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Abstract

Using a computer to realistically synthesize instrument sounds is an important

capability for composers and performers.  Much of the sound’s authenticity is a result of

accurate portrayal of musical inflections available to a performer, such as attacks, decays,

and vibrato.  A performer would require sound reproduction including these inflections to

be reproduced in real time.  Composers, however, usually do not require a real-time

output, making this type of synthesis very helpful.  Described here is a study that

concentrates on algorithms for authentic reproductions of musical instruments,

specifically wind instruments, that take into account a list of variables including these

inflections.  The study suggests methods for communicating musical inflections to a

computer so that sounds may be synthesized using the discussed methods of

reproduction. Unlike much research in this field, the goal is to create a tool that does not

function in real-time, but produces realistic output reflecting many different playing

styles.  As computing speeds increase, these techniques may be applied to a real-time

reproduction.
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Introduction

A major subset of the study of music synthesis is true reproduction of wind

instruments.  Brasswinds, closely followed by woodwinds, are perhaps the most complex

orchestral instruments to analyze and, as a result, synthesize.  Due to this problem, the

advancement of synthesis of brasswinds and woodwinds (as well as other orchestral

instruments, such as the string family, for the same reason) has progressed much more

slowly than that of pianos and electric keyboard instruments.  Another reason for the lag

is the nature of the interface used with synthesis devices.  This interface has traditionally

been a keyboard derivative, giving reproduction of keyboard instruments an inherent

advantage over other families of instruments. The focus of efforts for synthesis has also

gravitated to keyboard instruments because of their wide utility.

Recently, an emphasis has been placed on closing this gap.  Many new algorithms

have been developed or are being developed to synthesize wind instruments more

realistically.   The benefits are tremendous for composers, orchestrators, and even

performers.  While the synthesis focus has shifted, the gap still remains formidable, and

much work remains.  To be most useful, the final product must be able to reproduce these

sounds in a manner such that the original and its synthetic reproduction are

indistinguishable to the human ear.  Criteria for this product include not only tone and

timbre of notes, but reproduction of attack, crescendo and decrescendo, vibrato, tremolo,

register shifts, movement between notes, and more.

The general goal of the project is to synthesize one or more wind instruments so

that they are indistinguishable from the original.  The test for success will be the human



4

ear itself.  If a person cannot recognize the difference, the goal has been achieved.  The

synthesis method will then be enhanced to include realistic forms of attacks, decays, and

other musical inflections used on that instrument.  The attack is especially important

because it is the most difficult part to synthesize and is closely scrutinized by the listener

to discern what instrument is heard.  A non-authentic synthesized attack is easily noticed,

and these poor reproductions are the primary reason that current efforts to synthesize

wind instruments do not sound authentic.  Once these inflections are incorporated into the

synthesis for the particular instrument, a more practical interface to communicate them to

the computer for reproduction can be created.  In order to accomplish these goals, several

intermediate steps must be reached along the way.

The difference between this and many other synthesis projects is the intended

utility of the end result.  Much of the study in this area is motivated to produce sounds in

real-time for performance.  Real-time syntheses are difficult because of the complexity of

the sound to be reproduced.  As a result, the final product often does not sound authentic.

This study is more interested in creating a tool for composers to use that allows them to

hear a realistic reproduction of their compositions without a performing ensemble.  In this

scenario, real-time sound production is not an important concern.  However, as

computing speeds increase, this project’s results might eventually be able to run in real-

time.
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Background

Sounds produced by musical instruments result from creating a vibration in air

that perturbs a membrane in the ear.  The brain interprets this vibration as a sound.  The

vibrations in air are called sound waves.  To understand, for example, the difference

between the sound wave of a trumpet and that of hands clapping, certain basic concepts

of waves must be understood.

One of the most basic waveforms is a sine wave, which describes a pure

oscillation at a definite frequency.  If this frequency is between about 20 and 20000 cycles

per second, or Hertz (Hz), and the amplitude is sufficient, the wave is audible to the

human ear*.  Although humans can hear all of these frequencies, the ear is biased toward

a smaller subset, concentrated toward the bottom of the available range.  Sounds on the

outside limits of this range are often difficult for the ear to resolve to a particular pitch.

This concept will become important in the discussion of frequency spectra.  In music,

letter names are given to certain frequencies, which are called pitches.  Several methods

for assigning these pitches exist based on certain principles.  The most common is the

American standard system based on the pitch designated A.  The pitch in this system to

which orchestras and other musical groups tune their instruments is 440 Hz (often called

A 440).  The pitch A is not completely unique; in the American system there are several

different frequencies with the name A.  All pitches designated as A have related

frequencies, and are separated by a distance known as an octave.  The difference between

                                                
* The upper limit to this range can decrease dramatically with age, especially in males.
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a pitch and the one an octave below is that the lower pitch is exactly half the frequency of

the higher pitch.  For example, the pitch an octave below A 440 has a frequency of 220

Hz.  Similarly, the pitch an octave above A 440 has a frequency of 880 Hz.  If they are

heard at different times, these pitches’ sine waves are distinguished by the brain to be

three distinct notes.  However, if heard simultaneously, the brain interprets the

combination of all three waves as one note at 220 Hz, the lowest of the three A’s.

The phenomenon of combining multiple waves as a single note is responsible for

each instrument’s unique sound.  The difference between a single sine wave at 220 Hz

and this new wave, which includes pitches at 220, 440, and 880 Hz, is that the two have a

different timbre, or tone color.  Most instruments produce sounds that combine tens of

frequencies, called a frequency spectrum.  All instruments that are considered pitched

have only specific frequencies in their frequency spectrum*.  These frequencies are all

related to the lowest, or fundamental, frequency, and are called overtones.  The first

overtone is the frequency in the spectrum immediately above the fundamental; the second

is the following frequency, and so on.  The frequencies of the overtones are multiples of

the fundamental, e.g. A 110 could have overtones of 220, 330, 440, 550, 660, 770, 880

Hz, etc.  These overtones correspond different notes all related to the fundamental.  From

the example above:

• 110 is the fundamental A

• 220 is A one octave above the fundamental

• 330 is E an octave and a fifth above the fundamental

                                                
* In some cases, non-harmonic frequencies can exist in pitched instruments.  These frequencies can make it
very difficult for the ear to discern the exact pitch of the instrument.  Non-harmonic frequencies also exist in
the attack of a note, but die away quickly (see Attacks).
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• 440 is A two octaves above the fundamental

• 550 is C# two octaves and a major third above the fundamental;

• 660 is E two octaves and a fifth above the fundamental

• 770 is G two octaves and a minor seventh above the fundamental.

• 880 is A three octaves above the fundamental.

The notes continue to get closer together as the pitch rises.  Generally, the most

important overtones in a frequency spectrum are the first few above the fundamental.  As

the frequencies of the overtones increase, the amplitude decreases.  This reduction in

amplitude is often rather disjunct, occurring between two adjacent harmonics rather than

smoothly declining.  Some of the richest sounding instruments sound in the range of a

few hundred Hz.  This leaves room for many overtones before reaching frequencies that

are hard for humans to discern.  Higher pitched instruments timbres are sometimes harder

to recognize because their overtones reach high frequencies after only a few harmonics.

Since the amplitude drop occurs so quickly the harmonic spectrum is fairly bare and the

sound is not very original as a result.

Two notes with the same fundamental frequencies coming from different

instruments can have frequency spectra with dramatically different characteristics.  It is

the pattern of the overtones that allows the ear to distinguish between an A 440 played on

a clarinet, violin, piano, or any other pitched musical instrument.  In order to reproduce an

instrument’s sound, the frequency spectrum of the desired note is required.  Once the

frequency spectrum has been determined, it can be used as a formula for recreating a

waveform that sounds like the original. The frequency spectrum for a musical instrument

can change over time, especially at the beginning and the ending of a note.  It will later be
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important to see just how the frequency spectrum does change; however, to do this, it is

necessary to isolate the important frequencies from a portion of a waveform using Fourier

analysis.  This method can be applied not to only sound waves, but also to light waves,

waves in water, and any other type of waveform.  An understanding of Fourier analysis is

crucial.
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Fourier Analysis

Thus far, waves have been discussed only qualitatively as sounds detected by the

human ear.  However, to understand how to separate frequencies out of a waveform, it is

necessary to understand the mathematical representation of waves.  The most basic wave

is the sine (sin) or cosine (cos) wave.  The sin and cos functions oscillate between –1 and

1, and are periodic functions.  These cos and sin waves are the building blocks in Fourier

analysis for creating and analyzing more complicated waveforms.

An important concept about waveforms is the superposition principle.  This

principle states that waveforms can be added linearly to each other.  In other words, a

waveform w and a second waveform x, can be added together to produce a third

waveform, y.  Let w represent sin(u) and x represent cos(v) where u and v are

proportional to time; y would then necessarily be sin(u) + cos(v).  Waves may also be

represented by complex numbers, e.g. cos(x) + isin(x) or eix.  Both of these expressions

are mathematically equivalent.  These complex waves use a mathematical trick to

represent the phase angle of the wave.  The phase angle dictates where on the oscillation

time t0 is defined; for sin the amplitude at t0 is 0, for cos it is 1 when the phase angle is an

integer multiple of 2π.  However, in general the starting amplitude could be at any point

between -1 and 1.  When describing physical phenomena with complex waveforms, it is

always necessary to take the real part of the solution after any calculation.

