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ABSTRACT PAGE

The scattering of polarized electrons from a polarized proton target provides a
means for studying the internal spin structure of the proton. The CLAS (CEBAF
Large Acceptance Spectrometer) EG1b experiment in Hall-B at Jefferson Labo-
ratory measured double-spin inclusive and exclusive electron-nucleon scattering
asymmetries using longitudinally polarized frozen NH3 and ND3 targets and a lon-
gitudinally polarized electron beam at 4 different energies (1.6, 2.5, 4.2, 5.6 GeV).
Extraction of the virtual photon asymmetry Ap

1 (for 0.05 GeV2 < Q2 < 5.0 GeV2)
provides precision measurements of the polarized proton spin-structure function
gp
1 in and above the resonance region. Linear regression of data between the

varying energies yields new constraints on the virtual photon asymmetry Ap
2 (and

thus the structure function gp
2) in the resonance region (for 0.3 GeV2 < Q2 < 1.0

GeV2). Measurements of these structure functions and their moments allows test-
ing of perturbative Quantum Chromodynamics (pQCD) models and evaluation of
moments of the structure functions in the Operator Product Expansion. Testing
of Chiral Perturbation Theory (χPT) at Q2 < 0.2 GeV2 is enabled by the new data.
Other applications of polarized structure functions include measurement of foward-
spin polarizability, evaluation of high-order corrections in 1H hyperfine splitting, and
testing of quark-hadron duality.
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Preface

This thesis is intended as a thorough documentation of the analysis procedures used in the analysis

of inclusive proton data in the EG1 experiment. Where possible, explicit details of calculations and

procedures are provided, so that this work can be employed as a reference work for future CLAS

analyses, especially inclusive electron scattering analysis, though certain aspects of this analysis

also have applications to exclusive and semi-inclusive event analysis, as well. An attempt was

made to firmly clarify the motivation and theory behind the research goals, as well as to investigate

applications of the evaluated g1 and g2 structure functions for the proton, in addition to specifying

the experimental procedure.

Chapter 1 introduces electron scattering experiments, defines kinematic values, explores the

theory behind structure functions and asymmetries, and provides a list and brief explanation of past

accelerator experiments that specifically measure the g1 and g2 polarized structure functions of the

proton. Chapter 2 details the JLab accelerator and CLAS detector apparatuses, the EG1 polarized

target functionality and physics, and delineates the kinematic coverage of EG1. A description of the

models used to parametrize structure functions and asymmetries not directly measured in EG1 is

also presented.

Chapters 3 and 4 focus on early analysis tasks, mainly cuts and corrections on data. Chapter 3

focuses on basic particle and helicity identification and file quality checks, while Chapter 4 focuses

on more refined and precise cuts and corrections, such as momentum and other kinematic correc-

tions, and fiducial and pion removal cuts.

Chapters 5 through 7 contain the “main” analysis of the data. Chapter 5 contains all aspects of

unpolarized background removal, including determination of target material thicknesses and dilu-

tion factor calculation. Chapter 6 concentrates on removal of all other backgrounds, namely beam

and target polarization correction, pair-symmetric background, polarized nitrogen and radiative cor-

rections. Chapter 7 summarizes the combination and compatibility testing of various data sets, and

the determination of systematic error effects.

The final chapter (Chapter 8) presents all virtual photon asymmetry (A1 and A2) and spin struc-

ture function (g1 and g2) results, and their various moments in the Operator Product Expansion.
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Selected physics applications of the data are also explored. Extensive data tables (Appendix B) of

all these quantities are provided at the end of this thesis, prior to the Bibliography. For convenience

and utility to those unfamiliar with spin physics and/or CLAS jargon, a glossary of acronyms is in-

cluded in Appendix A.

The result of a detailed documentation of an extensive analysis project is a very lengthy disser-

tation. Effort has thus been made to make this work useful as a reference by making chapters and

sections as self-contained as possible, with cross-references supplied as needed. Those interested

only in the theoretical motivation and new results, but not the experimental procedure, can easily

read Chapters 1 and 8 and skip the bulk of the thesis; while those only interested in a summary of

the CLAS detector and basic particle identification can read Chapters 2 and 3, for example.

It is my hope that this thesis can be useful as a document for those wishing to become familiar

with spin-structure functions, or those attempting to tackle various aspects of CLAS analysis (or

both), especially newer graduate students at Jefferson Lab. With this intention in mind, I made an

earnest attempt to explain and clarify subjects on a level assuming a standard two-year graduate

physics education (with appropriate background in field theory and particle physics), but with little

to no background in JLab or spin physics. Attempts were made to be as explicit as reasonably

possible in derivations, or to provide specific references (listed in the Bibliography) where more

information can be found. I sincerely hope that this thesis will find its intended future utility in the

field of polarized physics experiments, so that others can continue to build and extend the reach of

this and related research.
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Chapter 1

Background and Motivation

1.1 Introduction

The scattering of high-energy electrons from a stationary target provides an effective method for

investigating the internal structure of nucleons, that is, the protons and neutrons that compose the

atomic nucleus. In particular, the study of scattered electrons over a wide kinematic range provides

measurements of the structure functions that quantify the internal dynamic behavior of the nucleon

and the evolution of the perceived structure over varying short-distance scales. This thesis deals

specifically with the study of the proton through analysis of data from the EG1b experiment at Jef-

ferson Laboratory, focusing on the scattering of electrons from a stationary NH3 target. 1 More

specifically, we seek to study the spin structure of the proton, which requires the use of both a

polarized electron beam and a polarized target.

In this chapter, the theory and formalism behind the study of spin structure functions are in-

troduced, and a brief history of existing data utilizing polarized leptons scattered from polarized

protons is reviewed, as a prelude to the discussion of the EG1 experiment.

1An ND3 target was used for the study of deuteron/neutron structure, as well; and although most of the analysis of this
target data is similar to the NH3 analysis, it is not examined in this thesis. See, for example, Ref. [2].
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1.1.1 Electron-proton scattering

High-energy electrons are an excellent probe for the study of the nucleon. First, the interaction of

electrons with protons is governed exclusively by the (well-understood) electromagnetic interaction,

making this a very “clean” probe of the nucleon. The interaction occurs with the electromagnetic

current density of the nucleon. 2 Also, the strength of the electromagnetic coupling constant

α = 1
137 is very small, so that perturbative techniques can be used to describe the interaction [1].

Experiments using stationary nuclear targets are ideal for making high-precision measurements

of subatomic structure. While the high collision energies achievable using two colliding beams [3]

cannot be reached with a fixed target, a much higher luminosity allows for collection of a much

larger number of scattering events. The development of polarized electron beams (like that at the

CEBAF accelerator at Jefferson Laboratory) and polarized targets (like the NH3 and ND3 targets

used in the EG1 experiment) allows us to study the spin distributions of the quarks in nucleon, in ad-

dition to the unpolarized momentum distributions that were previously measurable with unpolarized

beams/targets. Finally, the construction of fast response detector systems with large acceptances

(that is, coverage over a large spatial geometry) such as the CEBAF Large Acceptance Spectrom-

eter (CLAS), allows us to collect billions of particle events, and thus good statistical measurement

of the quantities in question.

To consider how high energy electrons are useful for probing protons, we consider an optical

analogy [1]. If radiation of a certain wavelength passes through a circular aperture of width a, and

is projected on a distant plane, the angle θ from the central axis to the first minimum (i.e. the Airy

disc) is given by

θ ≈ 0.61λ

a
(1.1)

If we use the standard terminology for the wave number in terms of wavelength k = 2π/λ, the

momentum transfer κ is given by

κ ≈ 2πθ

λ
(1.2)

2The weak interaction also makes a small contribution to the interaction, but in the measurement of the asymmetries
dealt with here, it is a very small contribution indeed, and is greatly overshadowed by other systematic errors; this effect is
discussed in Section 7.2.7.
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and

a ≈ 1.22π

κ
(1.3)

This implies that the larger the transfer of momentum, the shorter the resolved distance. Quantum

mechanics asserts that electrons have a wavelength inversely proportional to their momenta, given

by the deBroglie wavelength:

λ =
h

p
≈ hc

ν
(1.4)

where ν is the energy transferred from the electron to the proton. Here the approximate equality

(≈) assumes the electron mass is insignificant compared to that of the target, a valid approximation

at ultra-relativistic velocities. Therefore, the higher the energy of the incident electron beam, the

smaller the distance scale within the nucleon that can be resolved.

If the electron-nucleon interaction amplitude is determined only by the charge distribution, ρ(r),

and the scattered plane-wave amplitude at a point r is equal to exp(iκ · r), then the total scattering

amplitude Ael is given by integrating over the volume of the incident nucleus V [1]:

Ael =

∫

V

d3rρ(r)eiκ·r (1.5)

This is just the Fourier transform of the spatial charge distribution. We see now (semi-)quantitatively

that the macroscopic measureable amplitude due to the scattering of electrons from nucleons re-

veals microscopic information about the charge distribution of the nucleon.

1.1.2 Models of the proton

Figure 1.1 qualitatively demonstrates a model of the proton as it is understood today, in terms of

the squared 4-momentum transferred by the electron (Q2). How one pictures the proton depends

upon the distance scale used to probe it. Equation 1.4 provides an approximate means of equating

distance scales (∼ λ) to transferred energy (ν).

At distances greater than 1 fm = 10−15 m (which corresponds to a transferred momentum of ν ∼

0.2 GeV), the proton behaves as a coherent object with overall charge +e and angular momentum
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Figure 1.1: A qualitative picture of the proton model, starting at Q2 → 0 on the left, Q2 increasing
with each diagram. The text explains in greater detail the evolution of the proton as a simple object
(left) into a complex assembly of quarks, antiquarks, and gluons (right).

~/2, with a resultant magnetic moment

µp =
2.79e~

2M
(1.6)

in the direction of the proton spin. However, quantum mechanics predicts, for a point-like particle,

a value of µp = e/M , thus providing the first hint that there must be some kind of structure to the

proton.

At shorter distances, on the order of 1.0 to 0.1 fm, (0.2 GeV . ν . 2.0 GeV), one begins to

resolve the structure of the constituents, or partons, within the proton, into 3 constituent quarks

with fractional charge. Table 1.1 lists the 6 known flavors of quarks, and their basic properties.

Specifically, two up quarks (charge + 2
3e) and one down quark (charge − 1

3e) make up a proton.

The quarks are bound together by the strong interaction, which is governed by the theory of quan-

tum chromodynamics (QCD). The discovery of parton structure by early deep inelastic scattering

(DIS) experiments at the Stanford Linear Accelerator in the 1960’s was a vindication of the Eightfold

Way previously proposed by Murray Gell-Mann, which described the observed diversity of hadrons,

including nucleons, as constructions of pairs or trios of up, down and strange quarks bound by

the strong force [7]. Free quarks have never been observed due to the phenomenon of confine-

ment, which, via the high binding energy of the strong force, restricts quarks to qqq trios (known as

baryons) or qq̄ quark-antiquark pairs (known as mesons).
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At distances less than 0.1 fm (or momentum transfer greater than 2.0 GeV/c), the simple picture

of the proton, built of 3 constituent quarks, begins to break down. At these distances, QCD pre-

dicts (non-intuitively) that the force between quarks. Although incredibly strong at long distances,

this binding force is small at short distance scales, allowing quarks significant freedom of motion

within the confines of the nucleon. Thus, quarks can be observed as effectively free particles as

Q2 → ∞. This phenomenon is known as asymptotic freedom. At the shortest distance scales, not

only can the incident electron scatter from one of the 3 point-like valence quarks, there is a possi-

bility that scattering from one of the sea quarks in the proton medium can occur. Sea quarks are

quark-antiquark pairs generated from hard (i.e. high-energy) gluons, carrier particles of the strong

force between quarks; these quark-antiquark pairs can actively participate in a scattering event, as

well. The gluons and sea quarks contribute to higher order perturbations in QCD theory at short

distances. Quantification of the contributions of the gluons and sea quarks to the distributions of

charge, linear momentum and angular momentum (spin) of the proton are main topics of medium

and high energy physics research. The distribution of the spin, in particular, is the subject of the

polarized scattering analysis presented in this thesis.

Table 1.1: The six known flavors of quarks and their basic properties. The valence mass is the
actual mass of the bare quark. The constituent mass includes all the gluons and qq̄ pairs that
surround the bare quark, and constitute (approximate) effective mass in a hadron/meson. From
Ref. [5] and [7].

Flavor Symbol Charge Valence Mass (MeV/c2) Constituent Mass (MeV/c2)

down d − 1
3e 4. - 8. 363/310

up u + 2
3e 1.5 - 4.0 363/310

strange s − 1
3e 80 - 130 538/483

charm c + 2
3e 1150 - 1350 ∼1500

bottom b − 1
3e 4100 - 4400 ∼4700

top t + 2
3e 169100 - 172700 not found as constituents

1.1.3 Kinematic Definitions

The formalism for describing electron-proton scattering uses several conventional variables that

are common to the relevant literature [4]. Figure 1.2 shows the basic process of ep scattering.
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Figure 1.2: A diagram of inclusive electron-proton (ep) scattering, as studied in this thesis. An
incoming electron with momentum E and spin s exchanges a virtual photon of momentum q with a
stationary proton of mass M and spin S, causing the scattered electron to recoil with momentum E′

and spin s′, with one or more reaction products released (X). Measurements of inclusive scattering
events only concern themselves with precision measurements of the scattered electron.

This process is described, in the lab reference frame, as an incident electron with energy (and

momentum) E, 4-momentum k and spin s interacting by way of a virtual photon with energy ν

and 4-momentum q, with a stationary proton with 4-momentum p = (M, 0, 0, 0) and spin S, where

M=0.938 GeV/c2 is the proton mass. The incident electron recoils with energy (and momentum)

E′, 4-momentum k′ and spin s′. The virtual photon is an internal particle to the Feynman diagram,

and as such, it need not be massless, nor, consequently, transversely polarized, as is a real photon

[7]. In fact, later, we shall distinguish between the response functions corresponding to transverse

and longitudinal virtual photon modes.

For convenient reference, here follows a list of commonly used variable definitions (that recur

frequently in this thesis), with relevant descriptions to follow. Defining the beam axis along the

ẑ-direction, and thus labeling the polar scattering angle θ, one obtains

Q2 = −q2 = 4EE′ sin2 θ

2
= 2EE′(1 − cos θ) (1.7)
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ν = E − E′ =
p · q
M

(1.8)

W =
√

(p+ q)2 =
√

M2 + 2Mν −Q2 (1.9)

s = (k + p)2 = 2ME +M2 (1.10)

x =
Q2

2p · q =
Q2

2Mν
(1.11)

y =
p · (k − k′)

p · k =
E − E′

E
=
ν

E
(1.12)

ω =
2p · q
Q2

=
1

x
(1.13)

γ =
2Mx
√

Q2
=

√

Q2

ν
(1.14)

τ =
ν2

Q2
=

1

γ2
(1.15)

ε =

(

1 + 2[1 + τ ] tan2 θ

2

)−1

(1.16)

η =
ε
√

Q2

E − E′ε
(1.17)

ζ =
η(1 + ε)

2ε
(1.18)

D =
1 − E′ε/E

1 + εR
(1.19)

d = D

√

2ε

1 + ε
(1.20)

d′ =
(1 − ε)(2 − y)

y(1 + εR)
(1.21)

where R is a ratio of unpolarized structure functions of ν and Q2, defined later in section 1.2.2.

Equations 1.7 through 1.13 can be derived directly from Lorentz invariant 4-vector products de-

fined in Figure 1.2; 1.14 through 1.18 are conventional kinematic definitions derived from the basic

Lorentz invariants; and 1.19 through 1.21 are depolarization factors - described in more detail in

Section 1.4.2.
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The first few of these quantities warrant discussion about their specific interpretations. The

quantity Q2 is the positive definite square of the virtual photon 4-momentum; it is fully analogous

to κ2 in the optical example in the Introduction. Q2 → 0 indicates the limit of scattering by a real

photon, while Q2 → ∞ indicates the approach toward an infinitesimal distance resolution. The

virtual photon energy ν is equal to the electron energy absorbed by the proton.

The variable W is the Lorentz-invariant missing mass of the struck proton. In elastic ep scatter-

ing, W = M = 0.938 GeV, but for the inelastic reaction ep→ epπ+π−, we findW ≥M+2mπ ≥ 1.218

GeV. 3 The value of W = M +mπ = 1.077 GeV is known as the inelastic threshold, below which

there is not enough energy in the collision to create any new particles while conserving baryon and

lepton number. Interactions where W > 2.0 GeV (and Q2 > 1.0 GeV2) are conventionally labeled

as Deep Inelastic Scattering, or DIS events. The quantity s is a Lorentz-invariant Mandelstam vari-

able [3]; in this configuration it remains constant so long as the beam energy E is constant.

