
Streamlining the Calculation of an Ionization

Electron’s Path in a GEM Detector

A thesis submitted in partial fulfillment of the requirement
for the degree of Bachelor of Science in Physics

from the College of William and Mary in Virginia

by

Joshua David Evans.

Williamsburg, Virginia
May 2006

Abstract

I have written a series of programs using the Perl and C languages to streamline the calcula-
tion of an ionization electron’s path in the drift chamber of the Radial Time Projection Chamber
(RTPC) used in the BoNuS experiment at the Jefferson National Accelerator Facility. Accurate
ionization electron path information is crucial in the reconstruction of an energetic particle’s
track through detector. The first program is a Perl script that calls two existing programs,
Magboltz 2 and calcEB, to perform the calculations necessary to create a drift velocity map for
many points within the detector. The user specifies parameters such as the gas mixture in the
drift chamber and the local electric and magnetic fields. The output is a data file containing the
drift velocities at regular intervals within the chamber. The second main program reads the drift
velocity map and interpolates the drift velocity for any point within the detector. Using source
code from Nate Baillie, this program then uses the drift velocities to create files that specify
the path ionization electrons travel in the detector. The collection of software I have created
allows the user to determine the drift velocity at any point within the Radial Time Projection
Chamber and calculate the path of an ionization electron in the detector with greatly increased
accuracy and efficiency over previous methods.

i

Acknowledgements

I would first like to thank Keith Griffioen for his continued support through every stage of my

project. My work was interesting and rewarding as a direct result of his patient guidance. I would

also like to thank Nate Baillie for the source code from which my project became possible as well as

for answers to my constant flow of questions. Finally, I would like to thank the entire BoNuS group

for taking time from their extremely busy schedules to make me a welcome addition to the team.

ii

Contents

Abstract iii

1 Introduction 1

1.1 The BoNuS Experiment . 1

1.2 The Importance of Ionization Electron Path Information 2

1.3 Existing Calculation Methods . 2

2 The Radial Time Projection Chamber 3

2.1 Assumptions and Symmetries . 5

3 Streamlining the Calculation of Path Information 7

3.1 Program Overview . 7

3.2 Magboltz . 8

3.3 calcEB . 9

3.4 drift.pl . 9

3.5 electronPath . 11

3.6 Verification of the Interpolation Routine . 13

3.7 Ionized Electron Path Files . 16

4 Conclusions 18

A Calculation Supporting Assumption that Drift Velocity in z is Negligible 20

B Coordinate Input File 22

C Drift Velocity Map 23

D Interpolation Verification Table 24

E Drift.pl Code 26

iii

F ElectronPath.c Code 32

List of Figures

1 Dimensions and main features of the Radial Time Projection Chamber. 4

2 Cross Section of the Radial Time Projection Chamber. 5

3 Program overview flow chart. 8

4 Drift.pl flow chart. 11

5 Interpolation Equation. 12

6 Interpolation Verification: s direction. 15

7 Interpolation Verification: φ direction. 15

8 Electron path plot for z=0.15 mm. 17

9 Electron path plot for z=98.15 mm. 17

List of Tables

1 Interpolation Test Coordinates . 24

2 Interpolation Verification Data: s direction . 24

3 Interpolation Verification Data: φ direction . 25

iv

1 Introduction

Although much information has been gathered on the structure of the proton, rela-

tively little is known of the neutron’s structure. This lack of knowledge arises from the

difficulties encountered in producing a neutron target with a density high enough to

be experimentally useful. Since neutrons have no charge and decay in approximately

fifteen minutes when free, they are hard to contain in a suitable target. The Bound

Nucleon Structure (BoNuS) collaboration proposed an alternative method to study

the structure of the neutron, as described below.

1.1 The BoNuS Experiment

The goal of the BoNuS collaboration is to study the structure of the neutron. To

overcome the challenges of preparing a suitable free neutron target, the BoNuS ex-

periement scatters electrons from a deuterium target. By studying the recoil ’spec-

tator’ proton from the electron-deuterium interaction, we can correct for the nuclear

effects on the neutron in the deuterium atom.

The BoNuS experiment [1] is designed to use the CEBAF Large Acceptance Spec-

trometer (CLAS) in Hall B [2] of the Thomas Jefferson National Accelerator Facility

[3]. The CLAS detector has a lower momenta threshold of 250 Mev/c for protons.

To detect ’slow’ protons from the electron-deuterium interaction, the collaboration

has designed a detector that will be able to track protons with momenta as low as

70 MeV/c. This detector, the Radial Time Projection Chamber (RTPC), is designed

to be inserted into the CLAS detector. In this way, we can measure the results of

the electron-neutron interaction with CLAS and correct for the nuclear effects by

measuring the backwards traveling proton with the RTPC.

1

1.2 The Importance of Ionization Electron Path Information

When an energetic particle such as a proton travels through a particle detector’s drift

chamber, it ionizes some of the gas molecules along its path. An applied voltage across

the drift chamber, also known as the sensitive volume, creates an electric field that

accelerates the ionization electrons towards the detector’s readout pads. A magnetic

field is also present in the sensitive volume, which creates a Lorentz force orthogonal

to the magnetic field and the ionization electron’s velocity.

By calculating the drift velocity of ionization electrons within the sensitive volume

we can find the path these electrons traveled to the readout pad on which they are

detected. Using time coincidence techniques, we can project backwards in time to find

the location within the detector where the ionization electron was liberated. From

here, we can reconstruct the path of the energetic particle that passed through the

detector’s drift chamber and thus identify the particle’s momentum by the curvature

of its path. The reconstruction of the energetic particle’s path is extremely dependent

on accurate calculation of the ionization electron’s drift velocity.

1.3 Existing Calculation Methods

The preexisting method used by the BoNuS collaboration to calculate the path of an

ionization electron’s path through the detector required many steps and was highly

inefficient. A user would first need to run the program calcEB to obtain the field

information for a specific point within the detector. The program uses a field map of

the detector to interpolate the electric and magnetic fields for the input coordinates.

The next step is to calculate the drift velocity at that point within the detector.

Magboltz is a program that uses Monte Carlo simulation to determine the drift ve-

locity of an ionization electron within a gas detector chamber [5],[6]. The user must

modify Magboltz’s input file fpr the specific gas mixture in the drift chamber, the

pressure and temperature in the detector, and also the field information at the coor-

2

dinate point in question. Magboltz takes nearly four minutes to run, on a home PC

running Ubuntu Linux and returns approximately 75 lines of output. The user must

then scroll through and find the three lines of output that contain the drift velocity

values in the s, φ, and z directions and their associated statistical errors.

From here the user would then have to project the location of the ionization elec-

tron a certain time later. This next coordinate point would then need the above

process repeated again to find the drift velocity at that point so the user could then

project the electron to the next point along its path.

Needless to say, this method was extremely tedious and inefficient in calculating

an ionization electron’s path for the many different voltages and gas mixtures used

in the BoNuS experiment. In response to this inefficiency in calculation, my project

was born. The software developed to efficiently calculate the many necessary path

files is discussed in depth in the following sections. But first, we must discuss some

symmetries and assumptions that we used in calculating drift velocities for the RTPC.

2 The Radial Time Projection Chamber

The Radial Time Projection Chamber (RTPC) is the detector designed by the BoNuS

collaboration to detect the low momenta spectator protons from the electron-deuterium

interaction. It is a cylinder 20 cm in length with a radius of approximately 7 cm.

The cylinder is split into two identical halves. The drift region lies between 30 mm

and 60 mm in the radial direction. The drift region is filled with Helium-dimethyl

ether(HeDME) at one atmosphere. Together, the two halves form a sensitive volume

200 mm in length covering over 148o in φ.