Using superposition, it is possible to represent any waveform as the sum of sin

waves of different frequencies.  This is important in the case of a waveform for a

particular instrument.  If the waveform can be represented by the sum of a particular set
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of sin waves, then the frequencies that make up that wave can be determined.

Representing a waveform by a set of frequencies is an important tool which will be

discussed later.  It is, however, necessary to discuss a method of calculating these sin

waves.  This method is called Fourier analysis.

Classical Fourier Transform

One way of describing a waveform is considering an amplitude h as a function of

time t, which can be symbolized as h(t).  h(t) is called the time domain, or time space, of

a function.  The same waveform can be written in the frequency domain, or frequency

space, so that the amplitude H, which could be complex, is written as a function of

frequency f, symbolized by H(f), with the restriction that -∞ < f < ∞. A Fourier transform

equation is used to move from one representation of the function to the other, and is

written in these forms:

H f h t e dtift( ) ( )=
−∞

∞

∫ 2π

∫
∞

∞−

−= dfefHth iftπ2)()(

Since the amplitude of the data is complex in the frequency domain, it is often

desirable to look at the power spectrum instead.  To do this it is necessary to take the sum

of the squares of the real and imaginary parts of the complex amplitude in the frequency

domain, creating a consolidated amplitude for each frequency.  This can be compared to

the square of the amplitude in the time domain.  In many cases the amplitude in the time

domain can also be complex.  As previously mentioned when dealing with physical

phenomena, only the real part need be considered.  Consequently, we can assume that the
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sound waves consist of all real data with the imaginary part being equal to zero.  This fact

will become important later when Fourier analysis algorithms are used to calculate the

Fourier transform.  This does not mean that the resultant transform data is all real.  It will

still be necessary to calculate the power spectrum from the resultant complex data.

Total Power h t dt H f df≡ =
−∞

∞

−∞

∞

∫ ∫( ) ( )
2 2

Working with Discrete Data

Working with discrete data is somewhat different from working with the

continuous data above.  Waveforms sampled on the computer are an example of discrete

data.  For the discrete data in this study, the data is recorded at evenly spaced intervals.

Let ∆ represent the time interval between samples, or the sample interval.  The inverse of

∆ is called the sampling rate or sampling frequency.  For the purpose of this study, time is

measured in seconds (s) and frequency in Hertz (Hz).

One of the drawbacks of discretely sampled data versus continuous data is a lack

of resolution.  To represent a sin wave of a certain frequency, at least two data points, one

at the positive peak and one at the negative peak, must exist to recover that wave.  This

can be represented by defining the cutoff frequency (also called the Nyquist critical

frequency) in the following way:f c ≡ 1

2∆
.  In other words, the highest frequency that can

be accurately recovered from a discretely sampled waveform is exactly one-half the

sampling frequency.  The values recovered for frequencies greater than fc are aliased or

falsely translated.  The only way to overcome aliasing is to allow at least two samples per

cycle for the highest frequency present.
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For this application, because the human ear cannot discern frequencies above

about 22 kHz, higher frequencies are not of concern in this application.  This requires use

of a minimum sampling rate of 44 kHz.  Both DATs (digital audio tapes) and CDs

(compact discs) use sampling rates above this (48 and 44.1 kHz respectively) making

them good sampling devices.  Some argue that humans can hear frequencies higher than

22 kHz.  Proponents of this argument claim that CD reproductions sound somewhat

tinny, and a 48 kHz minimum should be used as the recording standard for digital sound.

Classical Fourier Transform for Discrete Data
In order to calculate the Fourier transform of a discretely sampled waveform with

sampling interval ∆ and N samples, N must be an even number.  Since there are only N

samples, the output of the transform may only contain N numbers.  It is necessary only to

output values for discrete frequencies, determined by the equation

f
n

N
n

N N
n ≡ = −

∆
, ,...,

2 2
.   Finally, the integral from the continuous data must be

approximated by a discrete sum:

H f h t e dt h e h en
if t

k
if t

k

N

k
ikn N

k

N
n n k( ) ( ) /= ≈ =

=

−

−∞

∞

=

−

∑∫ ∑2 2

0

1
2

0

1
π π π∆ ∆

 The last summation in the equation is the discrete Fourier transform of N points of

value hk, which is represented by Hn: H h en k
ikn N

k

N

≡
=

−

∑ 2

0

1
π / . It is also possible to recover the

discrete waveform from the discrete transform with a very similar calculation:

h
N

H ek n
ikn N

n

N

= −

=

−

∑1 2

0

1
π / .  There is a method similar to the continuous method for

representing the power series:
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Total Power ≡ h
N

Hk n
n

N

k

N
2 2

0

1

0

1 1=
=

−

=

−

∑∑

Fast Fourier Transform

The classical Fourier transform method is somewhat tedious.  In order to be

useful, the computation between time and frequency space needs to be fast.   A computer

is required to do a Fourier transform quickly.  The use of a computer requires the

waveform data to be digital, or discretely sampled. The algorithm to compute the Fourier

transform described above using the discrete method appears to be an O(N2) process,

making the number of calculations required to process the data proportional to the square

of the length of the data set.  For example, if processing a data set of length 20 takes 30

minutes, an array of length 40 would take 2 hours.

In 1942, Danielson and Lanczos developed an algorithm that was popularized by

J.W. Cooley and J.W. Tukey in the mid-1960’s (Sundararajan, 1997).  This algorithm

allows the discrete Fourier transform to be calculated in O(N log2 N) operations and is

called a fast Fourier transform.  This technique saves significant computer time.  For

example, a transform with 106 samples requires a computer to perform 1012 calculations

using the classical discrete Fourier transform method, and 2*107 calculations using the

fast Fourier transform method.  The result makes transforms like this possible in seconds

rather than weeks.

The key to the speed of the fast Fourier transform, or FFT, is that a discrete

Fourier transform of length N can be rewritten as the sum of two discrete Fourier

transforms of length N/2, one with all the even elements and one with all the odd

elements.  This process can execute recursively, taking the two new groups of N/2
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elements and dividing them each into two new groups of N/4 elements.  The groups can

now be classified.  One group contains the evens from the first division and evens from

the second division, and is called even, even.  The other three groups can then be called

even, odd; odd even; and odd, odd.  The original N must be a power of 2 so that the

process can be continued until there is only a set of transforms of one element each.  The

Fourier transform of one element simply copies its value into an output slot. The number

of the output slot that the final transform copies into is a binary number created from its

even and odd labels.  Taking the order of evens and odds that characterize each new

transform of length 1, reversing the order, and substituting even=0 and odd=1 results in

the binary number for the slot in which to put the value.  See Numerical Recipes (Price,

1992).

Fast Fourier Transform of Real Input Data

The fast Fourier transform method allows for complex input data.  In this study,

all of the input data will be real data.  Rather than inputting zeros for all the imaginary

values, the data can be repacked such that the real part of the second half of the data is

stored in the imaginary slots for the first half of the data.  The transform is now half as

long, which eliminates half of the necessary calculations to compute the transform.  The

output can then easily be reordered such that it is identical to the output of the original

unpacked fast Fourier transform*.
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Other Methods

Until recently, Fourier analysis was the generally accepted method for doing

waveform analysis.  However, a new method of waveform analysis with applications in

acoustic analysis and synthesis is currently being developed.  This new analysis tool is

called wavelet analysis.  Wavelet analysis processes a waveform and generates wavelets.

Like Fourier analysis, wavelets convert the data from time-space to frequency-space.

However, wavelet analysis does not use sin or cos functions as a basis for the frequency

space of the wave like Fourier analysis, but uses any functions that are localized in space.

Whether it is analyzing gross features or small features, wavelet analysis has the

capability of choosing an interval of appropriate length to match.

A major advantage to this technique is for compression of audio data.  Since

Wavelet analysis can use an arbitrary set of functions, it is possible to choose both long,

low frequency functions and short, high frequency functions.  This creates wave

envelopes, or packets, which mimic the behavior of actual audio data.  It is easy to use

very few functions to reproduce very complex audio data*. This method was used

originally in MPEG audio compression.  Its most recent version, MPEG layer 3

compression, compresses digital audio at a rate of 12:1.  Attempts have been made to

apply wavelet analysis to acoustic synthesis, but the efforts have been largely

problematic.  One reason for this is due to a major disadvantage of this technique--its

                                                                                                                                                
* In actuality, there is a slight loss of generality, namely the loss of all the negative frequencies present in
the fast Fourier transform.  These frequencies are a mathematical trick handle complex data.  In this study it
is not necessary to consider these negative frequencies since only real data is used.
* This is not to imply that in order to use Wavelet analysis, it is necessary to look at an entire wave
envelope.  This method can apply to portions of the wave envelope just as easily.
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difficult calculations.  Its analysis techniques can take a lot of computer time, especially

for complicated audio data.