The quantitities x and y are known as Bjorken Scaling Variables. 4 Results for DIS are often

expressed in terms of Q2 and x; both x and y are commonly used in Perturbative QCD (pQCD)

calculations. The interpretation of the meaning of x is important; it requires definition of the Breit ref-

erence frame. Kinematically, |q| > ν, so that we can always find a reference frame for which ν = 0;

we define this as the Breit frame [6]. In this reference frame, we have (for the proton momentum)

Pµ = (M |q|/Q, 0, 0,−Mν/Q= 0) (Breit frame) (1.22)

In the Breit frame, the virtual photon carries no energy, so that the overall longitudinal (z-direction)

momentum of an (asymptotically free) struck quark in the nucleon must be of equal magnitude

before and after the collision. That is, the quark 4-momentum is given by

pq
f(z) = pq

i (z) +Q = −pq
i (z) (Breit frame) (1.23)

with the subscripts f and i representing final and initial momenta, respectively, and with Q rep-

resenting the magnitude of the momentum transfer. This relation requires that pq
i (z) = −Q/2;

3This reaction is associated with the well-known ∆+ resonance.
4ξ is used in place of x in many discussions. In this thesis, ξ is reserved for a scaling replacement for x after approximate

target mass corrections (TMC), as explained at the end of this thesis, in Section 8.4.3.
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combining this with Eq. 1.11 yields

x ≡ Q2

2Mν
=

−Qpq
i (z)

Mν
=

pq
i (z)

−Mν/Q
=
pq

i (z)

pi(z)
(Breit frame) (1.24)

where pi(z) is defined by the z-component of the whole proton momentum, above. So, we see that

x is interpreted as the momentum ratio of the struck quark to that of the whole proton (in the Breit

frame, where ν = 0). It is also useful to note (for finite x) that as Q2 → ∞, pi(z) → ∞. For this

special case (of scaling) the Breit reference frame is often referred to as the infinite momentum

reference frame.

For electron-proton scattering, x is constrained to

0 < x ≤ 1 (1.25)

with x→ 0 representing the short-distance (infinite Q2) limit and x = 1 representing a purely elastic

scattering event. 5

1.1.4 A Motivation for Studying Proton Spin

As explained in Section 1.1, electron scattering is used to investigate the electromagnetic structure

of the proton. The qualitative picture of the proton shown in Figure 1.1 is the result of a culmination

of decades of theoretical research and experimental data collection and analysis at worldwide ac-

celerator facilities. The original “simple” proton model of 3 quarks bound together by the strong, or

“color” force worked wonderfully well in predicting new excited baryon and meson particle states,

as well as in modeling the observed magnetic moments of these particles [6]. Measurement of

total quark momentum fractions demonstrated the need for a sophisticated model of the proton

containing additional quark, antiquark and gluon “partons” within the internal nucleon structure,

maintaining consistency with the quark model.

Given the success of the quark model in describing magnetic moments based on quark charges

and spins [7], one might expect an experimental probing of the spin distributions to conform to the

5Scattering from larger nuclei can produce values of x > 1. Specifically, in that case, 0 < x ≤ A, where A is the atomic
mass. x = A then represents quasi-elastic scattering from the nucleus.
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expectations of a constituent quark model. However, polarized beam and target experiments per-

formed at SLAC and CERN beginning in the 1970’s proved that this was far from the case. In fact,

data from these experiments showed that only a very small portion of the proton spin was carried by

its constituent quarks. This was known as the spin crisis, and is described more quantitatively later

in Section 1.5. Experimental attempts to resolve the so-called spin crisis, along with unpolarized

experimental data, have helped in constructing the picture of the proton we have today. However,

as we shall see, the lack of precision meaurements of many of the essential quantities used to

describe this picture still leaves many open questions.

The bulk of this chapter is dedicated to explaining how laboratory measurements have provided

us with this insight into the structure of the proton, and providing definitions of the physical quantities

necessary for extracting this information, namely the structure functions of the nucleon.

1.2 Structure functions

The measurement of structure functions, in terms of the kinematic quantities defined in Section

1.1.3, provides insight into the distribution and behavior of the constituent particles, or partons,

within the proton. The scattering cross-sections of particles can be expressed in terms of these

structure functions. In this section, the physical interpretation of both unpolarized structure func-

tions (F1 and F2) and polarized structure functions (g1 and g2) are briefly explained, along with their

physical context in electron scattering measurements.

1.2.1 Electron scattering and structure functions

To understand the significance of structure functions, one must become familiar with the terminol-

ogy used to describe how measurable quantities in scattering relate to quantities that describe the

physics of the proton. Namely, the significance of cross-sections must be expounded upon. Also,

a description of the target response surface and the expression of the hadronic tensor in terms of

the structure functions are detailed.
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Cross-sections and internal structure measurements in sca ttering

The cross-section of a particular scattering event, like that shown in Figure 1.2, is a directly mea-

surable laboratory quantity. The overall cross-section σ of a particular type of scattering event is

defined in a straightforward way [8] as

σ ≡ P (δx)/δx

N
(1.26)

where P (δx)/δx is the probability of a scattering event per unit distance, and N is the number

density of scattering centers. This gives the cross-section units of area, so that the cross-section

can be loosely interpreted as the effective area of the response surface of the interaction.

In practice, in order to evaluate the model at various distance scales, as outlined in Section

1.1.2, one must know how the cross-section changes as a function of the angle and momentum of

the scattered electron. Thus, scattering experiments typically measure the scattering cross-section

in bins that cover small subdivisions of the total range of measured kinematic quantities Q2 and W .

This quantity, the differential cross-section

d2σ

dQ2dW
(1.27)

can then be integrated (which in this case, amounts to a simple summation over bins) to find the total

cross-section σ. At a fixed beam energy E, the kinematics of inclusive scattering can be described

completely by only two degrees of freedom, expressed by kinematic variables (Section 1.1.3). The

(unpolarized) differential cross-section can thus be defined completely as a function of any 2 of

these variables; e.g. dσ/dQ2dx, dσ/dνdx, dσ/dQ2dW , etc. Any one of these different differential

cross-sections completely parametrizes the inclusive scattering behavior, as differing pairings of

these kinematic variables simply correspond to different coordinate definitions of the same phase

space. Differential cross-sections are commonly written in terms of the solid scattering angle Ω

and recoil momentum E′ as dσ/dΩdE′. In the special case of inclusive scattering, the scattering

event can be described completely in a two-dimensional plane in the φ-direction (Figure 1.3), so
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Figure 1.3: Unpolarized inclusive scattering viewed from the lab frame. The symbol φ refers to
the angle of the scattering plane, and θ is the angle of the scattered electron with respect to the
beamline axis. As long as the inelastic scattering products (red) are not tracked, the scattering
event takes place in an azimuthal plane, so that φ need not be considered.

symmetry allows one to write
1

2π

∫ 2π

0

d3σ

dΩdE′
dφ =

d2σ

dθdE′
(1.28)

which also completely parametrizes the scattering event. Because, in reality, data exists in finite

quantities, and hence, finite bin sizes are required. The measured cross-sections become

d2σ

dθdE′
→ ∆σ

∆θ∆E′
;

d2σ

dQ2dW
→ ∆σ

∆Q2∆W
; etc. (1.29)

where ∆θ, ∆W , etc. represent the finite bin size used to demarcate the data. Total cross-sections

are then found by summation over the bins, rather than integration.

Leptonic and hadronic cross-sections; their relation to th e cross-section

According to Fermi’s Golden Rule [9] the partial cross-section can be written (to lowest order) [6]

as
∆σ

∆Φ
=

1

j

2π

~
|Mfi|2 (1.30)

where j is the electron beam current density, ∆Φ is the complete phase space (described by

two kinematic variables as per the previous explanation) and Mfi = 〈ψf |Hint|ψi〉 is the transition

amplitude between the initial and final wavefunctions of the electron-nucleon configuration. The
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amplitude of the interaction Hamiltonian Mfi contains all the physical dynamics of the interaction.

For the simple case of scattering of an electron from a point particle, the transition amplitude

Mfi can be derived completely using the covariant Feynman Rules for quantum electrodynamics

and techniques of Casimir et al. 6 The (spin-averaged) result is given by 7

〈|M |2〉 =
(4πα)2

q4
Lµν

e Lp µν (1.31)

where α = 1
137 is the fine coupling constant, q is the virtual photon amplitude (see Figure 1.2) and

Lµν
e and Lp µν are covariant tensors, given, in the approximation of a massless electron,8 by

Lµν
e = 2(kµk′ν + kνk′µ − gµν(k · k′) (1.32)

Lp µν = 2(pµp
′
ν + pνp′µ + gµν(M2 − p · p′) (1.33)

Knowledge of the kinematics then allows for a complete solution of the transition amplitude. 9

Substitution of the 4-vectors shown in Figure 1.2 into the above equations, and finally, into Eq.

1.30, ultimately yields

∆σ

∆Ω
=

4α2E′2

Q4

E′

E
cos2

θ

2

(

1 +
2ν2

Q2
tan2(θ/2)

)

elastic scattering; structureless particles

(1.34)

where the phase space ∆Φ = ∆Ω∆E′ has been reduced to ∆Ω due to the fact that, for elastic

scattering from a point particle, E′ is constrained by a δ-function to a specifically defined function

of θ.

Early ep scattering experiments (e.g. Ref. [10]) made it clear, however, that this result is not

obeyed for the elastic scattering of electrons from protons, indicating that protons are not simple,

point-like particles. To account for the hadronic structure of the proton, Eq. 1.31 must be rewritten

6See, for example Ref. [7] Section 8.3 or Ref. [1] Chapter 11.
7From this point on, “natural” ~ = c = 1 units are used in this thesis.
8me=0 is a very good approximation for medium- and high- energy electron scattering, as the relativistic momentum is

orders of magnitude greater than the rest mass. From this point onward, the very small electron mass is ignored.
9Readers unfamiliar with the covariant notation should consult any introductory field theory book, e.g. the preface to Ref.

[11].
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as

〈|M |2〉 =
(4πα)2

q4
Lµν

e Wµν (1.35)

where the new response surface tensor Wµν replaces Lp µν . The tensor is constructed to acco-

modate any possible scattering response of the electron. Thus, terms representing every possible

covariant 4-vector term are present in its definition [7]:

Wµν = −W1gµν +W2
pµpν

M2
+W4

qµqν
M2

+W5(pµqν + pνqµ) +W6(pµqν − pνqµ) (1.36)

It can be easily shown [1] that current conservation implies

qµWµν = Wµνqν = 0 (1.37)

Applying this to the definition of Wµν , it can also be shown [1][7] that W6 = 0 10 and that W4 and

W5 can be expressed in terms of W1 and W2:

W4 =
M

q2
W1 +

(
q · p
q2

)2

W2 ; W5 = −q · p
q2

W2 (1.38)

This yields

Wµν = W1

(

−gµν +
qµqν
q2

)

+
W2

M2

(

pµ +

(
q · p
q2

)

qµ

)(

pν +

(
q · p
q2

)

qν

)

(1.39)

Substitution into 1.31 and using the 4-vectors pµ and qµ in the lab frame eventually yields [3][7]

〈|Mfi|2〉 =
(4πα)2

4EE′ sin4(θ/2)

(

2W1 sin2 θ

2
+W2 cos2

θ

2

)

(1.40)

Using Fermi’s Golden Rule and ∆Φ = E′2∆E′∆Ω results in

∆σ

∆E′∆Ω
=

α2

4E2 sin4(θ/2)

(

2W1 sin2 θ

2
+W2 cos2

θ

2

)

(1.41)

10This can be seen by noting that Lµν is symmetric, so that the antisymmetric W6 term makes no contribution.
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It is important to note that W1 and W2 are kinematic functions. Changing the phase space coordi-

nates using

∆Q2∆ν =
EE′

π
∆Ω∆E′ (1.42)

and Q2 = 4EE′ sin2(θ/2) gives [6]

∆σ

∆Q2∆ν
=

4πα2E′ cos2(θ/2)

Q4E

(

W2(Q
2, ν) + 2 tan2 θ

2
W1(Q

2, ν)

)

generalized ep scattering

(1.43)

This is a central result for electron-proton scattering experiments. It shows that measurement of

the inclusive cross-section in terms of the momentum and electron scattering angle provides us

information about W1 and W2, which contain all the physics of the scattering. Two explicitly macro-

scopic measureable degrees of freedom, E′ and θ, describe W1 and W2, which yield microscopic

details about the electromagnetic interaction between the electron and proton. As outlined in the

first section of this chapter, as electron beam energy is increased, the behavior over shorter dis-

tance scales inside the proton is revealed. The quantities W1 and W2 are referred to as structure

functions of the proton. We now concentrate on breaking down W1 and W2 into different terms, that

is, different structure functions with specific physical interpretations.

1.2.2 Unpolarized structure functions ( F1, F2, R)

We proceed now to the introduction of the unpolarized structure functions F1 and F2. Measurement

of these quantities is not the purpose of this thesis. However, their understanding is an essential

prerequisite to the more complex topic of polarized structure functions, introduced in the next sec-

tion. Also, it will be shown later that knowledge of the unpolarized structure functions is necessary

for extrication of the polarized structure functions g1 and g2.

Form factors and structure functions

Consider for a moment the specific case of elastic scattering of the electron from the proton, in

which kinetic energy is conserved, and hence, no new particles are produced. The constraint of

kinetic energy conservation on the initial and final momentum 4-vectors reduces E′ to a uniquely
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determined function of the scattering angle [7]:

E′ =
E

1 + (2E/M) sin2(θ/2)
= E − Q2

2M
(elastic scattering) (1.44)

A similar calculation to that of the previous subsection, with the added constraint of kinetic energy

conservation11, gives the analog to Equation 1.41 for elastic ep scattering:

∆σ

∆Ω
=

α2

4E2 sin4(θ/2)

E′

E

(

2W1(el) sin2 θ

2
+W2(el) cos2

θ

2

)

(elastic scattering) (1.45)

Here, the uniquely determined value of E′ has been integrated, so that only ∆Ω (and thus, only

∆θ after a simple φ-integration) is needed to completely parametrize the cross-section. The W -

structure functions are now functions of one kinematic variable only. Because E′ is no longer an

independent parameter, and ν = E − E′,

W1,2(Q
2, ν) →W1,2(el)(Q

2) (elastic scattering) (1.46)

If we define GE and GM such that

G2
M (Q2) ≡ W1(el)

τ
(1.47)

and

G2
E(Q2) ≡ (1 + τ)W2(el) −W1(el) (1.48)

where τ ≡ ν2/Q2, we can write the well-known Rosenbluth Formula for elastic scattering:

∆σ

∆Ω
=

α2

4E2 sin4(θ/2)

E′

E

(

2τG2
M (Q2) sin2 θ

2
+
G2

E(Q2) + τG2
M (Q2)

1 + τ
cos2

θ

2

)

(1.49)

GM and GE are known as the Sachs magnetic and electric form factors; in the following we show

how these quantities may be interpreted as such.

The scattering matrix M , in terms of the interaction propagator and electromagnetic current

11The quantity q·p
q2 = − 1

2
in this section, for the special case of elastic scattering.
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operators, is written as

|Mfi|2 =

∣
∣
∣
∣

〈

ψf

∣
∣
∣
∣
jµ

(

− 1

q2

)

Jµ

∣
∣
∣
∣
ψi

〉∣
∣
∣
∣

2

(1.50)

where jµ and Jµ are current operators for the electron and proton, respectively. The electron is a

structureless particle, so we can write the matrix operator for the (lowest order) term jµ according

to standard QED formalism [3] as

〈ψf |jµ|ψi〉 = −eū(k′)γµu(k) (1.51)

However, we do need to account for the unknown structure of the proton, so Jµ must be expressed

as the most generalized possible (parity-conserving) 4-vector containing independent terms and

Dirac γ-matrices:

〈ψf |Jµ|ψi〉 = ū(p′)
(

γµ
F1(Q

2) + iσµν qν
2M

F2(Q
2)
)

u(p) (1.52)

where F1(Q
2) and F2(Q

2) are unknown parameters, known as the Dirac and Pauli form factors,

respectively. Solving for the cross-section again, inserting these current definitions into Mfi, one

finds 12

GE = F1 −
Q2

4M2
F2 (1.53)

and

GM = F1 + F2 (1.54)

We now shift to the Breit reference frame (introduced in Section 1.1.3), the reference frame in

which ν = 0, and hence E = E′. For elastic scattering, the Breit frame is the same as the ep

12Most texts use F1 and F2 to denote the Dirac and Pauli form factors in this and related equations. These are not at
all the same quantities as the F1 and F2 structure functions. To avoid this (unfortunate) notation, F1 and F2 are used to
symbolize the Dirac and Pauli form factors in this thesis. Also, some works (e.g. Ref. [3]) write the anomalous magnetic
moment κ explicitly in these equations, while others (e.g. Ref. [12]) absorb it into the form factor definitions; the latter
approach is used here.
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center-of-mass reference frame. Evaluating Eq. 1.52 in this reference frame results in

〈ψf (−Q2/2)|J(0)µ|ψi(Q
2/2)〉 = eū(p′)

(

γµ(F1 + F2) −
(pµ + p′µ)

2M
F2

)

u(p) (1.55)

The notation J(0)µ notes the current operator in the Breit frame. If the Dirac spinors are written

explicitly in terms of the helicity spinors χs and χ′
s and evaluated in this reference frame, one can

evaluate the four components of Jµ as [12]

〈ψf (−Q2/2)|J0(0)|ψi(Q
2/2)〉 = 2MeGE(Q2)δs′s (1.56)

and

〈ψf (−Q2/2)| ~J(0)|ψi(Q
2/2)〉 = GM (Q2)χ†

s′(ie~σ × ~q)χs (1.57)

This can all be simplified a bit if we define a z-axis along the direction of the ep collision, in which

case the matrix elements are diagonal. If we note that Jµ = (ρ, Jx, Jy, Jz), we can then write the

nonzero matrix elements as [3]

ρ = 2MeGE(Q2) (s′ = s) (1.58)

and

Jx ± iJy = ∓2|~q|eGM (Q2)

(

s = −s′ = ∓1

2

)

(1.59)

Now, we have the charge J0 = ρ as a function of Q2, as well as Jx ± iJy, which can be interpreted

as a current loop about the z-axis; that is, the magnetization µ of the proton as defined along our

chosen axis. In this frame, then, simple 3-dimensional Fourier transforms

ρ(~r) =

∫
d3q

(2π)3
e−i~q·~rMGE(Q2) (1.60)

µz(~r) =

∫
d3q

(2π)3
e−i~q·~r|~q|GM (Q2) (1.61)

can be made to obtain the charge or magnetization density in the Breit frame.