Three Gas Electron Multipliers (GEMs) surround the drift chamber at radii (s)

of 60 mm, 63 mm, and 66 mm. The GEMs were developed by the Gas Detectors

Development Group at CERN [4]. Each GEM has a gain of approximately 100,

3

allowing the initial ionization electrons to create a cascade of electrons that can be

measured by the readout pads. The main difference between a conventional time

projection chamber (TPC) and the radial TPC is that the radial TPC has its readout

pads on the surface of the cylinder, not on the ends of the cylinder. The radial TPC

has a shorter drift path than a conventional TPC allowing events to be captured at

a higher rate.

The electronic readout pads are located at 69 mm from the center of the RTPC.

Each pad is 4.445 mm by 5 mm. In total, there are 3200 readout pads on the detector.

There is a preamplifier for every 16 pads connected on the outside of the RTPC. The

target is a thin-walled Kapton tube 12 mm in diameter filled with 7 atm of deuterium.

Figures 1 and 2 show these dimensions and main features of the RTPC.

Figure 1: Dimensions and main features of the Radial Time Projection Chamber. The RTPC is
20 cm long and 14 cm in diameter. The target is a thin-walled Kapton tube 12 mm in diameter
filled with 7 atm of deuterium. The target tube and sensitive volume (30 mm < s < 69mm) are
shown in cross section with a schematic of an ionizing proton track and the corresponding ionization
electrons.

4

-60

-40

-20

 0

 20

 40

 60

-60 -40 -20 0 20 40 60

Y
(m

m
)

X(mm)

RTPC Cross Section

Drift Chamber Inner Radius
GEM Layers

Readout Pads
63*sin(theta), 63*cos(theta)
66*sin(theta), 66*cos(theta)

Figure 2: Cross Section of the Radial Time Projection Chamber. The inner radius of the sensitive
volume is at s=30 mm, GEM 1 is at s=60 mm, GEM 2 is at s=63 mm, GEM 3 is at s=66 mm, and
the readout pads are at s=69 mm.

2.1 Assumptions and Symmetries

The symmetry of the Radial Time Projection Chamber allows us to make a few

assumptions when dealing with the drift velocities of the ionization electrons. But

first we need to discuss the direction of the electric and magnetic fields present in

the drift chamber. Please note we are using a cylindrical coordinate system with

z=0 at the center of the detector, not at one end. The electric field points radially

inward causing the electrons to accelerate towards the readout pads on the outer

radius. This electric field is generated by a potential difference between the inner

radius of the drift chamber (s=30 mm) and the first GEM (s=60 mm). There is also

5

a potential difference between each of the GEMs, and the readout pads and the third

GEM. Thus we define four separate voltages and their corresponding electric fields:

• Drift Voltage = Vd: 30 mm < s < 60 mm

• Transfer Voltage 1 = Vt1: 60 mm < s < 63 mm

• Transfer Voltage 2 = Vt2: 63 mm < s < 66 mm

• Induction Voltage = Vi: 66 mm < s < 69 mm

The naming convention for the corresponding electric fields uses the same sub-

scripts. The magnetic field that permeates the drift region of the RTPC is generated

by the CLAS DVCS. This magnetic field’s direction is coaxial with the beam of elec-

trons that passes through the target. Thus, the magnetic field points in the positive

z direction. Since the electrons drift towards the outer radius (the s direction) and

the magnetic field points in the z direction, they will experience a Lorentz force in

the φ direction. Thus, we expect the electrons to have a velocity in the s direction

from the electric field and velocity in the φ direction as a result of the Lorentz force.

However, the magnetic field does have some radial and angular components near

the ends of the detector (z=-100 mm and z=100 mm). These fringe fields create a

nonzero Lorentz force in the z direction. However, the force in the z direction is not

large enough to shift the electrons trajectory to a neighboring readout pad. Therefore,

we consider the z drift velocity to be negligible and assume that the electron will strike

a readout pad at the same z value that it was ionized. Refer to Appendix A for the

calculation to support this assumption.

The electric and magnetic fields are symmetric around the center of the detector.

This allows us to calculate the drift velocity and electron path information for one

half of the detector (0 mm < z < 100 mm). The RTPC is symmetric in φ given the

same drift, transfer, and induction voltages. This means we only need to calculate

the drift velocity at φ=0, since the drift velocity will be the same for all φ values.

6

It should be noted that the physical halves of the detector are not symmetric.

Due to slight differences in electronics, the same voltage set point will yield different

drift, transfer and induction voltages in the two halves. However, the programs

that calculate the drift velocity and then the ionization electron’s path require the

specific voltages in the drift chamber and thus do not discriminate which half they

are calculating for. Thus, we need only to know the drift, transfer and induction

voltages to calculate the drift velocity at any point within the detector.

3 Streamlining the Calculation of Path Information

The goal of my senior thesis was to create an accurate and efficient method of cal-

culating an ionization electron’s path through the Radial Time Projection Chamber.

The programs created simplified the user input process, automated the data collec-

tion, and allowed for any number of data points to be specified. The end result

is a universally useful suite of programs that calculate the ionization electron path

information.

3.1 Program Overview

The programs developed to calculate the path of an ionization electron through the

RTPC are contained within two main programs: drift.pl and electronPath. Drift.pl is

a perl script written to streamline the calculation of drift velocity. It simplifies user

input and calls calcEB and Magboltz for many points within the detector to create a

map of drift velocities. ElectronPath is a program that uses the drift velocity maps

created by drift.pl to calculate the path an ionization electron travels from the inner

radius to the readout pads. Its output is a set of files specifying the coordinates of the

electron’s path for a regular time interval. Figure 3 shows the simplified user process

to calculate the ionization electron path information.

7

Figure 3: Program overview flow chart. Drift.pl prompts the user to input the gas mixture, the
solenoid current, and the RTPC voltages. The user then runs electronPath and must input the
same information. This is necessary for electronPath to find the correct drift velocity map created
by drift.pl. ElectronPath then outputs a set of path files that describe the trajectory an ionization
electron would travel through the detector.

3.2 Magboltz

Magboltz 2 is a Monte Carlo simulation program written by Dr. Biagi at the Univer-

sity of Liverpool [5]. This program integrates the Boltzmann transport function to

calculate the drift velocity of an ionization electron in a gas. Magboltz 2 is a revised

version of the original Magboltz code, which helps minimize the amount of user input

necessary to run the program. The user must modify an input file, fort.20, to specify

the gas mixture, temperature, pressure, the electric and magnetic field magnitudes,

and the angle between the E and B fields. Magboltz 2 then outputs approximately

8

75 lines of data, including the drift velocities in the s, phi, and z directions and their

associated statistical errors. Using Magboltz, we can find the drift velocity at any

point within the RTPC if we know the gas and field properties.

3.3 calcEB

Nate Baillie wrote the calcEB program to calculate the electric and magnetic field

information for any point within the RTPC. Using a field map of the detector, calcEB

interpolates the electric and magnetic field magnitudes and the Lorentz angle at any

coordinate point that lies within the sensitive volume of the RTPC. The user must

input the coordinate point to be calculated, the current in the solenoid, and the four

voltages within the detector. The program then uses the exisiting field map to scale

the field information to the particular solenoid current and voltage settings. Thus,

calcEB gives us the field information necessary to run Magboltz.