Wavelet analysis uses a process that is very similar to the Fast Fourier Transform

to move from time-space to frequency space.  The number of calculations required for

this process depends on the functions using to convert to frequency space.  Several

families of functions have been studied, such as the Mallat and Daubechies families.

However, the large calculations result from determining which set of functions yield the

best results for analysis.

Part of the reason that wavelet analysis has not been widely used at this point in

music analysis and synthesis is the large amount of computer time needed to make these

calculations.  However, this may change quickly as computer speeds increase.  Since

wavelets can study an arbitrarily big or small time-interval of the waveform.  The small

time intervals make wavelets an excellent choice to study the attack portion of the note

where frequencies change so quickly with time.  This sort of study may become very

prevalent in the field of music analysis and synthesis in the near future.
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Software

After the decision had been made to use the fast Fourier transform algorithm to

analyze and reconstruct waveforms, it was necessary to find or create a software package

which utilized the fast Fourier transform and had the desired flexibility of input and

output parameters and organization.  Another very important criterion was that the pre-

existing package should run the fast Fourier transform calculations quickly and do file

input and output operations efficiently.  This made a package written in a low-level

language such as C or Fortran more useful than an extension of Maple or Mathematica, or

even a higher level language like C++ or Java.

A pre-existing package that satisfied all of the criteria was not available.  What

was available from several sources, however, were routines that could be incorporated

into code in C or Fortran that had previously been written.  C was chosen because of

several advantages over Fortran.  Although C is not significantly faster than Fortran, it

enjoys much wider platform support than Fortran, making it easily portable from platform

to platform.  C code is also backward compatible with different compiler versions, which

is not the case with Fortran.  Finally, a familiarity with similarly styled languages such as

Perl and Java cemented the decision, but did not eliminate the need to learn C.

Once the language was chosen, the source for the actual fast Fourier transform

routine was required.  Finding well-documented code from a free source such as the

Internet was very difficult.  Much of the code found there did not compile, and some of it

was so long that it was not efficient.  Some of it, like the code found in several books

specifically about Fourier transforms, was so poorly documented that the code designed
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to run the transform, and the code used for handling other tasks were indistinguishable to

a C novice.  The most extensively documented code was found in Numerical Recipes in

C: The Art of Scientific Computing (Press, 1992).  It contained well-commented code and

a complete explanation of the theory behind it.  It was still a challenge to completely

understand the core fast Fourier transform routine, because intuitiveness of the operations

was compromised in favor of speed.

The code and documentation in the book were far from perfect.  The C code had

been ported from old Fortran code.  Because this was not typical C code and contained

remnants of Fortran, it was very difficult for a C novice with no Fortran experience to

work with.  Much functionality needed to be added to the core fast Fourier transform

routine to make it a good tool for this project.  First the decision needed to be made about

what form the data in and data out should follow.

It was most logical for the software to read the amplitude data out of a

standardized audio file format.   The Microsoft wav file format, which can handle both 8

and 16 bit files, stereophonic or monophonic data, and sampling rates up to 48 kHz was

chosen.  The reason wavs were selected is that they have become an industry standard,

and documentation on the file format seemed to be plentiful.  Unfortunately, the

documentation, while plentiful, was never authoritative and often contradictory.  Piecing

together a viable model of the file format required a combination of three or four sources.

Formatting the output correctly was another issue.  It was written out to a data file that

was compatible with Gnuplot, a freeware plotting program available for UNIX platforms.

The resultant code from these criteria yielded a software package that could read a wav



19

file, take the fast Fourier transform, and output data that could be displayed and analyzed

with Gnuplot.

After the basic program was functional, several features were added to make the it

more useful.  A modification was included that increased the efficiency of using only real

input data.  This modification was outlined in IEEE Transactions on Signal Processing

(Sundararajan, 1997).  The input data array originally needed to have space for a real and

an imaginary component for each sample, regardless of whether the complex value was

zero.  However, if one is only interested in the positive frequency amplitudes, then by

reordering the real data and eliminating the complex values, it is still possible to take the

fast Fourier transform of this half-length data array and have no loss of generality. The

real and complex values for the positive frequencies and 0 are returned.  The re-ordering

time is fairly insignificant compared to the time needed by the fast Fourier transform.

Just over half the original calculation time is required to do the transform.

In addition, the program needed the ability to do multiple transforms in succession

and output the data so that it could be viewed in a 3-dimensional format, one axis

representing the frequency range, the second the time, and the third representing the

amplitude.  Also, one needed to be able to specify the approximate time interval for each

transform, the number of overall transforms to take, and the initial time-offset from the

beginning of the file.  Unfortunately, it is not possible to arbitrarily set the time interval

because the number of samples per transform must be a power of two.

After creating a method for interpreting the samples on the computer, it was

necessary to acquire samples to analyze.  Two methods exist for acquiring samples for
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analysis: recording the samples with an appropriate digital medium or using prerecorded

samples that fit specifications which must be determined.
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Instrument Sampling

Once we are able to take the Fourier transform of a waveform, a method for

saving the waveform on the computer is needed.  It is logical to choose an existing

industry standard, especially one that is easily interpreted.  Microsoft’s wav file format is

utilized in this study because it has the most easily available documentation and most

existing software supports this file format.  The wav format contains a file header that

relates important information about the amplitude data around which a filter to interpret

the file can be written.  The rest of the file contains raw amplitude data, which makes it a

prime candidate for use in this project.  Most programs that read digital audio from either

CD-ROM or DAT directly onto the computer support this format.

For this project, sampling rates of 44.1 kHz  and 48 kHz are used.  The amplitude

data is stored using16 bit numbers (or 16 place binary numbers) that allow a range of

values from –32768 to 32768.  This allows much more flexibility and accuracy than 8 bit

values, which only allow a range of –128 to 128.  For simplicity, this study uses

monophonic data, or one channel.  For stereophonic data, one channel should be selected

or both channels should be added linearly using the superposition principle.

 Specifications

This study will take into account the effects of several musical characteristics on

the frequency spectrum of the samples.  It should be possible to look at the frequency

spectrum and the change of the frequency spectrum over time to determine its behavior.

The frequency spectrum for each variable should be unique.  In some cases it could be
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related to other frequency spectra and correlations may be discovered.  It should also be

possible to combine the effects of different variables and reproduce two or more of these

effects at once.

As mentioned before, each instrument produces a characteristic frequency

spectrum that distinguishes it from other instruments.  However, if one note of an

instrument is examined, the frequency spectrum changes over time.  The beginning of the

note often contains very strange behavior in the frequency spectrum.  Overtones may

arbitrarily fluctuate violently.  Frequencies other than overtones may also be prevalent,

and are likely to be changing rapidly as well.  This region of the note is called the attack,

or articulation.  The fluctuations in the overtones and other frequencies are called

transients.  Their behavior is dictated by the initial conditions of the physical system.

These transients quickly die away to leave the “tone” of the instrument.  The part of the

sound without transients is called the steady state portion of the note, where the initial

conditions are irrelevant.  In instruments capable of sustaining a note, a third portion of

the note, the release, exists.  The release may be as simple as a fast damping of the steady

state harmonic spectrum,  but transients may again be introduced.

I. Steady State for Sustain-Capable Instruments

In musical instruments, and generally in any physical system, the steady state

portion of the note is the easiest part of the waveform to calculate and analyze.  Sound

synthesis is no exception.  For this reason, reproduction of the steady state portion will be

the starting point.  In application, it is necessary to use a slightly different technique when
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dealing with a sustain-capable instrument versus a percussive instrument.  For a sustain-

capable instrument, once a set of samples from an instrument has been acquired, it is

possible to look at the fast Fourier transform of this waveform’s steady state solution

using the computer program described above.  For this purpose, it is important to select a

sample that sustains a note at constant volume and pitch.  The portion of the note between

the attack and the release should be analyzed to avoid the transients.  Since the note could

waver slightly (as is the case with wind instruments and string instruments played with a

bow) due to imperfections of the performer, the number of samples should be fairly large

to achieve a good average value and good accuracy.  The transform that results is the

harmonic recipe of that particular note on that particular instrument.

This procedure should be followed to get a harmonic recipe for all the notes on

the compass of the instrument, keeping all variables as close to the same as possible.  The

test for this criterion should be interpretation by the human ear, not a measure of the

waveform’s amplitude.  Once all of these samples have been run through the phase

vocoder program, it is possible to compare the harmonic recipes of all the notes on the

compass.  Of course, all of the recipes are different because they start on different

fundamental frequencies.  The spacing between overtones is different as well, because

overtones are generally integer multiples of the fundamental frequency.  However, if one

speaks about a harmonic recipe in terms of amplitudes of fundamental, first overtone,

second overtone, etc.  It is possible to see relationships in the harmonic recipe of notes on

the same instrument.

