a Legendre series gives 

 
1 1

' 01 1

0,  
m l

m
l l m m

m
Px dx P a P dx

<

′ ′
−− −

= =∑∫ ∫  (7.43) 

since ' 'm l m≠ ∀ . 

7.3  Generating function 

Legendre polynomials can also be obtained by a Taylor’s series 

expansion of the generating function 

 ( ) ( ) 1/ 22

0
, 1 2 .ll

l
x h xh h Ph

∞−

=

Φ = − + =∑  (7.44) 

Note that, for 1x = , we get 

 ( )
0 0

11, (1) .
1

l l
l

l l
h h P h

h

∞ ∞

= =

Φ = = =
− ∑ ∑  (7.45) 
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This will turn out to be related to why the normalization (1) 1lP =  

was originally chosen. 

Before proving (7.44) it is useful to consider its physical origin. 

Consider a unit charge located at a point 0r , as shown in Figure 

7-1. Its electrostatic potential is given by 

 0 2 2
0 0 0

( , ) ,
4 4 2

q qV
r xrr rπ π

= =
− − +

r r
r r

 (7.46) 

where x  is the cosine of the angle between r  and 0r  Let 

 

( )
( )

, ,

, ,

1.

o

o

r Greater r r

r Lesser r r
rh
r

>

<

<

>

=

=

= ≤

 (7.47) 

Then, 

 ( )0
0

( , ) , ( ) .
4 4

l

l
l

rq qV r r x h P x
r r rπ π

∞
<

=> > >

⎛ ⎞
= Φ = ⎜ ⎟

⎝ ⎠
∑G G

 (7.48) 

At large distances 0r r�  ,The distribution approaches a pure 

1/ r  potential. The generating function is the multipole expan-

sion that arises from the fact that we didn’t think to place the 

charge at the origin. The normalization of (1) 1lP =  was used to 

give all the angular moments equal weight at 1h = . 

Now let’s turn to the proof of equation (7.44). Assume that the 

RHS of this equation is the definition of Φ . We want to multiply 

Φ  by Legendre’s operator 
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 ( )21d dL x
dx dx

= − . (7.49) 

This gives 

 ( )
2

2
0 0

( 1)l l
l l

l l
L L P h l l Ph h h

h

∞ ∞

= =

∂Φ = = − + = − Φ
∂∑ ∑  (7.50) 

This results in a second order partial differential equation 

 ( ) ( )
2

2
21 , 0x h h x h

x x h
⎛ ⎞∂ ∂ ∂− + Φ =⎜ ⎟∂ ∂ ∂⎝ ⎠

. (7.51) 

Now it is just a matter of substituting the LHS of equation (7.44) 

into the partial differential equation to verity that the PDE has 

the closed form solution: ( ) 1/ 22, 1 2x h xh h
−

⎡ ⎤Φ = − +⎣ ⎦ . This last 

step is straightforward, and is left as an exercise for the reader. 

θ

φ

z

x

y

r0

r

r-r0

q

V(r,r0)
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Figure 7-4 Sketch of a point charge located on the z axis 

The generating function is useful for proving a number of recur-

sion relations relating the Legendre Polynomials and their de-

rivatives. 

7.4  Recursion relations 

Just like there are a number of trig identities that are useful to 

keep at hand, so, too, there are a number of identities relating 

Legendre polynomials. The first relates lP  to 1 2&l lP P− −  

 ( ) ( )1 22 1 1l l llP l xP l P− −= − − −  (7.52) 

Since we know that 0 1P =  and 1P x= , this relationship can be 

used recursively to generate all the other Legendre polynomials 

from the first two in the sequence. Unlike Rodriquez’s Formula 

or the Generating Function, this doesn’t require taking any de-

rivatives. Other useful recursion formulas are 

 1 ,l l lxP P lP−′ ′− =  (7.53) 

 1 1,l l lP xP lP− −′ ′− =  (7.54) 

 ( )2
11 ,l l lx P lP lxP−′− = −  (7.55) 

and 

 ( ) 1 12 1 .l l ll P P P+ −′ ′+ = −  (7.56) 
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Given two recursion relations, the others follow by substitution, 

so it is sufficient to prove the first two equations (7.52) and 

(7.53) are valid identities. 

The first relation Eq. (7.52) can be proven by taking partial de-

rivatives of the generating function. Taking the derivative with 

respect to h  gives 

 

( )
( ) ( )
( ) ( )

1
3/ 22

2 1

2 1

1 1 1

,
1 2

1 2 ,

1 2 ,

2 ,

l
l

l

l
l

l

l l
l l

l l l l l
l l l l l

x h lPh
h xh h

x h xh h lPh

x h Ph l xh h Ph

xPh Ph lPh lxPh lPh

−

−

−

+ − +

∂ −Φ = =
∂ − +

− Φ = − +

− = − +

− = − +

∑

∑

∑ ∑
∑ ∑ ∑ ∑ ∑

 (7.57) 

Collecting terms of the same power of h , one gets the first recur-

sion formula (7.52): 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

1 1

1 1 1
1 2

1
1 2

1 2

2 1 1 0,

2 1 1 0,

2 1 1 0,

2 1 1 .

l l l
l l l

l l l
l l l

l
l l l

l l l

l xPh l Ph lPh

l xP h l P h lPh

l xP l P lPh

lP l xP l P

+ −

− − −
− −

−
− −

− −

+ − + − =

− − − − =

⎡ ⎤− − − − =⎣ ⎦
∴ = − − −

∑ ∑ ∑
∑ ∑ ∑
∑

 (7.58) 

In a similar manner, the solution for the second recursion rela-

tion, proceeds by taking the differential wrt x  in the definition 

of the generating function: 
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( )
( )
( )

3/ 22

2

1 2

1 2

,
1 2

1 2 ,

1 2

2 .

l
l

l

l l
l l

l l l
l l l

h h P
x xh h

h xh h h

Ph xh h h P

Ph xPh Ph

+

+ +

∂ ′Φ = =
∂ − +

Φ = − +

′= − +

′ ′ ′= − +

∑

∑
∑ ∑

∑

 (7.59) 

Comparing coefficients of order 1lh +  gives 

 1 12 .l l l lP P xP P+ −′ ′ ′= − +  (7.60) 

Now differentiate the first recursion relation to get 

 
( ) ( ) ( )

( ) ( ) ( )
1 1 2

1 1

2 1 2 1 1   or 

1 2 1 2 1 .
l l l l

l l l l

lP l P x l P l P

l P l P x l P lP
− − −

+ −

′ ′ ′= − + − − −

′ ′ ′+ = + + + −
 (7.61) 

Eliminating the 1lP+′  terms in equations (7.60) and (7.61) gives 

the desired result for the second recursion formula (7.53): 

 1.l l llP xP P−′ ′= −  (7.62) 

Discussion Problem:  Prove that 
1 2

1

2
2 1lP dx
l−

=
+∫ . using the re-

cursion relation 1.l l llP xP P−′ ′= −  

7.5  Associated Legendre Polynomials 

Legendre polynomials represent the convergent solutions of the 

special case 0m =  of the associated Legendre Equation: 
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 ( ) ( )
2

2
21 ( ) ( ) 1 ( ),

1lm lm lm
d d mx P x P x l l P x
dx dx x

− − = − +
−

 (7.63) 

where 

 ( ) ( )0 ,l lP x P x=  (7.64) 

From the symmetry of the equation one sees that the substitu-

tion m±  leads to the same equation, therefore, 

 ,lm l mP P−∝  (7.65) 

Unfortunately, because of how these polynomials where origi-

nally defined, they turn out not to be simply equal to each other, 

they differ in their norms. They also vary in sign conventions 

from text to text. 

Like the Legendre Polynomials, the associated Legendre func-

tions are solutions to an eigenvalue equation of the Sturm Liou-

ville form 

( ){ } ( ) ( ) ( ) ( ) ( ) ,d dL y x P x Q x y x W x y x
dx dx

λ⎛ ⎞⎛ ⎞= + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (7.66) 

which differs from the Legendre equation by the addition of a 

function of x : 

 ( )
2

2 ,
1

mQ x
x

=
−

 (7.67) 

Therefore, for fixed azimulthal index m , the lmP  also represent 

eigenvalue functions of ( 1)l l− + . For positive integer 0 m l≤ ≤  

the solutions are given by 
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 ( ) / 22( ) 1 ( ),
mm

lm lm

dP x x P x
dx

= −  (7.68) 

which can be verified by direct substitution into the Associated 

Legendre equation. Substituting Rodriguez’s formula for ( )lP x , 

gives the more general form, 

 ( ) ( )/ 22 21( ) 1 1 .
2 !

l mm l

lm l l m

dP x x x
l dx

+

+= − −  (7.69) 

This is the generalized form of Rodriquez’s formula. In this 

form, it can be applied to both positive and negative values of 

m . This is in fact how the associated Legendre are defined, and 

gives their normalization up to a sign convention of ( 1)m−  em-

ployed in some textbooks. Using this formula as it stands, one 

finds that the positive and negative m  solutions are related by 

 
( )
( )

!
( ) ( 1) ( ),

!
m

l m lm

l m
P x P x

l m−

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟+⎝ ⎠

 (7.70) 

and one sees that the solutions for negative m are simply pro-

portional to those of positive m . From formula (7.68) one finds 

that the stretched configuration of llP  is proportional to 

 ( ) / 22( ) 1 sin .
m l

llP x x θ∝ − =  (7.71) 

Example:  Calculate the Legendre polynomials for 1l =  

Use 1 10( ) ( )P x P x x= = , one needs to calculate only 1 1P± . Use equa-

tion (7.68) to calculate 11P  
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( ) ( )

( ) ( )

1/ 2 1/ 22 2
11 11

11/ 2 1/ 22 2
1

1 ( ) 1 ( )

1 1 sin .

lm

ll

d dP x P x x P x
dx dx
dx x x
dx

θ

= − = −

= − = − =
 (7.72) 

The negative values for m  can be found from equation (7.70) 

 

( )
( )

( )
( )

( )

1 1

1
11

1/ 22

!
( ) ( 1) ( ),

!

1 1 !
( 1) ( ),

1 1 !

1 11 sin ,
2 2

m
lm

l m
P x P x

l m

P x

x θ

−

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟+⎝ ⎠
⎛ ⎞−

= − ⎜ ⎟⎜ ⎟+⎝ ⎠
− −= − =

 (7.73) 

There are ( )2 1l +  m−states associated with a given value of l . 

The solution for the 3 m−states of 1mP  are 

 

2
11

11

2
1 1

1 sin ,
cos ,

1 11 sin .
2 2

P x
P x

P x

θ
θ

θ−

= − =
= =

− −= − =

 (7.74) 

This illustrates one of the problems with using the Associated 

Legendre Polynomials. Because of the—too clever by far—

substitution into Rodriquez’s formula, the normalization of the 

positive and negative m  states differ. For this reason, it is better 

to work with the spherical harmonics directly for cases where 

0.m ≠  
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 Normalization of Associated Legendre 

polynomials 

The normalization of the Associated Legendre Polynomials are 

given by 

 
( )
( )

1

1

!2( ) ( ) .
2 1 !lm l m ll

l m
dxP x P x

l l m
δ′ ′

−

+
=

+ −∫  (7.75) 

Therefore a series expansion of a function of x  for fixed m  takes 

the form 

 ( )
( )

0
1

1

( ) ( ),

!2 1 ( ) ( ) .
2 !

m lm lm
l

lm m lm

f x A P x

l mlA f x P x dx
l m

∞

=

−

=

−+=
+

∑

∫
 (7.76) 

 Parity of the Associated Legendre polynomials 

Knowing the parity of the Associated Legendre Polynomials is 

useful. Reflection symmetry can often be used to identify terms 

that identically vanish, reducing computational effort. The pari-

ty of a Legendre Polynomial of order ( ),l m  is 

 ( ) ( ) ( )1 .l m
lm lmP x P x+− = −  (7.77) 

Another useful result is 

 ( )1 0, for  0.lmP m± = ≠  (7.78) 
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 Recursion relations 

There are a significant number of recursion relations for the As-

sociated Legendre Polynomials. Here are a couple of examples: 

• For fixed l : 

 
( ) ( ), 2 , 1 ,2

2 1
( 1) 0.

1l m l m l m

m x
P P l m l m P

x+ +

+
− + − + + =

−
 (7.79) 

• For fixed m : 

 ( ) 1, , 1,1 (2 1) ( ) 0.l m l m l ml m P l xP l m P+ −+ − − + + + =  (7.80) 

This latter relation reduces to equation (7.52) when 0.m =  

7.6  Spherical Harmonics 

Legendre Polynomials do not appear in isolation. They 

represent the polar angle solutions to a spherical problem which 

also has azimulthal dependence. In particular, they are the solu-

tions to the following angular equation which occurs when one 

separates Laplace’s equation in spherical coordinates. 

 ( ) ( )
2 2

2 2 2

1 1sin 1 , 0.
sin sin lml l Yθ θ φ

θ θ θ θ φ
⎧ ⎫∂ ∂ ∂+ + + =⎨ ⎬∂ ∂ ∂⎩ ⎭

 (7.81) 

The operator is closely related to the square of the orbital angu-

lar momentum operator in quantum mechanics: 
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( ) ( )

( ) ( )

2 2
2 2

2 2 2

2

1 1, sin ,
sin sin

1 , .

lm lm

lm

L Y Y

l l Y

θ φ θ θ φ
θ θ θ θ φ

θ φ

⎧ ⎫∂ ∂ ∂= − + +⎨ ⎬∂ ∂ ∂⎩ ⎭
= +

=

=
(7.82) 

When there is no azimulthal symmetry, ( 0m ≠ ), it is usually bet-

ter to work directly with the product solutions ( ),lmY θ φ , which 

are called the spherical harmonics. The spherical harmonics are 

products of the associated Legendre Polynomials and the com-

plex Fourier series expansion of the periodic azimulthal eigens-

tates. They have the advantages of having a simple normaliza-

tion: 

 
( ) ( )*

1

1

, , ,

where 4 .

lm l m ll mmY Y d

d dx d
π

π

θ φ θ φ δ δ

φ π

′ ′ ′ ′

− −

Ω =

Ω = =

∫
∫ ∫ ∫

v
v

 (7.83) 

The normalization of a complex Fourier series is given by 

 2 .im im
mmd e e

π φ φ
π

φ πδ
+ ′−

′−
=∫  (7.84) 

while the normalization of the associated Legendre polynomials 

is given by equation (7.75). Putting the two together and one 

finds 

 ( ) ( ) ( )
( ) ( )!2 1, 1 cos ,

4 !
m im

lm lm

l mlY P e
l m

φθ φ θ
π

−+= −
+

 (7.85) 

where ( )1 m−  is a commonly used phase convention. Because dif-

ferent phase conventions are in common use, one has to be care-

ful in using the spherical harmonics in a consistent manner. 
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This is true as well for the Associated Legendre Polynomials in 

general. 