3.4 drift.pl

The drift.pl code was created in response to the need for knowing the drift velocity of

an ionization electron at many different positions within the detector. The program

streamlines the drift velocity calculation by automating the Magboltz and calcEB

programs. Most importantly, drift.pl repeats the process for many data points. This

creates a map of drift velocities throughout the detector. Upon executing the pro-

gram, the user specifies the gas mixture; the drift, transfer, and induction voltages;

and the solenoid current. In addition, drift.pl lists the possible input files, and allows

the user to choose the appropriate coordinate map. This input file specifies for which

coordinate points the drift velocity will be calculated. Refer to Appendix B for an

example of the coordinate input file. Once the user specifies the drift chamber pa-

rameters, drift.pl can run in the background. The core of the program is a while loop

that calculates the drift velocity for each coordinate point in the input file.

9

Drift.pl is written in the Perl scripting language because of its ability to internally

execute shell commands. Upon reading in a set ot coordinate points, drift.pl executes

the external program calcEB. It saves the output to a local variable, and then searches

for the electric field, the magnetic field, and the Lorentz angle. Using this field

information, drift.pl then modifies fort.20, Magboltz’s input file, and then runs the

Magboltz program. The output from Magboltz is saved into a temporary file.

The drift velocity is reported from Magboltz in scientific notation with units of µm

ns
.

It should be noted that this is much slower than the speed of light, which is about one

foot per nanosecond. Thus we need not consider relativistic effects. Once drift.pl has

retrieved the drift velocities and their associated statistical errors from the temporary

file, these are saved as string variables as a result of the scientific notation. Drift.pl

uses a subroutine to convert the drift velocities from a string variable in scientific

notation to a decimal number stored as a floating point variable. The program then

opens the output file and appends the three components of drift velocity and their

associated errors. Upon completion, this output file forms the drift velocity map used

by the electronPath program. Refer to Appendix C for an example of a drift velocity

map and Appendix E for the drift.pl code.

The drift velocity map is stored in a directory with the other drift velocity maps.

The maps are named according to their initial parameters as follows:

[gas code] [gas mixture] b[solenoid current]A V [drift voltage].drift

The regularized naming convention is used by the electronPath program to search

for the correct drift map. Figure 4 illustrates the role drift.pl plays in automating the

calcEB and Magboltz programs and iterating the process for many data points.

10

��������� 	�
������ ����������� �������! " � �#�%$�& �'($��)+*,���-�. %'��0/!1�2435� �&)��6 � �,70�-� 38��9�$�& ����:� ;/8�(2435� �&)��

<>=@?BADCFE,GIH

�J�%KL*#$�$��!)�� '%�M�. � '�K��B��NB� &

�J�O:�P($�& �!Q " � R�� ��STS�U$�'��! L*V�(�5& $W��� X���& �M�-� $�'

Y �%& Y ��1�S

�J�%KL$%3�7��-� 3Z�#9� �& $ Y � �5� ���5[��!$��%:�[($��B�#�5[(��(�
(*

Figure 4: Drift.pl flow chart. The user is first prompted for the gas mixture, solenoid current, and
the RTPC voltages. The map coordinate input file gives drift.pl the coordinate points for which the
drift velocity information will be calculated. The program then runs calcEB and Magboltz 2.5.1 for
each coordinate point and captures the output. The drift velocities are then stored in a file named
for the input parameters. This output file is the drift velocity map.

3.5 electronPath

Up to this point all the software we have discussed has given us the ability to calculate

the drift velocity information of the ionization electrons moving through the RTPC.

ElectronPath uses these drift velocity maps to reconstruct the path the ionization

electrons would travel to reach a particular readout pad. Since the electrons do not

have a significant drift velocity in the z direction, we assume an ionization electron

that strikes a certain readout pad was liberated in the same z slice.

Since the drift velocity is symmetric in φ, we need only to calculate the path

information for each value of z that a pad is centered on. The readout pads do not

have coordinates symmetric around z=0 mm: i.e. a pad centered at z=−42 mm

does not necessarily mean that there is one centered at z=+42 mm. Thus, we need

to calculate path information for every different z coordinate that a readout pad is

11

located on. The Radial Time Projection Chamber has 3200 individual pads, but only

120 different z coordinates. It is clear that the symmetry of the drift velocity in the

φ direction saves us a great deal of calculation.

ElectronPath requires the user to input the gas code and mixture, the voltage set

points, the solenoid current, and the time step (∆t). The gas and field information is

used to look up the appropriate drift velocity map, which is then read into an array.

The main loop of the program consists of two primary subroutines. The first uses the

drift velocity at s=30 mm (the inner radius of the drift chamber) and ∆t to project

the next position of the ionization electron. In this way, electronPath calculates the

ionization electron’s path step by step. Using a small enough time step, we can get

an excellent approximation of the ionization electron’s path through the RTPC.

The second primary subroutine interpolates the drift velocity if the coordinates

needed for the projected point are not found in the drift velocity map. The equations

used by the interpolation routine are displayed in Figure 5. Since most pad centers do

not lie on the regular z values used to create the drift velocity maps, this subroutine

is used almost every time electronPath needs to project the electron’s path to the

next set of coordinates.

Figure 5: Interpolation Equation. This interpolation equation solves for the value at coordinate
point f if the value at four surrounding points are known. ElectronPath uses this equation to solve
for the drift velocity at any point within the detector using the drift velocity map at the indexed
points.

12

By looping this process for each z of a readout pad’s center, electronPath calculates

the path information for every readout pad in the Radial Time Projection Chamber.

Refer to Appendix F for the electronPath code. The path files are stored in a folder

named for the parameters with the same convention as the drift velocity map. In this

way, path files for different parameters are stored in separate folders. Each individual

path file is named for the z coordinate it was calculated for. Path files are stored

using the naming convention: out[z coordinate].path

A short Perl script was written to run the electronPath program. This is advanta-

geous since Perl can execute shell commands more easily than the C language. The

Perl program, runEpath.pl, prompts the user to input the standard parameter set: gas

mixture, solenoid current, drift voltage, as well as the time step (∆t). RunEpath.pl

uses the input values to create the output folder as described in the previous para-

graph in the PATH FILES directory. The program then runs electronPath with the

given inputs.

3.6 Verification of the Interpolation Routine

The interpolation subroutine plays a crucial role in the calculation of an ionization

electron’s path. In fact, the high level of efficiency boasted by this program suite rests

in large part on the ability of the interpolation routine to accurately calculate the

drift velocity between known points. If the interpolation calculation were not used,

electronPath would need to call Magboltz for every single point along the electron’s

path. The interpolation routine allows the program to use the same drift velocity

map for varying time steps. Thus, the accuracy of the ionization path information

rests on the accuracy of the interpolation routine.

Magboltz, being a Monte Carlo simulation, has an associated error with each drift

velocity calculation it performs. We have set up Magboltz to have a statistical error

of approximately 1%, which consequently is why Magboltz takes a few minutes to

13

run a single data point. Hence, we would like to verify that the interpolation routine

has an error less than or equal to that of statistical error of Magboltz.

To verify the accuracy of the calculation, I have chosen ten coordinate points

within the Radial Time Projection Chamber that are not found in the standard drift

velocity map we use. These points span the RTPC from the inner radius to the outer

radius, and from the center of the detector to the outer edge of the detector. The

coordinates were also chosen such that some were far from all data points in the map

and others were very close to one set of coordinate points. This allows us to test the

interpolation calculation for the wide range of circumstances it will encounter when

run in the electronPath program.

These ten coordinate points were then run manually using Magboltz to gather the

drift velocity and the associated error. Since the drift velocity in the z direction is

negligible, we need only worry about the s and φ components. The interpolation

routine was then run for the ten points using the drift velocity map with the same

parameters as the Magboltz drift velocities and the standard map increment.