To eliminate the need to discuss the raw amplitude of a particular frequency, it is

useful to talk about the percentage of total amplitude that is contained in the frequency.
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This percentage is calculated by dividing the amplitude of the frequency of interest by the

sum of the amplitudes of all the contributing frequencies in the harmonic recipe.

Generally, adjacent notes on an instrument have relatively similar harmonic recipes;

however, changes in register on an instrument can dramatically change the harmonic

recipe between adjacent notes.  Examples of this include changing partials on a

brasswind, changing registers on a woodwind, or changing strings on a violin.  Working

within these restraints, it may be possible to create an algorithm for reproducing the

steady state portion of all the notes on the compass based on slight modification of the

harmonic recipe of one standard note or notes chosen from each register or grouping.

As mentioned before, an instrument will have imperfections when played by a

person, and a synthetic reproduction using these techniques will be “perfect.”  However,

in this case, perfect is not desirable, because the pitch will sound stagnant.  It is necessary

to replicate these imperfections through some sort of randomization algorithm which

slightly changes the pitch and dynamic of the sustained note.

II. Steady State for Non-Sustained Instruments

For pitched instruments that are not sustainable, such as pitched percussion, a

piano, stringed instruments played pizzicato, etc., reproducing the steady state part of the

wave is a little more complicated.  Rather than taking a fast Fourier transform over a large

time scale, it is necessary to take a grouping of short time scale transforms to determine

how the harmonic recipe changes over time. This adds an additional variable, decay.

During the decay, the overtones will decay at different rates, and these rates will be
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specific to each pitch on the compass.  Now, not only can the harmonic recipe change

according to the pitch being considered, it can change with time.  For a violin playing

pizzicato, three variables, pitch, timbre of the register, and harmonic decay rate must be

introduced just to analyze the steady state portion of the waveform.

III. Dynamics

A very important part of musical composition is the use of dynamic contrast, or

volumes ranging from extremely soft to extremely loud.  When the dynamic is changed,

the harmonic recipe of a note can change dramatically or very little depending on the

instrument.  To study this, samples must be taken at several different volumes and their

steady state harmonic recipes analyzed.  Again, an algorithm must be created to reproduce

the effect.  This algorithm may be incorporated with some of the techniques of the above

algorithm because decrescendo and decay are similar phenomena.

IV. Attack

As mentioned before, the steady state portion of a note is likely the easiest part to

reproduce.  However, this synthesized steady state portion is almost useless without the

attack.  The attack has complicated behavior.  During this portion of the note the

transients are clearly visible.  Because of this, it is very difficult to synthesize.  A

compounding problem is that the attack lasts only for a very short time and the transients

die away quickly.  The fast Fourier transform loses accuracy when the time interval and,
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consequently, the number of samples, are reduced.  It is for these reasons that knowledge

of synthesis of the attack lags behind that of every other aspect.

In addition, an infinite number of different kinds of attacks can occur according to

the particular instrument.  Our analysis will be limited to several accepted categories of

attack.  The attack containing the fewest transients is not actually an attack, but a

transition from one note to another called a slur.  On a wind instrument this corresponds

to switching notes without stopping the airstream.  This form of attack generates very

little noise between notes and therefore very little in the way of transients.  On those same

lines, the breath attack or soft articulation tries to emulate the slur in the sense that the

steady state portion of the note occurs quickly with very little in the way of attack or

transients.  It might be more accurate to describe this as an increase in volume of the

steady state form rather than an attack.  Regular articulation, where the note has a definite

beginning, and a more accented attack will be difficult to synthesize.  Both will have

transients, the more accented attacks having less predictable behavior.

V. Releases

Once the attack and the sustained portion of the note have been accurately

synthesized, the end of the note must be synthesized.  This effect should be quite similar

to the dynamic effect because the effect of a release is almost equivalent to a fast

decrescendo ending in silence.  However, since different techniques are utilized for

releases than decrescendos, the behavior of the frequency spectrum will likely be at least

slightly different as well.  Several different kinds of releases are employed and will need
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to be synthesized.  Slow releases will act more like dynamic changes rather than releases.

Fast releases are generally utilized for shorter notes.  Because of this, a fast release will

interface more with the attacks and the steady state portion of the wave may not be

utilized.

VI. Steady State Effects

A complete note can be synthesized with the above parameters.  However, on

some instruments, sustained pitches have characteristics that affect the steady state

portion of the wave.  Without these nuances, the pitches will not sound authentic.  Wind

instruments like the oboe and trumpet utilize a periodic raising and lowering of a pitch

called vibrato.  This change in pitch will slightly change the harmonic recipe toward the

adjacent notes above and below.  In addition, an instrument’s vibrato will never fluctuate

between exactly the same frequencies, much like a steady pitch does not always hold

exactly the same frequency.  As with the steady sustained pitch, it will be necessary to

add a bit of a random effect to make the pitch sound more realistic.  In addition, players

may use vibrato from the beginning of a note, or only on part of a note.  It could be added

after the note is begun, ended before the note is completed, or both.  It is necessary to be

able to add vibrato gradually, since that is a technique used by musicians.  One other

variable is the amplitude of the pitch change.  Again, this could change throughout the

duration of the note.

Some instruments, such as the flute and the vibraphone, use an effect called

tremolo.  Like vibrato, this is a periodic effect.  However, instead of changing the pitch
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slightly, it changes the volume slightly.  As shown in the discussion on dynamics, this

also changes the harmonic recipe.  Like vibrato, this effect can be added for a whole note

or a fraction of a note, can change frequencies over time, and can change levels of

dynamic contrast.
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Sample Analysis

Once samples that meet the specifications have been acquired, it is possible to

begin to examine how these different variables affect the frequency spectrum.  Some of

the hypothesized effects on the harmonic recipe that correspond with a particular variable

have already been mentioned.  To keep the variables ordered, an N dimensional space can

be initialized such that N corresponds to each variable mentioned above.  The first step is

to try to produce an algorithm for each variable that modifies a base frequency spectrum.

If the variables are uncorrelated, the modifications to the frequency spectrum can be

combined.  In order to test for independence, the waveform can be assumed to have

independent variables.  A synthetic waveform can be created with this assumption.  If the

reproduction sounds authentic and has the planned characteristics, the analysis has

succeeded.  If the reproduction is unacceptable, it may be necessary to explore a

dependent relationship between these variables and find ways to adjust the one-

dimensional algorithms to fit two, three, or more dimensions.

Sample Type 1: Tuning Fork

The tuning fork is a simplistic sound producer.  It is designed to produce a very

predominant fundamental, and few small amplitude higher harmonics.  However, the

tuning fork is not a completely trivial case.  It still has a harmonic recipe with an attack

and a decay.  The fundamental and higher harmonics decay at different rates, the higher

harmonics decaying much faster than the fundamental.  This quickly eliminates more of
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the already few higher harmonics.  This behavior is useful in practice because the tuning

fork is designed to produce exactly one pitch.  Large amounts of overtones, especially

with significant amplitudes and overtones that are not perfect intervals with the

fundamental, are hard for the brain to process and often make the fundamental pitch less

clear.  It is for that reason that it is harder to tune an instrument to, for example, a clarinet

than to a tuning fork.

Because of this simplicity, this study begins with an analysis of a 256 Hz tuning

fork.  The tuning fork can be sampled over a fairly long time-scale, on the order of 30 to

60 seconds.  This time period includes the attack, which occurs when the tuning fork is

struck, through to the decay, where the oscillation begins to be damped.  The sample is

then run through the fast Fourier transform program to isolate the important frequencies

in the harmonic recipe.  As predicted, few higher harmonics appear above the

fundamental.  In the case of the 256 Hz tuning fork, spikes appear at 256, 512, 768, 1560

Hz.

The next step is to see how the amplitude of each of these four harmonics behaves

over time.  To accomplish this, several iterations of the fast Fourier transform must be

taken over time.  Each transform iteration should use a fairly small time-scale compared

to the sample’s overall time-scale.  Once the sequence of transforms has been taken, it is

possible to see how the frequency amplitude changes over time.  Since only a few distinct

frequencies contribute significantly to the harmonic recipe, it can be useful to filter out

the other non-contributing frequencies, thus making it easier to see what happens to the

important frequencies as time progresses.
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Figure 1 displays the four important frequencies as a function of time and

amplitude. It is clear that the fundamental has the most significant contribution to the

sound as well as the longest decay time.  The amplitudes corresponding to the other

frequencies dissipate quickly and contribute much less significantly to the total sound.

Their contribution is still important because they help create the tuning fork’s timbre

during the attack portion of the sound. Without them, a realistic sound could not be

achieved.  To properly reproduce this sound, each harmonic must be isolated.  It is then

possible to try to fit a curve to the experimental data.  In this case, an available software

package, called Physica by TRIUMF Software, can be used.  It can fit variable parameters

Figure 1.  The fundamental and first three harmonics.  Unimportant frequencies known as noise
have been eliminated to clarify the graph.  The higher order harmonics decay more
quickly than the fundamental, and have much smaller initial amplitudes.  The
fluctuations apparent in the fundamental are a product of the sampling technique.
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to an assumed equation.  It requires looking at each isolated harmonic and guessing an

equation that will fit.