The main point of importance to be noted here is that GE and GM can be interpreted as electric
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and magnetic form factors, respectively. In the limit Q2 � M2, then, the charge distribution and

magnetization density of the proton can then be respectively determined by the Fourier transforms

of GE and GM . Very precise parametrizations of GE and GM from elastic scattering experiments

have been published [13][14]. These parametrizations are later used in this thesis for calculation of

the beam times target polarization product (see Section 6.2).

Extension of elastic formalism to inelastic scattering

The main subject of this thesis is the study of inelastic structure functions. Why then, are we

concerned with the analogous terms to W1 and W2 in the elastic region, as detailed in the last

section? The answer becomes immediately apparent upon extension of these elastic results into

the inelastic region. Looking at Equations 1.47 and 1.48, we see

W1(el) ≡ τG2
M (Q2) (1.62)

and

W2(el) ≡
G2

E(Q2) + τG2
M (Q2)

1 + τ
(1.63)

If we extend the concept of W1 and W2 to inelastic scattering events, and we are still to believe the

interpretation of the Sachs form factors in Equations 1.58 and 1.59 past this threshold, then it is

clear that W1(Q
2, ν) parametrizes the transverse part of transition matrix element |Mfi|2 (as repre-

sented by the magnetic dipole field in the Breit frame), but that W2(Q
2, ν) contains both transverse

and longitudinal parts of the transition matrix [6].

To separate the longitudinal part of the matrix for inelastic events, it is conventional to define WL

as

WL(Q2, ν) ≡ (1 + τ)W2(Q
2, ν) −W1(Q

2, ν) (1.64)

(note the similarity to Eq. 1.48). We can now define the ratio of unpolarized structure functions,

labeled R by convention:

R(Q2, ν) ≡ σL

σT
=
WL(Q2, ν)

W1(Q2, ν)
(1.65)
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so that, for elastic events,

R(el) =
G2

E

τG2
M

(1.66)

In other words, R is defined as the ratio of the transverse to longitudinal transition strength [6] in

the ep reaction.

Structure Functions and Deep Inelastic Scattering

We now switch to a different perspective - scattering in the deep inelastic region (W & 2.0 GeV). As

explained in Section 1.1.3, if the virtual photon transfers enough energy to the proton, it will scatter

elastically from the individual quarks, but only if their momentum fraction (calculated in the Breit

Frame) is given by x = Q2/(2Mν). In Section 1.1.2, we considered the possibility that both valence

quarks and sea quarks/antiquarks of many different flavors could “exist” inside the proton. If we

then define f(x) to be the probability of quark of flavor f having a value between x and x + ∆x,

then (assuming quarks have no structure of their own), that means one can simply rewrite the

elastic cross-section, multiplied by
∑

f f(x)∆x, to express the DIS cross-section!

To do this, we use Eq. 1.34, with a couple modifications. First, we drop the recoil factor E′

E ,

and assume the target does not recoil. 13 We also must consider that the coupling strength α is

proportional to the the product of the charges of the interacting particles, so

α→ zfα (1.67)

for each term in the sum, where zf is the charge associated with the quark flavor. This yields

∆σ

∆Ω
=

4α2E′2 cos θ/2

Q4




∑

f

z2
ff(x)∆x +

2ν2

Q2
tan2 θ

2

∑

f

z2
ff(x)∆x



 (1.68)

13 In DIS experiments, the recoil factor in the cross-section is a very complicated quantity to calculate, due to the fact
that, in this regime, some of the incident energy of the electron goes into creating different angular momentum and flavor
states, while some goes into the target recoil. For this reason, DIS cross-sections are generally calculated assuming no
recoil in the nucleon, and a complicated TMC (target mass correction) is factored in at the end. It is common convention in
measurement of DIS quantities not to include target mass corrections until they are needed. Except for in the discussion of
quark-hadron duality in Section 8.4.3, the TMC is deferred in this analysis.
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It is conventional to write DIS cross-sections in terms of ∆Q2 instead of ∆Ω = ∆φ∆(cos θ). This

requires integrating over ∆φ (i.e. factor of 2π) and using Eq. 1.7 to show ∆Q2 = 2EE′ sin θ∆θ, and

hence

∆(cos θ) = − sin θ∆θ =
−∆Q2

2EE′
(1.69)

Using Eq. 1.11 to show

∆x =
−Q2

2Mν2
∆ν =

−x
ν

∆ν (1.70)

we can rewrite Eq. 1.68 as [6]

∆σ

∆Q2∆ν
=

4πα2E′ cos2(θ/2)

Q4E




x

ν

∑

f

z2
ff(x) +

1

M
tan2 θ

2

∑

f

z2
ff(x)



 (1.71)

Finally, we are in a position to define the unpolarized structure functions F1 and F2 in the deep

inelastic region [12]:

F1(x,Q
2) ≡MW1(ν,Q

2) (1.72)

F2(x,Q
2) ≡ νW2(ν,Q

2) (1.73)

It is also sometimes useful to use Eq. 1.64 to define

FL(x,Q2) ≡ 2MWL = 2M
[
(1 + τ)W2(Q

2, ν) −W1(Q
2, ν)

]
(1.74)

Substituting F1 and F2 into Eq. 1.43 gives

∆σ

∆Q2∆ν
=

4πα2E′ cos2(θ/2)

Q4E

(
1

ν
F2(x,Q

2) +
1

M
tan2 θ

2
F1(x,Q

2)

)

(1.75)

With this definition of the F1 and F2 structure functions, this means, that if the quark theory holds

true, then in the DIS region

F1(x) =
1

2

∑

f

z2
ff(x) (DIS only) (1.76)

F2(x) = x
∑

f

z2
ff(x) (DIS only) (1.77)



22

That is, the structure functions exhibit scaling behavior and become dependent only on x at high

values of Q2. That is, in the DIS region, we can interpret F1(x) as representing 1
2 the probability,

weighted by the square of its charge, of a quark having a momentum fraction pquark/pproton = x in

the Breit reference frame. It is obvious, in the scaling region, that we expect

F1(x) = 2xF2(x) (DIS only) (1.78)

which is known as the Callan-Gross Relationship.

Also, it is obvious from the above relations that F1, F2 and R are all algebraically related. A

quick derivation using Eqs. 1.64, 1.65, 1.72 and 1.73 yields

R =
F2(1 + 1

τ )

2xF1
+ 1 (1.79)

meaning that knowledge of any two of these three quantities completely parametrizes the third.

1.2.3 Polarized structure functions ( g1, g2)

We saw in the previous sections how structure functions for unpolarized scattering cross-sections

relate information about the interior of the nucleon to measureable quantities in the laboratory. Now,

we extend the discussion to polarized electron-nucleon scattering cross-sections, which provide

information on distribution of the angular momentum within the proton.

Generalizing the leptonic and hadronic tensors

The leptonic and hadronic tensors Lµν and Wµν can provide information about the momentum and

charge composition of quarks in the case of unpolarized targets. In that case, complete symmetry

is required upon exchange of the indices µ and ν, because spins of individual electrons and protons

cannot be isolated, and the scattering configuration is identical to its reflected image in all reference

frames. However, if we introduce a polarization sµ to the electron and/or Sµ to the proton, this is

definitely not the case (see Figure 1.4). Experiments that aim to extract the related spin-dependent

structure functions must utilize polarized electron beams and/or proton targets.
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Figure 1.4: Diagram showing how the apparent polarizations of particles in ep scattering change
upon reflection of coordinates or change of reference frame. The top diagram shows a scatter-
ing event in the lab frame where an incident electron (black arrow) with a given spin impinges on a
stationary particle, maintaining the same spin before and after the scattering event. A coordinate re-
flection reverses all the apparent helicities. The bottom figure shows the same event in a reference
fram moving at velocity v. In this reference frame, the helicities of both the proton and the electron
after the scattering event are opposite their direction in the lab frame. Lorentz invariance dictates
that the particle interaction cannot be represented solely by matrix terms that are symmetric upon
exchange of x, y, z and t coordinates.
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We now return to Eq. 1.35, and expand the scope of Lµν and Wµν to include the asymmetric

space-time physics of polarized particles. Any tensor can be written as a sum of a symmetric and

antisymmetric tensor, so that

Lµν = Lµν
S + Lµν

A (1.80)

and

Wµν = WS
µν +WA

µν (1.81)

The symmetric components were detailed in the previous discussion of unpolarized structure func-

tions. The antisymmetric leptonic tensor for a structureless spin- 1
2 particle is calculated as [12]

Lµν
A± = ∓2iεµναβk

αk′β (1.82)

where εµναβ is the antisymmetric Levi-Civita tensor (defined as ε0123 = +1 in this convention). Here,

the ± represents the sign of the helicity, which, for a “massless” particle (i.e. the electron), is the

same as the polarization direction.

Once again, the most generalized possible tensor must be constructed to represent the hadronic

contribution, with the unknown coefficients again representing the unknown response functions.

First, the nuclear polarization vector Sµ must be introduced. We know from (nonrelativistic) quan-

tum angular momentum theory for spin- 1
2 particles [9] that

~S = χ†
S~σχS (1.83)

where χS is the two-component spinor wavefunction of the proton and ~σ is the Pauli spin matrix.

Relativistic generalization of this quantity to a 4-vector yields [12]

Sµ = ū(p)γµγ5u(p)/2M (1.84)

where u(p) is Dirac spinor representing the proton and γµγ5 is the combination of Dirac matrices

needed to generate an antisymmetric matrix. The most general antisymmetric matrix possible14

14Actually, it is the most general antisymmetric matrix that conserves parity. This requires the factor εµναβ to cancel the
parity-violating effects of the γ5 matrix.
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that can be constructed from the vectors pµ, qµ and Sµ (analogous to Eq. 1.39) is [12]

WA
µν = iεµναβq

α

(

G1(ν,Q
2)Sβ +

G2(ν,Q
2)

M2
(Sβp · q − pβS · q)

)

(1.85)

Just as the symmetric term can be characterized completely by the two response functions W1 and

W2, the antisymmetric (completely spin-dependent) term can be characterized completely by the

two response functions G1 and G2.

In exact analogy to the case of unpolarized scattering (save a factor of ν) we define

g1(x,Q
2) ≡MνG1(ν,Q

2) (1.86)

g2(x,Q
2) ≡ ν2G2(ν,Q

2) (1.87)

Substituting these into WA
µν gives

WA
µν = iM

εµναβq
α

ν

[

g1(x,Q
2)Sβ + g2(x,Q

2)

(

Sβ −M
S · q
ν

pβ

)]

(1.88)

Now, putting this all together, we have

〈|Mfi|2〉 =
(4πα)2

q4
(Lµν

S WS
µν + Lµν

A WA
µν) (1.89)

where the two cross-terms Lµν
A WS

µν and Lµν
S WA

µν cancel due to the symmetry requirement of Mfi.

Now, we must consider possible orientations of the electron and proton spin. The EG1 experi-

ment utilizes a longitudinally polarized electron beam and target, so we limit our considerations to

the possibilities of parallel and antiparallel orientation of the electron and proton spins.

Applying the appropriate sign to Eq. 1.82 and the appropriately polarized spinors into Eq. 1.84,

one can use Fermi’s Golden Rule and the ep scattering 4-vectors of Figure 1.2 to evaluate the

differential cross-sections in the lab frame for both the spin-parallel(↑⇑) and spin-antiparallel(↑⇓)

[12]:

∆σ↑⇑

∆Ω∆E′
=

∆σ

∆Ω∆E′
− 2α2E′

Q2E

(
E + E′cosθ

Mν
g1(x,Q

2) − 1

Mτ
g2(x,Q

2)

)

(1.90)
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∆σ↑⇓

∆Ω∆E′
=

∆σ

∆Ω∆E′
+

2α2E′

Q2E

(
E + E′cosθ

Mν
g1(x,Q

2) − 1

Mτ
g2(x,Q

2)

)

(1.91)

We see the unpolarized cross-section of Eq. 1.41 is part of the total polarized cross-section. Hence,

one can already see that knowledge of the unpolarized structure functions is necessary for extrac-

tion of the polarized structure functions.

It can also be seen that, by either adding/subtracting the above cross-sections, it is possible to

isolate the unpolarized/polarized cross-section contributions:

(
∆σ

∆Ω∆E′

)

unpolarized
=

1

2

(
∆σ↑⇓

∆Ω∆E′
+

∆σ↑⇑

∆Ω∆E′

)

(1.92)

(
∆σ

∆Ω∆E′

)

polarized
=

1

2

(
∆σ↑⇓

∆Ω∆E′
− ∆σ↑⇑

∆Ω∆E′

)

(1.93)

This important result is paramount to the discussion of the relation between asymmetries and the

spin structure functions.

DIS interpretation of polarized structure functions

Like F1 and F2, g1 and g2 also have an interpretation in the DIS region that implies scaling behavior,

except that instead of parametrizing the linear momentum distribution of the quarks (as is the case

for F1 and F2), g1 and g2 parametrize the spin orientation distribution of the quarks.

It is easiest to see the scaling behavior of g1 by introducing the double spin asymmetry

A||(x,Q
2) =

∆σ↑⇓ − ∆σ↑⇑

∆σ↑⇓ + ∆σ↑⇑
=

∆σpolarized

∆σunpolarized
(1.94)

From Eqs. 1.90 and 1.91 one can calculate

(
∆σ

∆Ω∆E′

)

polarized
=

4α2E′

Q2Mν

[(

1 +
E′

E
cos θ

)

g1(x,Q
2) − Q2

Eν
g2(x,Q

2)

]

(1.95)
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Applying Eq. 1.42 to Eq. 1.75 yields

(
∆σ

∆Ω∆E′

)

unpolarized

=
4α2 cos2(θ/2)

Q4E2

(
1

M
tan2 θ

2
F1(x,Q

2) +
1

ν
F2(x,Q

2)

)

(1.96)

We can see from both of these equations, at large ν, the contributions to the cross-sections from

F1 and g1 are much larger than those from F2 and g2. 15 Thus, we can see

A||(x,Q
2) ∝ g1(x,Q

2)

F1(x,Q2)
+ O

(
1

ν

)

(1.97)

where O(1/ν) is a small term containing the contributions from g2 and F2, which we ignore for now.

Earlier, a function f(x) was defined as representing the probability of a quark with flavor f

containing the fraction x of the total proton’s momentum, when viewed in the Breit reference frame.

It was seen that, at high enough Q2, that the F1 and F2 structure functions become simple functions

of f(x), as summed over all quark flavors, assuming only that the quark model and asymptotic

freedom hold true, an example of scaling behavior.

Now, consider the quark model, again assuming asymptotic freedom to be true. At high enough

Q2 (i.e. the scaling region), the absorption of the virtual photon must be by one of the individual

quarks. Figure 1.5 shows the absorption of a virtual photon by the constituent quarks. When the

initial spin of the electron and proton are parallel (e.g. S = s = 1
2 ), not only must the quark have

momentum fraction x in the Breit frame (as for unpolarized DIS scattering), but angular momentum

conservation dictates that the exchange must occur by the electron flipping its spin (to s′ = − 1
2 )

and emitting a spin +1 virtual photon, which is in turn absorbed by the single quark with spin − 1
2 ,

which then flips its spin, resulting in a final spin of S′ = + 3
2 for the nucleon. 16 Conversely, when

the initial electron and proton spins are antiparallel (e.g. s = 1
2 and S = − 1

2 ), either one of the two

spin − 1
2 quarks (with momentum fraction x) can absorb the spin +1 virtual photon, resulting in a

final spin of S′ = + 1
2 . Note that the exact same situation arises with both antiparallel and parallel

spins when the initial spin of the electron is s = − 1
2 , due to the symmetry of the configuration. 17

15Because ν is large and Q2 ∼ E in the DIS region
16This changes the proton to a spin- 3

2
state (e.g. ∆+), which in turn decays very quickly.