As expected, the interpolated drift velocities fall within the statisical error of

Magboltz. Figures 6 and 7 show the ten data points, plotted on the horizontal

axis. The vertical axis represents the error in microns per nanosecond. For the

Magboltz drift velocities, the error amount is the statistical error. Both the upper

and lower limit errors are shown. The red line connects the statistical errors from

Magboltz for the ten data points. The interpolated error is simply the difference

between the interpolated drift velocity and the drift velocity that Magboltz calculated.

Interpolation errors are represented by the blue dots. Notice that the interpolation

error falls within the Magboltz statistical error range for almost all of the test data

points.

14

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 1 2 3 4 5 6 7 8 9 10 11

P
hi

 D
rif

t V
el

oc
ity

 E
rr

or
 (

m
ic

ro
ns

/n
s)

Test Data Point

Drift Velocity Interpolation Analysis (s direction)

Mon Apr 10 15:37:26 2006

Magboltz Error Upper Limit
Magboltz Error Lower Limit

Interpolated Difference

Figure 6: Interpolation Verification: s direction. The mean Magboltz error was 0.0491 µm

ns
while the

mean interpolated error was 0.0260µm

ns
. Since most interpolated errors lie within or very near the

Magboltz error range, we can use the interpolation calculation with the current drift velocity map
size without contributing significantly to the error.

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 1 2 3 4 5 6 7 8 9 10 11

P
hi

 D
rif

t V
el

oc
ity

 E
rr

or
 (

m
ic

ro
ns

/n
s)

Test Data Point

Drift Velocity Interpolation Analysis (phi direction)

Mon Apr 10 15:35:27 2006

Magboltz Error Upper Limit
Magboltz Error Lower Limit

Interpolated Difference

Figure 7: Interpolation Verification: φ direction. The mean Magboltz error was 0.0366 µm

ns
while the

mean interpolated error was 0.0062µm

ns
. Since most interpolated errors lie within or very near the

Magboltz error range, we can use the interpolation calculation with the current drift velocity map
size without contributing significantly to the error.

15

The mean interpolation error was 0.0260µm

ns
in the s direction and 0.0062µm

ns
in

the φ direction. The interpolated errors had a standard deviation of 0.0188 µm

ns
and

0.0186µm

ns
in the s and φ directions, respectively. Magboltz gave a mean error amount

of 0.0491µm

ns
in s and 0.0366µm

ns
in φ with standards deviations of 0.0118µm

ns
and

0.0116µm

ns
, respectively. Refer to Appendix D for the interpolation verification data.

Since the interpolation calculation has an error much less than the statistical error

inherent in the Magboltz calculation of drift velocity, we can use the interpolation

routine to greatly increase the efficiency of electronPath without sacrificing accuracy.

3.7 Ionized Electron Path Files

The end result of this suite of programs is a set of files containing the coordinate

points an ionization electron would travel through the RTPC. The following graphs

were made with gnuplot to show the path an ionization electron would travel through

the Radial Time Projection Chamber. The path files were created for a Helium-DME

80/20 mixture with a 114 ns timestep. The solenoid current was 534 A and the drift

voltage was set to 1685 V. Each red point shows the electron’s position projected 114

ns from the previous coordinate postion. In this way, we can visualize the electron’s

path with these plots.

These ionization electron paths show the characteristics we expected. Since the

electric field pointed radially inward, we expected the electrons to drift towards the

outer radius. The velocity of the ionization electrons in the s direction and the

magnetic field in the z direction give rise to a Lorentz force in the φ direction. This

creates the curvature of the ionization electron paths.

16

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

Y
(m

m
)

X(mm)

Electron Path Graph (z=0.15mm)

Electron Path
Detector Inner Radius

GEM 1
Readout Pads

Figure 8: Electron path plot for z=0.15 mm. Note that this path has more curvature than the path
at z=98.15 mm because the magnetic field in the z direction is stronger creating a larger Lorentz
force.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

Y
(m

m
)

X(mm)

Electron Path Graph (z=98.15mm)

Electron Path
Detector Inner Radius

GEM 1
Readout Pads

Figure 9: Electron path plot for z=98.15 mm. Note that this path has less curvature than the path
at z=0.15 mm since the magnetic field is weaker in the z direction as a result of the fringe effects
near the outer edge of the RTPC.

17

The points get closer together farther from the center of the detector as a result of

the cylindrical geometry of the RTPC. Unlike a parallel plate capacitor which has a

near constant electric field, the circular cross section of the RTPC causes the electric

field to weaken as the radius increases. We also see that the electron travelling near

the center of the RTPC (z=0.15 mm) has more curvature than the path at the edge

of the RTPC (z=98.15 mm). This is a result of the fringe fields near the end of the

detector lessens the magnitude of the magnetic field in the z direction and thus the

electrons experience a smaller Lorentz force near the edge of the RTPC. It is also of

note that the electron points get very far apart in the GEM region of the detector

(60 mm < s < 69 mm). This is a result of the acceleration caused by the GEM foils.

4 Conclusions

The path files created by this program suite tell us the trajectory an ionization elec-

tron travels through the RTPC. Each path file also stores how long it takes the

electron to travel from one point to the next. This information is used in coincident

analysis to project backwards in time where the ionization electron was liberated.

Knowing where the electrons detected by the readout pads on the outer radius of the

RTPC allows us to reconstruct the path of the ionizing particle traveling through the

detector.

By knowing the path a proton from the electron-deuterium interaction traveled

through the Radial Time Projection Chamber, we can deduce its momentum and

correct for the nuclear effects of the proton and the neutron. Once these nuclear

effects are accounted for, we will be able to accurately study the structure of the

neutron by analyzing the result of the electron-neutron interaction captured by the

CEBAF Large Acceptance Spectrometer.

Without accurate drift velocity information, we cannot deduce the track of the

18

proton through the RTPC detector. Magboltz, by using a Monte Carlo simulation,

gives us the ability to calculate the drift velocity of the ionization electrons at any

point in the RTPC. The program suite developed in this senior thesis adds efficiency

to the path calculation while retaining a high level of accuracy. A user can now use

drift.pl and electronPath to efficiently and accurately calculate the drift velocity and

path information for any parameters the RTPC can be set for.

19

A Calculation Supporting Assumption that Drift Velocity in

z is Negligible

To support the assumption that the z drift velocity is negligible, I calculated the

distance an electron would travel in the z direction using some of the largest drift

velocities in the BoNuS experiment. The drift velocity map was set for HeDME with

a voltage of 1685 V and a solenoid current of 534 A. These parameters create some

of the largest field values in the RTPC used in the BoNuS experiment. I first wrote

a program to gather all of the drift velocities at z=100 mm. These are the largest z

drift velocities in the detector due to the fringe fields. The following are the gathered

z drift velocities.

s z z_drift z_error

30 100 0.2251 45.26

32 100 0.1698 42.77

34 100 0.1875 45.50

36 100 0.1797 46.95

38 100 0.1734 42.77

40 100 0.1605 46.79

42 100 0.1747 52.83

44 100 0.1615 61.78

46 100 0.1627 56.33

48 100 0.1399 56.07

50 100 0.1975 37.12

52 100 0.1764 55.60

54 100 0.1699 54.56

56 100 0.1676 44.44

58 100 0.1666 45.87

60 100 0.1378 64.16

61 100 1.0700 16.19

62 100 1.1120 15.86

63 100 1.0890 14.06

64 100 1.3120 12.97

65 100 1.4720 10.81

66 100 1.3730 13.93

67 100 1.3550 20.42

68 100 1.3400 19.47

69 100 1.3890 16.23

The next step was to calculate the distance an ionization electron would drift in

the z direction. I found that the average z drift velocity was 0.570 µm

ns
. On average,

the ionization electrons take 6200 ns to travel through the detector’s sensitive region.

20

Now we can find that the ionization electrons travel 3.534 mm in the z direction.