Figure 2 shows a logarithmic plot of the fundamental frequency for the 256 Hz

tuning fork.  The decay appears to be a straight line on this plot, signaling that an

exponential decay equation should be used to fit the data.  The line representing the decay

does not have any obvious kinks in it, which suggests that it will likely be possible to

represent this line with only one exponential term.  The rise at the beginning can be

represented by ta.  The proposed curve is as follows: 41
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Figure 2.  Logarithmic Plot of Amplitude versus Time for 256 Hz Tuning Fork Fundamental.  Ignoring
noise, the decay appears to be a smooth straight line, corresponding to an one term exponential decay.
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variable parameters.  Physica required a few extra parameters before it was able to fit the

experimental curve for the fundamental frequency.  The final form of the equation is:

451
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The higher harmonics must also be approximated.  Physica was able to fit the

higher harmonics with the simpler version of the proposed equation.  The values for each

Frequency (Hz) p1 p2 p3 p4 p5 p6
256 2.64E+07 1.0063 5.0117 3.57E+06 7.795 1.061
512 7.72E+06 0.19955 3.794 1.78E+05
768 4.80E+06 1.0729 1.0543 1.33E+05

1560 1.11E+07 1 1.049 1.91E+05

Table 1.  Physica Fit Parameters for 256 Hz Tuning Fork Harmonics

Figure 3.  Fundamental (256 Hz) Experimental and Fitted Data.  This frequency comprises most of the
sound produced by the tuning fork.  It decays much more slowly than the higher harmonics.  The tuning
fork is designed with this characteristic so that it is easy for use in tuning an instrument.
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of the variables is listed in Table 1.  Figures 4-7 show the experimental data for each

harmonic and the fit that Physica was able to produce.

After the equation parameters have been fit with Physica, it is now possible to

recreate the sound.  Using fairly simple C code, a discretely sampled waveform can be

produced from the equations and saved in the wav file format.  The equation fitted for

each particular harmonic is now multiplied by )sin( tnω where fπω 2= and n corresponds

to the harmonic (0 for fundamental, 1 for first, …).  The frequency f is the first number in

Table 1.  It is important to note that the parameter p1 for these equations is the overall

amplitude factor, and p4 is just a zero offset.  Thus, the ratio of the p1 values for each

Figure 4.  First Harmonic (512 Hz) Experimental and Fitted Data.  This frequency decays much more
rapidly than the fundamental, and has a lower peak amplitude.  By 20 seconds, it has almost
completely died away.
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harmonic is more important than the actual values fit by Physica.  The zero offset can

also be disregarded in a sound reproduction because it corresponds to the noise both in

the recording and in the fast Fourier transform program.  The actual synthesized sound

with these data did sound realistic.

Figure 5.  Second Harmonic (768 Hz) Experimental and Fitted Data.  Again, the fit is good and the
decay is exponential, falling off more quickly than the first harmonic.
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Figure 6.  Third Harmonic (1560 Hz) Experimental and Fitted Data.  Although it has less amplitude
and similar decay to Figure 5, it sounds louder to the human ear because of its higher frequency.

Figure 7.  Frequency Spectrum of F in Chalameau Register.  This note has many higher order
harmonics that contribute to its timbre.  As a result, the sound is rich, full, and dark.  It is
notable that the highest contributing frequencies are fundamental, second harmonic, fourth
harmonic, etc.  This is the classic pattern for the resonance of an closed cylinder or tube.



37

Sample Type 2: Clarinet

Unlike the tuning fork, the clarinet has a fairly complicated harmonic recipe.

Synthesizing the steady state portion of each note individually, however, is fairly simple.

Again, it is only necessary to take one fast Fourier transform to look at the steady state

portion of a note.  For a fairly homogeneous note, or in this case a note sustained without

any musical inflections, taking the fast Fourier transform over a fairly long time scale (a

few seconds) is helpful because it yields a very precise transform.  A long transform on a

note with inflections such as vibrato or crescendo could cause the transform to be less

accurate.  The resultant transform can be clarified by eliminating noncontributing

frequencies, i.e., those that are indistinguishable from zero.  However, the transform will

not be completely pinpointed at one frequency value; it is spread out over a certain

frequency range.  Recognizing this, it is possible to sum all of the amplitude values

between the peak frequency minus a particular constant and the peak frequency plus a

particular constant.  We call this constant δ.  This procedure is automated.  Recognizing

that each harmonic is an integer multiple of the fundamental frequency, it is possible to

write computer code to take the fundamental frequency and a high cutoff frequency (the

frequency above which no spikes are visible) to sum each harmonic over a δ of ¼ the

fundamental frequency.  The computer will then calculate what percentage of the overall

amplitude each harmonic is.  This results in a very clear way to represent each harmonic

recipe.

Since the note is sustained, there is no decay.  It is therefore possible to synthesize

the steady state portion of the note.  The waveform would be generated from the equation
Figure 8.  Frequency Spectrum of F in Upper Register.  This graph shows fewer harmonics than Figure
7.  The fundamental frequency contributes a huge majority of the sound for this note.  The tone reflects
this by sounding less full and rich than the chalameau register.
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∑
n

nn tAu )sin(ω where A is the overall amplitude and un is the overall percentage of

amplitude for that harmonic compared to all the harmonics in each recipe.  Figures 7-9

show a few characteristic harmonic spectra at different points on the clarinet compass.

Once it is possible to reproduce the steady state portion of the note from the

harmonic recipe of that note derived from experimental data, it is necessary to find

relationships between the recipes.  By analyzing the experimental data of all the notes, an

algorithm which reproduces each note’s harmonic recipe based on its relationships with

other nearby notes or note groupings can be created.  Figure 10 shows the experimental

data for the fundmental (solid line) and first harmonic (dashed line) for the clarinet over

Figure 9.  Frequency Spectrum of F in Altissimo Register.  The number of harmonics has decreased
significantly compared to Figure 8.  This reduction in number of harmonics causes the instrument’s tone
to sound thinner than the upper register note.  Interestingly, the first harmonic is the dominant frequency,
which also contributes to the difference in tone color.
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the entire compass of the instrument.

The clarinet, like many wind instruments, has several different registers.  The

lowest register, or chalemeau, contains the lowest D, or D0 (147 Hz) through F1 (349 Hz),

1.5 octaves above.  The throat register, characterized by the keys near the top of the

instrument, contains those notes between F#
1 (370 Hz), just above F1, and Ab

2 (415 Hz).

The upper register includes the notes between A2 (440 Hz) and Bb3 (932 Hz), and the

third register, or the altissimo register, contains B3 (988 Hz) through Bb4 (1865 Hz).

Figure 10 demonstrates that both the behavior of the fundamental and the first harmonic

stay relatively constant within these partitions and change fairly dramatically at their

Figure 10.  Fundamental and First Harmonic Experimental and Fitted Data.  The data fits with existing
register groupings on the instrument.  The polynomial fit function works quite well for these harmonics.
However, the higher harmonics (see Figure 11) do not fit nearly as well.
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boundaries.  It is also notable that the fundamental and the first harmonic seem to

have an inverse relationship.

Using Physica, a polynomial fit of the form was used to extrapolate a way to

move between notes on each harmonic.  The fit was fairly successful on the lowest

harmonics.  However, it fit less well as the harmonics got higher.  The fits for each

harmonic are displayed on the same graph as the experimental data for that harmonic for

the purpose of demonstrating how well the fit works.  Figure 11 displays the second

(solid line) and third (dashed line) harmonics and their fits.  The behavior of the third

harmonics does not follow the register shifts nearly as well as the first two harmonics,

and the fit is much less accurate.  The data’s failure to correspond to the register shifts

increases with each harmonic and the fits get progressively worse.

The next steps require looking at the effects on the composition of the harmonic

recipe produced by different dynamics.  A sample for each note on the compass must be

taken starting from very soft volume crescendoing slowly to very loud volume and then

decrescendoing back to the very soft volume.  The sample may be broken into two

samples, one of the crescendo and one of the decrescendo.  Once the sample has been

taken, much like with the tuning fork, the fast Fourier transform can be taken over time to

observe the changes in the harmonic recipe.  Once the transform has been taken, it should

be possible to isolate each of the harmonics and use Physica to fit their changes.

Figure 11.  Second and Third Harmonics, Experimental and Fitted Data.  The jaggedness of the data makes it
very difficult to get a good fit with a polynomial function.  It should be noted that the jumps are not as drastic
as might appear at first glance, only around 20% of the total contribution.  Other variables such as dynamic
may contribute significantly to this discrepancy.