Any piecewise continuous function defined on a sphere ( ),f θ φ  

can be expressed as sums over the spherical harmonics 

 ( ) ( )
0

, , ,
m l

lm lm
l m l

f C Yθ φ θ φ
∞ =+

= =−

=∑∑  (7.86) 

which, by orthogonality, gives 

 ( ) ( ), , .lm lmC f Y dθ φ θ φ∗= Ω∫v  (7.87) 

If ( ),f θ φ  is real, the spherical harmonics occur in complex con-

jugate pairs. 

Calculating the spherical harmonics is not much more compli-

cated than calculating the associated Legendre Polynomials. 

There are 2 1l +  m -states for every irreducible spherical har-

monic tensor of rank l . For 0l = , this reduces to a single spheri-

cally symmetric state 

 00
1 .
4

Y
π

=  (7.88) 

where it is easy to verify that 

 
2

00 1.Y dΩ =∫v  (7.89) 

For 1l = , equation (7.85) reduces to 
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11

10

1 1

3 sin ,
8
3 cos ,

4
3 sin .

8

i

i

Y e

Y

Y e

φ

φ

θ
π

θ
π

θ
π

−
−

= −

=

=

 (7.90) 

Some useful formulas are 

 ( ), ,1    andm
l m l mY Y ∗
− = −  (7.91) 

 ( ) 2

,
2 1, .
4

l

l m
m l

lY θ φ
π=−

+=∑  (7.92) 

The completeness relation for spherical harmonics is given by 

 ( ) ( )*
, ,

0

, , (cos cos ) ( ),
l

l m l m
l m l

Y Yθ φ θ φ δ θ θ δ φ φ
∞

= =−

′ ′ ′ ′= − −∑∑  (7.93) 

and the multipole expansion of a point charge gives 

 ( ) ( )*
, ,1

0

1 4 , , .
2 1

ll

l m l ml
l m l

r Y Y
l r
π θ φ θ φ

∞
<
+

= =− >

′ ′=
′− +∑∑r r

 (7.94) 

This latter equation is a generalization of the generating func-

tion (7.48) to the case where the point charge is not restricted to 

be along the z-axis. 

7.7  Laplace equation in spherical coordinates 

Laplace’s equation in spherical coordinates can be written as 
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( ) ( )

2
2

2
2 2

2 2 2 2

1

1 1 1sin
sin sin

0,

r
r r r

r
θ

θ θ θ θ φ

∂ ∂⎛ ⎞+⎜ ⎟∂ ∂⎜ ⎟∇ Ψ = Ψ
⎛ ⎞∂ ∂ ∂⎜ ⎟+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

=

r r
 (7.95) 

which has product solutions of the form ( ) ( ) ( ), ,l l mf r Y θ φΨ =r , 

yielding the radial equation 

 

2
2 2

2

1 ( 1) ( ) 0  or

( ) ( 1) ( ).

l

l l

d d l lr f r
r dr dr r

d dr f r l l f r
dr dr

+⎛ ⎞− =⎜ ⎟
⎝ ⎠

= +
 (7.96) 

Letting ( )lf r rλ=  gives , ( 1)l lλ = − +  leading to the solutions 

 
( 1)

0 0

( )
l l

l l l
r rf r A B
r r

− +
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (7.97) 

Where 0r  is a scale parameter chosen such that the coefficients 

A and B all have the same units. The general solution to Lap-

lace’s equation in spherical coordinates is then given by a sum 

over all product solutions 

 ( ) ( )
( 1)

0

0 0

, .
l ll

lm lm lm
l m l

rrA B Y
r r

θ φ
+∞

= =−

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥Ψ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑r  (7.98) 

where the lmA  coefficients are valid for the interior solution, 

which includes the origin 0r → , and the lmB  coefficients are va-

lid for the exterior solution, which includes the point at infinity 

( r →∞ ). 
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8.  Bessel functions 

8.1  Series solution of Bessel’s equation 

  is a solution for the radial part of the Helmholtz equation in cy-

lindrical coordinates. The equation can be written as 

 ( ) ( )
2 2

2
2 2

1 , 0d d m y r k y r r
dr r dr r

⎛ ⎞
+ − = − ≤ ≤ ∞⎜ ⎟

⎝ ⎠
. (8.1) 

Letting 2 2k k→ −  would give us the . m  is an integer for cylin-

drical problems, but the equation is also useful for other cases so 

we will replace m  with the arbitrary real number p in what fol-

lows, and ( )y r  with ( ) ( )p pJ x J kr= . 

Like the sine and cosine functions in the expansion for Fourier 

series, the eigenvalue k  can be scaled away by setting x kr= , 

and the equation can be written in the standard form 

 ( )2 2 0p
d dx x p x J x
dx dx

⎛ ⎞− + =⎜ ⎟
⎝ ⎠

, (8.2) 

which can be expressed in the explicitly self-adjoint form 

 
2

0 0p
d d px x J x
dx dx x

⎛ ⎞
− + = ≤ ≤ ∞⎜ ⎟

⎝ ⎠
, (8.3) 

where 
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 2

( ) ,
( ) ,

( ) ;

1,

P x x
W x x

pQ x
x

λ

=
=

= −

=

 (8.4) 

This equation can be solved by the . Noting that the operator in 

equation (8.2) is an even function of x . Let’s try a generalized 

power series solution of the form 

 ( )
2

0 2

n s

p n
n

xJ x a
+∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ , (8.5) 

where the factor of (2 )2 n s− +  was arbitrarily inserted to simplify 

the normalization of the final answer. oa  is the first non-

vanishing term in the series. Regroup the equation to put terms 

with the same power of x  on the same side of the equation 

 ( ) ( )2 2
p p

d dx x p J x x J x
dx dx

⎛ ⎞− = −⎜ ⎟
⎝ ⎠

 (8.6) 

and substitute in the generalized power series 

 
2 2

2 2

0 0

,
2 2

n s n s

n n
n n

d d x xx x p a x a
dx dx

+ +∞ ∞

= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑  (8.7) 

where expansion gives 

 
( )( )

2 2 2
2 2

0 0

2 '

1
' 1

2 4
2 2

4 .
2

n s n s

n n
n n

n s

n
n

x xn s p a a

xa

+ + +∞ ∞

= =

+∞

−
=−

⎛ ⎞ ⎛ ⎞+ − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∑ ∑

∑
 (8.8) 
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Comparing coefficients of the same power of x  yields the recur-

sion formula 

 ( )( ) ( )2 2 2 2 2
12 4 4 4n n nn s p a n ns s p a a −

⎡ ⎤+ − = + + − = −⎣ ⎦  (8.9) 

Subject to the constraint that the 1a−  term must vanish 

 ( )2 2
0 14s p a a−− = − . (8.10) 

This gives the indicial equation 

 2 2s p=  (8.11) 

or 

 s p= ± . (8.12) 

In this case 2s pΔ = , so if p  is integer, or half-integer, there is a 

possibility that the two series won’t be linearly independent. 

(This in fact is what happens for integer p m= , but we are get-

ting ahead of ourselves.) Substituting into equation (8.9) 

 ( ) 1n nn n p a a −± = −  (8.13) 

or 

 
( )
( ) 0

1
.

! !

n

na a
n n p

−
=

±
 (8.14) 

For noninteger m , this can be written as 

 
( )

( ) 0

1
( 1) 1

n

na a
n n p

−
=
Γ + Γ ± +

. (8.15) 
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So, if we choice to normalize to 0 1a = , we have the solutions 

 
( )

( )

2

0

1
( )

( 1) 1 2

n pn

p
n

xJ x
n n p

±
∞

±
=

− ⎛ ⎞= ⎜ ⎟Γ + Γ ± + ⎝ ⎠
∑  (8.16) 

This is the series solution for Bessel’s equation. In general, the 

series expansion for Bessel functions converges on the open in-

terval ( )0, .∞  

However, ( )1pΓ +  is infinite for negative integers p , so that, for 

integer p m= , the two series are not linearly independent. 

 ( )( ) 1 ( )m
m mJ x J x− = − . (8.17) 

 Neumann or Weber functions 

In the case of Bessel’s equation, a special technique is used to 

find a second linearly-independent solution. These are referred 

to variously in the literature as  pN  or  pY  functions: 

 ( ) ( ) ( ) ( )
( )

cos
( )

sin
p p

p p

p J x J x
N x Y x

p
π

π
−−

= = . (8.18) 

For noninteger p , pN  and pJ  are linearly independent since 

pJ±  are linearly independent. As intp m→  one has a nonvanish-

ing indefinite form to evaluate, which provides the second solu-

tion to Bessel’s equation for integer p m= . Using L’Hospital’s 

rule, the Neumann functions for integer m  can be written as 
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( )

( ) 21

0

2( ) ln( / 2) ( )

1 !1
! 2

m m

k mm

k

N x x J x

m k x
k

γ
π

π

−−

=

= +

− − ⎛ ⎞− ⎜ ⎟
⎝ ⎠

∑
 (8.19) 

where 0.5772156...γ =  is Euler’s constant. This second solution 

is often used instead of pJ−  even for noninteger p . The general 

solution to Bessel’s equation is therefore given by 

 
( ) ( ) ( )
( ) ( ) ( )

  for all 0

 for 0,1,2,3...
p p p

p p p

y kr AJ kr BN kr p

y kr AJ kr BJ kr p−

= + ≥

= + ≠
, (8.20) 

The main difference between the Bessel and Neumann functions 

is that the Bessel Functions for 0p ≥  converge at the origin, 

while the Neumann functions diverge at the origin. Their re-

spective leading order behavior for small kr  is given by 

 

( ) ( )

( ) ( )

( )

2

0

2

0

1lim ( )
1 2

for 0
2lim ( )  

2 ln( ) 1                  for 0.

p
p

px

p
p

px

xJ x O x
p

p x O x p
N x

x O p

π

π

+

→

−
−

→

⎛ ⎞= +⎜ ⎟Γ + ⎝ ⎠

⎧−Γ ⎛ ⎞ + >⎪ ⎜ ⎟⎪ ⎝ ⎠= ⎨
⎪ + =⎪⎩

 (8.21) 

For large kr , the asymptotic expansions of two functions behave 

like phase-shifted sine and cosine functions with a decay enve-

lop that falls of as 1/ 2( )kr − : 
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( )

( )

3/ 2

3/ 2

2 2 1lim ( ) cos
4

2 2 1lim ( ) sin .
4

px

px

pJ x x O x
x

pN x x O x
x

π
π

π
π

−

→∞

−

→∞

+⎛ ⎞− +⎜ ⎟
⎝ ⎠

+⎛ ⎞− +⎜ ⎟
⎝ ⎠

∼

∼
 (8.22) 

8.2  Cylindrical Bessel functions 

0 5 10
1

0

1
Bessel functions of integer order

x

J_
n(

x)

1

1−

J0 x( )

J1 x( )

Jn 2 x,( )

100 x

 

Figure 8-1 Cylindrical Bessel functions of order 0,1, 2,3m =  

For integer m , the solutions to Bessel’s equation are the , ( )mJ kr  

and the cylindrical Neumann functions ( )mN kr . Graphs for the 

first three Bessel functions of integer order are shown in Figure 

8-1.  
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Figure 8-2 Neumann (Weber) functions of order 0,1, 2m =  

All Bessel functions for positive m , except those of order 0m = , 

start off with a zero at the origin. A similar plot showing the first 

few Neumann (Weber) functions is shown in Figure 8-2. Note 

that they diverge to negative infinity at the origin. 

 Hankel functions 

 

Closely related to the Bessel functions are the , which are de-

fined by 

 
(1)

(2)

( ) ( ) ( ),

( ) ( ) ( ).
p p p

p p p

H x J x iN x

H x J x iN x

= +

= −
 (8.23) 
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Hankel functions are most often encountered in scattering prob-

lems where the boundary conditions specify incoming or out-

going cylindrical or spherical waves. 

 Zeroes of the Bessel functions 

There are an infinite numbers of zeroes (zero-crossings) of the 

Bessel functions. The zeroes of the Bessel functions are impor-

tant, since they provide the eigenvalues needed to find the inte-

rior solution to a cylindrical boundary value problem, where one 

has either Dirichlet or Neumann boundary conditions. For Di-

richlet Boundary conditions, let 0/x kr ar r= = , where 0r  is the 

radius of a cylinder. Then 

 ( ) ( ) ( )0lim / 0
o

p p p pnr r
J ar r J a J x

→
= = = , (8.24) 

where pnx  represent the thn  zero of the thp  Bessel function. 

Therefore the eigenvalues of ( )pJ kr  are restricted to 

 
0

pn
pn

x
k

r
= . (8.25) 

For Neumann boundary conditions one has instead 

 ( ) ( )0lim / 0
o

p p pnr r
J ar r J x

→
′ ′ ′= = , (8.26) 

where pnx′  represent the thn  zero of the derivative of the thp  Bes-

sel function. 
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 Orthogonality of Bessel functions 

Bessel’s equation is a self-adjoint differential equation. There-

fore, the solutions of the eigenvalue problem for Dirichlet or 

Neumann boundary conditions are orthogonal to either other 

with respect to the weight function x kr= . Like the Fourier se-

ries ( ) im
mf e φφ = , the eigenfunctions of Bessel’s equation for fixed 

p  are the same function ( )m nmJ k r  stretched to have a zero at the 

boundary. 

Let ,a b  be distinct zeroes of pJ , then the square-integral nor-

malization of a Bessel function is given by 

 ( ) ( )1 2 2
10

1 .
2p pxdx J ax J a+=∫  (8.27) 

Substituting / ox r r=  

 ( ) ( )0
2

2 2
0 10

/
2

r o
p pn p pn

rrdrJ x r r J x+=∫  (8.28) 

  Orthogonal series of Bessel functions 

Consider a piecewise continuous function ( )pf r  that we want to 

expand in a Bessel function series for the interval 0 or r≤ ≤ . Let 

pnx  denote the zeroes of 0( / )p pnJ x r r  for or r= . Then, the series 

expansion is given by 
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 ( )0
1

( ) / ,p n p pn
n

f r A J x r r
∞

=

=∑  (8.29) 

where the coefficients nA  are given by 

 
( ) ( )

( ) ( )0

1

2 0
1

02 2 0
0 1

2 ( )

2 ( ) /

pn p pn
p pn

r

p pn
p pn

A xdx f r J x x
J x

rdr f r J x r r
r J x

+

+

=

=

∫

∫
 (8.30) 

and 0/x r r= . 

Discussion Problem:  Expand ( ) 1f r =  in a 0 ( )J x  Bessel func-

tion expansion inside a cylinder of radius a , assuming Dirichlet 

boundary conditions. 

Note: A first glance, this problem does not appear solvable as a 

Bessel function series, since the function does not meet the re-

quired boundary conditions 0( ) 0f r = . But all this really means 

is that we have a stepwise discontinuity at r a= . Orthogonal 

functions are well suited to handle such discontinuities. (One 

can expect to see some version of the Gibbs phenomena at the 

discontinuous point however.) Since ( )f r  is nonzero at 0r = , it 

is appropriate to try an expansion in terms of 0 0( / )nJ x r a . (Ex-

pansions in ( )pJ x  for 0p ≠  would not work.) The function to be 

fitted can by rewritten as 

 
( ) 1  for ,
( ) 0  for .

f r r a
f r r a

= <
= =

 (8.31) 
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Example:  Plot the first few eigenfunctions of 0 ( )J kr  that have 

zeroes at 0/ 1r r = . 