DriftDistance = 0.570
µm

ns
∗ 6200ns ∗

1mm

1000µm
= 3.534mm (1)

A single readout pad is 5 mm in the z direction, thus the ionization electrons

travel less than the length of a single readout pad even for some of the highest z drift

velocities in the experiments. Using this, we can assume that the drift velocity in the

z direction is negligible for average detector parameters.

21

B Coordinate Input File

The following is an abbreviated example of the coordinate input file used by drift.pl.

This was the input file used to create the drift velocity map for the interpolation

verification. Note the spacing is every 5 mm in s and every 25 mm in z. The

interpolation verification showed that this spacing does not add unwanted error.

s phi z

30 0 0

30 0 25

30 0 50

30 0 75

30 0 100

35 0 0

35 0 25

35 0 50

35 0 75

35 0 100

.

.

.

70 0 100

22

C Drift Velocity Map

This is an example of a drift velocity map for a gas mixture of Helium-DME (gas

code 2) at 80% and 20% respectively. The solenoid current was 534 A and the drift

voltage was set to 1685 V. The units of the drift velocities (ws, wphi, and wz) are µm

ns
.

Note how small the z drift velocity is in comparison to the φ and s drift velocities.

2 8020 b534A V 1685.drift

s z ws wphi wz s_err phi_err z_err sol Vdrift

30 0 7.8530 5.5740 0.0000 1.24 1.37 0.00 534 1685

30 25 7.9350 5.5490 0.0736 0.75 0.84 131.10 534 1685

30 50 8.1340 5.4700 0.0884 0.79 1.00 115.74 534 1685

30 75 8.4990 5.3370 0.1486 0.99 1.34 63.88 534 1685

.

.

.

23

D Interpolation Verification Table

The following tables contain the information used for the verification of the interpo-

lation calculation. These abbreviations were used in column titles:

• DP: Data Point

• Mag: Magboltz

• Interp: Interpolation Calculation

• DV: Drift Velocity (µm

ns
)

• Err: Statistical Error (%)

• eAmt: Error Amount (µm

ns
)

Table 1: Interpolation Test Coordinates
DP s φ z
1 30 0 20
2 32 0 65
3 35 0 43
4 38 0 3
5 41 0 89
6 45 0 59
7 47 0 12
8 53 0 77
9 56 0 97
10 60 0 34

Table 2: Interpolation Verification Data: s direction
DP Mag DV Mag Err Mag eAmt Interp DV Interp eAmt
1 6.9930 0.91% 0.0636 6.9960 0.0030
2 6.8380 0.52% 0.0356 6.9077 0.0697
3 6.0240 1.22% 0.0735 6.0607 0.0367
4 5.4070 0.89% 0.0481 5.4297 0.0227
5 5.4580 0.94% 0.0513 5.4879 0.0299
6 4.7090 1.04% 0.0490 4.7320 0.0230
7 4.3150 1.11% 0.0479 4.3381 0.0231
8 4.0780 1.03% 0.0420 4.1050 0.0270
9 4.0060 1.10% 0.0441 4.0081 0.0021
10 3.3690 1.07% 0.0360 3.3920 0.0230

24

Table 3: Interpolation Verification Data: φ direction
DP Mag DV Mag Err Mag eAmt Interp DV Interp eAmt
1 4.7740 0.55% 0.0263 4.8010 0.0270
2 4.3030 0.85% 0.0366 4.3370 0.0340
3 3.9230 1.01% 0.0396 3.9311 0.0081
4 3.6180 0.73% 0.0264 3.6393 0.0213
5 3.1010 1.64% 0.0509 3.0842 -0.0167
6 2.9020 1.32% 0.0383 2.8779 -0.0241
7 2.8330 1.39% 0.0394 2.8432 0.0102
8 2.3640 0.58% 0.0137 2.3569 -0.0071
9 2.1280 2.32% 0.0494 2.1286 0.0006
10 2.1420 2.14% 0.0458 2.1505 0.0085

25

E Drift.pl Code

#!/usr/bin/perl -w

#INPUTS: (s, phi, z) specified in the user-defined input file: File must be stored

in the /INPUT folder

#OUTPUTS: (s, z, s_drift & error, phi_drift & error, z-drift & error)

output file specified by user will be stored in the /OUTPUT folder

#MAIN ROUTINE--

user_input (); #run the user_input subroutine.

$totalcount = counter (); #run the counter subroutine to find howmany data points

will be processed.

$loopcount = 0; #initialize the loopcount variable to be used in the

percent_complete subroutine/

open(INFILE, "<$in") || die "ERROR: Can’t open $in: $!\n";

while(<INFILE>) { #read a line of input into $_ (the inherent variable)

chomp; #remove trailing whitespace

$EBout = ‘./calcEB $_ $sol $drift $t1 $t2 $ind‘; #run ./calcEB for line of input

and capture output

@input = split; #split the line of input (s, phi, z) and store the values in an

array

$s = $input[0];

$z = $input[2];

$EBin = $_; #store inherent variable (line of input data)

$_ = $EBout; #reassign inherent variable to the output of calcEB

@output = split; #split inherent variable (calcEB output)

$Es = $output[13]; #assign Electric field magnitude

$Btot = $output[17]; #assign Magnetic field magnitude

$Theta = $output[25]; #assign angle between E and B fields

mod_fort_20 (); #run the mod_fort_20 subroutine.

magboltz (); #run the magboltz subroutine.

data_mine (); #run the data_mine subroutine.

write_output (); #run the write_output subroutine.

$loopcount += 1; #iterate the loopcount variable

percent_complete (); #run the percent complete subroutine.

}#close main input while-loop

close(INFILE) || die "ERROR: Can’t close $in: $!\n";

#---

#SUB ROUTINES---

sub counter { #Returns the number of data points to be processed

$count = 0;

open(INCOUNT, $in) || die "Can’t open $in\n";

while(<INCOUNT>) {

$count += 1;

}

close(INCOUNT);

print "Data points to be processed: $count\n\n";

26

return $count;

}

#--

sub percent_complete { #Calculates the percent of the input data that has been

processed

$percent = ($loopcount / $totalcount)*100;

print "PERCENT COMPLETE: $percent%\n";

}

#--

sub user_input { #Promtps the user for input and assigns input and output files

system("clear");

print "DRIFT VELOCITY PROGRAM\n";

print "Created June 2005\n";

print "Contact Josh Evans at William & Mary with any questions.\n\n";

print "What DVCS Solenoid Current should we simulate?: ";

$sol = <STDIN>; #read in the solenoid current

chomp($sol); #remove trailing whitespace

print "What Drift Voltage should we simulate?: ";

$drift = <STDIN>; #read in the drift voltage

chomp($drift);

print "What Transfer 1 Voltage should we simulate?: ";

$t1 = <STDIN>; #read in the transfer1 voltage

chomp($t1);

print "What Transfer 2 Voltage should we simulate?: ";

$t2 = <STDIN>; #read in the transfer2 voltage

chomp($t2);

print "What Induction Voltage should we simulate?: ";

$ind = <STDIN>; #read in the induction voltage

chomp($ind);

$in_dir = list_files ("/INPUT"); #run list_files subroutine for the /INPUT

directory

print "\nEnter the name of the input file: "; #prompt user for input file name

$in_file = <STDIN>; #capture the name of the input file

chomp ($in_file); #remove the trailing whitespace

$in = "$in_dir"."/"."$in_file"; #create the entire path for the input file

if(-e $in) { #check for existence of input file

$out_dir = list_files ("/DRIFT_MAPS"); #assigns the path directory to the

out_dir variable

system("clear"); #clear screen since user does not specify output file name

anymore

print "\n\n Argon(2) -- CO2(12) -- He4(3) -- DME(25)\n"; #display gas

codes

print "Enter the two gas codes\nGas1: "; #prompt user for gas codes

$gas1 = <STDIN>; # read in first gas code

chomp($gas1); #remove trailing whitespace

print "Gas2: ";