Frequency p1 p2 p3 p4 p5 p6 p7
Fundamental 2.27700 -0.02367 9.08E-05 -1.53E-07 1.25E-10 -4.87E-14 7.21E-18
Fisrt Harmonic -0.81462 0.01040 -4.56E-05 8.90E-08 -8.16E-11 3.48E-14 -5.56E-18
Second Harmonic 0.45671 -0.00429 2.09E-05 -4.28E-08 4.17E-11 -1.93E-14 3.39E-18
Third Harmonic 0.15866 -0.00226 1.22E-05 -2.64E-08 2.68E-11 -1.27E-14 2.28E-18

Table 2 Fit Parameters for fundamental, first, second, and third harmonics of the clarinet displayed in Figures 10
and 11.
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If dramatic changes are seen in the harmonic recipe at different volumes, it may

help explain why the behavior of the higher order harmonics between notes is hard to

predict.  Using this new variable, it may be possible to generate a new set of samples

which more accurately display the smooth change in harmonic recipe between adjacent

notes, and the sharp changes between notes at cross registeral shifts.  If fairly insignificant

changes are observed for vastly different dynamics, then the poor fits noted above will be

difficult to improve.
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Conclusion

From the data gathered to this point, it is unclear exactly what would be the best

way to represent the basic harmonic recipe for synthesis.  If the data is tightened slightly

by normalizing the samples’ dynamics, it might be possible to produce much better

algorithms spanning the compass of the instrument.  However, if the data remains as

widely varied as it is now, a general approximation may not be possible, and each

individual harmonic recipe may need to be stored separately.  The true test is to

synthesize notes based on the curve approximations and decide whether the reproductions

sound like the original.

In the case of many different wind instruments, it is likely that while the data will

show general groupings by register as we have already seen, it may not be possible to

generate an approximation that is good enough to fool the ear.  The clarinet has notes

which are considered stuffy and others that are considered more free blowing.  Often these

notes are right next to each other on the instruments compass.  Acoustically, this

translates into fairly different frequency spectra.  This effect may necessitate storing the

basic harmonic recipe for each note separately.

Regardless of which method is chosen to obtain the harmonic recipe for a

particular note, it is now possible to realistically reproduce at least the steady state portion

of each note of the clarinet.  The method described in this study should be the same for

any other instrument, making it a good starting point for synthesis.  Once it is seen how

some of the steady state effects such as dynamic changes change the recipe of the clarinet,
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these effects can be included the synthetic reproduction of the clarinet sound.  This has

been done with the case of the tuning fork by synthesizing the sound decay.  While the

clarinet’s higher harmonics will not decay away over time as was the case with the tuning

fork, it should be possible to approximate their behavior and include these steady state

effects in the synthetic reproduction.
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Further Research

This study has dealt primarily with steady state reproduction of sounds.  It had

intended to progress beyond steady state and deal with attacks and releases as well.  Time

constraints did not allow this, but it should be noted that to achieve an accurate

reproduction of an instrument, the attacks and releases must be studied in some detail.

The attack is a vital part of the note because it is the first thing heard by the listener, and it

helps him identify the instrument he is listening to.  Each instrument has characteristic

attacks just as it has a characteristic sustained sound.

In addition, the attack is very complicated because it contains many frequencies

that would not be expected in a generic harmonic spectrum, and these frequencies change

very quickly in time.  Also, many different kinds of attacks are possible, and for the

synthesis to be a useful tool, as many as possible of these attacks must be studied and

synthesized.  It may be useful to consider using wavelet analysis for this portion of the

study.  Since this project uses techniques independent of real-time synthesis, the longer

calculation times may be acceptable if the synthesis is markedly improved from fast

Fourier techniques.

Releases, while not quite as difficult to study, are also key.  The note ending is the

last sound the listener hears, and it is what he remembers.  For that reason, performers can

use many different releases for different purposes.  Consequently, several different

varieties of releases must be studied and synthesized.

After each note can be recreated with all of the desired inflections, it is optimal to

build an interface that allows us to communicate the values for all the variables to the
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computer.  The original plan was to modify a clarinet by mounting sensors inside that

connect to and communicate with a computer.  The computer could then decode the

information from the sensors, calculate values for the variables, and reproduce a pitch

with the proper inflections of a synthesized, yet realistic-sounding, instrument.  This

would be an appropriate continuation of the project once a realistic model for one or more

instruments has successfully been created.



46

Bibliography

Chuma, Joseph L. Physica. TRIUMF Software.  V. 1.43, 1995.

Graps, Amara L.  “An Introduction to Wavelets,” IEEE Computational Sciences and

Engineering 2(2):50-61, 1995.

Oates, Shaun. "Analytical Methods for Group Additive Synthesis," Computer Music

Journal 21(2):21-39, 1997.

Hourdin, Christophe. "A Multidimensional Scaling Analysis of Musical Instruments'

Time Varying Spectra," Computer Music Journal 21(2):40-55, 1997.

Hourdin, Christophe. "A Sound-Synthesis Technique Based on Multidimensional Scaling

of Spectra," Computer Music Journal 21(2):56-68.

Press, William H., Saul A. Teukolsky, William T. Vettering, and Brian P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing. Second Ed. New York:

Cambridge, 1992.

Fletcher, Neville H. The Physics of Musical Instruments. New York: Springer-Verlag,

1991.



47

Sundararajan, Duraisamy. "Fast Computation of the Discrete Fourier Transform of Real

Data" IEEE Transactions on Signal Processing, 45(8):2010-2022, 1997.

Shlien, Seymour. "The Modulated Lapped Transform, its Time-Varying Forms, and its

Applications to Audio Coding Standards," IEEE Transactions on Speech and

Audio Processing, 5(4):359-366.



48

Appendix A: Fast Fourier Transform Package

/******************************************************************************
   fft.c  Version 0.05                                               03/28/98

  Fast Fourier Analysis program for acoustic samples.  Works currently with
  Microsoft wave file format (2's complement little endian).  Outputs data
  to work with gnuplot and to mimic data displayed in journals about
  acoustic synthesis.

******************************************************************************/

#include <math.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include "unitypes.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <ctype.h>

/******************************************************************************
  global vars

******************************************************************************/
float *data,      /* The array used to take the transform of sampled data  */
  *product,       /* An array of half the size which ultimately contains

     the result of the transform                          */
  **output,       /* An array of product variables */
  time_interval=1,/* The time interval over which to take the transform */
  time_offset=0;  /* The time offset from the beginning of the data in

       in seconds, default is 0                            */
int sampling_rate,/* The sampling rate of the input sample (in Hz)         */
  bits,           /* The number of bits per sample (either 8 or 16)        */
  file,           /* The file variable for the input file                  */
  channels,       /* The number of channels specified in the input file

     (either 1, mono or 2, stereo)                         */
  total,
  iter=1,         /* The number of iterations to take the transform        */
  slow=0;         /* Fast algorithm verses original algorithm              */
long datasize;    /* The number of samples in the input file               */
FILE *outfile,    /* The output file for the transform(s)                  */
  *outwave;       /* The output file for the parsed waveform               */

/******************************************************************************
  die

 Used to prematurely end the program in the case of an error.
 Writes a message to the screen to describe the error.
******************************************************************************/
void die(char *errstr) {
  printf("Error: %s\n", errstr);
  exit(1);
}
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#define atof atof_fix  /* replaces atof which has a bug on our linux cluster */

/******************************************************************************
  atof_fix

 Replacement for atof which has a bug on our linux cluster.
******************************************************************************/
double atof_fix(char *str) {
  double d;

  if (sscanf(str,"%lf",&d) == 1) return d;
  else return 0;  /* an error occurred */
}

#define POW2(EXP) (1<<(EXP))  /* More efficient 2^n than pow */

/******************************************************************************
  print_help_screen

 prints the usage information to the screen
******************************************************************************/
void print_help_screen() {

  printf("\n\n");
  printf("usage: fft -i input [-h] [-o output] [-f outwave] [-t interval]\n");
  printf("       [-s offset] [-y iteration]\n\n");
  printf("  h : This screen\n\n");
  printf("  i input    : specify input file, no default, manditory\n");
  printf("  o output   : specify output file for the transform, default is");
  printf(" output.dat\n");
  printf("  f outwave  : specify output file for the waveform, default is");
  printf(" none\n");
  printf("  t interval : specify transform time interval, default is 1");
  printf(" second\n");
  printf("  s offset   : specify time offset from the beginning, default is");
  printf(" 0 seconds\n");
  printf("  y iteration: specify how many iterations to take the transform,");
  printf(" default is 1\n");
  printf("  m method   : specify between fft and original ft method,default ");
  printf("is fft.\n\n");

}
/******************************************************************************
  parse_input

 Parses and records all of the values entered as flags on the commandline.
******************************************************************************/
int parse_input(int argc, char **argv) {

  int curopt, ifile=0;
  char input_file[50],
    output_file[50]="output.dat",
    output_wave[50];

  opterr = 0;  /* disable error messages */

  while (1) {
    curopt = getopt(argc,argv,"i:o:t:y:s:f:mh");