The zeroes of the Bessel functions are transcendental numbers. 

One can find their values numerically, using a root finding algo-

rithm. This gives the values following values for the roots 

of 0 ( )J x : 

 { }0 = 2.405, 5.52, 8.654, 11.792, 14.931, 18.071,nx " . (8.32) 

Figure 8-3 shows the first four eigenfunctions of 0 ( )J kr  satisfy-

ing Dirichlet Boundary conditions at ( )1, mn mnr k x= =  

0 0.2 0.4 0.6 0.8
0.5

0

0.5

1
J0(k_n*r)

1

0.403−

J0 k1 r⋅( )
J0 k2 r⋅( )
J0 k3 r⋅( )
J0 k4 r⋅( )

10 r  

Figure 8-3 First four eigenfunctions of 0 ( )J kr satisfying Dirichlet 

boundary conditions at r=1. 
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For fixed p , a function ( )pf r  that is finite at the origin and va-

nishes at cylindrical boundary 0r r=  () can be expanded as a 

Bessel function series 

 
( ) ( )
( )

0
1

0

/ ,

0.

p pn p pn
n

p

f r A J x r r

f r

∞

=

=

=

∑
 (8.33) 

If, instead, one were to use , one would use the expansion 

 
( ) ( )
( )

0
1

0

/ ,

0.

p pn p pn
n

p

f r A J x r r

f r

∞

=

′=

′ =

∑
 (8.34) 

 Generating function 

The generating function for Bessel functions of integer order is 

given by 

 ( 1/ ) / 2 ( )m t t m
me J x t

∞
−

=−∞

=∑ . (8.35) 

 Recursion relations 

Like Legendre Polynomials, there are a large number of useful 

recursion formulas relating Bessel functions. Some of the more 

useful identities are 

 1 1
2( ) ( ) ( )p p pJ x J x J x
p+ −= − , (8.36) 
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 1 1
1( ) ( ) ( )
2p p pJ x J x J x− +′ ⎡ ⎤= −⎣ ⎦ , (8.37) 

and 

 1 1( ) ( ) ( ) ( ) ( )p p p p p
p pJ x J x J x J x J x
x x− +′ = − + = − . (8.38) 

Of particular importance are the raising and lowering ladder op-

erators that relate a Bessel function to the next function on the 

ladder: 

 1( ) ( )p p
p p

d x J x x J x
dx −⎡ ⎤ =⎣ ⎦  (8.39) 

and 

 1( ) ( ).p p
p p

d x J x x J x
dx

− −
+⎡ ⎤ =⎣ ⎦  (8.40) 

The Neumann functions satisfy the same relations as (8.36)-

(8.40). 

These recursion relations can most readily be proven by direct 

substitution of the series expansion given by equation (8.16). 

For example, the proof of equation (8.39) is given by 

 

( ) ( )
( )

( ) ( )
( )

2 2

2
0

2 2 1

2
0

1
( 1) 1 2

1 2 2
.

( 1) 1 2

n n p
p

p n p
n

n n p

n p
n

d d xx J x
dx dx n n p

n p x
n n p

+∞

+
=

+ −∞

+
=

− ⎛ ⎞
⎡ ⎤ = ⎜ ⎟⎣ ⎦ Γ + Γ + + ⎝ ⎠

− + ⎛ ⎞
= ⎜ ⎟Γ + Γ + + ⎝ ⎠

∑

∑
 (8.41) 

Using ( 1) ( ) ( )n p n p n pΓ + + = + Γ +  gives 
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( ) ( )
( )

( )
( )

2 2 1

2 1
0

2 1

2 1
0

1

1
( 1) 2

1
( 1) 2

.

n n p
p

p n p
n

n n p
p

n p
n

p
p

d xx J x
dx n n p

xx
n n p

x J

+ −∞

+ −
=

+ −∞

+ −
=

−

− ⎛ ⎞
⎡ ⎤ = ⎜ ⎟⎣ ⎦ Γ + Γ + ⎝ ⎠

− ⎛ ⎞
= ⎜ ⎟Γ + Γ + ⎝ ⎠
=

∑

∑  (8.42) 

8.3  Modified Bessel functions 

If one makes the replacement of k ik→  in Bessel’s equation 

(8.1), one gets the modified Bessel equation. 

 ( )2 2 0p
d dx x p x I x
dx dx

⎛ ⎞− − =⎜ ⎟
⎝ ⎠

. (8.43) 

where ( )pI x  denote the modified Bessel functions of the first 

kind. Their series solution is nearly identical to Bessel’s series 

(8.16), except that the coefficients no longer alternate in sign 

 
( )

2

0

1( )
( 1) 1 2

n p

p
n

xI x
n n p

±∞

±
=

⎛ ⎞= ⎜ ⎟Γ + Γ ± + ⎝ ⎠
∑ . (8.44) 

Noting that the substitution k ik→  is equivalent to the substitu-

tion x ix→ , so the solutions also can be written as 

 ( ) ( )p
p pI x i J ix= , (8.45) 

where the factor pi  is included so that the series expansion 

(8.44) is a real-valued function. 
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If the Bessel functions could be said to be oscillatory in charac-

ter, asymptotically involving decaying sinusoidal functions, the 

solutions to the modified Bessel equation are exponential in be-

havior. For positive p , the solutions are finite at the origin and 

grow exponentially with increasing x  as shown in Figure 8-4. 

They have the asymptotic behavior 

 ( ) 2 for large x
pI x e x

xπ
∼ . (8.46) 

0 2 4
0

5

10
Modified Bessel functions In(x)

x

I_
n(

x)

10
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I1 x( )

In 2 x,( )

40 x

 

Figure 8-4 Modified Bessel Functions of the first kind 

For integer p m→ , the solutions ( )pI x± are not linearly inde-

pendent, 

 ( ) ( ).m mI x I x− =  (8.47) 
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 Modified Bessel functions of the second kind 

To obtain a second linearly-independent solution, valid for all 

p , the linear combination 

 ( ) ( ) ( )
2sinp p pK x I x I x

p
π
π −⎡ ⎤= −⎣ ⎦  (8.48) 

is used. The modified Bessel functions of the second kind ( )pK x  

diverge at the origin. They exponentially decay for large values 

of x , as shown in Figure 8-5, with the asymptotic behavior 

 ( ) 1 for large .
2

x
pK x e x

xπ
−∼  (8.49) 

For integer p m= , the series expansion for ( )pK x , calculated 

using L’Hospital’s rule, is given by 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21

0

21

0

11 ln / 2 1 1 !
2 2

1
,

2 !( )! 2

k mm
m k

m m
k

m k mm

k

xK x x I x m k

k k m x
k m k

γ
−−

=

+−

=

⎛ ⎞= − + + − − −⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠

− Φ +Φ + ⎛ ⎞+ ⎜ ⎟+ ⎝ ⎠

∑

∑
(8.50) 

where 

 
( )

( )
1

1   for 0,

0 0.

n

n
n n

n′=

′Φ = ≠
′

Φ =

∑
 (8.51) 

For small x , ( )pI x  and ( )pK x  have the leading order expan-

sions 
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( ) ( ) ( )

( ) ( )
( )
( )

( ) ( )

2

2

1 ,
1 2

    for 1,1
2 2       for 0 1,

ln 1                       for 0.

p
p

p

pp

p
p

xI x O x
p

O x pxp
K x O x p

x O p

− +

−−

⎛ ⎞= +⎜ ⎟Γ + ⎝ ⎠

⎧ ⎧ >⎪⎛ ⎞⎪ Γ + ⎨⎪ ⎜ ⎟= ⎝ ⎠ < <⎨ ⎪⎩⎪
− + =⎪⎩

 (8.52) 
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Figure 8-5 Modified Bessel functions of the second kind 

 Recursion formulas for modified Bessel 

functions 

Unlike their close cousins, the Bessel functions of the first and 

second kind, the modified Bessel functions of the first and 

second kind satisfy different recursion formulas. Several of the 
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more useful of these are listed below, others can be found in 

standard compilations of mathematics tables. 

 

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

2 ,

2 ,

p p p

p p p

I x I x I x
p

K x K x K x
p

+ −

+ −

= −

= +
 (8.53) 

 
( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

1 ,
2

1 ,
2

p p p

p p p

I x I x I x

K x K x K x

− +

− +

′ ⎡ ⎤= +⎣ ⎦

′ ⎡ ⎤= − +⎣ ⎦

 (8.54) 

 
( ) ( )

( ) ( )

1

1

,

,

p p
p p

p p
p p

d x I x x I x
dx
d x K x x K x
dx

−

−

⎡ ⎤ =⎣ ⎦

⎡ ⎤ = −⎣ ⎦

 (8.55) 

 
( ) ( )

( ) ( )

1

1

,

.

p p
p p

p p
p p

d x I x x I x
dx
d x K x x K x
dx

− −
+

− −
+

⎡ ⎤ =⎣ ⎦

⎡ ⎤ = −⎣ ⎦

 (8.56) 

8.4  Solutions to other differential equations 

A significant use of Bessel’s functions is in finding the solutions 

of other differential equations. For example, the second order 

differential equation of the form 

 ( ) ( ) ( ) ( )
2 2 221

2

1 2 0ca a p cy x y x bcx y x
x x

−⎡ ⎤− −′′ ′+ + + =⎢ ⎥
⎣ ⎦

 (8.57) 

has the solution 



Bessel functions 193 

 ( ) ,a c
py x Z bx=  (8.58) 

where pZ  is any linear combination of the Bessel functions pJ  

and pN , and , , ,a b c p  are constants. 

8.5  Spherical Bessel functions 

 The spherical Bessel equation represents the radial solution to 

the Helmholtz equation in spherical coordinates. This equation 

can be written as 

 2 2
2 2

1 ( 1) ( ) 0d d l lr k y r
r dr dr r

+⎡ ⎤− + =⎢ ⎥⎣ ⎦
 (8.59) 

where the values of 0,1, 2l = "  is restricted to integer values. The 

substitution x kr=  is made to put the equation into dimension-

less form and to scale away the eigenvalue 2k . The resulting eq-

uation can be rewritten in the self-adjoint form as 

 2 2( 1) ( ) 0d dx l l x y r
dx dx
⎡ ⎤− + + =⎢ ⎥⎣ ⎦

. (8.60) 

Note that the equation has a weight factor ( )22( )W x x kr= = . This 

factor of 2r  in the weight comes from the Jacobean of transfor-

mation of an element of volume when expressed in spherical 

coordinates 

 2dV r drd= Ω . (8.61) 



194 Bessel functions 

The solution to the equation can be given in terms of elementary 

functions, but it is usual to express the solution in terms of Bes-

sel functions. Using (8.57) and (8.58) one finds the solution 

 ( )
1/ 2

1/ 2( ) ( )l ly x x Z x−
+=  (8.62) 

 (try 1/ 2, 1, 1/ 2a b c p l= − = = = + ). 

Discussion Problem:  Show by mathematical induction that 

 ( ) ( )
l

l
l o

dj x x j x
xdx
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
, (8.63) 

where 

 ( ) sin /oj x x x= , (8.64) 

is a solution to the spherical Bessel equation (8.60). 

 Definitions 

The spherical Bessel functions of the first and second kind are 

defined as 

 
( ) ( ) ( )1/ 22

sin ,

l l

l
l

j x J x
x

d xx
xdx x

π
+=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (8.65) 
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( ) ( ) ( )1/ 22

cos .

l l

l
l

n x N x
x

d xx
xdx x

π
+=

− −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (8.66) 

Like the cylindrical Bessel functions, the spherical Bessel func-

tions of the first (Figure 8-6) and second (Figure 8-7) kind are 

oscillatory, with an infinite number of zero crossings. For large 

x  their decay envelope falls off as 1/ x . 
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Spherical Bessel functions

x

j_
l(x
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js 1 x,( )

js 2 x,( )
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Figure 8-6 Spherical Bessel functions 
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Figure 8-7 Spherical Neumann (Weber) functions 

The spherical Hankel functions are defined as 

 ( ) ( ) ( ) ( ) ( )1(1)
1/ 2 ,

2l l l lh x H x j x in x
x
π

+= = +  (8.67) 

 ( ) ( ) ( ) ( ) ( )2(2)
1/ 2 .

2l l l lh x H x j x in x
x
π

+= = −  (8.68) 

Lastly, the modified spherical Bessel functions are given by 

 
( ) ( ) ( )1/ 22

sinh ,

l l

l
l

i x I x
x

d xx
xdx x

π
+=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (8.69) 

 
( ) ( ) ( )1/ 22

.

l l

l x
l

k x K x
x

d ex
xdx x

π
+

−

=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (8.70) 
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Table 8-1 lists the first three l  values of the most common 

spherical Bessel functions. The limiting behavior of these func-

tions for small and large values of x  are summarized in Table 

8-2. 

Table 8-1 Spherical Bessel functions of order 0, 1, and 2 
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 Table 8-2 Asymptotic limits for spherical Bessel Functions 

 

 Recursion relations 

Some recursion relations for the spherical Bessel functions are 

summarized in (8.71) where lf  can be replaced by any of the 

functions (1) (2), , ,l l l lj n h h . 

 ( )

1 1

1 1

1 1

2 1( ) ( ) ( ),

( ) ( 1) ( ) 2 1 ( ),

1( ) ( ) ( ) ( ) ( ).

l l l

l l l

l l l l l

lf x f x f x
x

dnf x l f x l f x
dx

d l lf x f x f x f x f x
dx x x

− +

− +

− +

++ =

− + = +

+= − = − +

 (8.71) 

The ladder operators for the spherical Bessel functions are given 

by 
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1 1
1

1

( ) ( ),

( ) ( ).

l l
l l

l l
l l

d x f x x f x
dx
d x f x x f x
dx

+ +
−

− −
+

⎡ ⎤ =⎣ ⎦

⎡ ⎤ = −⎣ ⎦

 (8.72) 

The equivalent recursion relations for the modified spherical 

Bessel functions are summarized in (8.73) where lf  can be re-

placed by 1 or (-1)l
l li k+ . 