$gas2 = <STDIN>; #read in second gas code

chomp($gas2); #remove trailing whitespace

print "\n";

27

print "Enter the mixture percentages (0 to 100)\n"; #prompt user for gas

mixture

print "Gas1: ";

$mix1 = <STDIN>; #read in mixture percentage 1

chomp($mix1);

print "Gas2: ";

$mix2 = <STDIN>; #read in mixture percentage 2

chomp($mix2);

print "\n$gas1 - $mix1%\n"; #print gas codes and percentages for

verification purposes

print "$gas2 - $mix2%\n";

#assign output file name

$out_file = "2_"."$mix1"."$mix2"."_b"."$sol"."A_V"."$drift".".drift";

$out = "$out_dir"."/"."$out_file"; #assign output file path name

print "Final data will be stored in $out\n\n";

print "Please be patient while the data is processed.\n";

}#close if statement

else { #is input file does not exist

print "ERROR: Input file does not exist.\n";

die; #exit program

}#close else statement

}

#--

sub mod_fort_20 { #Modifies the file fort.20 so that it may be used to run Magboltz

$std_pres = 760; #standard pressure in Torr

$std_temp = 20; #standard temp in Celsius

open(MOD_FORT, ">fort.20") || die "Can’t open fort.20"; #open fort.20 for

modifications

#write standard file format to fort.20

printf MOD_FORT "%10d%10d%9.3f\n", 2, 2, 20;

printf MOD_FORT "%5d%5d%5d%5d%5d%5d\n", $gas1, $gas2, 52, 52, 52, 52;

printf MOD_FORT "%10.4f%10.4f%10.4f%10.4f%10.4f%10.4f%10.4f%10.4f\n",

$mix1, $mix2, 0, 0, 0, 0, $std_temp, $std_pres;

printf MOD_FORT "%9.2f%9.2f%9.2f\n", $Es, $Btot, $Theta;

printf MOD_FORT "%10d\n", 0;

close(MOD_FORT) || die "ERROR: Can’t close fort.20"; #close fort.20

}

#--

sub magboltz { #Uses the recently modified fort.20 to run the Magboltz 2 program

$magin = "fort.20"; #Magboltz INPUT file name

$magout = "magoutput.dat"; #Magboltz OUTPUT file name

open(MAG_OUT, ">$magout") || die "Can’t open $magout"; #open output file.

$_ = ‘./magboltz-2.5.1 $magin‘; #run the magboltz program and store the output

in the inherent variable

print MAG_OUT "$_"; #print the stored output from the magboltz program to a

temporary output file

28

close(MAG_OUT) || die "ERROR: Can’t close $magout"; #close the temporary output

file.

}

#--

sub data_mine { #Gathers the drift velocity information from the temporary Magboltz

output file

$input = "magoutput.dat";

open(MINE_IN, $input) || die "Can’t open $input"; #open the file that holds the

output from magboltz.

while(<MINE_IN>) { #this while-loop looks at one line of the temp output file at

a time

if(/DRIFT/) { #if the line contains the string "DRIFT"

@array = split; #split the line around whitespace

if($array[0] eq X) { #if first array element is "X"

$z_temp = neg_check (); #run the neg_check subroutine

$z_drift = convert ("$z_temp"); #run the convert subroutine

$z_error = $error; #set corresponding error value

}

if($array[0] eq Y) {

$phi_temp = neg_check ();

$phi_drift = convert ("$phi_temp");

$phi_error = $error;

}

if($array[0] eq Z) {

$s_temp = neg_check ();

$s_drift = convert ("$s_temp");

$s_error = $error;

}

} #close if statement

} #close while loop

close(MINE_IN) || die "Can’t close $input";

close(DEC_TEST) || die "Can’t close decimal_test.dat";

}

#--

sub neg_check { #Checks the drift velocities and removes any trash

if($array[3] eq "=") { #positive drift velocities have element "=" as fourth

element in array

$error_temp = "$array[7]"."42"; #append trash (42) onto end of element

after ’%’

@array_err = split(/%/,$error_temp); #split the error_temp variable at the

’%’

$error = $array_err[0]; #assign the appropriate error value

return $array[4]; #return the drift velocity value since value stands-alone

}

else { #negative drift velocities have the "=" attached to the value: it must be

removed.

$error_temp = "$array[6]"."42";

@array_err = split(/%/,$error_temp);

$error = $array_err[0];

$temp = "42"."$array[3]";

@array2 = split(/=/,$temp); #splits the new string $temp at the previously

bothersome "="

29

return $array2[1]; #return the new drift velocity value sans ’=’ but with

the negative sign.

} #close else statement

}

#--

sub convert { #Drift velocity is reported in scientific notation from Magboltz.

#This string value must be converted to a decimal value.

$pow = ""; #reinitialize $pow variable

$string = $_[0]; #the input value is stored as $_[0] and reassigned to ’string’

@array = split(/E/,$string); #split the line around the exponent

$num = $array[0]; #assign digits to $num variable

$pow_string = $array[1]; #assign power to the $pow variable

@array2 = split(//,$pow_string); #split $pow_string into individual characters

if($array2[0] eq "-") { #add negative sign to $pow if necessary

$pow = "$pow"."-"; }

if($array2[1] ne "0") { #add tens digit to $pow if it’s not a 0

$pow = "$pow"."$array2[1]"; }

$pow = "$pow"."$array2[2]"; #add the ones digit to $pow

if($array2[1] eq "0" && $array2[2] eq "0") { #make $pow=0 if both tens and ones

digits are 0.

$pow = "0"; }

$dec = $num * 10**$pow; #calculate the corresponding decimal value

return $dec; #return the decimal value

}

#---

sub write_output { #Appends the output to the final drift velocity map

open(OUTFILE, ">>$out") || die "Can’t open $out: $!\n"; #open the final output

file for appending

if($loopcount == 0) { #write output file header if first iteration

print OUTFILE "s z ws wphi wz s_err phi_err z_err sol

Vdrift\n";

}

#write the desired values to the final output file

printf OUTFILE "%-9d%-10d%-10.4f%-10.4f%-10.4f%-9s%-9s%-9s%-9s%-9s", $s, $z,

$s_drift, $phi_drift,

$z_drift, $s_error,$phi_error, $z_error, $sol, $drift;

print OUTFILE "\n";

close(OUTFILE) || die "Can’t close $out: $!\n"; #close the final output file

}

#--

sub list_files { #Lists the files in the specified folder

$directory = $_[0]; #set the value passed into subroutine as the $directory

variable

$_ = ‘pwd‘; #assign inherent variable to output of the pwd shell command

chomp; #remove the trailing whitespace

$cur_dir = $_; #assign $cur_dir to the working directory

$dir_path = "$cur_dir"."$directory"; #assign the full directory path

print "\n$dir_path\n"; #print the directory path for the user

opendir(DIR,"$dir_path") || die "Can’t open $dir_path directory"; #open the

directory

30

while(defined ($file = readdir(DIR))) { #prints the name of each file in the

directory

print "$file\n";

} #close while-loop

closedir(DIR); #close the directory

return $dir_path; #return the directory path

}

31

F ElectronPath.c Code

/*ElectronPath.c calculates the path of an electron liberated at proton position

ss,phi,zz

Inputs: Gas code, gas mixture, current in the torus, and the potential across the

drift chamber.