50

    if (curopt < 0) break;

    switch (curopt) {
      case 'i':                         /* Flag for the name of the input    */

strncpy(input_file,optarg,49);  /* file containing a sound sample    */
input_file[49]='\0';
ifile=1;

        break;
      case 'o':                         /* Flag for the name of the ouput    */

strncpy(output_file,optarg,49); /* file to write the transform       */
output_file[49]='\0';

        break;
      case 'f':                         /* Flag for the name of the ouput    */

strncpy(output_wave,optarg,49); /* file to write the waveform        */
output_wave[49]='\0';
outwave = fopen(output_wave, "w");
break;

      case 't':                         /* Flag for the time interval for    */
time_interval = atof(optarg);   /* each computed transform           */
break;

      case 's':                         /* Flag for the time offset from the */
time_offset = atof(optarg);     /* beginning of the input file to    */
break;                          /* to start reading data             */

      case 'y':                         /* Flag for the number of iterations */
iter = atoi(optarg);            /* that the transform will occur     */
break;

      case 'm':                         /* Flag which selects classic ft     */
slow = 1;
break;

      case 'h':                         /* Flag to request the flag listing  */
print_help_screen();
exit(0);

      case '?':                         /* Case an invalid flag was used     */
        printf("\nInvalid argument: %c\n",(char)optopt);

print_help_screen();
exit(1);

    }
  }
  if (ifile) {                           /* If all the input was specified   */
    file = open(input_file, O_RDONLY);   /* Opens the file for reading       */
    outfile = fopen(output_file, "w");   /* Opens the file for writing       */
    return 1;
  }
  else                                   /* halt on no input file            */
    die("You must specify an input file!\n");
  return 0;

}

/******************************************************************************
  write_output

 Writes the output of the transform into the specified variable.
 Handles both two dimensional and three dimesional output.
******************************************************************************/
int write_output(int length) {
  int i,j;

  for (i=0; i<length;i++) {
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    for (j=0; j<iter; j++) {

    /* Prints the frequency of the corresponding data cell */
    fprintf(outfile, "%g\t", ((float)i*sampling_rate/(2*(length-1))));

    /* If there are multiple iterations of data prints out the beginning time
       for the current set of transform data */
    if (iter > 1) fprintf (outfile, "%f\t", j * (2.0*length/sampling_rate));

    /* Prints the amplitude for the current frequency */
    fprintf(outfile, "%d\n", (int)output[j][i]);
    }
    if (iter > 1) fprintf(outfile, "\n\n");
  }
  return 1;

}

/******************************************************************************
  write_wave

 Writes out the specified file the waveform of the data which we are currently
 taking the transform of.
******************************************************************************/
int write_wave(int length, int curiter) {
  int i,off;

  /* Calculates the time offset due to the current iteration of read data */
  off = (curiter)*length;
  for (i=0; i<length;i++) {

    /* Prints the time for the current amplitude of original wave data.  Uses
       the off variable calculated above and the orginal offset from the
       beginning of the file inputted from the command line */
    fprintf(outwave, "%f\t", (float)(off+i)/sampling_rate+time_offset);

    /* Prints the wave amplitude */
    fprintf(outwave, "%d\n", (int)data[i]);
    }
  return 1;

}

/******************************************************************************
  adjust_phase

 Takes the output of the transform which returns real and imaginary data for
 each frequency and combines them into one value for each frequency.  It
 also puts the values in an array of half the original length since we are
 eliminating half the numbers through this process.
******************************************************************************/
int adjust_phase(int total, int curiter) {
  int i;

  output[curiter][0] = abs(data[0]);
  output[curiter][total/2] = abs(data[1]);

  for (i=2; i < total; i+=2) {

    /* takes the square of the real and imaginary parts of the transform and
       combines them.  */
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    output[curiter][i/2] = hypot(data[i], data[i+1]);
  }
  return total/2+1;
}

/******************************************************************************
  next_pow2

 This function takes a number and finds the closest number (greater than the
 original) which is of the form 2^n
******************************************************************************/
int next_pow2(int length) {
  int i=0;

  while (1) {
    if (POW2(i) >= (length-1)) break;
    i++;
  }
  return POW2(i);
}

/******************************************************************************
  read_number

 Takes the input file and the length of the "word" in bytes and returns the
 value of the number.  This function expects to read a little endian number
 in 2's compliment form.
******************************************************************************/
long read_number(int length) {
  int error, i;
  unsigned char uc;
  char c;
  long total=0;

  /* Reads byte by byte.  For numbers greater than 1 byte, the read numbers
     don't contain "sign" information, so we treat them as unsigned and read
     them from lowest order to highest order. */
  for (i=0; i < (length-1); i++) {
    error = read(file, &uc, 1);
    if (error <=0 ) die("Unexpected EOF or error!\n\n");
    total += uc * pow(16, 2*i);
  }

  /* The last byte we read (or only in the case of 1 byte numbers) contains
     "sign" information, so we treat it as signed and highest order. */
  error = read(file, &c, 1);
  if (error <=0) die("Unexpected EOF or error!\n\n");
  total += c * pow(16, 2*(length-1));

  return total;
}

/******************************************************************************
  check_string

 Function takes the number of bytes to read out of the file, the string to
 compare it to, and whether it should be an exact match or if the input string
 should just be found somewhere in the specified block of the file.
******************************************************************************/
int check_string(char *text, int num, int exact) {
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  char temp[20];
  int error;

  error = read(file, &temp, num);
  temp[num] = 0;
  if (exact) {
    if (strcmp(temp, text) == 0) return 1;
    else return 0;
  }
  else {
    if (strstr(temp, text)) return 1;
    else return 0;
  }
}

/******************************************************************************
  find_data_tag

 Finds the next occurance of "data" in the file and moves the pointer directly
 after it.
******************************************************************************/
int find_data_tag() {
  int error=1;
  char c;

  while (error) {

    /* finds the next occurance of "d" in the file */
    while (error) {
      error = read (file, &c, 1);
      if (c == 'd') break;
    }
    /* after it has found a "d" make sure the next letter is an "a" otherwise
       start over */
    read (file, &c, 1);
    if (c != 'a') continue;
    /* after we have "da" make sure next is "t" */
    read (file, &c, 1);
    if (c != 't') continue;
    /* after we have "dat" make sure next is "a" */
    read (file, &c, 1);
    if (c != 'a') continue;
    /* if we got here we found "data" in the file, return true */
    else return 1;
  }
  return 0;  /* the file ran out before we found "data" return false */
}

/******************************************************************************
  read_wav_header

 Opens and reads the header of the .wav file to get the sampling rate, number
 of bits, number of channels, and length of the file.  Also checks to make
 sure the header is valid to ensure it is a properly constructed wav file
******************************************************************************/
int read_wav_header() {
  int file, fmtsize;

  if (!check_string("RIFF", 4, 1)) /* Check that the first 4 bytes     */
    die("Incorrect Wav File Header!\n"); /* contain "RIFF" (exact match)     */
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  read_number(4);                  /* read the next four bytes which
    contain the length of data + fmt
    chunk, not currently used        */

  if (!check_string("WAVE", 4, 1)) /* Check that the next 4 bytes      */
    die("Incorrect wID!\n");             /* contain "WAVE" (exact match)     */

  if (!check_string("fmt", 4, 0))  /* Check that the next 4 bytes      */
    die("Incorrect fID!\n");             /* conatin "fmt" (inexact match)    */

  if ((fmtsize = read_number(4)) < 16) /* reads the size of the format */
    die("Format Chunk is Invalid!\n");   /* chunk (4 bytes), which has a min

    16 bytes of length               */

  read_number(2);                  /* not used, there is a discrepancy
    whether this stands for stereo/mono
    or wformat tag (ie PCM): 2 bytes */

  channels = read_number(2);      /* reads/checks the number of       */
  if (!(channels == 1) && !(channels == 2)) /* channels to be either 1,2   */
    die ("Wrong number of channels!\n");

  sampling_rate = read_number(4); /* reads the sampling rate          */

  read_number(6);                  /* not used: bytes per second (4
    bytes) bytes per sample (2 bytes)*/

  bits = read_number(2);          /* reads bits per sample, 2 bytes   */

  if (!find_data_tag(file))              /* search for the "data" tag        */
    die("Could not find data tag!\n");

  datasize = read_number(4);      /* reads the amount of amplitude data
    in the file (in bytes): 4 bytes  */

  return file;                           /* If we got this far, its a well
    formed wav header.  Returns the
    file handle for later reading    */

}

/******************************************************************************
  setup_data

 Takes the data from the wav header and command line, and sets up a float
 array of the proper length to be used to do the transform.  Also moves the
 pointer ahead in the file by the time offset specified on the command line
******************************************************************************/
int setup_data() {
  int temp, i;

  /* calculates the number of samples to ignore from the beginning */
  temp = ((int)(sampling_rate * time_offset)) * (bits/8) * channels;

  /* adjust datasize for the time offset from the beginning */
  datasize -= temp;

  /* discards the number of samples just calcuated */
  if (temp > 0) read_number(temp);