17This is why only the double-spin asymmetry need be considered; this is due to the cancellation of the cross-terms in
Eq. 1.89.
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(a) Initial Spins Parallel (b) Initial Spins Antiparallel

Figure 1.5: Diagrams showing the spin-transition at scaling region kinematics for polarized ep scat-
tering, in both possible longitudinal double-spin configurations. The initial electron and proton spins
are labeled, along with the quark spin directions (i). The electron (black dot) emits a virtual pho-
ton of spin 1, flipping the electron spin (ii), which is then absorbed by a quark of the same spin
alignment (as it must be from angular momentum conservation), flipping its spin and changing the
nucleon spin (iii). See the text for more specific details.
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We now define simple, but more specific distribution functions f↑(x) (f↓(x)) as the probability

distribution for finding a quark of flavor f and momentum fraction x of the proton in the Breit frame

with its spin aligned parallel (antiparallel) to the whole proton spin. From the considerations of the

preceding paragraph, then, in the scaling region only, we expect

A||(Q
2, x) =

∆σ↑⇓ − ∆σ↑⇑

∆σunpolarized
∝
∑
q2ff

↑(x) −
∑
q2ff

↓(x)
∑
q2ff(x)

(1.98)

The relation between g1 and the polarized cross-sections now becomes clear. The constant of

proportionality in the above equations is the depolarization factor of Eq. 1.19; it is dealt with later

in Section 1.4. If we define

∆f(x) = f↑(x) − f↓(x) (1.99)

then we can see that, in the scaling region

∑
q2f∆f(x)

∑
q2ff(x)

=
g1
F1

(1.100)

(where we have ignored contributions to the order O(1/ν)). We see that, just as F1 can be inter-

preted as a sum of over the distributions of the linear momentum fractions of the quarks, g1 can be

interpreted as the sum of the distribution of the linear momentum fractions of the quarks, weighted

by their spin distributions. Thus, the g1 structure function provides an indirect way of observing

the angular momentum distribution of the quarks within the nucleon. Writing the quark flavors out

explicitly, and extrapolating the concept to the non-scaling region, one finds

g1(x,Q
2) =

1

2

∑

q2f∆f(x,Q2) =
4

18
∆u(x,Q2) +

1

18
∆d(x,Q2) +

1

18
∆s(x,Q2) (1.101)

with the contributions from quarks and antiquarks subsumed within the ∆f functions. Note that a

factor of 1
2 is included by convention (just as in F1) so that the ratio of Eq. 1.100 holds true.

To this point, an intuitive interpretation of the g2 structure function has not been discussed.

Unfortunately, g2 can not be interpreted in such a (relatively) straightforward manner as g1. We have
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seen that, in the case of parallel/anti-parallel spins at high Q2, most of the polarized cross-section

contribution comes from g1, with g2 only making only a lower-order contribution. This might naturally

lead one to guess that the converse is true for perpendicular spin alignments; since these are spin-

structure functions, electron-proton scattering for a perpendicular relative polarization difference

should be dominated by g2, with g1 only making a minor contribution. This, however, is not true; in

fact [12]
∆σ ↑⇒
∆Ω∆E′

− ∆σ ↑⇐
∆Ω∆E′

=
4α2E′2

MνQ2E

[

g1(x,Q
2) +

2E

ν
g2(x,Q

2)

]

sin θ , (1.102)

meaning both structure functions make a contribution of the same order. This (and the lack of

any simple interpretation) occurs because of relativistic effects, relating to the fact that, in moving

to the Breit (or any other reference) frame, the perpendicular spins in the lab frame do not remain

perpendicular in the new reference frame [6]. (This is obviously not a problem for parallel/antiparallel

spins, since the spins transform along a common axis.)

We will see, though, in the following sections that the g2 structure function, like g1, is also

expected to obey various sum rules, and that predictions can be made as to its behavior in the

DIS and resonance regions. For now, it can be seen that g1 and g2 are the two structure functions

that completely parametrize the polarized cross-sections for the lowest order scattering diagram of

Figure 1.2.

1.2.4 Q2 evolution and scaling violations

In Section 1.1.2, a qualitative summary of phenomenological proton/quark models and their behav-

ior varies with the strength of the virtual photon Q2, was discussed. Namely, at low values of Q2,

the virtual photon interacts “coherently” with the entire nucleon, as if it was a fundamental particle,

while at the highest values ofQ2, the virtual photon interacts with the (asymptotically free) individual

valence quarks and sea quark-antiquark pairs in the nucleon.

This limiting behavior constrains the behavior of the structure functions by predicting behavior

at these extreme kinematic values. The scaling behavior of both the polarized and unpolarized

structure functions has already been discussed. The expectation of scaling behavior, though, has

implicitly assumed that the entire process of the scattering of a virtual photon from the constituent
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quark can be described by a relatively simple process governed by a single Feynman diagram:

M ∝ (1.103)

whereas, in reality, the process is better described by a sum of this and several higher order dia-

grams:

M ∝ + +

+ +

(1.104)

where we see additional diagrams for quark-antiquark production (from scattering off a “hard” gluon)

and spontaneous radiation of gluons from the quark fermion lines. A rigorous calculation of these

terms has been made by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi [15] by solving for the cross-

sections in terms of dΩ or dpT = d(p′ sin θ), and integrating in Q2 down to an infrared divergence

limit Q2
0. 18 The results for the quark and gluon spin contributions are the DGLAP equations (also

18This is necessary because, at low Q2, due to the large size of the QCD coupling constant, simple perturbative methods
(i.e. low-order approximations) can no longer be used, and more sophisticated treatments are required. These techniques
are far beyond the scope of this thesis; the interested reader is directed to Ref. [16], for example, for details.
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called the evolution equations and the Altarelli-Parisi equations):

d

dt
∆qf (y, t) =

αs(t)

2π

∫ 1

x

dy

y

[

∆qf (y, t)∆Pqq

(
x

y

)

+ ∆g(y, t)∆Pqg

(
x

y

)]

(1.105)

d

dt
∆g(y, t) =

αs(t)

2π

∫ 1

x

dy

y

[
2f
∑

i=1

∆qf (y, t)∆Pgq

(
x

y

)

+ ∆g(y, t)∆Pgg

(
x

y

)]

(1.106)

where

t ≡ ln
Q2

Q2
0

(1.107)

and αs(t) is the strong coupling constant, which is a “running” function of t. 19 The splitting functions

∆PAB (where A,B = g or q for gluons or quarks) are defined as

∆PAB ≡ PA+B+ − PA−B+ (1.108)

where the “+” and “−” represent the helicities of the quarks/gluons in question, and P can be

interpreted as the probability for a coupling between the quarks/gluons taking place. 20 These are

given by

∆Pqq = CF
1 + z2

1 − z
(1.109)

∆Pgq = CF
1 − (1 − z)2

z
(1.110)

∆Pqg =
1

2
[z2 − (1 − z)2] (1.111)

∆Pqq = CF (1 + z4)

[(
1

z
+

1

1 − z

)

− 1 − z

z

]

(1.112)

for z < 1, where z is the fraction of the given quark momentum contributed by the recoil of the

emitted parton.

We can see from Eq. 1.101 that this directly affects the g1 structure function. In fact, the main

point to be made here is that QCD predicts that violations of the scaling behavior of the spin-

structure functions due to changes in the spin-dependent distributions of quarks and gluons do

19The evolution of the strong coupling constant is discussed thoroughly in Ref. [16] and many other introductory texts in
QCD. A relatively thorough treatise on the status of calculations of this quantity can be found in Ref. [17].

20More properly, (αs/2π)PAB is the coupling probability.
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indeed occur, and that the specific magnitude of the violation as a function of Q2 and x can be

calculated.

Eqs. 1.105 and 1.106 are cumbersome, so, using q to represent a parton (gluon or quark)

distribution, these are often written in the condensed notation [18]

dq(x, t)

dt
=
αs(t)

2π
(∆P ⊗ q)(x, t) (1.113)

where the ⊗ symbol represents a convolution of the ∆P operators with the parton distributions.

It is important to emphasize that pure scaling behavior only manifests at high Q2 and/or low

x [19], and that scaling violations can only be calculated in this manner in the kinematic region

where pQCD is applicable, Q2 & 1.0 GeV2 [20], in the DIS region (W & 2.0 GeV). Outside of this

range, the complications caused by the growth of the running coupling constant and the presence

of resonances (see Section 1.4.3) render the methods of pQCD unusable, and other models must

be used.

1.3 Moments and sum rules

In the resonance region (1.08 GeV < W < 2.0 GeV), we see the variation of structure functions

and asymmetries due to the excitation of various hadronic states. As already mentioned, these

resonances are not predictions of the standard pQCD method. At this point in time, no analytic

or perturbative solution exists for the evolution of structure functions across excitations of hadronic

states. Instead, we must rely upon the Operator Product Expansion (OPE) to express the moments

of structure functions in terms of empirically evaluated hadronic matrix elements. The evaluation

of these moments allows the testing of various physical sum rules, as well as a wide range of

applications regarding other physical quantities (see Chapter 8).

1.3.1 The Operator Product Expansion

A basic understanding of the Operator Product Expansion is essential for proper interpretation of

measured moments of the structure functions. As we will see, the measurable scattering cross-
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section is the result of the product of two electromagnetic current field operators. Unfortunately, the

product of two fields is not a well-defined entity, particularly as it relates to long-range QCD effects.

The OPE provides a method for separating the short distance (i.e. high-energy) correlations of the

inelastic cross-section so that one can utilize perturbative expansion techniques [16].

Product of two fields in ep scattering

It has already been demonstrated, for the case of elastic ep scattering, that the square of the

transition amplitude, and hence the scattering cross-section, can be expressed in terms of the

electromagnetic current operator Jµ (Eq. 1.50), and that (in the Breit frame) this can be reduced to

terms of a local current operator Jµ(0) (Eq. 1.55).

Now, we attempt to generalize this formalism for inelastic scattering in the lab reference frame,

and show that the resulting cross-section contains an inseparable product of two field operators

Jµ(r)Jν(0). 21 Rewriting Wµν (defined in Eq. 1.35) as general sum over states yields [16]

Wµν =
1

4π

∑

X

(2π)4δ4(pX − p− q)
∑

λ

〈pλ|Jµ(0)|X〉〈X |Jν(0)|pλ〉 (1.114)

The expression for Wµν simply states that the contribution to the square of the scattering amplitude

〈|M |2〉 from the virtual photon-proton interaction is given by the sum of the matrix elements given

by the transition amplitudes between the initial proton momentum states and eigenstates |pλ〉 and

final state of scattered particles |X〉, as measured at the proton origin r = 0, with the δ-function

enforcing momentum and energy conservation.

By simply writing the δ-function in terms of its Fourier transform and using closure of states22,

one finds

Wµν =
1

4π

∫

d4rei(pX−p−q)·r
∑

λ

〈pλ|Jµ(0)Jν(0)|pλ〉 (1.115)

By use of the translation operator ei(P̂−P̂ ′)·r, we have

〈pλ|Jµ(0)Jν(0)|pλ〉 = ei(pX−p)·r〈pλ|Jµ(x)Jν(0)|pλ〉 (1.116)

21Here, r is used as the space-time 4-vector instead of the more conventional x, to avoid confusion with the kinematic
variable defined in Section 1.1.3.

22That is,
P

X |X〉〈X| = 1.
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because the indices ν and µ are associated with initial(p) and final(pX ) state momenta, respectively.

Thus, we simplify Wµν to

Wµν =
1

4π

∫

d4rei(q)·r
∑

λ

〈pλ|Jµ(r)Jν(0)|pλ〉 (1.117)

Using the exact same process, we can prove

∑

X

(2π)4δ4(q − p+ pX)
∑

λ

〈pλ|Jν(0)|X〉〈X |Jµ(0)|pλ〉 =

∫

d4reiq·r
∑

λ

〈pλ|Jµ(0)Jν(r)|pλ〉 = 0

(1.118)

This equation equals zero because the condition q − p + pX = 0 in the δ-function is kinematically

forbidden, since q = k − k′ = pX − p > 0 always. 23

This result can be used to rewrite Eq. 1.117 in terms of a commutator of current operators:

Wµν =
1

4π

∑

λ

∫

d4reiq·r〈p, λ|[Jµ(r), Jν(0)]|pλ〉 (1.119)

The commutator [Jµ(r), Jν(0)] must vanish for space-like coordinates (for which r2 < 0). We also

realize that the integrand is oscillatory, so that if the oscillations become close enough together in r

(i.e. if |q · r| becomes large enough), the integral evens out to zero. Thus, the dominant contribution

to Wµν comes from the localized region24

0 ≤ r2 ≤ r2limit (1.120)

where, using Q2 = −q2,

r2limit ∝
1

Q2
(1.121)

The main objective of this presentation is to show that the hadronic tensor Wµν contains a field

product of two current operators. While this product in itself is not an easily defined field operator,

it can be shown with relative ease that the dominant contribution to the measurable cross-section

comes from the localized timelike components of the product Jµ(r)Jν (0). This provides a motivation
23That is, the recoil particle cannot have more energy than the incident particle.
24A more rigorous proof of this relation is found in Ref. [16]; the point here is to convey the general distance scale over

which the dominant contribution to the scattering cross-section is made.
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for extricating the dominant components of the field in terms of an operator product expansion about

the point r = 0, in the neighborhood of r2limit.

Summary of the OPE (Light Cone Expansion; Twist)

The goal of the Operator Product Expansion, then, is to expand the product of two operators Â(r)

and B̂(r′) in terms of a well defined third operator P̂ (r) such that

Â(r)B̂(r′) =

∞∑

i=0

Ci(r − r′)P̂

(
r + r′

2

)

(1.122)

A detailed proof of the O.P.E. and the specific values of all the coefficients for the hadronic tensor

is beyond the scope of this thesis; the reader is hereby referred to Ref. [16] for more information.

Instead, a summary providing the major points is presented, only to show the reader how the

extraction of structure functions provides input into our knowledge of the terms and operators in the

resultant expansion.

As already explained, the locality near the origin of the light-cone (Eq. 1.120) serves as the

region of importance for the expansion of Eq. 1.122. This corresponds to the kinematic region

Q2 → ∞ with fixed x ≡ Q2/(2p · q). Thus, in this light-cone region [16]

Q2 = |q2| ∼ |p · q| � |p2|,M2 (1.123)

The hadronic tensor Wµν contains a product of two current operators (Eq. 1.117). In terms of the

the Feynman diagram in Figure 1.2, the portion of interest to the hadronic tensor evaluation can be

written mathematically equivalently in terms of an (unsquared) Compton scattering diagram as [11]

∑

X

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

2

= 2 Im













(1.124)
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The challenge, then, is to expand the diagram term on the right in the Operator Product Expan-

sion in the the vicinity of the light cone origin (that is, using the conditions enforced in Eq. 1.123).

This diagram can be expressed perturbatively; here we consider only the highest order terms in the

expansion:

= + + · · ·

(1.125)

There are exactly two diagrams of order 1/Q2 in this series, related by crossing symmetry. For

now, we consider only the first diagram in this expansion. 25 To show the form taken by the OPE in

the light-cone expansion, we need to consider the general form of the matrix element Mfi. In the

DIS (scaling) region, the current product can be written

Jµ(r)Jν(0) → q̄(r)γµq(r)q̄(0)γνq(0) = q̄(r)γµ

︷ ︸︸ ︷

q(r)q̄(0) γνq(0) + · · · (1.126)

where γµ are the 4×4 Dirac matrices and ︷︸︸︷ indicates a contraction over indices in the embraced

operators. Note that the operators in this equation correlate exactly to the expansion of Eq. 1.125.

According to the Feynman rules, the scattering amplitude for the proton will have the propor-

tionality [11]

Mproton ∝
∫

d4reiq·r q̄(r)γµ

︷ ︸︸ ︷

q(r)q̄(0) γνq(0) = q̄(r)γµ
i(∂σγσ + qσγσ)

(i∂ + q)2
γνq(0) (1.127)

25Crossing symmetry effects on the OPE result in either even or odd moments of structure functions going to zero. This
will be considered again in Section 1.3.2.
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Thus, we see that the OPE requires expansion of the denominator in the locality of the light cone

origin. Using Eq. 1.123, a Taylor series expansion can be used to find

1

(i∂ + q)2
= − 1

Q2 − 2iq · ∂ + ∂2
= − 1

Q2

∞∑

n=0

(
2iq · ∂ − ∂2

Q2

)n

(1.128)

Terms of order ∂2 can be ignored. By using γ-matrix identities, one can show [11] that the amplitude

can be expressed as

Mproton ∝ −iq̄(r)(2γµ(i∂ν) − gµνq
σγσ)

1

Q2

∞∑

n=0

(
2iq · ∂
Q2

)n

q(0) (1.129)

Note that this expression contains 2 separate terms, each summed over n. The gµν term represents

a trace,26 and the i∂ν is the main part of the new combined operator in the light cone expansion.

The operator corresponding to the kth term in the expansion can be seen to contain the operator

q̄(r)γµ1
(i∂µ2

) · · · (i∂µk
)q(0) ∝

∫

d4reiq·r ˜̄q(r)γµ1
(rµ2

) · · · (rµk
)q̃(0) (1.130)

where we have equated the momentum-space composite operator to the Fourier transform of the

equivalent geometrical-space operator on the right.