 ( )

1 1

1 1

1 1

2 1( ) ( ) ( ),

( ) ( 1) ( ) 2 1 ( ),

1( ) ( ) ( ) ( ) ( ).

l l l

l l l

l l l l l

lf x f x f x
x

dnf x l f x l f x
dx

d l lf x f x f x f x f x
dx x x

− +

− +

− +

+− =

+ + = +

+= − = +

 (8.73) 

The ladder operators for the modified spherical Bessel functions 

are given by 

 

1 1
1

1

( ) ( ),

( ) ( ).

l l
l l

l l
l l

d x f x x f x
dx
d x f x x f x
dx

+ +
−

− −
+

⎡ ⎤ =⎣ ⎦

⎡ ⎤ =⎣ ⎦

 (8.74) 

 Orthogonal series of spherical Bessel functions 

Let 0/x r r= , where 0r  is the surface of a sphere. Assuming Di-

richlet boundary conditions, the eigenfunctions of the spherical 

Bessel functions that vanish on this surface are given by 

 ( ), 0l l nj a = , (8.75) 
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where ,l na  denotes the thn  zero of the thl  spherical Bessel func-

tion. Suppose one has a function ( )lf r  defined on the interior of 

this sphere. Assume one wants to expand ( )lf r  in a Bessel func-

tion series of order l . The expansion would take the form 

 ( ), , 0
0

( ) /l l n l l n
n

f r A j a r r
∞

=

=∑ . (8.76) 

(Figure 8-8 shows how the functions scale to fit in the nth zero 

at the boundary) Since this is a series of orthogonal functions, 

one can use the orthogonality relation, which is given by 

 ( ) ( )
21 2 1

0

( )
2

l
l l ab

j ax dxj ax j bx δ+=∫ , (8.77) 

where ,a b  denote two zeroes of the thl  Bessel function. There-

fore, the coefficients ,l nA  are given by 

 

1 2
, , 02 0

1

1 2
, 02 3 0

1 0

2 ( ) ( / )
( )
2 ( ) ( / ).
( )

l n l l l n
l

l l l n
l

A x dxf r j a r r
j a

r drf r j a r r
j a r

+

+

=

=

∫

∫
 (8.78) 
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Figure 8-8 Eigenfunctions of 0 ( )j kr  

Example:  Expand, in a series of spherical Bessel functions, the 

distribution 

 ( ) 0 0

0

  for 0
0   for 
f r r

f r
r r
≤ <⎧

= ⎨ =⎩
 (8.79) 

Where the series solution is valid for 0.r r≤  

The distribution is spherically symmetric, so one can expand the 

function in a series of 0l =  Bessel functions 

 ( ) ( )0 0, 0
1

/n n
n

f r A j a r r
∞

=

=∑ , (8.80) 

where 
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1 20

0 0,2 0
1

2 ( )
( )n n

n

fA x dxj a x
j a

= ∫ . (8.81) 

Using the ladder operators (8.72) 

 2 2
1 0( ) ( )d x j x x j x

dx
⎡ ⎤ =⎣ ⎦ , (8.82) 

the integral can be evaluated, giving 

 

( )

0,

0,

1 2 2
0 030 0

0,

2
1 1 0,3 0

0, 0,

1( ) ( )

1 1( ) ,

n

n

a

n
n

a

n
n n

x dxj a x x dx j x
a

x j x j a
a a

′ ′ ′=

⎡ ⎤= =⎣ ⎦

∫ ∫
 (8.83) 

 
( )1 0,0 0

2
1 0, 0, 1

2 2
( ) ( )

n
n

n n n n

j af fA
j a a a j a

= = , (8.84) 

yielding the result 

 ( ) ( )0 0, 0
0

1 0, 1 0,

/
2

( )
n

n n n

j a r r
f r f

a j a

∞

=

= ∑ . (8.85) 

The zeros of 0j  are given by 0, =na nπ . The results of the series 

approximation are shown in Figure 8-9. Because the distribu-

tion is discontinuous, the overshooting effect that is characteris-

tic of the Gibbs Phenomena is observed. The magnitude of the 

overshoot persists even when increasing the number of terms, 

but the area of the overshoot gets smaller. In the infinite series 

limit, the series and the function would agree except on a inter-

val of null measure. 
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Figure 8-9 Spherical Bessel function fit to a distribution with a 
piecewise discontinuity. 

 





 

9.  Laplace equation 

9.1  Origin of Laplace equation 

Laplace’s equation 

 ( )2 0∇ Φ =r  (9.1) 

occurs as the steady-state (time-independent) limit of a number 

of scalar second-order differential equations that span the range 

of physics problems. In electrostatics or Newtonian gravitation 

problems, the Φ  field can be interpreted as defining a potential 

function (electrostatic or gravitational, respectively) in a source 

free region. The equation also occurs in thermodynamics, where 

Φ  can be interpreted as the local temperature of a system in a 

steady state equilibrium. 

To understand Laplace’s equation, let’s derive it in the context of 

Gauss’s Law, which states that the net Electric flux crossing a 

closed boundary surface is proportional to the charge enclosed 

in the volume defined by the bounding surface: 

 
0 0

1

V S

QdS dVρ
ε ε⊂

⋅ = =∫ ∫E n�v  (9.2) 
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Where E is the electric field strength, n�  is a unit normal to the 

surface S , and Q  is the net charged enclosed in the region. The 

differential form of Gauss’s law is given by Poisson’s Equation 

 
0

ρ
ε

∇ ⋅ =E  (9.3) 

where ρ  is the charge density For a charge free region this re-

duces to 

 0∇⋅ =E  (9.4) 

For electrostatics, the electric field can be derived from a scalar 

potential function = −∇ΦE , which leads to Laplace’s equation 

(9.1). Figure 9-1 shows a region of space for which Laplace’s eq-

uation valid. 

 

Figure 9-1. A closed region, in which Laplace’s equation is valid 

Laplace’s equation has a unique (up to an overall constant value 

of the potential) solution for either of the following two sets of 

Boundary conditions: 

• (Direchlet Boundary Conditions) The potential is defined 

everywhere on the boundary surface 
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 ( )S S
Φ = Φ r  (9.5) 

OR 

• (Neumann Boundary Conditions) The normal derivative of 

the potential is defined everywhere on the bounding surface: 

 ( )
ˆ

n SS
n S

E E∂ Φ = − = −
∂

r  (9.6) 

9.2  Laplace equation in Cartesian coordinates 

Laplace’s equation in Cartesian coordinates can be written as 

 ( )
2 2 2

2 2 2 , , 0x y z
x y z

⎛ ⎞∂ ∂ ∂+ + Φ =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (9.7) 

Solutions to this equation can be found by separation of va-

riables in terms of product solutions: ( ) ( ) ( )X x Y y Z z . The total 

solution can be expressed as a superposition over all of these 

“normal mode” solutions of the problem. For simplicity, lets 

limit the problem to a 2-dimensional space. Then, Laplace’s eq-

uation reduces to 

 ( )
2 2

2 2 , 0x y
x y

⎛ ⎞∂ ∂+ Φ =⎜ ⎟∂ ∂⎝ ⎠
 (9.8) 

By separation of variables the problem can be written in the 

form 
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2 2

2 2

1 1X Y const
X x Y x

∂ ∂= − =
∂ ∂

 (9.9) 

Which gives two sets of solutions 

Case 1. X(x) is oscillatory, Y(y) is exponential 

 
( ) ( )

( ) ( )

2
2

2

2
2

2

,

.

d X x k X x
dx
d Y y k Y y
dy

= −

= +
 (9.10) 

The solutions to this case are 

 
( )
( )

sin cos ,

sinh cosh .

X x A kx B kx

Y y A ky B ky

= +

= +
 (9.11) 

Case 2. Y(y) is oscillatory, X(x) is exponential 

 
( ) ( )

( ) ( )

2
2

2

2
2

2

,

.

d X x k X x
dx
d Y y k Y y
dy

= +

= −
 (9.12) 

This has solutions 

 
( )
( )

sinh cosh ,

sin cos .

X x A kx B kx

Y y A ky B ky

= +

= +
 (9.13) 

To see how to apply these solutions, let’s look at a rectangular 

box, shown in Figure 9-2, where the potential is known (that is, 

it has been measured) on each of the four surfaces. and 
2 0∇ Φ = everywhere inside the box. 
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Figure 9-2 A rectangle of Length xL  and width yL  where the po-

tential has been measured on all four surfaces. 

By using the superposition principle, one can reduce this to four 

simpler problems, where the potential is non-zero on only one 

surface at a time, as see in Figure 9-3. 

 

 

Figure 9-3 Superposition of four solutions to get a combined solu-
tion 

The total solution can now be written as the superposition 

 ( ) ( ) ( ) ( ) ( ), , , , ,A B C Dx y x y x y x y x yΦ =Φ +Φ +Φ +Φ  (9.14) 

Let’s examine solution for case A. The solutions for ( )X x  must 

vanish at [ ]0, xL  which can be satisfied by 

 ( ) ( )sin nX x k x=  (9.15) 

where 
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 .m
x

mk
L
π=  (9.16) 

Therefore ( )Y y  must be a sum of sinh  and cosh  functions. The 

correct linear combination that vanishes at yy L=  is given by 

 ( ) ( )( )sinh n yY y k L y= −  (9.17) 

Therefore, 

 ( ) ( )
1

, sin sinh y
A n

n x x

n L yn xx y A
L L

ππ∞

=

−
Φ =∑  (9.18) 

By a similar analysis the solutions for the remaining three sur-

faces can be found: 

 ( )
1

, sin sinh ,C n
n x x

n x n yx y C
L L
π π∞

=

Φ =∑  (9.19) 

 ( ) ( )
1

, sin sinh ,x
B n

n y y

n L xn yx y B
L L

ππ∞

=

−
Φ =∑  (9.20) 

 ( )
1

, sin sinh .D n
n y y

n y n xx y D
L L
π π∞

=

Φ =∑  (9.21) 

 Solving for the coefficients 

The solution to 

 ( ) ( )
2

2
2

d X x k X x
dx

= −  (9.22) 
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is a solution to a Sturm-Liouville differential equation, similar to 

that for the Fourier series expansion. The main difference is that 

the solution no longer satisfies periodic boundary conditions, 

but rather, Direchlet (or Neumann) boundary conditions at the 

end points of the interval [ ]0, xL  The eigenfunctions are ortho-

gonal on this interval, and satisfy the normalization condition 

 
0

sin sin .
2

xL
x

x x

Ln x m xdx
L L
π π =∫  (9.23) 

Using this relationship, one can then solve for the coefficients of 

the series expansion (9.18), giving 

 

( )
10 00

sin , sin sin sinh

sinh
2

x xL L
y

A n
nx x x xy

yx
m

x

n Lm x m x n xdx x y A
L L L L

m LLA
L

ππ π π

π

∞

==

Φ =

=

∑∫ ∫
(9.24) 

or 

 
( ) ( )

( )
0

2 sin / ,0
.

sinh /

xL

x A

n
x y x

dx n x L x
A

L n L L

π

π

Φ
=
∫

 (9.25) 

Similarly, the results for the other three surfaces are given by 

 
( ) ( )

( )
0

2 sin / ,
,

sinh /

xL

y B x

n
x x y

dx n x L L y
B

L n L L

π

π

Φ
=
∫

 (9.26) 
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( ) ( )

( )
0

2 sin / ,
,

sinh /

xL

x C y

n
x y x

dx n x L x L
C

L n L L

π

π

Φ
=
∫

 (9.27) 

 
( ) ( )

( )
0

2 sin / 0,
.

sinh /

xL

y D

n
x x y

dx n x L y
D

L n L L

π

π

Φ
=
∫

 (9.28) 

Example:  Consider a square 2-dimensional box of length L  with 

sides have constant potentials 

 0 .A c B DVΦ = Φ = = −Φ = −Φ  (9.29) 

Find the potential inside the box. 

In this case x yL L L= = , and the geometry is symmetric for ref-

lections about the mid-plane wrt either the x or y directions. By 

symmetry, only the odd n terms survive 

 

( )

( )

( )

0
0

0 0

0

2 sin /

sinh

2 4sin  for odd n,

xL

n n n n

n

V dx n x L
A C B D

L n

V Vdx x
n n

π

π

π

π π

= = − = − =

′ ′= =

∫

∫

 (9.30) 

 

( ) ( ) ( )

( ) ( )

0

0

0

0

( )sin sinh sinh
4,

2 1 sinh

( )sin sinh sinh
4 .

2 1 sinh

n

n

n x n y n L y
V L L Lx y

n n

n y n x n L x
V L L L

n n

π π π

π π
π π π

π π

∞

=

∞

=

−⎛ ⎞+⎜ ⎟
⎝ ⎠Φ =

+

−⎛ ⎞+⎜ ⎟
⎝ ⎠−

+

∑

∑

 (9.31) 
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quadrupole fieldmap quadrupole fieldmap 

 

Figure 9-4 Field map of quadrupole potential surface 

Figure 9-4 shows a field map of the potential surface. The series 

has difficulties fitting the results at the corners where the poten-

tial is discontinuous. Otherwise the result is consistent with 

what one might expect for a quadrupole field distribution. 

Example:  Solution in three dimensions for a rectangular volume 

with sides of length ( , , )a b c . Assume one surface (at z c= ) is 

held at positive H.V. and the other 5 are grounded. Try a solu-

tion of the form 

 ( ) ( ) ( )( , , ) sin sin sinh .x y zx y z k x k y k zΦ =  (9.32) 

This gives the eigenvalue equation 

 2 2 2.z x yk k k= +  (9.33) 

The boundary conditions are 

 
0 0 0

( , , ) ( , , ) ( , , ) 0.x a y b

x y z
x y z x y z x y z= =

= = =
Φ = Φ = Φ =  (9.34) 

This is satisfied by 
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2 2

; ; .x y z
m n m nk k k
a b a b
π π π π⎛ ⎞ ⎛ ⎞= = = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.35) 

The sum over a complete set of states satisfying the boundary 

condition gives 

 ( ) ( ) ( )
1 1

, , sin / sin( / )sinh .nm mn
m n

x y z A m x a n y b k zπ π
∞ ∞

= =

Φ =∑∑  (9.36) 

Solving for the coefficients gives 

 ( ) ( )
0 0

4 sin / sin / ( , ),
sinh

a b

mn z c
mn

A dx m x a dx m y b x y
ab k c

π π == Φ∫ ∫ (9.37) 

where 

 
2 2

mnk ,m n
a b
π π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.38) 

 

16 ,  for  ,  odd,
sinh

           0,             otherwise.
mnmn

m n
abmn k cA

⎧
⎪= ⎨
⎪⎩

 (9.39) 

9.3  Laplace equation in polar coordinates 

Laplace’s equation in 2-dimensional polar coordinates is 

 ( )
2 2

2 2 2

2 1 , 0r
r r r r

φ
φ

⎛ ⎞∂ ∂ ∂+ + Φ =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (9.40) 

The azimulthal coordinate is cyclic ( ) ( ), 2 ,r n rφ π φΦ + = Φ . Try 

a product solution of the form 
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 ( ), ( ) ,im
mr f r e φφΦ =  (9.41) 

where 0, 1, 2,m = ± ± "The radial equation becomes 

 ( )
2 2

2 2

2 0.m
d d m f r
dr r dr r

⎛ ⎞
+ − =⎜ ⎟

⎝ ⎠
 (9.42) 

The operator does not mix powers of r , so the solutions are 

simple powers of r : 

 ( ) .m
mf r r±=  (9.43) 

 However, for 0m = , this gives only one independent solution, 

the second solution is ln( )r . The complete multipole series ex-

pansion can be written as 

 ( ) ( )0 0
0 0

, ln / ,
m mm

im
m

m

r rr B r r A B e
r r

φφ
−=∞

=−∞

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟Φ = + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  (9.44) 

where 0r  is some convenient scale parameter, used so that all 

the coefficients have the same dimensions. 