Outputs: -set of files giving the s,phi,z locations of the electron along its path

through the RTPC

-each output file is for a different z-value

-each z-value matches the center of a readout pad in the detector*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <time.h>

#define TRUE 1

#define FALSE 0

#define TORADIANS (3.1415926535/180.0) // convert from degrees to radians

#define NUM_Z1 21

#define NUM_S1 15

#define NUM_Z2 5

#define NUM_S2 25

#define NUM_VAL1 315

#define NUM_VAL2 125

#define NUM_VAL_Z 120 //This is the number of Z values for the loop to run

#define LINLMAX 1400 /* maximum number characters per input line */

#define PI 3.1415926535

#define N_CHAN 3200

typedef char linetype[LINLMAX];

linetype textline;

linetype data;

//a single pad length in z (mm)

#define DEL_Z 5.0

//the angular coverage of a single pad (rad)

#define DEL_PHI 0.06442

///////////////////global variables//

typedef struct {

float s; //mm

float phi; //radians!

float z; //mm

} cylindrical;

typedef struct {

float phi; //radians

float z; //mm

} coordinates;

coordinates padLocs[N_CHAN];

32

float sVals1[NUM_S1]; //the array of the s values from the field map

float zVals1[NUM_Z1]; //the array of the z values from the field map

float int_Bs[NUM_S1][NUM_Z1]; //the array of the Bs values from the field map

float int_Bz[NUM_S1][NUM_Z1]; //the array of the Bz values from the field map

int calcEB;

//to interpolate the Magboltz sim data

float sVals2[NUM_S2]; //the array of the s values where the sim was performed

float zVals2[NUM_Z2]; //the array of the z values where the sim was performed

float Ws[NUM_S2][NUM_Z2]; //the array of the radial velocity components

float Wphi[NUM_S2][NUM_Z2]; //the array of the angular velocity components

float Wz[NUM_S2][NUM_Z2]; //the array of the axial velocity components

float sVel, phiVel, zVel; //holds the s, phi, z components of velocity from the table

//Define command line input variables

int gas_code; //define the gas code

int gas_mix; //define the gas mixture percentage

int hePer; //percentage of Helium in the gas mixture

int side; //tells which half of the RTPC this is for 0=LEFT, 1=RIGHT

int B_value; //define the Torus current (A)

int E_value; //define the RTPC voltage (V)

float delt; //define the timestep (nanoseconds)

float z_max; //define maximum z value

int finalIndex;

int lastPoint;

int crossedGEM; //tells whether or not the electron has reached the first GEM

int t_gem, t_pad, t_0;//t_gem = time when electron crosses r=60mm

//t_pad = time when electron hit readout pad (r=69mm)

//t_0 = t_pad - t_gem = time offset

float phi_gem, phi_pad, phi_0;//phi_gem = phi when electron crosses r=60mm

//phi_pad = phi when electron hit readout pad (r=69mm)

//phi_0 = phi_pad - phi_gem = phi offset

//Define arrays

cylindrical path[10000];

float z_value[NUM_VAL_Z];

char path_file_name[40];

char offset_file_name[40];

char drift_file[40];

char z_file[20];

//Define file handles

FILE *outfile;

FILE *globalfile;

FILE *dvFile;

FILE *Zfile;

FILE *offsetfile;

//Function prototypes

void readDriftVel(); //reads drift velocity map into array

void readZvalues(); //reads pad z-values into array

void getDriftVel(float, float); //interpolates drift velocity

int calcPath(float, float, float, int, int); //calculates electron path

//--

33

//MAIN ROUTINE--

int main(int argc, char **argv)

{ int i, j, k, n;

float ss, phi, zz, zMin, zMax, phiMin, phiMax;

int hitGEM, foundPad, hit_pad_index;

int time;

if(argc != 6) //verify correct number of command line inputs

{ fprintf(stderr,"Usage: electronPath [gas code] [gas mix] [B-value] [E-value]

[delt]\n");

exit(0);

}

//Read inputs from command line

gas_code = atof(*++argv);

gas_mix = atof(*++argv);

B_value = atof(*++argv);

E_value = atof(*++argv);

delt = atof(*++argv);

if(gas_mix == 8515) hePer = 85; //assign standard helium percentages

else if(gas_mix == 8020) hePer = 80;

else if(gas_mix == 7525) hePer = 75;

else

{ printf("this is an odd He Mixture...?");

hePer = -1000;

}

//determine which half of the detector we’re in

if(E_value == 1638 || E_value == 1663 || E_value == 1689 || E_value == 1651 ||

E_value == 1676)

{side = 0;}

else if(E_value == 1659 || E_value == 1688 || E_value == 1718 || E_value == 1674

|| E_value == 1703)

{side = 1;}

else

{ printf("unknown chamber half\n");

side = -1000;

}

//assign the starting point for the path files

ss = 30;

phi = 0;

zz = 0;

z_max = 2;

phi *= TORADIANS; //convert phi from degrees to radians

//Define file names

sprintf(drift_file, "DRIFT_MAPS/%d_%d_b%dA_V%d.drift",gas_code,gas_mix,B_value,

E_value);

sprintf(z_file, "z.dat");

//Gather inputs

readDriftVel(); //Read in the drift velocity file

34

readZvalues(); //Read in the z-coordinates to create path files for

sprintf(offset_file_name,"PATH_FILES/%d_%d_b%dA_V%d/offsets.txt",gas_code,gas_mix,

B_value,E_value);

printf("opening offset output file\n");

if ((offsetfile = fopen(offset_file_name,"w"))==NULL)

{ printf(" failed to open offset output file \n");

exit(1);

}

else

{ fprintf(offsetfile, "z_pad(mm) t_off(ns) phi_off(deg) Vdrift\n");

}

printf("opening global path output file\n");

if ((globalfile = fopen("globalPath.txt","a"))==NULL)

{ printf(" failed to open global output file \n");

exit(1);

}

//START LOOP TO GENERATE PATH FILES ALONG SLICES IN Z

for(n=0;n<NUM_VAL_Z;n++)

{ //Set initial path array elements

path[0].s = ss;

path[0].phi = phi;

path[0].z = z_value[n]; //define a new z-value according to z_value array

time = 0;

//name the path file for this particular slice

sprintf(path_file_name,"PATH_FILES/%d_%d_b%dA_V%d/out%.2f.path",

gas_code,gas_mix,B_value,E_value,z_value[n]);

printf("opening path output file\n");

if ((outfile = fopen(path_file_name,"w"))==NULL)

{ printf(" failed to open output file \n");

exit(1);

}

else{ //print path file header and initial step

fprintf(outfile, "s(mm) phi(rad) x(mm) y(mm) t(ns)\n");

fprintf(outfile, "%.2f%.4f%.2f%.2f 0\n", ss,phi,ss*cos(phi),ss*sin(phi));

}

i=0;

crossedGEM = FALSE; //reinitialize crossedGEM variable

//invoke calcPath function

hitGEM = calcPath(path[0].s, path[0].phi, path[0].z, i, time);

if(hitGEM)

{ //print to screen where electron hit readout pads

printf("Electron hit GEM at s = %f, phi = %f, z = %f \n", path[finalIndex].s,

path[finalIndex].phi/TORADIANS, path[finalIndex].z);

//calculate the time and phi offsets, then write them to the offset file.

t_0 = t_pad - t_gem;

phi_0 = phi_pad - phi_gem;

fprintf(offsetfile, "%.2f %d %.2f %d\n", path[0].z,t_0, phi_0/TORADIANS,E_value);

35

foundPad = FALSE;

i = 0;

while((!foundPad)&&(i<N_CHAN))