Generalizing the above to any current operator in the light-cone expansion, then, the product of

two current operators can be written as

J(r)J(0) =
∑

i,n

C(i)
n (r2)rµ1 . . . rµn P̂ (i)

µ1...µn
(0) (1.131)

where O
(i)
µ1...µn(r2) is the expansion of composite operators, and C(i)

n (r2) is an expansion of corre-

lated coefficient functions. This decomposition is known as the light-cone expansion, and it is the

key relation in the Operator Product Expansion for DIS electron-hadron scattering.

One last topic that must be addressed before applying the expansion is that of the analytic

structure of the coefficient functions and the definition of the twist of these functions. It is simplest

26This is subtracted from the main operator to make the main current operator traceless. The subtraction of traces, while
necessary, is not the primary concern here; the remainder of the explanations in this section will assume the trace terms
are implicit in the OPE equations.
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to define twist by using dimensional analysis on the operators assuming a free-field expansion (i.e.

no renormalization terms). If we define dj0 as the canonical dimension of the operator J(r), and

di
0(n) as the canonical dimension of the composite operator term P̂

(i)
µ1...µn , then clearly, we require

2dj0 = di
0(n) (1.132)

Looking at Eq. 1.131, in order to conserve dimensionality in terms of r, the coefficient function must

be [16] of the form

C(i)
n (r2) ∼ (r2)−dj0

−n/2+di
0(n)/2 (1.133)

We will see (near the end of this section) that the magnitude of the operator terms is directly

determined by the “strength” of the singularities in the coefficients, as determined by a contour

integral in the complex plane. Looking at the form of C(i)
n (r2), it can be seen that if the exponent is

sufficiently large enough (that is, if di
0(n) − n > 2dj0 ), that the singularity structure of the i-th, n-th

coefficient function disappears. Thus, the magnitude of the integral is directly determined by the

value of di
0(n) − n, a quantity referred to as the twist τ i

n of the operator term:

τ i
n ≡ di

0(n) − n (1.134)

Generally, this naive derivation of twist through dimensional analysis does not work for the case of

interacting field operators. The required renormalization of the operator terms results in dimensional

regularization of the higher-order terms; the renormalization group equations [11][16] are then

required in the subsequent expansion to obtain the singularity structure.

Generally, an OPE composite operator of term n and dimension d can be shown to make a

contribution of order [11]
(

2p · q
Q2

)n(
1

Q

)d−n−2

=
ωn

Qd−n−2
(1.135)

where the value of n is referred to as the “spin” of the operator [12], with the twist defined here as

τ = d − n. The lower the twist, the greater the contribution to the expansion from the operator. In

general, twist-2 operators result from the lowest order expansion of functions, with higher twist (HT)

contributions leading to (small) violations of sum rules and scaling derived using only the twist-2
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terms. Twist-1 (or lower) terms make no contributions to the expansion; in fact, the identity operator

is the only possible twist-1 QCD operator [11].

Application of the OPE to spin-structure functions

In this section it is shown how the OPE can be used to expand the general hadronic tensor Wµν

for polarized scattering, and how the (polarized and unpolarized) structure functions F1, F2, g1 and

g2 can be written in terms of this expansion. Once again, this section is not intended as a rigorous

proof, but merely to clarify the expansion of the field operators results in a summation of moments

of structure functions.

To begin with, the generalized electromagnetic current operator commutator of Eq. 1.119 is

assumed to have the most generalized form possible27 under the constraints of Lorentz invariance

and current conservation [16][21]:

T[Jµ(r)Jν (0)] =

− (gµν2
2 − ∂µ∂ν)Ô1(r, 0) − (gµλgνσ2

2 − gµλ∂ν∂σ − gνσ∂µλ + gµν∂λ∂σ)Ôλσ
2 (r, 0)

+ iεµνλσ∂
λQ̂σ

1 (r, 0) − i(∂νεµρλσ∂
ρ − ∂µενρλσ∂

ρ − 2
2εµνλσ)Q̂λσ

2 (r, 0) (1.136)

The expression T[Jµ(r)Jν (0)] here refers to the time-ordered product of the currents operators [1]:

T[Jµ(r)Jν (0)] ≡ Jµ(r)Jν (0)θ(r0) + Jν(0)Jµ(r)θ(−r0) (1.137)

where θ(r0) is the step function, equal to 1 if the 0-component of r (i.e. time) is positive, and equal

to 0 if this quantity is negative.

Here the (symmetric) terms containing operators Ô1 and Ô2 are relevant to the unpolarized

response functions W1 and W2, and the (antisymmetric) terms containing operators Q̂1 and Q̂2 are

relevant to the polarized response functions G1 and G2. Again, we use the light-cone expansion to

27εµνλσ again represents the Levi-Cevita tensor, and 2
2 ≡ ∂µ∂µ is the D’Alembertian operator.
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write these bilocal operators as

Ô1(r, 0) =
∑

i,n

C
(i)
1,n(r2)rµ1 . . . rµn P̂

(i)
1,µ1...µn

( r

2

)

(1.138)

Ôλσ
2 (r, 0) =

∑

i,n

C
(i)
2,n(r2)rµ1 . . . rµn P̂

(i)λσ
2,µ1...µn

(r

2

)

(1.139)

Q̂σ
1 (r, 0) =

∑

i,n

E
(i)
1,n(r2)rµ1 . . . rµnR̂

(i)σ
1,µ1...µn

( r

2

)

(1.140)

Q̂λσ
2 (r, 0) =

∑

i,n

E
(i)
2,n(r2)rµ1 . . . rµnR̂

(i)λσ
2,µ1...µn

(r

2

)

(1.141)

The variables C(i)
1,2 and E(i)

1,2 are the expansion coefficient functions of the operators O(i)
1,2 and Q(i)

1,2,

respectively.

The matrix elements of these new composite tensor operators P (i)
1,2 and R(i)

1,2 have the structures

[16][21][22]

〈p|P (i)
1µ1...µn

(0)|p〉 = A
(i)
1,npµ1

. . . pµn
(1.142)

〈p|P (i)λσ
2µ1...µn

(0)|p〉 = A
(i)
2,n+2p

λpσpµ1
. . . pµn

(1.143)

〈ps|R(i)σ
1µ1...µn

(0)|ps〉 = −M (i)
1,n{Sσpµ1

. . . pµn
} (1.144)

〈ps|R(i)λσ
1µ1...µn

(0)|ps〉 = −M (i)
2,n

1

2
(pλSσ − pσSλ)pµ1

. . . pµn
(1.145)

where terms containing gµν (which reduce to traces) are simply dropped, as they do not correlate

to terms into the structure function expansion, and thus have zero coefficients. The curly brackets

{. . .} in Eq. 1.144 denote a complete symmetrization of the space-time indices µ contained within.

Here the variables A(i)
1 and A

(i)
2 are coefficients28 for the expansion of the unpolarized (sym-

metric) terms (correlating to W1 and W2), and M
(i)
1 , and M

(i)
2 are coefficients corresponding to

corresponding to the polarized (antisymmetric) terms (correlating to G1 and G2).

The other coefficient functions C(i)
1 , C(i)

2 , E(i)
1 and E(i)

2 are singular functions of r (in the neigh-

borhood of r2 = 0). If we define the Fourier transforms of these functions with a tilde(∼), for

28These are not to be confused with the asymmetries A1 and A2, which are completely different quantities.
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example,

C̃
(i)
1,n(Q2)(−i)(Q2/2)−n−1qµ1 . . . qµn =

∫

d4reiq·rrµ1 . . . rµnC
(i)
1,n(x2) (1.146)

and take the Fourier transform of Eq. 1.136, then that equation can be rewritten as

Tµν ≡
∫

d4r〈p|T[Jµ(r)Jν (0)]|p〉 =

2
∑

i,n

[eµνA
(i)
1,nC̃

(i)
1,n(Q2) + fµνA

(i)
2,nC̃

(i)
2,n(Q2) + hµνM

(i)
1,nẼ

(i)
1,n(Q2) + jµνM

(i)
2,nẼ

(i)
2,n(Q2)]ωn (1.147)

where ω ≡ 1/x (as defined in Section 1.1.3) and the tensors eµν through jµν are sums of the

generalized kinematics terms in Eq. 1.136 divided by q2; e.g.

eµν ≡ gµν − qµqν
q2

(1.148)

This brings us to the central point in this process: The Fourier transform of the time-ordered prod-

uct of current operators in the Operator Product Expansion can be expressed as a power series

expansion of a kinematic variable ω.

At this point, we introduce the Low equation for the scattering amplitude [1]. Inserting the com-

pleteness relation
∑

X |X〉〈X | = 1 between the two time-ordered currents in the left hand side of

Eq. 1.147 and explicitly evaluating the integrals yields

Tµν =
∑

X

(2π)3

[

δ(3)(pX − q − p)

pX0 − q0 − p0 − iε
〈p|Jµ(0)|X〉〈X |Jν(0)|p〉

+
δ(3)(pX + q − p)

pX0 + q0 − p0 − iε
〈p|Jν(0)|X〉〈X |Jµ(0)|p〉

]

(1.149)

Just as in Eq. 1.118, energy conservation dictates that the second term goes to zero. Using this

and the expression for Wµν in Eq. 1.115, one finds that

Wµν =
1

2πi
[Tµν(q0 + iε) − Tµν(q0 − iε)] ≡ 1

π
Abs Tµν (1.150)

Here Abs Tµν refers to the absorptive part of Tµν [16]. Applying a Cauchy integration along the
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Figure 1.6: The contour C used to evaluate the ω-integrals in Equations 1.151 and 1.152. A branch
cut is made along the real axis for |ω| > 1. The singularity strength of the coefficient functions along
this cut determine the overall magnitude of the integral. Copied from Ref. [16].

contour C shown in Figure 1.6 to Eq. 1.149 and Eq. 1.150, one can show [16]

1

2πi

∮

C

Tµν

ωn
=

2

π

∫ ∞

1

dω

ωn
Abs Tµν = 2

∫ 1

0

dxxn−2Wµν (1.151)

Another integration along C can be done to show

1

2πi

∮

C

dωωm−n = δm,n−1 (1.152)

which, if applied to Eq. 1.147, has the effect of reducing the sum over i and n to a sum over i only,

so that

Tµν = 2
∑

i

[eµνA
(i)
1,n−1C̃

(i)
1,n−1(Q

2) + fµνA
(i)
2,n−1C̃

(i)
2,n−1(Q

2)

+ hµνM
(i)
1,n−1Ẽ

(i)
1,n−1(Q

2) + jµνM
(i)
2,n−1Ẽ

(i)
2,n−1(Q

2)] (1.153)

All that remains is equate the right side of Eq. 1.150 to Eq. 1.153, to arrive at an Operator Product
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Expansion of the hadronic tensor Wµν .

At this point, we once again point out that the hadronic tensor contains separate terms (Eq. 1.81)

that can be expressed algebraically in terms of the unpolarized structure functions F1 and F2, and

the polarized structure functions g1 and g2. In terms of the bilinear tensors (used for abbreviation in

this section), one can write the unpolarized (symmetric) contribution to Wµν as

WS
µν = eµνFL + fµνF2 (1.154)

where FL and F2 are the structure functions defined in Section 1.2.2. Putting this into Eq. 1.150

and Eq. 1.153 yields the operator product expansion for the unpolarized structure functions:

∫ 1

0

dx xn−2FL(x,Q2) =
∑

i

A
(i)
1,nC̃

(i)
1,n(Q2) (1.155)

∫ 1

0

dx xn−2F2(x,Q
2) =

∑

i

A
(i)
2,nC̃

(i)
2,n(Q2) (1.156)

Naturally, the same process can be applied to the polarized (antisymmetric) part of Wµν , as well.

Equating the antisymmetric parts of Eqs. 1.150 and 1.153, and separating the polarized structure

functions g1 and g2 (as labeled in Eq. 1.88) ultimately yields [22]

∫ 1

0

dx xn−1g1(x,Q
2) =

1

2

∑

i

M
(i)
1,nẼ

(i)
1,n(Q2) (1.157)

∫ 1

0

dx xn−1g2(x,Q
2) =

1

2

∑

i

[

M
(i)
2,nẼ

(i)
2,n(Q2) − n− 1

n
M

(i)
1,nẼ

(i)
1,n(Q2)

]

(1.158)

The OPE for g2 is more complex than that for g1 due to the prominence of transverse effects [22]

that do not remain isolated in a Lorentz transformation like the longitudinal components of g1. It is

customary to define the matrix components

an ≡
∑

i

M
(i)
1,nẼ

(i)
1,n(Q2) (1.159)
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dn ≡ n

n− 1

∑

i

M
(i)
2,nẼ

(i)
2,n(Q2) (1.160)

so that Eqs. 1.157 and 1.158 can be rewritten more simply as

∫ 1

0

dx xn−1g1(x,Q
2) =

1

2
an (1.161)

∫ 1

0

dx xn−1g2(x,Q
2) =

1

2

n− 1

n
(dn − an) (1.162)

One should keep in mind that this is a greatly simplified “derivation” of these OPE relations, where

the subtraction of trace elements and flavor structure of the quark fields has been suppressed [22].

The relations of Eqs. 1.161 and 1.162 are known as sum rules. The integrals on the left hand sides

of these equations are referred to as the nth moments of g1 and g2.

If we look at these relations, we can begin to understand the motivation for the Operator Product

Expansion. The structure functions g1 and g2 can be experimentally measured, as we will see in

Section 1.4.2, but only with a limited amount of precision. By integrating the structure function data

(in essence, just summing over the bins in x), one can greatly reduce the relative size of the error

bars, providing information about the matrix coefficients, which in turn yield additional information

about the Q2 evolution of the structure functions.

The term an contains the twist-2 operator sum contribution, while dn is the matrix element of the

sum of all twist-3 operators contributing to the nth moment of g2 [22]. 29 It is possible to incorporate

scaling violations (Section 1.2.4) and even non-perturbative phenomena into the OPE to derive

additional sum rules; these sum rules involve higher twist (HT) matrix elements, and, to leading

order, can be shown to give the same results as the DGLAP equations (Section 1.2.4). Due to

the enormous complexity of the involved calculations, detailed derivations of higher-twist and non-

perturbative effects are not possible here; we do however, summarize some of these sum rules in

the following sections.

29The expansion for g1 and the unpolarized structure function includes only the base (twist-2) expansion terms; the twist-3
term is included in the expansion for g2 because it is not suppressed by inverse powers of Q2, as generalized in Eq. 1.135,
due to complications introduced by transverse polarization terms and “off-shell”/interacting partons [22]. More light is shed
on the behavior of g2 in Section 1.3.2.
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1.3.2 First moment of g1 and its sum rules

Given a configuration of a target and beam with parallel spin orientation, g1 is the easier of the two

spin structure functions to measure. It also has the simpler interpretation in the parton model, and

can be expressed to leading order exclusively in terms of twist-2 operators. The first moment of g1

for the proton

Γp
1(Q

2) =

∫ 1

0

dx g1(x,Q
2) (1.163)

is the dominant term in the Operator Product Expansion of Eq. 1.157. In this section we discuss

some of the sum rules that apply specifically to Γp
1, and help illuminate the expected behavior of

the g1 structure function at differing magnitudes of Q2. The most important of these rules are the

GDH Sum Rule, which constrains the behavior of Γp
1 as Q2 → 0, and the Bjorken Sum Rule, which

dictates the behavior of the moment as Q2 → ∞.

The Gerasimov-Drell-Hearn Sum Rule

The Gerasimov-Drell-Hearn (GDH) Sum Rule takes advantage of the fact that the cross-section of

the scattering of a photon from a nucleon can be equivalently expressed in terms of the scattering

amplitude M ≡ f(ν) of forward Compton scattering, as shown in Eq. 1.125. This is really a

statement of the optical theorem [12],

σγN(ν) =
4π

ν
Imf(ν) (1.164)

As shown in Figure 1.5, the nucleon can have a final spin of 1
2 or 3

2 , so that we can write the optical

theorem in terms of either final spin-dependent cross-section:

σγN 1
2
, 3
2
(ν) =

4π

ν
Imf 1

2
, 3
2
(ν) (1.165)

The total Compton amplitude transition matrix can be expressed in terms of the initial (final) photon

polarization ~ε (~ε′) and initial (final) electron spinors χi (χf ) as [12]

T = 8πMχ†
f [f(ν)~ε · ~ε′∗ − ig(ν)~σ · (~ε× ~ε′∗)]χi (1.166)
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where f is the spin-independent amplitude, and g is the spin-flip amplitude, and ~σ represents the

standard 2×2 Pauli spin matrices. The amplitudes for the two spin cases can then be written

f 1
2

= f + g ; f 3
2

= f − g (1.167)

At low photon energies (that is, Q2 → 0), where the photon scatters coherently from the proton on

its (zero) mass shell, the amplitudes f and g can be expanded in powers of ν:

f(ν) = − e2

4πM
+ (αE + βM )ν2 + O(ν4) (1.168)

g(ν) = − e2κ2
P

8πM2
ν + γ0ν

3 + O(ν5) (1.169)

Here κP ≈ 1.79 is the anomalous magnetic moment of the proton. Three new terms are introduced

- the electric and magnetic polarizabilities αE and βM , and γ0, the forward spin polarizability. Cal-

culation of forward spin polarizability is an important application of g1 moments, discussed more at

the end of this thesis in Section 8.4.1.