9.4  Application to steady state temperature 

distribution 

For steady-state temperature distributions the temperature T  is 

a solution to Laplace’s equation 

 ( )2 , 0T r φ∇ = . (9.45) 
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 Let us consider and infinitely long (OK, a very long) thick, cy-

lindrical pipe, with inside radius a and outer radius b. Super-

heated water at 205 CD  is flowing through the pipe which is bu-

ried underground at an ambient ground temperature of 55 CD  . 

Calculate the temperature differential along the radius of the 

pipe. Figure 9-5 shows a schematic cross section of the pipe. 

T  

Figure 9-5 Temperature contour map of a cross section of a cylin-
drical pipe with superheated water flowing through it: The hotter 

regions of the pipe are whiter. Heat flow is radial, from hot to 
cold. 

In this case, we have cylindrical symmetry. Therefore, there can 

not be any azimulthal dependence to the temperature distribu-

tion. The temperature can only depend on 0m =  terms. It can be 

written as 

 ( ) ( )0 0 ln /T r A B r a= +  (9.46) 

Matching the temperature at the two boundaries gives 
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( )
( ) ( )

0

0 0

205 ,

55 ln / ,

T a C A

T b C A B b a

= =

= = +

D

D
 (9.47) 

which gives 

 0 0205   and    150 / ln( / ).A C B C b a= = −D D  (9.48) 

9.5  The spherical capacitor, revisited 

Consider a spherical capacitor, of radius 0r , consisting of two 

conducting hemispheres, one a positive high voltage, the other 

at negative high voltage. Pick the z-axis to be the symmetry axis. 

The potential distribution at the surface is given by 

 ( ) 0
0

0

 for cos 0,
, .

 for cos 0
V

r r
V

θ
θ

θ
+ >⎧

Φ = = ⎨− <⎩
 (9.49) 

The solution is azimuthally symmetric, so it can be expanded in 

a Legendre series 

 0
odd 0

( , ) (cos )
l

in l l
l

rr V a P
r

θ θ
∞ ⎛ ⎞

Φ = ⎜ ⎟
⎝ ⎠

∑ , (9.50) 

for the interior solution, or 

 
( 1)

0
0

odd 
( , ) (cos )

l

out l l
l

rr V b P
r

θ θ
+∞ ⎛ ⎞Φ = ⎜ ⎟

⎝ ⎠
∑ , (9.51) 

for the exterior solution. The solution is odd under reflection 

( )z z→ − ; therefore, only terms odd in l  survive. Note that the 

interior solution goes to zero at the origin, and the exterior solu-
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tion goes to zero as r →∞ . The potential must be continuous at 

the boundary 0r r=  

 0 0( , ) ( , ),in outr rθ θΦ = Φ  (9.52) 

implying 

 .l la b=  (9.53) 

Solving for the coefficients of la gives 

 

( )

( ) ( )

1

0
1

1

0
0

2 1 ( )
2

2 1 ( )  for odd .

l l

l

laV V x P x dx

l V P x dx l

−

+=

= +

∫

∫
 (9.54) 

The integral can be evaluated by use of the recursion formula 

 ( ) 1 12 1 ,l l ll P P P+ −′ ′+ = −  (9.55) 

giving 

 1 1(0) (0),l l la P P+ −= −  (9.56) 

where 

 ( )
( ) ( )/ 2

0                   for odd ,
0 1 !!

1  for even .  
!!

l l

l
P l

l
l

⎧
⎪= −⎨

−⎪⎩

 (9.57) 

Figure 9-6 shows the resulting contour map for the spherical ca-

pacitor. At the surfaces the potential goes to 0V± .asymptotically 

the distribution falls off as a dipole distribution 
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Figure 9-6 Potential contour map of the spherical capacitor in the 
taken in the (y, z) plane 

 Charge distribution on a conducting surface 

In the case of the spherical conductor, Laplace’s equation is va-

lid everywhere except at the conducting surface, the potential 

must come from a surface charge density on the conducting sur-

faces. When static equilibrium is reached, the potential within 

the thin conducting surfaces is a constant, so there cannot be 

any charge except at the surface layer. Moreover the Electric 

field must be normal to the surface or charge will continue to 

flow. Assuming a thin conducting layer gives the approximation 

 ( ) ( ) ( )( ) ( )0in out r rρ σ θ σ θ δ= + −r  (9.58) 

Integration over Poisson’s equation in the radial direction then 

gives 
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( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0 0

0 0
0

0

0 0 0

0 0

1 2

,

.

r r
r

r r

r r r

out in total

E dr r r dr
r

E r E r E r

ε ε

ε ε
σ θ δ

ε
ε ε θ

σ θ σ θ σ θ
ε ε

+ +

− −

∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠
+ − + = Δ

+
= =

∫ ∫
 (9.59) 

where 

 
0

0

0
0

0

0

( ) ,

( ) ,

in in in
r r r

r r

out out out
r r r

r r

E
r

E
r

σ θ
ε

σ θ
ε

=
=

=
=

∂Φ= − =
∂

∂Φ= − =
∂

 (9.60) 

This is a general result. For any conducting surface in static 

equilibrium, the field component normal to the surface is 

 
0

,nE σ
ε

=  (9.61) 

which can easily be shown by constructing a infinitesimal Gaus-

sian pillbox near the surface, with one side in the conductor and 

the other outside. The Electric field is discontinuous and points 

out of the surface wherever the density is positive, and into the 

surface, where it is negative. The surface charge density for the 

interior surface is given by. 

 

( ) ( )

( ) ( ) ( )

0

2
0 2 1

2 1
0 0 0

0 2 1
0 2 1

0 0

2 1
cos ,

2 1
cos .

l
lin

l
lr r

l
in l

l

V a l r P
r r r

V a l
P

r

θ

σ θ ε θ

∞
+

+
==

∞
+

+
=

+ ⎛ ⎞∂Φ− = − ⎜ ⎟∂ ⎝ ⎠
+

= −

∑

∑
 (9.62) 

Likewise, for the outer surface, 
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 ( ) ( ) ( )0 2 1
0 2 1

0 0

2 2
cos .l

out l
l

V a l
P

r
σ θ ε θ

∞
+

+
=

+
= + ∑  (9.63) 

9.6  Laplace equation with cylindrical boundary 

conditions 

Laplace’s equation in cylindrical coordinates is 

 ( )
2 2 2

2 2 2 2

1 1 , , 0.V r z
r r r r z

φ
φ

⎛ ⎞∂ ∂ ∂ ∂+ + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.64) 

Using separation of variables, one looks for product solutions of 

the form ( ) ( ) ( ) ( ), ,V r z R r Z zφ φ= Φ . The function must satisfy 

periodic boundary conditions in the azimulthal coordinate, sug-

gesting an expansion in Fourier series ( ) ime φφΦ ∼  should be 

tried. This gives rise to the eigenvalue equation 

 
2

2
2   for  0, 1, 2, .im ime m e mφ φ

φ
∂ = − = ± ±
∂

"  (9.65) 

A similar expansion can be tried to separate the z  dependence, 

giving rive to two possible sets of solutions 

Case I: 

 
2 2 2

2 2
2 2 2 2

1, ( ) 0.kz ikz me k e k R r
z r r r r φ

± ± ⎛ ⎞∂ ∂ ∂ ∂= + − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.66) 

Case II: 
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2 2 2

2 2
2 2 2 2

1, ( ) 0.ikz ikz me k e k R r
z r r r r φ

± ± ⎛ ⎞∂ ∂ ∂ ∂= − + − − =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.67) 

This gives rise to the Bessel equation in the first instance and to 

the modified Bessel equation in the second instance. The com-

plete solutions are built from product solutions of the form 

 Case I: 
( ) sinh( )

( , , )
( ) cosh( )

m im
I

m

J kr kz
V r z e

N kr kz
φφ ⎧ ⎫⎧ ⎫

⎨ ⎬⎨ ⎬
⎩ ⎭⎩ ⎭

∼  (9.68) 

and 

 Case II: 
( ) sin( )

( , , ) .
( ) cos( )

m im
I

m

I kr kz
V r z e

K kr kz
φφ ⎧ ⎫⎧ ⎫

⎨ ⎬⎨ ⎬
⎩ ⎭⎩ ⎭

∼  (9.69) 

The choice of functions and allowed values of k  are further re-

stricted by the boundary conditions. Let us consider the case 

where one has Direchlet boundary conditions specified on the 

surface of a can, defined to be a cylinder of height L  and of ra-

dius R . If we are interested on solving Laplace’s equation in the 

interior of the can, then only the ( )mJ kr  and ( )mI kr  Bessel func-

tions can be used. The other radial functions are divergent at the 

origin. The solutions of Case I are appropriate if the potential is 

zero on the surface of the cylinder. Then the allowed values of k  

are restricted to fit the nodes of the Bessel function 

 ( ) 0mJ kR =  (9.70) 

or 

 / ,mn mmk x R=  (9.71) 
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where mmx  are the zeros of the thm  Bessel function. The general 

solution to the first case is 

( )
1

sinh sinh ( )( , , ) ,
sinh sinh

immn mn
I mn mn m mn

n m mn mn

k z k L zV r z A B J k r e
k L k L

φφ
∞ ∞

= =−∞

⎛ ⎞−= +⎜ ⎟
⎝ ⎠

∑ ∑ (9.72) 

where the terms involving the A  coefficients vanish on the sur-

face 0z = , and the terms involving the B  coefficients vanish on 

the surface z L= . Both terms vanish at the cylindrical surface 

r R= . Notice that the z functions are pre-normalized to go to 1 

on the non-vanishing surface. This is a common technique. Let 

( , , )IAV r Lφ  be the potential on the surface z L= . 

Then, by integration, 

 

( )

( ) ( )

( ) ( ) ( )

1

0

1

0

2
1 2

1

( , , ) /

/ /

2
2

im
IA m mn

im im
mn m mn m m n

m n

m mn
mn m mn mn

d xdxV r L J x r R e

A d xdxJ x r R J x r R e e

J x
A J x A

π φ
π

π φ φ
π

φ φ

φ

π π

−

−

′−
′ ′ ′−′ ′

+
+

=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

∫ ∫
∑ ∫ ∫  (9.73) 

or 

 ( ) ( )1

2 0
1

1 ( , , ) / .im
mn IA m mn

m mn

A d xdxV r L J x r R e
J x

π φ
π

φ φ
π

−

−
+

= ∫ ∫  (9.74) 

Likewise for the surface at 0z = : 

 
( ) ( )1

2 0
1

1 ( , ,0) / .im
mn IB m mn

m mn

B d xdxV r J x r R e
J x

π φ
π

φ φ
π

−

−
+

= ∫ ∫  (9.75) 
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The remaining surface at r R=  is a solution of the modified Bes-

sel equation, where the nodes of ( )Z z  vanish at the end points of 

the interval [ ]0, L  : 

 ( ) ( )
( )

( , , ) sin ,m mn im
II mn mn

m m mn

I k r
V r z C k z e

I k R
φφ

∞

=−∞

= ∑  (9.76) 

where 

 mnk L nπ=  (9.77) 

and 
1

( , , ) sin .
m

im
II mn

m n
m

n rI
n z LV r z C e

n RL I
L

φ

π
πφ

π

∞ ∞

=−∞ =

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= ⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟
⎝ ⎠

∑ ∑  (9.78) 

Solving for the boundary conditions at surface C gives 

 
1

( , , ) sin .im
IIC mn

m n

n zV R z C e
L

φπφ
∞ ∞

=−∞ =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑  (9.79) 

Integrating 

 

( )
1

( , , ) sin

sin sin

2
2

L im
IICo

L im im
m no

m n

mn mn

n zd dzV R z e
L

n z n zd dzC e e
L L

LC LC

π φ
π

π φ φ
π

πφ φ

π πφ

π π

−

−

∞ ∞
′ −

′ ′−′ ′=−∞ =

⎛ ⎞
⎜ ⎟
⎝ ⎠
′⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞= =⎜ ⎟
⎝ ⎠

∫ ∫

∑ ∑∫ ∫  (9.80) 

or 

 
1 ( , , ) sin .

L im
mn IICo

n zC d dzV R z e
L L

π φ
π

πφ φ
π

−

−

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫  (9.81) 
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The total solution is a superposition of the above three solu-

tions: 

 ( )
1

1

( , , ) ( , , ) ( , , ) ( , , )

sinh sinh ( )
sinh sinh

sin .

IA IB IIc

immn mn
mn mn m mn

n m mn mn

m
im

mn
m n

m

V r z V r z V r z V r z

k z k L zA B J k r e
k L k L

n rI
n z LC e

n RL I
L

φ

φ

φ φ φ φ

π
π

π

∞ ∞

= =−∞

∞ ∞

=−∞ =

= + +

⎛ ⎞−= +⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠+ ⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

 (9.82) 

 Solution for a clyindrical capacitor 

Consider a metal can with three metallic surfaces, held at three 

different potentials. For simplicity, let the top and bottom sur-

faces be held at positive and negative high voltages 0V± , respec-

tively; Let the cylindrical side be grounded: 

 0   and  0IA IB IICV V V V= − = =  (9.83) 

By cylindrical symmetry, the sum over m  vanishes, except for 

0.m =  The coefficients to be determined are 

 ( ) ( )10
0 0 0 02 0

1 0

2 / .n n n
n

VA B xdxJ x r R
J x

= − = ∫  (9.84) 

where all the other coefficients vanish due to the boundary con-

ditions. This integral can be solved by use of the recursion for-

mula 
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 1( ) ( ).p p
p p

d x J x x J x
dx −⎡ ⎤ =⎣ ⎦  (9.85) 

Letting 1p =  gives  

 ( ) ( )1 1
0 0 12 2 00 0

1 1( ) ( ) ,
a a J a

xdx J ax x dx J x x J x
a a a

′ ′ ′ ′ ′= = =∫ ∫  (9.86) 

Leading to the result 

 
( )
0

0 0
0 1 0

2 .n n
n n

VA B
x J x

= − =  (9.87) 

Putting it all together, the potential everywhere inside the can is 

given by 

 ( ) ( ) ( )0 0 0
0 0

1 0 1 0 0 0

2 sinh sinh ( ), ,
sinh sinh

n n
n

n n n n n

V k z k L zV r z J k r
x J x k L k L

∞

=

⎛ ⎞−= −⎜ ⎟
⎝ ⎠

∑ (9.88) 

where 0 /on nk x R= . 

 



 

10.  Time dependent differential equations 

Time changes all things. It is responsible for evolution at the 

biological and cosmological scales. Time makes motion possible. 

It is the apparent casual behavior of events that allows us to 

make sense of our universe. Newton considered time to flow un-

iformly for all observers, a scalar parameter against which our 

lives are played out. Special relativity showed that space and 

time are geometrically related and transform like vectors in 

Minkowski space. But there is an arrow of time, nonetheless. 