  /* calculates the number of samples to be used for each transform iteration*/
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  temp = sampling_rate*time_interval;

  /* adjusts the number of samples to be of the form 2^n which is required for
     the transform to run */
  total = next_pow2(temp);

  /* adjusts the time interval to match the new number of samples */
  time_interval = (float)total/sampling_rate;

  /* finally setup the data array with the proper length */
  data = (float *)malloc(total * sizeof(float));

  /* allocates the proper length for the phase adjusted transform data in the
     product array */
  product = (float *)malloc((total/2+1) * sizeof(float));

  /* allocates the proper length for all of the product arrays to be used in
     the output file */

  output = (float **)malloc((iter+1) * sizeof(int));

  for (i=0; i<iter; i++)
    output[i] = (float *)malloc((total/2+1) * sizeof(float));

  return 1;
}

/******************************************************************************
  read_input_wav

 Reads the appropriate number of samples from the wav file into the data
 array.
******************************************************************************/
int read_input_wav() {
  int i=0, left, right;

  /* checks for stereo input, and combines the left and right channel in that
     case before inserting it into the data array.  Handles both 8 and 16 bit
     files */
  if (channels == 2)
    for (i=0; i < total; i++) {
      left = read_number(bits/8);
      right = read_number(bits/8);
      data[i] = (float)(left+right);
    }
  /* otherwise reads the samples directly into the array */
  else
    for (i=0; i < total; i++) {
      data[i] = read_number(bits/8);
    }
  return total;
}

/******************************************************************************
  ispowerof2

 Checks to see if the input number is of the form 2^n
******************************************************************************/
#define ispowerof2(X) !(X & (X-1))

/******************************************************************************



56

  add_zeros

 Adds zero imaginary values to an array of real values.
******************************************************************************/
void add_zeros(float data[], int N) {
  int i;

  for (i=N-1; i>=0; i-=2) {
    data[i-1] = data[i/2];
    data[i] = 0;
  }
}
/******************************************************************************
  slow_fft

 Computes the fourier transform of an array of floats which is a discretely
 sampled waveform, using classical methods
******************************************************************************/
void slow_fft(float data[], int N) {

  /* discrete fourier tranform of data, with N real and
     N imaginary elements, interleaved.  data[0]=real1,
     data[1]=imag1, data[2]=real2, etc. */

  void four1(float data[], unsigned long nn, int isign);
  double *trans;
  double tmpsin, tmpcos, x;
  int k, n, kk, nn;

  data = (float *)realloc(data,  2*N * sizeof(float));
  add_zeros(data, 2*N);
  for(n=0;n<2*N;n++)
    printf("%g\n", data[n]);
  printf("\n");
  trans = (double *)malloc(2*N*sizeof(double));
  for(n=0;n<N;n++)
    {
      nn = 2*n;
      trans[nn]=trans[nn+1]=0.0;
      for(k=0;k<N;k++)

{
  kk = 2*k;
  x = 2 * M_PI * k * n / (double)N;
  tmpcos = cos(x);
  tmpsin = sin(x);
  trans[nn] += data[kk]*tmpcos;
  trans[nn] -= data[kk+1]*tmpsin;
  trans[nn+1] += data[kk]*tmpsin;
  trans[nn+1] += data[kk+1]*tmpcos;
}

    }
  four1(data-1, N, 1);
  printf("\n");
  for(n=0;n<2*N;n++)
    printf("%g\n", trans[n]);
  printf("\n");
  for(n=0;n<2*N;n++)
    printf("%g\n", data[n]);

}
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/******************************************************************************
  four1

 Computes the fast fourier transform of an array of floats which is a
 discretely sampled waveform.
******************************************************************************/
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void four1(float data[], unsigned long nn, int isign)
{

unsigned long n,mmax,m,j,istep,i;
double wtemp,wr,wpr,wpi,wi,theta;
float tempr,tempi;

 if (!ispowerof2(nn)) die("four1 received a data array without 2^n
elements.\n");

if (nn == 0) die("four1 received an empty array.\n");

n=nn << 1;
j=1;
for (i=1;i<n;i+=2) {

if (j > i) {
SWAP(data[j],data[i]);
SWAP(data[j+1],data[i+1]);

}
m=n >> 1;
while (m >= 2 && j > m) {

j -= m;
m >>= 1;

}
j += m;

}
mmax=2;
while (n > mmax) {

istep=mmax << 1;
theta=isign*(6.28318530717959/mmax);
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for (m=1;m<mmax;m+=2) {

for (i=m;i<=n;i+=istep) {
j=i+mmax;
tempr=wr*data[j]-wi*data[j+1];
tempi=wr*data[j+1]+wi*data[j];
data[j]=data[i]-tempr;
data[j+1]=data[i+1]-tempi;
data[i] += tempr;
data[i+1] += tempi;

}
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}
mmax=istep;

}
}
#undef SWAP

/******************************************************************************
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  realft

 Since the fast fourier transform function expects a real and imaginary part
 for each sample and all of our data is real, we can reassemble our data so
 the first half of the data is in all the of the "real" cells and the second
 half is in the "imaginary" cells, run the transform, and then decode the data
 back at the end.  This allows us to do twice the real data at once.
******************************************************************************/
void realft(float data[], unsigned long n, int isign)
{

void four1(float data[], unsigned long nn, int isign);
unsigned long i,i1,i2,i3,i4,np3;
float c1=0.5,c2,h1r,h1i,h2r,h2i;
double wr,wi,wpr,wpi,wtemp,theta;

theta=3.141592653589793/(double) (n>>1);
if (isign == 1) {

c2 = -0.5;
four1(data,n>>1,1);

} else {
c2=0.5;
theta = -theta;

}
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0+wpr;
wi=wpi;
np3=n+3;
for (i=2;i<=(n>>2);i++) {

i4=1+(i3=np3-(i2=1+(i1=i+i-1)));
h1r=c1*(data[i1]+data[i3]);
h1i=c1*(data[i2]-data[i4]);
h2r = -c2*(data[i2]+data[i4]);
h2i=c2*(data[i1]-data[i3]);
data[i1]=h1r+wr*h2r-wi*h2i;
data[i2]=h1i+wr*h2i+wi*h2r;
data[i3]=h1r-wr*h2r+wi*h2i;
data[i4] = -h1i+wr*h2i+wi*h2r;
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}
if (isign == 1) {

data[1] = (h1r=data[1])+data[2];
data[2] = h1r-data[2];

} else {
data[1]=c1*((h1r=data[1])+data[2]);
data[2]=c1*(h1r-data[2]);
four1(data,n>>1,-1);

}
}

/******************************************************************************
  initialize

 Gets the command line input, sets up the data array, reads the file header.
******************************************************************************/
int initialize(int argc, char **argv) {

  printf("fft Version 0.05\n");
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  parse_input(argc, argv);

  read_wav_header();

  setup_data();

  printf("Adjusted Time Interval: %f seconds\n", time_interval);

  return 1;

}

/******************************************************************************
  calculate

 calculates the transforms for each iteration, and writes out the results as
 well as the original waveform.
******************************************************************************/
int calculate() {
  int
    i=0,
    ntotal;

  while (i*total < datasize/(channels*bits/8)) {
    if (i >= iter) break;
    ntotal=read_input_wav();
    if (outwave != NULL)
      write_wave(ntotal, i);
    if (slow) slow_fft(data, ntotal);
    else
      realft(data-1,ntotal,1);
    /*    printf("\n");
    for (j=0; j<ntotal; j++)
      printf("%g\n", data[j]);
    printf("\n"); */
    ntotal=adjust_phase(ntotal, i++);
  }
  write_output(ntotal);
  return 1;

}
/******************************************************************************
 main
******************************************************************************/
int main (int argc, char **argv) {

  initialize(argc, argv);

  calculate();

  return 0;
}
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Appendix B: Microsoft Wav File Format

Number Format
• All numbers are read little-endian.  This means the highest order byte comes first.
• All values are 2’s complement.

RIFF Chunk
RIFF Chunk 12 bytes long
bytes
0-3 "RIFF"
4-7 length of entire file
8-11 "WAVE"

FMT Chunk
FMT Chunk 24 Bytes Long (possibly longer)
bytes
0-3 "FMT "
4-7 length of the rest of the format chunk (16)
8-9 Amplitude Type, 1 for Pulse Code Modulation (???)
10-11 Number of Channels
12-15 Sample Rate (Hz)
16-19 Bytes per second
20-21 Bytes per sample: 1=8-bit mono, 2=8-bit stereo or 16-bit stereo, 4=16-bit stereo
22-23 Bits per sample

Data Chunk
DATA Chunk Variable Length
bytes
0-3 "data"
4-7 length of data chunk
8-end amplitude data

Amplitude Data
• 8-bit mono: each byte is a sample
• 8-bit stereo: one byte is the left channel and the next is the right channel
• 16-bit mono: each sample is two bytes (little-endian, 2’s complement)
• 16-bit stereo: each sample is four bytes, first two bytes are the left channel next two

are the right channel (little endian, 2’s complement)