The GDH Sum Rule is a dispersion relation, which, like the derivation of the OPE expansion

in terms of structure function moments (Eq. 1.153), exploits the analyticity of forward Compton

scattering, utilizing Cauchy’s theorem [23]

F (ν) =

∫
ImF (ν′)

ν − ν′
dν′ (1.170)

along with uniformity and crossing symmetry, that is

g(ν) = −g(−ν) (1.171)

By applying Cauchy’s theorem to Eq. 1.169 (working to order ν only, as we assume Q2 → 0), one

can derive the basic form of the Gerasimov-Drell-Hearn Sum Rule:

α

M2
κ2

P = − 4

π

∫ ∞

νth

dν

ν2
Img(ν) =

1

2π2

∫ ∞

νth

dν

ν
[σ 3

2
(ν) − σ 1

2
(ν)] (1.172)
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where νth marks the inelastic (pion production) threshold. We see from Eq. 1.100 and the caption

of Figure 1.5 that the g1 structure function can be expressed in terms of

g1 ∼ σ↑⇓ − σ↑⇑ = σ
1
2 − σ

3
2 (1.173)

so that we can write the GDH Sum Rule in terms of the g1 structure function. Making a conversion

of the integration variable from ν to x, the result30 for this substitution is [22]

−κ
2
P

4
≡ IP (0) = 2

M2

Q2

∫ xth

0

g1(x,Q
2)dx (1.174)

It is important to note that the expansion of Eq. 1.169 is used in deriving this sum rule, so that

it only holds exactly at Q2 = 0, where the virtual photon becomes a real photon. However, since

the right side of Eq. 1.174 is just (2M2

Q2 times) the first moment of g1, this relation can be used to

constrain the behavior of the Γp
1 as Q2 → 0. Specifically, we see

Γp
1(Q

2 → 0) = −1

8
κ2

P

Q2

M2
= − 0.456

GeV2Q
2 (1.175)

so that we expect Γp
1(0) = 0 with a slope of -0.456/GeV2 as Q2 → 0.

While this summarizes the basic application of the GDH sum rule to the low Q2 behavior of the

moment Γp
1, before moving on, we mention the Generalized GDH Integral. A generalization of the

GDH Sum Rule, applicable beyond the Q2 → 0 limit, has been suggested by Ji and Osbourne [24].

A generalized dispersion relation

S1(ν,Q
2) = 4

∫ ∞

Q2/2M

ν′dν′G1(ν
′, Q2)

ν′2 − ν2
(1.176)

can be defined containing the G1 = g1/(Mν) polarized response function (see Eq. 1.85). As we

will see later in this thesis, g1 (and hence G1) can be measured experimentally, while S1 can be

30Properly, a recalculation involves dividing out the contribution to g1 from the unpolarized cross-section via recalculation
of the dispersion relation with the Kramers-Kronig relation for the proper amplitude containing both g(ν) and f(ν). This is
not done in detail here; the objective in this thesis is merely to demonstrate the relation between the quantities.
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expressed theoretically, by expanding it into moments in small ν as [23]

S1(ν,Q
2) =

∑

n=0,2,4,...

νn S
(n)
1 (Q2) (1.177)

for which the dispersion relation can be written

S
(n)
1 (ν,Q2) = 4

∫ ∞

Q2/2M

dν

νn+1
G1(ν,Q

2) (1.178)

The low Q2 region is amenable to the methods of chiral perturbation theory (χPT), which has been

used to fourth order [24] to find

S̄1(0, Q
2) = − κ2

P

M2
+

g2
A

12(4πfπ)2Mmπ
(1+3κV +2(1+3κS)τ3)Q2 + · · · ≈ −κ2

P +24Q2(in GeV2)+ · · ·

(1.179)

thus providing a method of extending the predictions of a generalized GDH integral to virtual Comp-

ton scattering for finite Q2, for Q2 . 0.1 GeV2. 31

The Bjorken Sum Rule

While the GDH Sum Rule governs the behavior of Γp
1 at low Q2, the Bjorken Sum Rule is a relation

that governs the behavior of Γp
1 at high Q2. The derivation of the Bjorken Sum Rule is simple. We

start with the definition of gp
1 in the scaling region (Q2 → ∞) in Eq.1.101. If we consider the same

structure function for the neutron, gn
1 , which, by isospin symmetry, is identical to the proton in quark

structure, except that

uud→ udd (1.180)

then gp
1 and gn

1 , in terms of quark wave functions, should be identical on exchange of ∆u and ∆d,

such that

gn
1 (x,Q2) =

1

18
∆u(x,Q2) +

4

18
∆d(x,Q2) +

1

18
∆s(x,Q2) (1.181)

31In this equation, S̄ simply denotes S without elastic event contributions; gA = 1.26 is the axial coupling constant,
κV = 1.85 and κA = −0.06 are the isovector and isoscalar anomalous magnetic moments, fπ =92.4 MeV is the pion-
decay coupling coefficient, and mπ = 137 MeV is the pion mass.
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Integrating over x, one gets for the first moments (as Q→ ∞):

Γp
1(Q

2) =
4

18
∆u(Q2) +

1

18
∆d(Q2) +

1

18
∆s(Q2) (1.182)

Γn
1 (Q2) =

1

18
∆u(Q2) +

4

18
∆d(Q2) +

1

18
∆s(Q2) (1.183)

Subtracting these two moments yields the Bjorken Sum Rule:

Γp
1 − Γn

1 =
1

6
(∆u− ∆d) =

1

6
gA (1.184)

The quantity gA = 1.26 is the axial vector coupling constant, which is well measured from β− decay,

β− capture, and other weak phenomena [7]. It is easy to show that gA is given by ∆u − ∆d by

considering, for example, the axial vector component of the β− capture reaction wave function, and

equating the wavefunction of the whole nucleon with the same reaction over the constituent quarks

[6]:

gA〈n, s|σ3τ−|p, s〉 = 〈n, s|
∑

q

τ−q σ
3
q |p, s〉 (1.185)

where the nucleon spin s =⇑ or ⇓, and τ− is the isospin lowering operator, which converts |p〉 to

|n〉, or u to d, in the case of the quark isospin lowering operator τ−q on the right hand side.

Let us pause a moment to consider the meaning of this equation. The left hand side tells

us nothing about the quark structure of the nucleon; it just states that the axial amplitude in the

electron capture reaction converts a proton to a neutron with an unknown amplitude gA that must

be determined experimentally. In other words, the constant gA “soaks up” our ignorance of the

constituent quark composition. The right side expresses the same quantity by operation of the

isospin lowering operator over each quark wavefunction, which must sum to the same total value

as the left side, if the picture of the nucleon made of constituent quarks is indeed correct.

The SU(2) isospin symmetry result 〈n|τ−|p〉 = 〈p|τ3|p〉 can be used to write Eq. 1.185 as [6]

gA〈p, s|σ3τ3|p, s〉 = 〈p, s|
∑

q

τ3
q σ

3
q |p, s〉 (1.186)



51

Operating on the right side of the equation, summing over both possible flavor/spin wavefunctions

τ3
q σ

3
q |u ↑〉 = |u ↑〉 ; τ3

q σ
3
q |u ↓〉 = −|u ↓〉

τ3
q σ

3
q |d ↑〉 = −|d ↑〉 ; τ3

q σ
3
q |d ↓〉 = |d ↓〉

(1.187)

Adding these terms together and equating both sides of Eq. 1.186 gives

gA = |u ↑〉 − |u ↓〉 − |d ↑〉 + |d ↓〉 = ∆u− ∆d (1.188)

hence showing that the well known constant gA must equal ∆u − ∆d in the Bjorken Sum Rule. In

summary, this sum rule dictates that Γp
1 − Γn

1 approaches a constant value as Q2 → ∞, given by a

constant, gA, which can be measured by low energy experiments such as β− decay.

Much as in the case of the GDH Sum Rule, the Bjorken Sum Rule can be generalized to the

case of results at different Q2. By introducing perturbative QCD (pQCD) effects, consisting of both

radiative effects (of gluons, qq̄ production, etc. by way of the DGLAP Equations (Section 1.2.4))

and higher twist corrections in the OPE expansion, a modified virtual Compton amplitude can be

derived, and a dispersion relation for the modified Bjorken Sum Rule can be extracted [12][23]:

Γp
1 − Γn

1 =

[

1 − αs(Q
2)

π
− 3.583

(
αs(Q

2)

π

)2

− 20.215

(
αs(Q

2)

π

)3

+ O(αs(Q
2)4)

]

gA

6
(1.189)

Here αs(Q
2) is the running coupling constant of QCD. In the region of Q2 ∼2-10 GeV2, the theory

has been shown to match experiment within 10% accuracy, prior to the EG1b experiment [12].

Behavior of Γp
1 at intermediate Q2

At Q2 values greater than about 0.2 GeV2 (below which the generalized GDH Sum Rule and χPT

theory are applicable) and less than about 1 GeV2 (above which pQCD and the modified Bjorken

Sum Rule are applicable), predictions by theory to physical QCD systems become extremely diffi-

cult. We do know, from the constraints enforced by the aforementioned sum rules, that somewhere

in the range 0.2 < Q2 < 1.0 GeV that the (negative) moment must make an upward turn and

eventually (and gradually) flatten out at high Q2, as scaling behavior sets in (see Figure 1.7). This
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Figure 1.7: The expected evolution of the Γp
1 structure function moment (blue), as enforced by the

GDH Sum Rule (low Q2) and the Bjorken Sum Rule (high Q2). See the text for details.

intermediate range is dominated by resonance behavior; aside from Lattice QCD computations,

there is little that can be done at this point to directly compute the structure functions and their

moments in this region, without the input of experimental data describing the structure of the reso-

nances.

1.3.3 Other moments of g1

The motivations for measuring the first moment of g1, Γ1, as a test of principles of QCD, including

the GDH sum rule, χPT, pQCD and Bjorken scaling behavior, are now clear. However, if we recall

from the Operator Product Expansion (Eq. 1.157), there are higher moments of g1 to consider, as

well. In general, the nth moment of g1 is given by

Γn(Q2) =

∫ 1

0

dx xn−1g1(x,Q
2) (1.190)
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In the light cone expansion, Γ1 is guaranteed to make the dominant contribution to the OPE. A

complete reconstruction of the Q2 evolution of g1 to higher order naturally requires information

regarding higher moments, as well, especially when higher twist effects are considered.

Before introducing the reconstruction of structure functions from their moments, it is important to

discuss a very important consequence of the effects of crossing symmetry in the Operator Product

Expansion. Namely, due to the optical theorem, the scattering of a virtual photon from a nucleon

can be expressed in terms of Forward Compton Scattering (Eq. 1.124). The two leading order

diagrams, shown in Eq. 1.125, are related by an interchange of photon lines, so that q → −q in the

opposing diagram. 32 Each moment in the OPE for the spin structure functions contains a factor of

x = Q2/(2p · q), so that

x→ −x (1.191)

in the OPE for the second leading order diagram. Thus, any OPE term containing a factor of an

odd power of x must cancel when the two diagrams are added. Thus, in Eq. 1.157,

M
(i)
1,2 = M

(i)
1,4 = M

(i)
1,6 = . . . = 0 (1.192)

with a similar relation for even n for M (i)
2,n. Therefore, only odd moments of the spin structure

functions need to be considered in the Operator Product Expansion. 33

As previously pointed out, measurements of structure function integrals in Q2 can be made with

higher precision than their explicit dependence over both Q2 and x. Of course, this integration

destroys information about the shape of the resonances as a function of x. However, one can

still reconstruct detailed information about the Q2 evolution of g1 through use of the inverse Mellin

transform [12][25]:

g1(x,Q
2) =

∫ K+i∞

K−i∞

dnx1−nΓn(Q2) (1.193)

where K is any real constant in the complex plane to the right of any singularities in the integrand.

While this transformation preserves the analytic continuity of the structure function, naturally, it

32See also Eq. 1.171.
33This isn’t explicitly shown here for higher-order diagrams, but the cancellation of even moments holds true to any order,

since all possible diagrams in Forward Compton Scattering have two external photon lines that can be crossed.
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does not include the resonance structure in the reconstruction, because this information has been

eliminated in the integration. However, this is enough information to apply the DGLAP equations,

for example, to obtain information about the accuracy of pQCD regarding the Q2 evolution of the

structure functions [18][26]. In practice, the entire range 0 ≤ x ≤ 1 cannot be completely known due

to experimental limitations, especially as x → 0 (where infinite beam energies would be needed),

so truncated moments are used in the reconstruction:

Γn(Q2) =

∫ 1

x0

dx xn−1g1(x,Q
2) (1.194)

where x0 is a suitable cutoff point chosen for the givenQ2 value. If we define the truncated moments

of quark distribution functions as

q
n
≡
∫ 1

x0

dx xn−1q(x) (1.195)

then, using Eq. 1.182, the moments of g1 can be written in the parton model as

Γp
n =

4

18
un +

1

18
dn +

1

18
sn (1.196)

Looking now at individual quark distributions, the (abbreviated) DGLAP equations (Eq. 1.113) then

imply
dq

n
(x0, t)

dt
=
αs(t)

2π

∫ 1

x0

dx xn−1(∆P ⊗ q)(x, t) (1.197)

Using the general form of the DGLAP Equations, it can then easily be shown [18] that

∫ 1

x0

dx xn−1(∆P ⊗ q)(x) = ([zn∆P (z)] ⊗ q
n
)(x0) (1.198)

so that Eq. 1.197 can be rewritten

dq
n
(x0, t)

dt
=
αs(t)

2π
([zn∆P (z)] ⊗ q

n
)(x0, t) (1.199)

The inverse Mellin transform of Eq. 1.193 can then be used to determine the quark distributions,

including violations from scaling predicted by the evolution equations. In other words, even with a
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truncated moment, the Q2 evolution of the DGLAP equations can be tested with an inverse Mellin

transform of structure function moments.

Naturally, the more higher order moments that can be experimentally determined, the greater

the precision to which pQCD theory can be verified. Due to the increasing magnitude of xn−1 with

each higher moment, higher x values make up a larger proportion of the integral contribution as

n increases, making large-acceptance, medium-energy experiments like EG1b ideal for measuring

the higher moments of g1. The only limit imposed on the maximum value of n is that of the decreas-

ing magnitude of the higher moments, such that the proportion of systematic error (particularly due

to kinematic bin smearing; see Section 7.2.6) eventually becomes too large for accurate measure-

ment.

1.3.4 g2 and its Moments

As mentioned before, a straightforward interpretation of g2 in the parton model is problematic due

to the difficulties involved in perpendicular polarization. 34 We can, however, infer some behavior

of this structure function by splitting it into components of differing twist. If we write

g2 = gWW
2 + ḡ2 (1.200)

where gWW
2 , known as the Wandzura-Wilczek form of g2, contains only leading twist (twist-2) con-

tributions to the structure function, and ḡ2 contains twist-3 (and higher) contributions, the OPE can

be used to write (see Eqs. 1.161 and 1.162) [22]

∫ 1

0

dx xn−1

[
n− 1

n
g1(x,Q

2) + gWW
2 (x,Q2)

]

= 0 (1.201)

Inverting this equation [27] yields

gWW
2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

dy

y
g1(y,Q

2) ≡ −g1(x,Q2) + gWW
T (1.202)

34Specifically, one can say that the perpendicular spin operator and free quark Hamiltonian operator do not commute.
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(with y defined in Section 1.1.3), which is called the Wandzura-Wilczek relation. It is important to

note that this equation considers only leading twist effects. The magnitude of the contribution of

higher twist effects to g2 is an unresolved question at this time; the matrix element dn(Q2) in Eq.

1.162 represents the twist-3 terms in the expansion. Thus, measurement of g2 presents a potential

probe of higher twist effects. It is customary to extract the matrix element [22]

dn(Q2) = 2

∫ 1

0

dx xn−1[g1(x,Q
2) +

n

n− 1
g2(x,Q

2)] = 2
n

n− 1

∫ 1

0

dx xn−1ḡ2(x,Q
2) (1.203)

which provides a direct measurement of the deviation from the Wandzura-Wilczek relation.

Note that if higher twist effects are absent from g2, that is, gWW
2 = g2, then if we set n = 1 in Eq.

1.201, that
∫ 1

0

dx g2(x,Q
2) = 0 (1.204)

This is the Burkhardt-Cottingham Sum Rule. It obviously holds in the absence of twist-3 effects;

though the proper derivation of this sum rule [28] requires considerably less restrictive conditions

than the absence of higher-twist effects. Though it is not implied by the above (pseudo-)derivation,

the only necessary conditions for this sum rule to hold true are analyticity, crossing symmetry, parity

conservation and convergence of g2 as x→ 0,35 even in the presence of higher-twist terms [29].

Measurements of gp
2 , at this present time, have limited accuracy for most values of Q2, mostly

due to experimental difficulties involved with large acceptance experiments involving transversely

polarized targets. Reconstruction of the structure functions through an inverse Mellin transform

offers potential utility in obtaining information regarding the g2 structure function. Error bars on g2

measurements (at most Q2 values) are generally too large to obtain meaningful information regard-

ing the resonance structure, but Q2 evolution of transverse polarization elements using summed

bins, as described in the previous section for g1, can potentially be derived with this methodology.

Existing measurements of gp
2 are summarized in Section 1.5.