There is no continuous Lorentz transform that takes a time-like 

vector with a positive time direction and converts it to one with 

a negative time sense. Thermodynamic processes are subject to 

the laws of entropy, which may signal the eventual heat death of 

our universe. More importantly for our purposes, the motions of 

classical particles are well behaved single-valued functions of 

time. Given a complete set of initial conditions and an adequate 

theoretical framework, we can project the past into the future 

and make useful predictions about outcomes. The solution of 

the initial value problem forms the core of dynamics. 

10.1  Classification of partial differential equations 

Laplace’s equation 
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 ( )2 0∇ Ψ =r  (10.1) 

is an example of an elliptic differential equation, so-called be-

cause the differential operator takes on a elliptic form 

2 2 2
x y zD D D+ + . Such equations have solutions if the function or its 

derivative is defined on a closed, bounding surface. Adding a po-

tential term to the operator does not change the character of the 

solution. For example, the equation, 

 ( )( ) ( )2 0K∇ + Ψ =r r  (10.2) 

is also classified as an elliptic differential equation, and the equ-

ation has a unique, stable solution if it satisfies Direchlet or 

Neumann boundary conditions. 

We are used to thinking of time as an additional dimension, but 

it is a peculiar one. Solutions for time dependent problems are 

defined in terms of specifying a set of initial conditions, If one 

considers time as a fourth coordinate, then the initial value 

problem is equivalent to a boundary value problem, where the 

appropriate boundary conditions are to be specified over an 

open hyper-surface, usually defined at a constant time, 0t t= . 

Mathematically, the character of the differential operator differs 

from the elliptic character of Laplace’s equation. 

For example, the diffusion equation 

 ( )2
2

1 , 0t
tα
∂⎛ ⎞∇ − Ψ =⎜ ⎟∂⎝ ⎠

r  (10.3) 
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 is linear in time and the differential operator has a parabolic 

signature 2 2
i ti

D Dα−−∑ . It is an example of a parabolic diffe-

rential equation. Analysis shows that stable unique solutions for 

one direction in time can be found using either Direchlet or 

Neumann boundary conditions on a open surface. The arrow of 

time is forward, and thermodynamic systems flow in the direc-

tion of increasing entropy. 

The wave equation 

 ( )
2

2
2 2

1 , 0t
v t

⎛ ⎞∂∇ − Ψ =⎜ ⎟∂⎝ ⎠
r  (10.4) 

is another common time-dependent partial differential equa-

tion. It is second order in time, but its time signature has the 

opposite sign from the Laplacian operator: 2 2 2
i ti

D c D−−∑ . This 

is an example of a hyperbolic differential equation. The wave 

equation has stable solutions in either time direction, but be-

cause it is second order in time, it satisfies Cauchy boundary 

conditions on an open surface. Cauchy boundary conditions re-

quire that both the function and its normal derivative be speci-

fied at some initial or final time 0t t= . Finally, the Schrödinger 

equation 

 ( )
2

2 , 0
2

i t
m t

⎛ ⎞− ∂∇ − Ψ =⎜ ⎟∂⎝ ⎠
r= =  (10.5) 

is first order in time. Like the diffusion equation, it satisfies Di-

rechlet or Neumann boundary conditions on an open surface. 
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Because of the imaginary i  in the definition of the time opera-

tor, the operator is Hermitian, and the equation has sable solu-

tions in either time direction. Table 10-1 lists some common dif-

ferential equations and their boundary conditions. 

Removal of the time dependence in any of the above equations 

leads to the Helmholtz equation, which has an elliptic character. 

Therefore, to solve these equations completely, one must specify 

not only the functions and/or their derivatives throughout the 

volume at some initial time, but also specify their behavior at 

some bounding surface for all time. If, however, the behavior at 

the boundary is static in character, then the problem can be se-

parated into two problems: 

• the behavior at the static boundary can be fitted to a general 

solution to the time-independent equation, ignoring the time 

behavior of this part of the problem, (this usually results in 

Laplace’s equation), and 

• a particular solution to the time-dependent problem can be 

added to this which satisfies the trivial boundary condition 

that either the function or its normal derivative vanish at the 

bounding surface. 

The total solution is then 

 ( ) ( ) ( ), ,static particulart tΨ =Ψ +Ψr r r
, (10.6) 

where ( )staticΨ r  is given the job of satisfying any non-trivial, but 

static, boundary conditions at the enclosing surface. 
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Table 10-1 A list of common partial differential equations and 
their allowed boundary conditions 

Character Equation Boundary Conditions 

Elliptic Laplace and 

Helmholtz Equa-

tions 

Direchlet or Neumann on a 

closed surface. 

Hyperbolic Wave Equation Cauchy on an open surface 

Parabolic Diffusion Equa-

tion 

Direchlet or Neumann on 

an open surface. (stable in 

one direction) 

Complex 

Parabolic 

Schrödinger Eq-

uation 

Direchlet or Neumann on 

an open surface. 

 

The usual procedure is to first solve for the steady state back-

ground term, and subtract its contribution from the initial con-

dition of the function in the interior volume. The remaining time 

dependent problem can then be solved by separation of va-

riables, in terms of product solutions 

 ( ) ( ) ( )( ) , ,particular k k kt T tΨ =Φr r  (10.7) 

where ( )kΦ r  are the stationary normal nodes of the space prob-

lem. These normal modes are solutions to the Helmholtz equa-

tion 
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 ( ) ( )2 2 ,k∇ Φ = − Φr r  (10.8) 

in the absence of any complicating additional potential term. 

10.2  Diffusion equation 

The diffusion equation is often used to model stochastic heat 

flow. It is valid where the thermal resistance is sufficient, and 

time scales long enough, to allow definition of a local tempera-

ture in a thermodynamic medium. It can be derived from two 

basic assumptions 

• The gradient of the temperature T  is proportional to the 

heat flux T∝∇Q . 

• the divergence of the heat flux is proportional to the rate of 

change of temperature / .T t∇⋅ ∝ ∂ ∂Q  

Colloquially, the first equation states that heat flows from hot to 

cold, while the second states that temperature changes fastest 

where the divergence is greatest. When the temperature reaches 

a steady state condition one gets Laplace’s equation, which has 

zero divergence: 

 20 0.T∇⋅ = ⇒∇ =Q  (10.9) 

In the general case, before steady state equilibrium has been 

reached, the two assumptions give rise to the diffusion equation 

 2
2

1 ,TT
tα

∂∇ =
∂

 (10.10) 
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where 2α is a property of the material that is proportional to the 

thermal conductivity. 

The time eigenstates of this equation are given by 

 ( ) ( )2

.k tT t e α±=  (10.11) 

The negative sign is chosen, since one expects the system to re-

lax to a steady state temperature distribution, given sufficient 

time. The terms with positive signs represent the time reversed 

problem, which is unstable, since the terms exponentially di-

verge. The boundary values to the time independent Helmholtz 

equation, (10.8), restrict the possible values of k , which in turn 

restrict the 1/ e  decay times of the normal modes 

 ( )21/ .kt kα=  (10.12) 

The total solution can be written as 

 ( ) ( ) ( ) /, .kt t
steadyState k kk

T t T A e−= + Φ∑r r r  (10.13) 

Note that the modes with larger values of k  decay faster (since 

they have smaller time constants), and that 

 ( ) ( )lim , .steadyStatet
T t T

→∞
=r r  (10.14) 

Note as well that the initial value of the particular solution to the 

time dependent problem is not given by ( ),0T r  , but is given in-

stead by the difference 

 ( ) ( ) ( ), , ,particular steadyStateT t T t T= −r r r  (10.15) 
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evaluated in the limit as 0t → . The coefficients kA  are deter-

mined by solving the initial value problem 

 ( ) ( ) ( ) ( ),0 ,0 .particular steadyState k kk
T T T A= − = Φ∑r r r r  (10.16) 

Example:  Heat flow in a bar 

Consider a long, thin iron bar that is insulated along its length, 

but not at its ends. Originally the bar is in thermal equilibrium 

at room temperature, 22 CD , but at time 0t = , one end is inserted 

into a vat of ice water at 00 C . Calculate the temperature distri-

bution in the bar as a function of time and find its final steady 

state temperature distribution. 

Since the bar is thin and its sides insulated, this can be treated 

as a problem in one space dimension x . 

The initial condition is given by the uniform temperature distri-

bution, 

 ( ,0) 22 .T x C= D  (10.17) 

The steady state condition, treating the room and the vat as infi-

nite heat sinks, gives the static boundary conditions, 

 (0, ) 22   and  ( , ) 0.T t C T L t= =D  (10.18) 

The steady state problem is a solution to Laplace’s equation in 

one-dimension 

 
2

2

( ) 0,d T x
dx

=  (10.19) 
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which has the solution 

 0( ) ,ss
xT x T T
L

= −Δ  (10.20) 

where 0 22T T C= Δ = D . Therefore, the steady state limit corres-

ponds to a uniform temperature drop from the hot face to the 

cold face of the bar. 

The initial value problem for the particular time-dependent so-

lution is given by 

 ( ) ( )0,0 .p ss
xT x T T x T
L

= − = Δ  (10.21) 

This excess temperature component decays in time, and the sys-

tem relaxes to its steady-state limit. The normal modes of the 

time-dependent problem as sine functions that go to zero at the 

end points of the interval [ ]0, L . Therefore the product solutions 

take the form 

 ( ) ( ) ( ) /sin ,kt t
k kx T t kx e−Φ =  (10.22) 

where 

 ( )2/   and   / .kk n L t L nπ πα= =  (10.23) 

The solution to the initial value problem is 

 ( ) 0,0 sin ,p nn

n xT x T A
L
π= ∑  (10.24) 

with coefficients given by 
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( )

00 0

,02 2sin sin .
L L

p
n

T x n x x n xA dx dx
L T L L L L

π π= =∫ ∫  (10.25) 

The total solution summing the steady state and time dependent 

contributions is 

 ( ) ( )2 2/
0, 1 sin .n t L

nn

x n xT x t T A e
L L

παπ −⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑  (10.26) 

The decay times fall as 2~ 1/ n , so after sufficient time has passed 

only the first few modes are of importance. In the time-reversed 

problem the opposite situation arises, the large n  components 

would grow exponentially as one goes further back into the past. 

The solution of the time reverse problem depends sensitively on 

the initial conditions, one must be able to bound very small high 

frequency components to impossibly small constraints, and the 

results are therefore unstable under small perturbations. The 

diffusion equation can be reliably used only to predict the future 

behavior of a thermodynamic system. 

10.3  Wave equation 

Material waves are time-dependent fluctuations in a medium 

that transport energy and momentum to the boundaries of the 

medium. They have a characteristic velocity of propagation that 

is a property of the specific medium. Maxwell showed that a 

self-consistent solution of the equations of electricity and mag-

netism, then though of as disparate, but interacting, fields re-
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quired that the electric and magnetic fields simultaneously satis-

fy a wave equation where the wave velocity is determined by the 

speed of light. From that he deduced that the origin of light is 

fundamentally electromagnetic in character. Marconi later con-

firmed this hypothesis with the discovery of radio waves, in-

duced by the oscillation of electric charges in an antenna. Before 

then, the Michelson-Morley experiment had already demon-

strated that the speed of light in free space was independent of 

the properties of a underlying medium, referred to as the either. 

Today we are comfortable with the notion that the electromag-

netic field is an intrinsic property of spacetime and does not re-

quire an underlying medium for its propagation. 

Waves are classified as to whether the amplitude of oscillation is 

along (longitudinal) or transverse to the direction of propaga-

tion. Vibrating strings and waves on the surface of a pond are 

examples of transverse waves, while sound in a gaseous medium 

is a purely longitudinal disturbance, since gases cannot support 

a shear force. Waves in solids are more complex, having both 

transverse and longitudinal modes, usually with different veloci-

ties of propagation. In most cases, the linear character of the 

wave equation is the result a small amplitude approximation to 

a more complex non-linear theory, one which includes dissipa-

tive and dispersive contributions. 

In its simplest form, the wave equation relates the second-order 

space and time derivatives of some fluctuation, to the wave ve-

locity v : 
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 ( )
2

2
2 2

1 , 0.t
v t

⎛ ⎞∂∇ − Ψ =⎜ ⎟∂⎝ ⎠
r  (10.27) 

In the case of a string or a surface wave, this fluctuation is a 

transverse displacement. In the case of sound vibrations in a 

medium it represents the propagation of a pressure disturbance. 

The stored energy density of the wave is proportional to the 

square of this amplitude. Solution of the wave equation often in-

volves solving for the normal modes of oscillation in time via se-

paration of variables. This involves separating the wave into it 

frequency components in the time domain: 

 ( ) ( ) ( ) ( )
/

, cos sin ,i t
k k

k c
t e A t B tω

ω
ω ω

ω ω±
±

=
Ψ = Φ = +∑ ∑r r r r (10.28) 

where the wave number /k cω=  is often restricted to discrete 

values by the boundary conditions at the bounding surface of the 

medium. For fixed frequency, the normal modes of oscillation, 

which can be denoted as ( )kΦ r , are solutions to the time inde-

pendent Helmholtz equation (10.8). Note that there are two ini-

tial conditions that must be satisfied. At time 0t = , one must 

specify both the initial function and its time derivative, i.e., 

 ( ) ( )
/

, 0 cosk
k c

A t
ω

ω
=

Ψ = ∑r r  (10.29) 

and 

 ( ) ( )
/

,0 sin ,k
k c

B t
ω

ω ω
=

′Ψ = ∑r r  (10.30) 

where 
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 ( ) ( )( ) 0
, 0 , / .

t
t t

=
′Ψ = ∂Ψ ∂r r  (10.31) 

 Pressure waves: standing waves in a pipe 

Sound waves in a gaseous medium are longitudinal waves. At a 

closed rigid boundary, the longitudinal displacement of the me-

dium goes to zero, and one has a displacement node that the 

boundary. Correspondingly, the pressure at such a boundary is a 

maximum or minimum and therefore the pressure has an anti-

node that the boundary. Stated in other terms, the pressure at a 

closed boundary satisfies Neumann boundary conditions 

 
closed boundary

( , ) 0.P x t
t

∂ =
∂

 (10.32) 

 At an open surface, there is no impedance and the pressure dif-

ferential across the boundary drops to zero. Therefore a statio-

nary wave would satisfy Direchlet boundary conditions at an 

open boundary. 

 
open boundary

( , ) 0.P x t =  (10.33) 

If one applies this to an organ pipe of length L  with a open end 

at 0x =  and a closed end at x L= , the allowed standing wave 

nodes are 

 ( )( , ) sin( ) cos ,P x t kx A tω φ∝ +⎡ ⎤⎣ ⎦  (10.34) 
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where φ  is a phase angle given by the initial conditions, and 

( , )P x t  is a stationary solution to the wave equation 

 ( )
2 2

2 2 2

1 , 0.P x t
x v t

⎛ ⎞∂ ∂− =⎜ ⎟∂ ∂⎝ ⎠
 (10.35) 

The wave velocity in a gas is given by /v Y ρ=  where Y  is 

Young’s modulus (one-third of the bulk modulus) and ρ  is the 

density. The boundary conditions for a half-open pipe require 

 ( )1
2 ,kL n π= +  (10.36) 

with an angular frequency given by 

 kvω = . (10.37) 

Usually a organ pipe is sounded to emphasize a nearly pure 

harmonic note at the fundamental frequency, corresponding to 

0n = . 