{ zMin = padLocs[i].z - DEL_Z/2;

zMax = padLocs[i].z + DEL_Z/2;

phiMin = padLocs[i].phi - DEL_PHI/2;

phiMax = padLocs[i].phi + DEL_PHI/2;

if (path[finalIndex].phi < 0) path[finalIndex].phi *= 2*PI;

if ((path[finalIndex].z + 100 > zMin) && (path[finalIndex].z + 100 < zMax)

&&(path[finalIndex].phi > phiMin) && (path[finalIndex].phi< phiMax))

{ foundPad = TRUE;

hit_pad_index = i;

}

else

{ i++;

}

}//close while loop

if(foundPad)

{ printf("hit pad %d z = %f phi = %f \n", hit_pad_index,

padLocs[hit_pad_index].z,padLocs[hit_pad_index].phi/TORADIANS);

}

}//close if(hitGEM)

fclose(outfile);

}//CLOSE MAIN FOR-LOOP

fclose(globalfile);

return (0);

}//end main routine--

//---

//READ DRIFT VELOCITY FUNCTION---

void readDriftVel()

{ int i, j, k;

float temp_s[NUM_VAL2];

float temp_z[NUM_VAL2];

float temp_ws[NUM_VAL2];

float temp_wphi[NUM_VAL2];

float temp_wz[NUM_VAL2];

float trash;

if((dvFile = fopen(drift_file,"r"))==NULL)

{ printf("failed to open drift velocity file\n");

exit(1);

}

else

{ fgets(textline, LINLMAX, dvFile); //eat the first line

printf("read drift velocity file\n");

}

for (i=0; i<NUM_VAL2; i++) //read drift velocity file into temp array

{ fscanf(dvFile,"%f %f %f %f %f %f %f %f %f %f",&temp_s[i],&temp_z[i],

&temp_ws[i], &temp_wphi[i], &temp_wz[i], &trash, &trash, &trash, &trash, &trash);

printf("read s = %f z = %f Ws = %f Wphi = %f Wz = %f\n", temp_s[i],

temp_z[i], temp_ws[i], temp_wphi[i], temp_wz[i]);

}

j = 0;

36

//store the appropriate drift velocity info

for (i=0; i<NUM_VAL2; i+=NUM_Z2)

{ sVals2[j]=temp_s[i];

j++;

}

for (i=0; i<NUM_Z2; i++)

{ zVals2[i] = temp_z[i];

}

k=0;

for (i = 0; i < NUM_S2; i++)

{ for (j = 0; j < NUM_Z2; j++)

{

Ws[i][j] = temp_ws[k]/1000; //units are microns/ns - change to mm/ns

Wphi[i][j] = temp_wphi[k]/1000; //units are microns/ns - change to mm/ns

Wz[i][j] = temp_wz[k]/1000; //units are microns/ns - change to mm/ns

k++;

}

}

}

//end read drift velocity function--

//--

//READ Z VALUES FUNCTION--

void readZvalues ()

{ int i;

float temp_z;

if((Zfile = fopen(z_file,"r"))==NULL)

{ printf("\nfailed to open z-file\n");

exit(1);

}

else

{ for(i=0;i<NUM_VAL_Z;i++) //read z values from file and store in array

{ fgets(data, LINLMAX, Zfile);

sscanf(data,"%f",&temp_z);

z_value[i]=temp_z;

printf ("z=<%f>\n",z_value[i]);

}

printf("\nread z_file\n");

}

fclose(Zfile);

}

//end read z values function---

//---

//PATH CALCULATION FUNCTION--

int calcPath(float s, float phi, float z, int i, int time)

{ float s2, phi2, z2, thetaL, drLength1, drLength2;

float phi_low, phi_high;

if(s == 69) return (1);

if(!crossedGEM && s>60) //assign values if electron passed first GEM

{ t_gem = time;

crossedGEM = TRUE;

phi_gem = phi;

}

if(z < -100 || z > 100) return (0); //verify electron is within detector

37

else

{ if (phi >= 2*PI) phi -= 2*PI;

if (phi < 0) phi = phi + 2*PI;

getDriftVel(s, z); //call getDriftVel function

thetaL = atan2(phiVel,sVel);

drLength1 = sqrt(pow(phiVel,2) + pow(sVel, 2)) * delt;

s2 = sqrt(pow(s,2) + pow(drLength1,2) + 2*s*drLength1*cos(thetaL));

if(s2 > 69)//the next time step takes us outside the detector

{//we need to find where the electron struck the pad plane

s2 = 69;

drLength1 = -s*cos(thetaL) + sqrt(s*s*cos(thetaL)*cos(thetaL) - (s*s - 69*69));

}

phi2 = acos((pow(drLength1,2) - pow(s2,2) - pow(s,2)) / (-2*s2*s));

phi2 = phi + phi2;

drLength2 = zVel * delt;

z2 = z; //Added this change so electron doesn’t travel out of detector

i++;

time = time + delt;

path[i].s = s2;

path[i].phi = phi2;

path[i].z = z2;

//print next coordinate step to the path file

fprintf(outfile, "%.2f %.4f %.2f %.2f %d\n", s2, phi2, s2*

cos(phi2), s2*sin(phi2), time);

fprintf(globalfile, "%d %d %d %.2f %d %.5f %.5f\n", hePer,

E_value, side, z, time, s2, phi2);

finalIndex = i;

phi_pad = phi2;

t_pad = time;

calcPath(s2, phi2, z2, i, time); //calculate next coordinate step

}

}

//end calculate path function

//--

//GET DRIFT VELOCITY FUNCTION---

void getDriftVel(float s, float z)

{ int i, j, k, l, m;

float t, u;

float pointer;

if(z<0) z = -z;

//find correct s pointer values for interpolation calculation

pointer = -1000;

l = -1000;

i=0;

while((s > pointer) && (i<NUM_S2))

{ pointer = sVals2[i];

if (s == pointer) l = i;

else if (s <= pointer) l = i-1;

else i++;

}

//find correct z pointer values for interpolation calculation

pointer = -1000;

38

m = -1000;

j=0;

while((z > pointer) && (j<NUM_Z2))

{ pointer = zVals2[j];

if (z == pointer) m = j;

else if (z <= pointer) m = j-1;

else j++;

}

//set interpolation variable

t = (s - sVals2[l])/(sVals2[l+1] - sVals2[l]);

u = (z - zVals2[m])/(zVals2[m+1] - zVals2[m]);

//interpolate drift velocity given pointers and variables

sVel = (1-t)*(1-u)*Ws[l][m] + t*(1-u)*Ws[l+1][m] +

(1-t)*u*Ws[l][m+1] + t*u*Ws[l+1][m+1];

phiVel = (1-t)*(1-u)*Wphi[l][m] + t*(1-u)*Wphi[l+1][m] +

(1-t)*u*Wphi[l][m+1] + t*u*Wphi[l+1][m+1];

zVel = (1-t)*(1-u)*Wz[l][m] + t*(1-u)*Wz[l+1][m] +

(1-t)*u*Wz[l][m+1] + t*u*Wz[l+1][m+1];

}

//end get drift velocity function---

39

References

[1] Experiment E03-012: http://www.jlab.org/˜kuhn/BoNuS Welcome.html

[2] Hall B website: http://www.jlab.org/Hall-B/

[3] Thomas Jefferson National Accelerator Homepage: http://www.jlab.org

[4] GEM information webpage at CERN: http://gdd.web.cern.ch/GDD/

[5] Magboltz 2 information webpage: http://cyclo.mit.edu/drift/www/aboutMagboltz.html

[6] S.F. Biagi, Nuclear Instruments and Methods in Physics Research Section A,

Vol. 421 (1999) 234-240 Monte Carlo simulation of electron drift and diffusion

in counting gases under the influence of electric and magnetic fields

40