As a final note on the g1 and g2 structure functions, it important to point out that the measurement

of dn, as given by Eq. 1.203, is also important for higher twist corrections to g1 [22]. Specifically,

35The last of these assumptions is actually quite complex; a proper treatment of this issue requires an in-depth discussion
of the limits of residue values in the far DIS region; see Ref. [29] for details.
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HT corrections to the OPE give

Γp
1(Q

2) =

∫ 1

0

dx gp
1(x,Q2) =

1

2
a1 +

M2

9Q2
(a3 + 4d3 + 4f3) + O

(
M4

Q4

)

(1.205)

Here, a new matrix element fn, which includes twist-4 contributions, has been introduced. fn is

defined by an explicit quark-gluon correlation operator. Thus, we see that the relation between g1

and g2 can not be completely separated, when all HT terms are considered. Measurement of both

these structure functions is necessary for a complete QCD spin model of the nucleon.

1.4 Asymmetries

So far, the motivation for measuring spin-structure functions of the nucleon has been explained

in some detail. However, it is yet to be explained how measurement of g1 and g2 can actually

be extracted from experimental data. Section 1.2.1 gave an introduction to the meaning of cross-

section measurements. In practice, direct measurement of cross-sections is not always the most

practical approach to sensitive electroproduction measurements, because the overall acceptance36

of the spectrometer must be taken into account. Instead, asymmetries are often used instead, as

they rely on a ratio of measured counts, and hence have no reliance on detector acceptance for

their accuracy. 37 The expression of results in terms of virtual photon asymmetries A1 and A2 also

provides a more straightforward physical interpretation of data in terms of virtual photon exchange,

and provides a link between the measured asymmetries and the extracted spin-structure functions.

1.4.1 Measuring asymmetries

As previously mentioned (e.g. Eq. 1.93 and 1.95), measurement of the spin-structure functions

directly depends on the difference (in a given bin) between the scattering cross-sections with the

36Acceptance is defined as the ratio of measured events to physical events as a function of the free parameters (such as
E′ and θ, or x and Q2).

37Measuring count ratios, however, does have the disadvantage of reducing statistical precision of measurements, since
directly measuring a ratio of two statistical quantities results in a large relative statistical error [8]. For that reason, a very
long running time (to acquire high statistics) was required for the EG1 experiment.
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electron beam spin and target proton spin aligned parallel and anti-parallel:

∆σ↑⇓ − ∆σ↑⇑ (1.206)

This quantity can be measured directly; but, as mentioned, to avoid the need for acceptance cor-

rections, it is easier to measure the quantity (previously defined in Eq. 1.94)

A||(x,Q
2) =

∆σ↑⇑ − ∆σ↑⇓

∆σ↑⇑ + ∆σ↑⇓
(1.207)

If n is defined as the normalized rate of detected counts in a bin, then

∆σ =
n

acceptance
(1.208)

making it easy to see that the acceptances cancel in Eq. 1.207 38 so that

A||(x,Q
2) =

n−(x,Q2) − n+(x,Q2)

n−(x,Q2) + n+(x,Q2)
(1.209)

with n+ and n− representing the count rates for ↑⇑ and ↑⇓ scattering events, respectively, defined

as positive helicity and negative helicity events from this point forward. In practice, the counts for

each helicity need to be normalized to both the amount of charge in the beam, as well as detector

dead time, so that

n± =
N±

FC±
g

(1.210)

with N representing the actual number of detected particle hits and FCg representing the (helicity-

sorted) charge measured with the Faraday Cup device, gated to only include detector live time. The

Faraday Cup operation and details are discussed later, in Section 2.3.4.

The quantity A|| is referred to as the longitudinal double-spin asymmetry ; it is the actual quan-

tity directly measured in the EG1b experiment described in this thesis. As explained in Section

1.2.1, inclusive ep-scattering (at a constant beam energy) can be fully parametrized in terms of two

38This assumes, of course, that the detector has the same acceptance for both ↑⇑ and ↑⇓ scattering events. Accep-
tance is dependent only on detector geometry and efficiency, which depend only on scattered particle type, energy and
location/direction, so this is a valid assumption.
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variables; in practice, it is actually

A||(∆W,∆Q
2) =

n−(∆W,∆Q2) − n+(∆W,∆Q2)

n−(∆W,∆Q2) + n+(∆W,∆Q2)
(1.211)

that is measured for each beam energy in a two-dimensional bin array, with desired variable trans-

lations (using the equations in Section 1.1.3) being made in later analysis.

Another often-mentioned quantity is the transverse double-spin asymmetry

A⊥(x,Q2) =
∆σ↑⇒ − ∆σ↑⇐

∆σ↑⇒ + ∆σ↑⇐
(1.212)

which provides much more information regarding transverse polarization effects (and thus, g2) than

the longitudinal double-spin asymmetry. The CLAS detector configuration is not currently suited for

a perpendicularly polarized target, due to the magnetic field configuration [30], so this quantity is

defined here for completeness and comparison purposes only.

In addition to double-spin asymmetries, it is obviously possible to measure single-spin asymme-

tries,

At =
∆σ⇑ − ∆σ⇓

∆σ⇑ + ∆σ⇓
(1.213)

Parity-violating quantities, such as the electroweak asymmetry, take this form [31]. In order to

minimize contamination effects from possible single-spin asymmetries, both the beam and target

spins are periodically reversed. 39 This causes a simple sign cancellation of most of the effects of

the single-spin asymmetry, so that only the relative orientation of the beam and target polarization

has any effect on the asymmetry measurement.

1.4.2 Asymmetries to polarized structure functions

The virtual photon asymmetry A1

We now discuss how a measured double spin asymmetry (A|| or A⊥) can be used to calculate the

spin structure functions g1 and g2. As already shown in Figure 1.5 and Section 1.2.3, in the Breit

39In EG1, the beam polarization oscillates at ∼30 Hz, while the target polarization is switched over a period of hours or
days; see the next chapter for more details.
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frame, we can interpret the longitudinal asymmetry as the asymmetry in cross-sections between

final spin- 1
2 and 3

2 hadronic states. As required by angular momentum conservation, this is really

just an asymmetry between spin +1 and spin −1 virtual photons. Thus, we define the virtual photon

spin asymmetry [6]

A1(γ
∗) ≡ σ

1
2

T (γ∗) − σ
3
2

T (γ∗)

σ
1
2

T (γ∗) + σ
3
2

T (γ∗)
(1.214)

The subscript T implies that the cross-section only includes transversely polarized (i.e. spin ±1)

virtual photons, because longitudinal virtual photon polarizations cannot excite the final desired

states. 40 Eqs. 1.97 and 1.98 imply

A||(x,Q
2) ∝ A1(x,Q

2) + O

(
1

ν

)

(1.215)

meaning that A|| ∝ A1 in the scaling region of Q2 → ∞. Recalling from Eq. 1.94 that A|| is ratio

of polarized to unpolarized cross-sections, we refer to the equation for the DIS unpolarized cross-

section, Eq. 1.43. Recalling that the transverse contribution to the cross-section is given by W1,

and that R = WL/W1 (Eq. 1.65), this unpolarized cross-section can be rewritten as [6]

∆σ

∆Q2∆ν
=

4πα2E′ cos2(θ/2)

Q4E

W1(Q
2, ν)

ε(1 + τ)
[1 + εR(Q2, ν)] (1.216)

The quantity in square brackets, then, is the ratio of the total cross-section to the transverse term

(i.e. W1 only) cross-section. Using the definitions of Eqs. 1.94 and 1.214, the proportionality

constant in Eq. 1.215, defined D, is given by

D =
σT

σunpolarized
× σ↑⇓ − σ↑⇑

σ
1
2

T (γ∗) − σ
3
2

T (γ∗)
(1.217)

The first of these two cross-section ratios, the ratio of the total transversely polarized virtual photon

cross-section to the total cross-section, is simply (1 + εR)−1, as dictated by Eq. 1.216. The second

ratio can be interpreted as the inverse of the helicity fraction transferred from the electron to the vir-

tual photon [6]; it can be calculated, in the scaling region (where the virtual photon and polarization

40Recall that virtual photons are not constrained to transverse polarizations, unlike their real counterparts.
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directions are parallel, as in Figure 1.5) to be
√

1 − ε2, where ε, given by Eq. 1.16, is the ratio of

longitudinal to transverse polarization of the virtual photon [12]. This relation is not proven explicitly

here, but this can be seen to make logical sense, in that all helicity is transferred in the limit of a

purely transverse virtual photon (ε = 0).

Therefore, Eq. 1.215 becomes [6]

A||(x,Q
2) =

√
1 − ε2

1 + εR

[

A1(x,Q
2) + O

(
1

ν

)]

(scaling region) (1.218)

One can see that, for large ν, that the longitudinal asymmetry is given completely in terms of A1.

However, at lower Q2 (and hence lower ν), we expect other contributions to be made.

The virtual photon asymmetry A2

Basically, the reason the assumption that A|| ∝ A1 works in the scaling region is because, in this

case, the angle of the virtual photon θ∗ (with respect to the polarizations) is always zero. That is,

the direction of virtual photon exchange vector is aligned parallel to the electron and nucleon spins.

At higher x, leaving the DIS region, this is, of course, not always the case; the virtual photon vector

can have any angle θ∗ with the polarization.

In the case of nonzero θ∗, the A1 contribution to A|| naturally must be multiplied by cos(θ∗). This,

however, is not the end of the story, as there are still O(1/ν) terms, no longer unimportant, with

which to deal. This contribution can be looked at as an “interference” between the longitudinal and

transverse photon polarization cross-sections, which we can define as σLT . Simple orthogonality

requires that

σ2
LT ≤ σLσT (1.219)

We now define a second asymmetry

A2(γ
∗) ≡ σLT

σT
=

2σLT

σ
1
2

T (γ∗) + σ
3
2

T (γ∗)
(1.220)
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Eqs. 1.65 and 1.219 enforce the constraint41

|A2| ≤
√
R (1.221)

The higher order term in A|| requires the familiar factor of (1 + εR)−1 to divide out the longitudinal

cross-section contributions; the relation to A2 depends on transverse virtual terms, so instead of

cos(θ∗), a sin(θ∗) factor is needed, as well as a different helicity transfer factor of
√

2ε(1 − ε). Adding

in the higher order term, the complete expression for A|| becomes [6]

A||(E, x,Q
2) =

√

1 − ε2 cos(θ∗)
A1(γ

∗)

1 + εR
+
√

2ε(1 − ε) sin(θ∗)
A2(γ

∗)

1 + εR
(1.222)

It is conventional to simplify this equation to

A||(E, x,Q
2, E) = D[A1(x,Q

2) + ηA2(x,Q
2)] (1.223)

where D is, for reasons that are now apparent, called the depolarization factor, and η is a (beam

energy-dependent) kinematic factor. Through kinematics calculations in the lab frame, these quan-

tities can be simplified to the forms shown in Eqs. 1.17 and 1.19.

It is essential to note that the double-spin asymmetry A|| is expressed in terms of 3 unknown

parameters: A1, A2, and R. In practice, if A|| is the measured experimental quantity, two of these

three must generally be approximated by models to extract the third quantity. For the kinematic

region of interest in this experiment (that is, the resonance region), εR and ηA2 are relatively small

quantities compared to A1. 42 Therefore, A|| measurements serve as a good measurement for A1:

A1 =
A||

D
− ηA2 =

A||(1 + εR)

1 − εE′/E
− ηA2 (1.224)

where models, evaluated in terms of Q2 and W , are used to evaluate the (small) contributions from

R and A2.

41In the elastic region, we have A1el = 1 and A2el =
√

Rel = GE/(
√

τGM ). These equations are useful for calculating
A|| for elastic scattering events,and are used later in Section 6.2.

42In particular, ε � 1 because 1/γ2 + Q2/(2Mx)2 is large. Then η � 1 because η ∝ ε
p

Q2.
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However, the variables A1 and A2 are not entirely uncorrelated, of course, as can be inferred

through the presence of the O(1/ν) term in Eq. 1.215. The correlation in the higher-order terms

can be exploited to solve for both these asymmetries simultaneously (while modeling only R), but

with very limited precision. The asymmetries A1 and A2 can be evaluated completely in terms of

virtual Compton scattering, as will be be discussed momentarily. This implies that A1 and A2 are

functions of Q2 and θ∗ (the virtual photon magnitude and angle) only, as these are the only free

parameters involved in the γ∗p scattering. Using the relations in Section 1.1.3, these asymmetries

can also (equivalently) be parametrized completely by Q2 and x. 43 Looking at Eq. 1.17 (as well as

1.7 and 1.16), on the other hand, we see that η, a purely kinematic parameter, requires knowledge

of three independent parameters, E, E′ and θ, or, equivalently, E, Q2 and x. This means we can

write Eq. 1.224 as
A||

D

(
E,Q2, x

)
= A1(Q

2, x) + η(E,Q2, x)A2(Q
2, x) (1.225)

Thus, inside of a particular kinematic ∆Q2,∆x bin, one expects A1 and A2 to be constant, while

A||/D varies linearly with η, with η depending only on beam energy. By measuringA||/D at different

beam energies, one can plot A||/D vs. η and solve for A1 and A2 for that ∆Q2,∆x bin by linear

regression:

A1 = y-intercept
[
A||

D
(η)

]

(1.226)

and

A2 = slope
[
A||

D
(η)

]

(1.227)

Naturally, because this is a bin-by-bin measurement method, with no assumptions about the ana-

lyticity of the functions A1(Q
2, x) and A2(Q

2, x) going into the calculation, large statistical error bars

are expected. The best possible measurements of A1 and A2 require an iterative method of using

models and linear regression measurements. This issue is dealt with in Section 8.1.3. Of course,

measurement of A⊥ would provide more exact measurements of A2. The analogous relation to Eq.

1.223 is

A⊥(E, x,Q2) = d[A1(x,Q
2) + ζA2(x,Q

2)] (1.228)

43The variables Q2 and W can be used, too, as is done for most of the duration of this analysis.
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However, as previously stated, CLAS is not configured to measure A⊥, so the linear regression

method must be used if any information regarding A2 is to be obtained from the EG1 experiment.

Extraction of spin-structure functions from A1 and A2

Now, the task remains to convert the virtual photon asymmetries A1 and A2 into the structure

functions g1 and g2. To do this (and to properly derive Eq. 1.222, as well), one must solve for the

relation between the hadronic ep tensor Wµν in terms of the virtual photon polarization asymmetries

A1 and A2 to obtain explicit solutions of σ
1
2

T , σ
3
2

T and σLT in terms of g1 and g2. This can be done by

again using the optical theorem [12]44

2πMWµν(ν,Q2) = Im Tµν(ν,Q2) (1.229)

where Tµν is the amplitude tensor for virtual Compton scattering, as described previously in this

thesis. The virtual photon cross-sections are calculated in terms of g1 and g2. The results are

[12][22]

σ
1
2

T − σ
3
2

T =
8π2α

Mν∗
[
g1(x,Q

2) − γ2g2(x,Q
2)
]

(1.230)

σLT =
8π2α

Mν∗
γ
[
g1(x,Q

2) + g2(x,Q
2)
]

(1.231)

σT =
1

2

(

σ
1
2

T + σ
3
2

T

)

=
8π2α

Mν∗
F1(x,Q

2) (1.232)

Eq. 1.230 contains only polarized structure functions, because a subtraction of the cross-section

terms cancels the symmetric (unpolarized) components of transition amplitude. Conversely, Eq.

1.232 contains only a single unpolarized structure function, because an addition of the cross-

section terms cancels the antisymmetric (polarized) components of the transition amplitude. The

simple form of Eq. 1.232 should come as no surprise, since F1 = MW1 represents a purely trans-

verse virtual photon amplitude (see Section 1.2.2).

The variable ν∗ in the above equations is known as the equivalent photon energy ; it is the nor-

44Two other interpretations of this theorem are applied in discussion of the OPE and GDH sum rule - graphically in Eq.
1.124 and algebraically in Eq. 1.164.
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malization factor for the virtual photon spectrum. 45 Its value, a function of kinematics, is a matter

of convention. More detail on its use is given later, in the derivation of forward spin polarizability in

Section 8.4.1.

Inserting these cross-sections into A1 (Eq. 1.214) and A2 (Eq. 1.220) yields

A1(x,Q
2) = [g1(x,Q

2) − γ2g2(x,Q
2)]/F1(x,Q

2) (1.233)

A2(x,Q
2) = γ[g1(x,Q

2) + g2(x,Q
2)]/F1(x,Q

2) (1.234)

The value of γ2 = 4E′E/(E −E′)2 sin2(θ/2) = 4M2x2/Q2 is small for deep inelastic kinematics, so

that g2 makes very little contribution to A1 for DIS. Solving in terms of the structure functions yields

g1(x,Q
2) =

1

γ2 + 1

[
A1(x,Q

2) + γA2(x,Q
2)
]
F1(x,Q

2) (1.235)

g2(x,Q
2) =

1

γ2 + 1

[
1

γ
A2(x,Q

2) −A1(x,Q
2)

]

F1(x,Q
2) (1.236)

which can be used to derive the polarized structure functions from the virtual photon asymmetries.