 The struck string 

The struck string on a string instrument satisfies Direchlet 

boundary conditions at its end points 

 
0

( , ) 0.x L

x
y x t =

=
=  (10.38) 

where y  is the transverse displacement of the string from its 

equilibrium position. Its normal modes of motion are given by 
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 ( ) sin ,n
n xx
L
πΦ =  (10.39) 

where / /k n L vπ ω= = . The wave velocity is given by /v T μ=  

where T  is the tension and μ  is the mass per unit length. The 

general solution can be written as 

 ( )
1

, cos sin sin .n n
n

n vt n vt n xy x t A B
L L L
π π π∞

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑  (10.40) 

The string has a fundamental harmonic for / 2 / 2nv Lω π =  with 

a rich texture of harmonics depending on how the string is 

struck. The actual sound produced by a stringed instrument is 

significantly modified by its sound board, but let’s analyze the 

response of the string in isolation. The initial conditions are giv-

en by 

 ( )
1

,0 sinn
n

n xy x A
L
π∞

=

=∑  (10.41) 

and by 

 ( )
1

,0 sinn n
n

n xy x B
L
πω

∞

=

′ =∑  (10.42) 

where /n n v Lω π= . 

The solution for the coefficients are given by 

 
0

2 sin ( ,0)
L

n
n xA y x dx

L L
π= ∫  (10.43) 

and 
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0

2 sin ( ,0) .
L

n
n

n xB y x dx
L L

π
ω

′= ∫  (10.44) 

As an example, suppose the string is struck at its exact middle 

by an impulsive force. Then the initial conditions can be ex-

pressed approximately by a delta-function contribution to the 

instantaneous velocity distribution at the initial time 0t = : 

 0( ,0) 0; ( ,0) ( / 2)y x y x x Lλ δ′= = −  (10.45) 

Therefore, 0nA =  and 

 
0

2 2sin ( / 2) sin( / 2).
L

n
n

n x LB x L dx n
L L n v

π δ π
ω π

= − =∫  (10.46) 

Only terms odd in n  contribute, with the time evolution of the 

original delta function given by 

 ( ) ( )
( )

( ) ( )
0

1 2 2 1 2 1
, sin sin .

2 1

n

n

L n x n vt
y x t

n v L L
π π

π

∞

=

⎛ ⎞− + +
= ⎜ ⎟

⎜ ⎟+⎝ ⎠
∑  (10.47) 

 The normal modes of a vibrating drum head 

A circular drum head can be approximated as a vibrating mem-

brane, clamped at its maximum radius 0r . The amplitude of 

transverse motion in the z  direction is a solution to the wave 

equation 

 ( )
2

2
2 2

1 , 0Z t
v t

⎛ ⎞∂∇ − =⎜ ⎟∂⎝ ⎠
r  (10.48) 
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The problem separates in polar coordinates, giving normal sta-

tionary modes that can be written in terms of cylindrical Bessel 

functions. 

 ( ) ( )0/ im
mn m mnZ J a r r e φ=r  (10.49) 

with a total solution given by 

 ( ) ( ) ( )0cos sin / im
mn mn mn mn mn m mn

mn
Z A t B t J a r r e φω ω= +∑r  (10.50) 

Where the normalization condition 

 
( ) ( )

( )

1

0

2
1

m n m mnm

im im
m mn mm nn

xdx J a x J a x

d e e J a
π φ φ

π
φ π δ δ

′ ′′

′−
′ ′+−

× =

∫

∫
 (10.51) 

can be used to determine the coefficients. 

The allowed wave numbers are those given by the zeros of the 

Bessel functions 

 0/ , ( ) 0mn mn m mnk a r r J a= =  (10.52) 

Since these are transcendental numbers the vibration frequen-

cies are not simple harmonic multiples of each other, therefore 

the sound made by a percussion instrument, such a circular 

drum, often sounds discordant, with frequencies given by 

 0/ 2 / 2mn mn mnf a v rω π π= = . (10.53) 

The first few normal modes of the vibrating membrane are 

shown in Figure 10-1 and Figure 10-2. 
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Figure 10-1 The first two nodes of the m=0 Bessel function 

 

Figure 10-2 The first node of the m=1 Bessel function has two 
orientations corresponding to sinφ  and cosφ  solutions 

Discussion Problem:  Solve for the time evolution of a circular 

drum head struck impulsively at its exact middle by a drum 

stick. The initial conditions are 

 ( ) 0( , ,0) 0; Z r, ,0 ( ) ( ).Z r x yφ φ λ δ δ′= =  (10.54) 

Use the Jacobean of transformation from polar to Cartesian 

coordinates to carry out the integrals for the coefficients 
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 ( )( ) ( ) ( ) 2 (0).rdrd f dxdyf x y fφ δ δ π= =∫ ∫r r  (10.55) 

Note that only 0m =  terms contribute to the result. 

10.4  Schrödinger equation 

The Schrödinger equation is given by 

 
( , )( , ) ,tH t i
t

∂ΨΨ =
∂
rr =  (10.56) 

where H  is the Hamiltonian operator and 
2( , )tΨ r  represents 

the probability density of finding a particle at a given location in 

space. Therefore the equation represents the evolution of the 

probability amplitude in time. If H  is a Hermitian operator, the 

probability is conserved and a single particle state is assigned a 

total unit probability of being located somewhere in space 

 
23 ( , ) 1.d r tΨ =∫ r  (10.57) 

The equation is first order in time, like the diffusion equation. 

Unlike the diffusion equation the time behavior is oscillatory, 

therefore the time evolutions is well-behaved for propagation in-

to past or future time. Separation of variables gives product so-

lutions of the form 

 ( , ) ( ) ,i t
k kt e ω−Ψ = Ψr r  (10.58) 

where 

 ( ) ( ) ( ) ( )2 / 2k k k k kH E k mωΨ = Ψ = Ψ =r r r= =  (10.59) 
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and k  is a solution to the eigenvalue equation for the stationary 

modes of motion. 

10.5  Examples with spherical boundary conditions 

 Quantum mechanics in a spherical bag 

The Time-Independent Schrödinger equation for a freely mov-

ing particle, in the absence of a potential, is given by 

 
2 2

2
22 2

H
m m

= = − ∇p =
. (10.60) 

This can be rewritten as the Helmholtz equation 

 2 2( ) ( )k∇ Ψ = − Ψr r , (10.61) 

where 
( )2

2
k

E
m

=
=

. 

If the particle is put into a infinite well of radius 0r r= , the wave 

function vanishes at the spherical boundary. The product solu-

tions can then be written as 

 ( ) ( ) ( ) ( ), , 03 2
0 1 ,

2 / , ,lm n l l n lm
l l n

j a r r Y
r j a

θ φ
+

Ψ =r  (10.62) 

where the normalization is chosen so that 

 ( ) ( )0 2
, ,0

1.
r

lm n lm nr dr d ∗ΩΨ Ψ =∫ ∫ r rv  (10.63) 
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The allowed eigenvalues for the energies are constrained by the 

boundary conditions to the discrete set 

 
( )2

0/
.

2
ln

nl nl

a r
E

m
ω= =

=
=  (10.64) 

The energy does not depend on the m state value, so the energies 

are ( )2 1l + -fold degenerate for any given l  value. In general the 

total wave function need not be in an eigenstate of energy, so the 

wave function at some initial time can be written as a sum over 

all possible states 

 ( ) ( ) ,nlm nlm
nlm

cΨ = Ψ∑r r  (10.65) 

where 
2

nlmc  denotes the fractional probability that it is any given 

state. 

The time evolution of this wave packet is given by 

 ( ) ( ), .nli t
nlm nlm

nlm
t c e ω−Ψ = Ψ∑r r  (10.66) 

If a particle where known to be localized at some point within 

the sphere at a fixed time, the different time behaviors of normal 

modes would cause its position probability to disperse in time. 

 Heat flow in a sphere 

Consider a sphere heated to a uniform temperature 0T  at some 

initial time 0t , then immediately dropped into a quenching bath 
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at a temperature fT . Calculate it temperature distribution at lat-

er times. 

The temperature distribution satisfies the initial condition 

 ( )0 0,T t T=r  (10.67) 

and must satisfy the boundary condition 

 ( )
0

0,    for .fr r
T t T t t

=
= >r  (10.68) 

Therefore, it can be expanded in the series solution 

 ( ) ( ) 0( ) /
0

1
, ( , ) / ,lmnt t t

f lmn lm l l n
lm n

T t T A Y j a r r eθ φ
∞

− −

=

= +∑ ∑r  (10.69) 

where fT  is the steady-state solution. By spherical symmetry, 

only 0l m= =  terms contribute, and the time constants are given 

by ( ) 2

0/lmn lnt a rα
−

= . Therefore the solution can be written as 

 ( ) ( ) 0( ) /
0 0 0

1

, / ,lmnt t t
f n n

n

T t T A j a r r e
∞

− −

=

− =∑r  (10.70) 

where 004n nA Aπ= , and 0na nπ= , so that 

 ( )22
00 0 / .nt r nπα=  (10.71) 

The initial condition is given by 

 ( )0 0 0
1

/ .f n l n
n

T T T A j a r r
∞

=

Δ = − =∑  (10.72) 

Therefore, the solution is given by 
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( )

( )

1 2
0 0 02 0

1 0

0
01 1 0

2 /
( )

2
( )

n n
n

f
n

A x dxj a r r T
j a

T T
a j a

= Δ

= −

∫
 (10.73) 

or 

 ( ) ( ) ( ) ( )2
0 0/ ( )

0 0 0
1 0 1 0

2, / .n r t t
f n

n n n

TT t T j a r r e
a j a

πα
∞

− −

=

Δ= +∑r  (10.74) 

Figure 10-3 shows how the shape of the temperature distribu-

tion evolves in time. Initially con has a uniform temperature dis-

tribution, but the short decay time components quickly decay, 

leaving a slowly decaying component with roughly the shape of a 

0 01 0( / )j a r r  Bessel function having a single maximum at the cen-

ter of the sphere. 

 

Figure 10-3 Temperature distribution in a sphere 
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10.6  Examples with cylindrical boundary conditions 

 Normal modes in a cylindrical cavity 

The normal frequencies of oscillation in a cylindrical cavity dif-

fer depending on whether the time-dependent equation satisfies 

Direchlet or Neumann boundary conditions. In either case, one 

is dealing with the interior solutions to the Helmholtz equation 

(10.8), therefore the solutions can be written in the general form 

 ( ) cos /
( ) .

sin /
im

k m mn

n z L
J k r e

n z L
φ π

π
⎧ ⎫

Φ = ⎨ ⎬
⎩ ⎭

r  (10.75) 

For Direchlet Boundary conditions, the normal modes satisfy 

 
( )

( )0

( ) sin /

and 0,

im
k m mn

m mn

J k r e n z L

J k r

φ πΦ =

=

r
 (10.76) 

while, in the Neumann case, one has 

 
( )

( )0

( ) cos /

and 0.

im
k m mn

m mn

J k r e n z L

J k r

φ πΦ =
′ =

r
 (10.77) 

 Temperature distribution in a cylinder 

For time-independent cylindrical boundary conditions, the 

steady-state temperature ( )ssT r  is calculated as a solution to 

Laplace’s equation, and the result subtracted from the initial 

temperature distribution within the cylindrical volume. The 
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time-dependent temperature profile for a cylinder of radius 0r  

and height L  is then given by 

 
( ) ( )

( ) /
0

1 1

,

/ sin ,lmn

ss

t tim
mnl m mn

m n l

T t T

l zA J a r r e e
L

φ π∞ ∞ ∞
−

=−∞ = =

−

= ∑ ∑∑

r r
 (10.78) 

 where mna  are the zeroes of the Bessel functions and 

 
2 2

2 2 2

0

1 ,mn
mnl

mnl

a l k
t r L

πα α
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (10.79) 

Orthogonality can be used to determine the coefficients of the 

time dependent part of the problem: 

 
( ) ( )

( ) ( )

1

02 0
1

0

1
2

2 /

2 sin ,0 .

im
mnl

m mn
m mn

L

ss

A e

xdxJ a r r
J a

l zdz T T
L L

π φ
ππ

π

−

−

−

=

×

× −⎡ ⎤⎣ ⎦

∫

∫

∫ r r

 (10.80) 

 



 

11.  Green’s functions and propagators 

When one exerts a force on a dynamic system, the response is a 

disturbance of the system that propagates in time. Up to now we 

have concentrated on the solution of linear homogeneous sys-

tems. But such systems do not start moving on their own. Ho-

mogeneous equations have the trivial solution that the field and 

its derivates vanish everywhere. Their motion arises from flow 

of energy and momentum into or out of the system, expressed in 

terms of boundary conditions, and ultimately, to the action of 

sources that are often inhomogeneous in origin. A complicated 

force acting for an extended period of time, or over an extended 

volume of space, can be decomposed into point-like impulses. If 

the equation is linear, the net effect can be expressed as a super-

position of these influences. This is the essence of the Green’s 

function technique for solving inhomogeneous differential equa-

tions. A Green’s function represents the potential due to a point-

like source meeting certain particular boundary conditions. If 

the equation is time dependent, the Green’s function is often re-

ferred to as a propagator. The positive time propagator propa-

gates a signal into future times, and the negative time propaga-

tor propagates a signal backwards in time. 



Green’s functions and propagators 253 

11.1  The driven oscillator 

Consider a driven oscillator that might, for example, be an ap-

proximation to a swing with a child on it. When one pushes the 

swing, it begins to move. If one pushes in phase with a existing 

motion, the amplitude grows. Before and after the introduction 

of the time dependent force, assuming that the amplitude re-

mains small, the motion of the swing is a solution to a linear 

homogeneous differential equation with a characteristic angular 

frequency of oscillation oω . It behaves like a driven oscillator. 

The differential equation of motion for the driven oscillator can 

be written as 

 
2

2
02

( ) 0,
( )

0 0,
f t td y t

tdt
ω

>⎛ ⎞ ⎧
+ = ⎨⎜ ⎟ ≤⎩⎝ ⎠

 (11.1) 

where ( )f t  is a generalized force that begins acting at some time 

0t > . The initial state of the system is a solution to the homoge-

neous equation 

 
2

2
02 ( ) 0,h

d y t
dt

ω⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 (11.2) 

with a solution 

 0 0( ) cos sin ,hy t A t B tω ω= +  (11.3) 

where the coefficients A  and B can be determined from the ini-

tial conditions 

 0(0) , (0) .h hy A y Bω′= =  (11.4) 
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The complete solution to the inhomogeneous problem is a sup-

position of this homogeneous solution with a particular solution 

to the inhomogeneous problem that has the swing initially at 

rest. 

 ( ) ( ) ( ),h py t y t y t= +  (11.5) 

where 

 
2

2
02

( ) 0
( )

0 0p

f t td y t
tdt

ω
>⎛ ⎞ ⎧

+ = ⎨⎜ ⎟ ≤⎩⎝ ⎠
 (11.6) 

and 

 ( ) ( ) 0 for 0p py t y t t′= = ≤  (11.7) 

The solution to the driven oscillator problem can be expressed 

as a convolution over a simpler problem involving the response 

of the system to an impulsive force of unit magnitude acting at 

an instance of time 0t′ > : 

 
2

2
02 ( , ) ( ), 0d g t t t t t

dt
ω δ+

⎛ ⎞ ′ ′ ′+ = − >⎜ ⎟
⎝ ⎠

 (11.8) 

satisfying the boundary condition 

 ( , ) 0g t t t t+ ′ ′= <  (11.9) 

( , )g t t+ ′  is the positive time propagator that will propagate the 

solution forward in time. The general solution to the problem 

can then be written as 

 
0

( ) ( ) ( ) ( , ) .
t

hy t y t f t g t t dt′ ′ ′= + ∫  (11.10) 
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The proof is straightforward: 

 

2 2
2 2
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⎝ ⎠

⎛ ⎞′ ′ ′= + +⎜ ⎟
⎝ ⎠

′ ′ ′= − =

∫

∫

∫

 (11.11) 

In another way of looking at the problem, the Green’s function is 

a solution to the homogeneous equation for t t′≠ . Because of the 

delta function source term, it has a discontinuity in its derivative 

at t t′= : 

 ( )
0 0

lim ( ) lim 1.
t t

tt
y t t t dt

ε ε

εε εε
δ

′+ ′+

′−→ →′−
′ ′ ′= − =∫  (11.12) 

Therefore, the solution can be written as 

 ( ) 0

0

0                   
, sin         ,

t t
g t t t t tω

ω
+

′<⎧
⎪′ = ⎨ ′>⎪⎩

 (11.13) 

or more compactly as 

 ( ) ( )0

0

sin, tg t t t tω
ω+ ′ ′= Θ −  (11.14) 

where ( )t t′Θ −  is the step function distribution given by 

 ( ) 0               ,
1               .

t t
t t

t t
′<⎧′Θ − = ⎨ ′>⎩

 (11.15) 
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The step function satisfies the differential equation 

 ( ) ( ) ,d t t t t
dt

δ′ ′Θ − = −  (11.16) 

which can be demonstrated by direct integration of the equa-

tion. 

Suppose the swing were initially at rest, and that the force acts 

for a finite time max0 t t′< < . The asymptotic state of the system 

can then be written as 

 

( )

max max 0
0 0

0

0 0 0 max

sin ( )( ) ( ) ( , ) ( )

sin   for ,

t t

t

t ty t f t g t t dt f t dt

y t t t

ω
ω

ω φ

′>

′−′ ′ ′ ′ ′= =

= + >

∫ ∫  (11.17) 

where the solution for large times is a solution for the homoge-

neous equation with an amplitude and phase determined by the 

convolution of the green’s function with the time dependent 

force over the period for which it was active. 

It is unrealistic to expect a swing to oscillate forever, so let’s in-

troduce a subcritical damping force with a damping coefficient 

γ . The modified equation of motion is 

 
2

2
02

( ) 0
( )

0 0,
f t td d y t

tdt dt
γ ω

>⎛ ⎞ ⎧
+ + = ⎨⎜ ⎟ ≤⎩⎝ ⎠

 (11.18) 

which has the homogeneous solution 

 ( )/ 2( ) sin ,t
hy t Ae tγ ω φ− ′= +  (11.19) 

where 
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2

2
0 .

4
γω ω′ = +  (11.20) 

The Green’s function solution to the equation of motion is given 

by 

 ( ) ( ) ( )/ 2 sin
( , ) .t t t t

g t t e t tγ ω
ω

′− −
+

′ ′−
′ ′= Θ −

′
 (11.21) 

It is straight forward to show that 

 ( , ) 0g t t t t+ ′ ′= <  (11.22) 

and 

 
0

lim ( , ) 1 .
t t

t t
g t t

ε

ε ε

′= +

+→ ′= −
′ ′ =  (11.23) 

11.2  Frequency domain analysis 

Another approach to this problem is to resolve the time spectra 

of the force into its frequency components. This leads to a 

Fourier transformation. Given an equation of the form 

 
2

2
02 ( ) ( )d d y t f t

dt dt
γ ω⎛ ⎞

+ + =⎜ ⎟
⎝ ⎠

 (11.24) 

one can resolve the force into frequency components 

 ( )( ) .i tf t f e dωω ω
∞ −

−∞
= ∫  (11.25) 

Similarly, the response can be written as 



258 Green’s functions and propagators 

 ( )( ) .i ty t y e dωω ω
∞ −

−∞
= ∫  (11.26) 

Leading to the Fourier transform equation of motion 

 ( ) ( ) ( )2 2
0 ,i y w fω γω ω ω− − + =  (11.27) 

which has the solution 

 ( ) ( )
( ) ( )02 2

0

( , ) .R

f
y f

i
ω

ω ω ω ω
ω γω ω

= = Γ
− − +

 (11.28) 

The response at a given frequency has a typical resonance line 

shape, as seen in Figure 11-1, where the norm-square of RΓ .is 

plotted By making the inverse transform, one gets the particular 

solution 

 ( )1( ) .
2

i t
py t y e dωω ω

π
∞

−∞
= ∫  (11.29) 

The boundary conditions can be satisfied by adding an appro-

priate homogeneous term to this solution. 
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Figure 11-1 Resonance response of a driven oscillator for different 
damping constants. 

11.3  Green’s function solution to Possion’s equation 

Gauss’s Law for the divergence of the electric field in the pres-

ence of a charge distribution can be expressed by Poisson’s equ-

ation 

 ( ) ( )2

0

.
ρ
ε

∇ = −∇ Φ =
r

E ri  (11.30) 

The electrostatic potential ( )Φ r  of a point charge of magnitude 

q  and position ′r  in free space is given by 

 ( )
0

, .
4

q
πε

′Φ =
′−

r r
r r

 (11.31) 
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The potential due to a distribution of charge with density ( )ρ ′r  

can be written as a integral over the pointlike potential contribu-

tions for infinitesimal elements of charge ( ) 3dq d rρ ′ ′= r , giving 

 ( ) ( )3

0

.
4

d r
ρ

πε
′

′Φ =
′−∫

r
r

r r
 (11.32) 

From this we deduce that the free space Green’s function for 

Poisson’s equation is given by 

 ( )
0

1, ,
4

G
πε

′ =
′−

r r
r r

 (11.33) 

where 

 ( ) ( )2

0

1,G δ
ε

′ ′−∇ = −r r r r  (11.34) 

and 

 ( ) ( ) ( )3 , .d r G ρ′ ′ ′Φ = ∫r r r r  (11.35) 

11.4  Multipole expansion of a charge distribution 

Using the series expansion 

 ( ) ( )*
, ,1

0

1 4 , , ,
2 1

ll

l m l ml
l m l

r Y Y
l r
π θ φ θ φ

∞
<
+

= =− >

′ ′=
′− +∑∑r r

 (11.36) 

one can make a multipole expansion of an arbitrary charge dis-

tribution, assuming that the charge distribution is localized 
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within a volume of radius or . We are interested in finding the 

potential only in the exterior region or r r′> > . Then equation 

(11.36) can be written as 

 ( ) ( )*
, ,1

0

1 4 , , .
2 1

ll

l m l ml
l m l

r Y Y
l r
π θ φ θ φ

∞

+
= =−

′ ′ ′=
′− +∑∑r r

 (11.37) 

Substituting into equation (11.32) gives 
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 (11.38) 

where the lmB  represent the multipole moments of the distribu-

tion. 

As an example, consider the following line charge distribution 

along the z-axis 

 ( ) ( ) ( )2/  for z .qz a x y aρ δ δ′ = <r  (11.39) 

We are interested in obtaining the multipole expansion of this 

distribution for a>r . By azimulthal symmetry, only the 0m =  

terms will contribute. 
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or 

 0

           0           for even ,

4 2 for odd ,
2 1 ( 2)

l
l

l
B qa l

l l
π

⎧
⎪= ⎨
⎪ + +⎩

 (11.41) 

Therefore, 

 ( ) ( )
1

even 0

2 cos   for .
4 2

l

l
l

q aP a
a l r

θ
πε

+∞ ⎛ ⎞Φ = >⎜ ⎟+ ⎝ ⎠
∑r r  (11.42) 

For large r , the leading order behavior of the distribution ap-

proaches that of a dipole charge distribution 

 ( ) 2
0

cos .
6
qa

r
θ

πε
Φ =r  (11.43) 

11.5  Method of images 

The Free space Green’s function is a solution to Poisson’s equa-

tion for a unit point charge, subject to the boundary conditions 

 ( )lim , 0.Freer
G

→∞
′ =r r  (11.44) 
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To find a similar Green’s function for a unit point charge within 

a closed surface, subject to Direchlet Boundary conditions at the 

surface, this Green’s function must be modified to vanish at the 

boundary. This can be accomplished by adding a solution of the 

homogeneous equation, valid within the boundary, to the free 

space Green’s function: 

 ( ) ( ) ( ), , ,Direchlet Free hG G′ ′= +Φr r r r r  (11.45) 

Subject to the constraint 

 ( ), 0.Direchlet Boundary
G ′ =r r  (11.46) 

The general solution to Poisson’s equation within the boundary 

region is given by 

 ( ) ( ) ( ) ( )3
h , .DirechletV d r G ρ′ ′ ′Φ = + ∫r r r r r  (11.47) 

Where ( )hV r  is another solution to the homogeneous Laplace 

equation satisfying the actual Direchlet boundary on the boun-

dary surface: 

 ( ) ( )hboundary boundary
VΦ =r r  (11.48) 

 Solution for a infinite grounded plane 

Calculating Green’s functions of a complicated surface is non 

trivial, but for simple surface, one can use symmetry arguments 

to generate an appropriate Green’s function. For example, sup-



264 Green’s functions and propagators 

pose the boundary is a grounded infinite plane at 0,z =  and we 

were interested in obtaining the Green’s function for the positive 

half plane 0.z ≥  The surface of the plane is an equipotential sur-

face, therefore the Electric field would have to be normal to the 

surface (if the field has a component in the plane, charge would 

flow, which would contradict the assumption that the system 

has reached static equilibrium).  

The grounded plane problem for the positive half plane would 

be equivalent to removing the plane and adding a mirror charge 

of opposite sign in the negative half plane. In fact for any distri-

bution of charge ( , , )x y zρ  in the positive half plane, the mirror 

distribution ( , , )x y zρ− −  would lead to a zero-valued, equipoten-

tial surface at 0z = . In the case of a point charge at 

( ), ,x y z′ ′ ′ ′=r , where 0z′ ≥ , one can place an image charge of 

opposite sign at ( ), ,x y z′′ ′ ′ ′= −r  to construct the Green’s function 
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( ) ( ) ( )

0 0

2 2 2
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2 2 2
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πε πε

πε

πε

′ = −
′ ′′− −

=
′ ′ ′− + − + −

−
′ ′ ′− + − + +

r r
r r r r

 (11.49) 

Note 

 ( ) ( )2

0

1,  for 0G zδ
ε

′ ′−∇ = − >r r r r  (11.50) 
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and 

 ( )
0

, 0.
z

G
=

′ =r r  (11.51) 

 Induced charge distribution on a grounded 

plane 

The induced charge density on the conducting plane is given by 
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0 0
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z z
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x y
E

z
σ

ε=
=

∂Φ= − =
∂

r
 (11.52) 

Therefore, a point particle of magnitude q  located at ′r  induces 

a surface charge density given by 

 ( ) ( )
0

0

,
, ,

z

G
x y q

z
σ ε

=

′∂
= −

∂
r r

 (11.53) 

 ( )
( ) ( ) ( )( )3/ 22 2 2

2, .
4

qzx y
x x y y z

σ
π

′−=
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 (11.54) 

Integrating the induced charge density over the surface gives 

 ( )
( )

2

3/ 20 0 2 2

2, .
4

qzdxdy x y d d q
z

π
σ ρ ρ φ

π ρ

∞ ∞ ∞
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∫ ∫ ∫ ∫  (11.55) 

A point charge induces a net charge of equal magnitude and op-

posite sign on the conducting surface. This is illustrated in Fig-

ure 11-1,which shows how a positive charge attracts a negative 

charge density of equivalent magnitude to the surface region 
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closest to it. The sharpness of the induced charge distribution 

depends on how close the point charge is to the plane. 

 

11-2 Induced surface charge density on a grounded plane due to a 
nearby point charge. 

 Green’s function for a conducting sphere 

The above technique is called the method of images. It can be 

extended to find the Green’s function for a grounded spherical 

cavity. Let the radius of the sphere be a  and let ′r  be the posi-

tion of a point charge inside the cavity. Then one can construct 

an image charge of magnitude q′′  and position λ′′ ′=r r  where λ  

is some scale factor to give the Green’s function solution 

 ( )
0 0

1, ,
4 4sphere

qG
πε πε

′′′ = −
′ ′′− −

r r
r r r r

 (11.56) 
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subject to the constraint 

 ( ), 0.sphere r a
G

=
′ =r r  (11.57) 

Letting cosx θ= , we can rewrite the potential in terms of the 

generating function for the Legendre polynomials: 

 ( ) 1/ 2 1/ 22 2
0 0

1, ,
4 1 2 4 1 2

sphere
qG

r xh h r xh hπε πε

′′′ = −
′ ′ ′′ ′′− + − +

r r (11.58) 

where /h r r′ ′=  and /h r r′′ ′= . Using the geometric ratio 

2r r a′ ′′ = , so that ( )2/a rλ ′= , or 
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r r  (11.59) 

gives 
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which reduces to 
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4

1 2
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The latter condition is satisfied when 

 .aq
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 (11.62) 
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Therefore, 

 ( ) 2
0

0

1, .
4

4
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 (11.63) 

11.6  Green’s function solution to the Yakawa 

interaction 

The strong nuclear force, unlike the electromagnetic force, is 

short ranged. This short range character is due to a massive bo-

son interaction. To model this, in the static limit, we add a mass 

term to the Laplace equation, giving rise to a Yukawa interac-

tion, 

 ( ) ( ) ( )2 2 .m ρ− ∇ − Φ =r r  (11.64) 

The factor m  results in a exponential damping of the potential, 

giving it a short range character. This becomes apparent when 

one solves for the Green’s function 

 ( ) ( ) ( )2 2 , , ,m G δ′ ′− ∇ − =r r r r  (11.65) 

which results in the free space Green’s function 

 ( ), .
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r r
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r r

 (11.66) 
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Letting 0m →  recovers the Coulomb result in units of 0 1ε = . 

Therefore, the long range character of the electromagnetic force 

is due to the photon being massless. 

 