1.4.3 Behavior of A1 in the resonance region

As well as providing a method of measurement for the polarized structure functions, the virtual

photon asymmetries also provide direct information about the behavior of resonances within the

nucleon. Asymmetry measurements in the medium to high x region also provide valuable quantita-

tive tests of QCD models.

Resonance region behavior is of great interest, because of the relative dearth of experimental

data in this region (see Section 1.5), the fact that it serves as a “bridge” between the “well-behaved”

realms of χPT and pQCD modeling where the physics behavior cannot be well-predicted, and the

fact that resonances exhibit physics which cannot be accessed by DIS measurements.

To investigate resonance structure, it is best to use the Lorentz invariant missing mass W , in

place of x, as it provides a clearer scale in the resonance region. In the context of ep scattering,

45Many sources (e.g. Ref. [6]) use the notation K in place of ν∗.
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a resonance is basically a temporary excitation, or new particle state, that arises due to the impar-

tation of energy and angular momentum. We know that that several such excitations exist for the

range 1.08 GeV < W < 2.0 GeV. Below W = 1.08 GeV, no such excitations are possible, because

M +mπ = 1.08 GeV, and pions are the lightest particle that can be emitted from a resonance de-

cay. Above W = 2.0 GeV, DIS dynamics dominate, as the excitations blur into a (nearly) constant

cross-section, where excitations of individual quarks and gluons dominate the spectrum.

Intuitively, one might expect that, since we observe discrete mass and angular momentum states

of final particles, that sharp, δ-function resonances would be observed, limited only in resolution by

the precision of the spectrometer. However, we know from the uncertainty principle ∆E∆t ≥ ~ that

the energy (and hence missing mass) resolution Γ must be inversely proportional to the decay time

τ of the resonant state:

τ ∝ ~

Γ
(1.237)

so that structures with a finite, measureable width are expected. Only the elastic peak at W = M =

0.938 GeV is expected to be a δ-function,since, for elastic scattering, there is no finite “lifetime” of

any “excited” state (i.e. Γ → ∞). In practice, numerous other higher-order Feynman diagrams

and external radiation effects greatly broaden the elastic peak from its “exact” δ(M) form. This is

explained in more detail in Section 6.4.

Experimentally, one observes several resonances,46 including the spin- 3
2 hadron excitation ∆(1232),

and several spin1
2 N∗ excited nucleon resonances (including the well-known Roper resonance

N∗(1440)). Recalling Eq. 1.214, it is obvious that the ∆ (spin- 3
2 ) excitation implies A1 < 0, while an

N∗ (spin- 1
2 ) excitation implies A1 > 0. There are several observed spin- 1

2 excitations, classified by

their overall angular momentum S (L = 0), P (L = 1
2 ), D (L = 1) or F (L = 3

2 ), and subscripts mn

46These are typically labeled with their missing mass in MeV in parenthesis
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representing Lz and total energy discrete states [5][12]:

e+ p −−→
s= 1

2







P11(1440)

D13(1520)

S11(1535)

S31(1620)

S31(1620)

S11(1680)

F15(1680)

D33(1700)

(1.238)

Detailed information of resonance structures is important to multipole analysis [1], a thorough study

of which is far beyond the scope of this thesis. For example, the ∆(1232) resonance amplitude A 3
2

is known by multipole analysis to occur through a magnetic dipole (M1) and electric quadrupole

(E2) transition [12]:

A 3
2

= −
√

3

2

(

M
(3/2)
1+ − E

(3/2)
1+

)

(1.239)

The total cross-section of the resonance is then given by [12]

σT
3
2

=
4π2α

ν∗
A 3

2
(1.240)

A 3
2

can then be related to the structure functions in LµνW
µν through the optical theorem, for an

explicit solution of the resonance contribution. The asymmetry A1 then arises from comparison to

the contribution A 1
2

at that kinematic point, and application of Eq. 1.214. The p→ ∆ transition can

occur through the reactions

e+ p −−→
s= 3

2

∆(1232) → e+N + π (1.241)

(with N and π representing final nucleon and pion states of varying isospin and charge) or, less

commonly, by

e+ p −−→
s= 3

2

∆(1232) → e+ p+ π+ + π− (1.242)
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For this reason, exclusive analyses, which look specifically at events containing decay products,

are often done to explore the multipole structure of resonances, including the spin asymmetries of

resonances such as [32]

e+ p→ e+ n+ π+ (1.243)

The total inclusive asymmetry contains the combination of all possible excited resonances. The

inclusive cross-sections are the combination of all possible exclusive cross-sections. With all these

resonances (and possibly others) combined, one expects A1 to be composed of a blurred contin-

uum of finite-width resonances in W , dipping into the negative region near W = 1232 MeV and

then rising to a positive value somewhere near the Roper resonance at W = 1440 MeV, eventually

leveling off to a smooth region for DIS, at W & 2000 MeV (see Figure 1.8).

It is also interesting to consider the behavior of A1 exclusively in the DIS region. We know from

Eq. 1.214 that A1 = 1 for elastic scattering, because, obviously, σ3/2 = 0 for these events. 47 We

know x = 1 for elastic ep scattering, by definition. Looking only at events where W > 2.0 GeV

(and the quark structure of the proton is probed), but as x→ 1, near-elastic scattering occurs from

asymptotically free quarks, with few higher order corrections needed for gluons and qq̄ pairs. This

requires increasingly high values of Q2, with x = 1 requiring Q2 → ∞ (i.e. scaling). The DIS region

where x→ 1, free of the difficulties introduced by extra resonance parameters, is thus an excellent

region for the testing of pQCD theory. The measurement of the rate that A1 → 1 as x → 1 is

consequently of great interest to QCD theorists (see Section 8.5.3) [33].

1.5 Existing Measurements

Now that the theory, motivation and method of extraction of g1 and g2 from physical data have been

presented, a basic summary of the published measurements of these structure functions is given.

In this section, a brief summary is given of existing spin physics experiments, outside of EG1b,

that have provided measurements for gp
1 and gp

2 , as well as a presentation of the current world data

and the expectations for this analysis. Fine details about the experimental apparatus, etc., are not

provided here; interested readers are directed to the included references for this information.

47In other words, if there is any spin excitation, then it is obviously not an elastic scattering event.
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Figure 1.8: Qualitative expectation of the measured virtual photon spin asymmetry A1. The DIS,
resonance, and elastic scattering regions are highlighted in green, blue and red, respectively. Note
that in practice, radiative effects greatly broaden the elastic peak from its ideal δ-function shape
(dotted line). See the text for more details.

Figure 1.9: Earliest measurements of A1 for the proton at SLAC. A value of 5
9 is expected in the

stationary quark SU(6) model; this value holds fairly well for high x. From Ref. [34].
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It should be noted that the structure functions g1 and g2 for the neutron have been measured

in numerous experiments, utilizing electron and muon scattering data from stationary deuteron and

3He targets. The majority of experiments listed in this section (including EG1b) also incorporated

measurements of gn
1 and/or gn

2 using one of these two targets in addition to a proton target. Ad-

ditional experiments in Hall-A at Jefferson Laboratory with a stationary polarized 3He target have

supplied further neutron data (see, for example, Ref. [35]).

Though measurements of gn
1 and gn

2 are of equal importance to those of gp
1 and gp

2 with regard

to a complete understanding of nucleon dynamics (especially where isopsin study is involved, as

in the Bjorken Sum Rule in Section 1.3.2), the focus of this work is the study of the proton, so the

collection of world data on gp
1 and gp

2 is the sole focus of this section.

1.5.1 Early measurements of gp
1

A chronology of major experiments producing measurements for the g1 structure function of the

proton is given in Table 1.2. A very brief overview of the chronological history and summary of this

measurement is presented here.

The E80 experiment at the Stanford Linear Accelerator (SLAC) in 1976 is the first notable ex-

periment to utilize a polarized electron beam (ranging from 6-13 GeV) and a polarized (butanol)

target. A low beam current limited collection to only 2 million events [36], but it enabled the first ever

measurements of Ap
1 at Q2 ∼ 2 GeV2 (Figure 1.9) [37]. The higher energy SLAC experiment E130

(run to reduce higher twist effects through scaling) at 23 GeV beam energy was run in 1983, at 3.5

GeV2 < Q2 < 10 GeV2, collecting even fewer events, but at higher x than the first experiment [38].

Polarized deep-inelastic scattering (PDIS) at CERN, in the European Muon Collaboration (EMC)

experiment used a different measurement approach. Polarized muons were used in place of elec-

trons [39]. Muons are “automatically” polarized when produced from the decay of high-energy

pions

π− → µ− + ν̄ (1.244)

due to the weak axial-vector coupling of the decay, avoiding the difficulties involved in producing

polarized electrons [22]. With the exception of a differing target mass correction (TMC) for the
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Figure 1.10: The first available data for gp
1 from the SLAC E80 and E130 and the CERN EMC

experiments. Resolution was not fine enough in these experiments to bin in terms of more than
one kinematic variable. From Ref. [40].

recoil of the struck particle, the µp and ep reactions are identical, so that the same asymmetry and

structure functions can be measured. CERN is a high-energy facility; µ− energies of 100-200 GeV

were produced. The EMC experiment utilized a polarized NH3 target with polarization measured

by NMR. 48 Muon polarization was (rather tenuously) evaluated by a Monte Carlo distribution of the

scattered particles. The gp
1 results from these early experiments are shown in Figure 1.10.

Obviously, these early measurements did not produce the event flux or kinematic breadth of data

necessary for a fine measurement of the Q2 or x evolution of the structure function. They were,

however, able to test two predictions: the stationary SU(6) quark symmetry, and the Ellis-Jaffe Sum

Rule.
48A similar system is used in EG1, but used only as a secondary check for polarization. See Section 6.2.
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Table 1.2: A tabular summary of experiments measuring the gp
1 structure function, including the

approximate Q2 range and approximate number of triggers.

Date Experiment Location Q2 range (GeV2) x range Approx. # of events
1976 E80 SLAC ∼2 0.1-0.5 2 ×106

1983 E130 SLAC 3.5-10 0.2-0.65 1 ×106

1987, 1989 EMC CERN 3.5-29.5 0.01-0.70 1.2 ×106

1992 SMC CERN 0.01-23.1 0.00006-0.121 4.5 ×106

1993-1994 E143 SLAC 1-40 0.014-0.90 2.36 ×108

1996 HERMES DESY 0.18-20 0.0041-0.9 3.47 ×106

1997 E155 SLAC 1.22-34.72 0.015-0.750 1.7 ×108

1998 EG1a JLAB 0.02-5.0 0.01-0.70 3 ×109

2000-2001 EG1b JLAB 0.02-5.0 0.01-0.70 2.3× 1010

2002 RSS JLAB ∼1.3 0.3-0.8 1.6 ×108

1.5.2 The spin crisis

The stationary SU(6) quark model does not account for Fermi smearing caused by internal motion

of quarks in the nucleon, nor does it account for the presence of the gluons and sea-quarks. From

a basic constituent quark model, using the notation of Section 1.2.3, we can predict [6]

A1 ∼ g1
F1

=
q2u∆u+ q2d∆d

q2uu+ q2dd
=

4
9 · 4

3 + 1
9 · −1

3
4
9 · 2 + 1

9 · 1 =
5

9
(1.245)

which agreed reasonably with the DIS data from SLAC and CERN, at least at high x (see Figure

1.9).

Another prediction of early double-spin asymmetry experiments was the Ellis-Jaffe sum rule.

Using Eqs. 1.182 and 1.184, and assuming ∆s = 0, one can write [12]

Γp
1 =

gA

12
+

5

36
(∆u+ ∆d) (1.246)

This is a simple form of the Ellis-Jaffe Sum Rule. The sum ∆u+∆d can be evaluated from hyperon

β-decay [12], in a manner analagous to the evaluation of gA presented in Section 1.3.2, assuming
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SU(3) symmetry holds for the quark triplet uds. The result is

∆u+ ∆d = 0.57 ± 0.06 (1.247)

QCD radiative corrections [12] modify Eq. 1.246 (to first order in αs) to

Γp
1 =

gA

12

[

1 − αs(Q
2)

π

]

+
5

36
(∆u + ∆d)

[

1 − 7

15

αs(Q
2)

π

]

(1.248)

Using this, along with the known value of gA = 1.26, yields

Γp
1(Q

2 = 3GeV2)EJ = 0.167 ± 0.008 (1.249)

The EMC result of 0.114 ± 0.012 ± 0.026 clearly violated this rule - meaning that very little of the

proton spin resides on the consituent quarks u and d - an unexpected result, considering the prior

success of the quark model. The discrepancy became known as the spin crisis. 49 This result

made it apparent that a spin parton model of the nucleon was far from complete.

The unexpected violation of the Ellis-Jaffe Sum Rule motivated the next experiment to measure

nucleon spin, the Spin Muon Collaboration (SMC) experiment at CERN, which instead used a

butanol target (like the early SLAC experiments) and better beam polarization measurements using

the positron spectrum from µ− decay [41]. The SMC data supplemented the original EMC run, and

extended the kinematic reach down to even lower x, with a considerably higher event flux. It also

provided measurements of gd
1 (and hence gn

1 ) from deuterated butanol, so that the Bjorken Sum

Rule (Eq. 1.184) could be tested.

1.5.3 Second generation SLAC and HERMES polarized experime nts

The next generation of PDIS experiments at SLAC utilized solid state GaAs cathodes to produce a

higher flux polarized beam than was available for the E80/E130 polarized experiments. The E143

experiment, utilizing beam energies of 19.4, 22.7 and 25.5 GeV, and a polarized solid NH3 target,

49Clearly, other components (∆s, ∆g, etc.) contribute to the total proton spin - components that are isospin invariant,
assuming the Bjorken sum rule holds.
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Figure 1.11: Measurements of gp
1/F

p
1 in selected x bins for the SLAC E155 experiment (•), com-

pared to results from E143(◦), HERMES(∗) and SMC(�). See the text for more details. The solid
line is a NLO QCD model, while the dotted line is a simpler fit. From Ref. [42].
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was thus able to generate 300 million measured events, orders of magnitude higher than available

in any prior double-spin asymmetry measurement for the proton, with a more easily calculable

unpolarized background subtraction [4]. The E143 target provides the basic model for the target

used in the EG1 experiment (see Section 2.4). Measurements of the moment Γp
1 from E143

Γp
1(Q

2 = 3GeV2) = 0.127± 0.004 ± 0.010 (1.250)

showed once and for all that this moment lay at least two standard deviations below the Ellis-Jaffe

expectation, thus showing a clear violation of this sum rule due to, presumably, higher order QCD

and higher twist effects.

The most recent SLAC polarized NH3 target experiment, E155, provides the widest range of

Q2 and x acceptance available prior to the EG1 experiment. E155 data covered very low x values

(down to 0.025), at a lower Q2 range than previously available for DIS scattering in this range (see

Figure 1.11) [42].

Using a very different setup, the HERMES experiment employed a unique longitudinally polar-

ized gas target, which produced a jet of atomic hydrogen with polarized states selected by Stern-

Gerlach separation (exchanged by RF transitions) [43]. This method provides a very thin radiation

length target, but also gives the advantage of scattering from a target with no large-A background,

and thus no dilution factor (see chapter 5). A high-flux electron beam (∼30 GeV) from the DESY

HERA lepton storage ring provided a high precision measurement for very low values of x (as low

as 0.0041), at much lower Q2 values than achieved by the E155 experiment (see Figure 1.12). With

the new SLAC and HERMES data, it was finally possible to check the assumptions of QCD models

and sum rules in detail, and test the behavior of models in terms of both Q2 and x.

1.5.4 The missing kinematic region: motivation for EG1

It is apparent from a careful inspection of Figure 1.12 that a large kinematic region, namely at low

Q2 and high x, has still not been significantly covered by the global data set. This situation is

clarified in Figure 1.13, which shows the breadth of the world data on gp
1 before and after EG1.

By substituting sample values (covered by the inverted red triangles) of Q2 and x into Eq. 1.9, it
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Figure 1.12: A plot of xgp
1 data from HERMES, with low Q2 data (◦) and high Q2 data (•) superim-

posed on the available world data. The HERMES data cover a fuller range of kinematic values than
any previous data, but there is still a noticeable void for high x values at low Q2 after the completion
of this experiment. From Ref. [47]; color version from Ref. [48].

is easy to see that a large portion of this region lies in the resonance region 1.08 GeV < W <

2.0 GeV. Structure function data in this region, covering the ∆ and N∗ resonances, is expected

to oscillate greatly, and thus the specific values of g1 cannot be reconstructed from their OPE

moments using assumptions of analyticity and continuity alone (see Section 1.3.2). As explained

in Section 1.4.3, detailed data of the resonance structures must be explicitly known to account for

nuclear structure in the intermediate Q2 region to test assumptions of theories such as χPT and

even Lattice QCD. Detailed interpolation from widely spread data points is not possible where the

structure function value shifts rapidly in terms of x. Therefore, much more data are required in

this region to gain the same type of precision measurements of the g1 spectrum in this region. This

requires an experiment with large acceptance and statistics, needs fulfilled by the EG1b experiment

at Jefferson Laboratory.

EG1b is a follow up to the shorter EG1a experiment. EG1a was a smaller preliminary data set,

intended as a “test run” of the experimental conditions employed in the later, much longer EG1b

experiment. EG1a data have already been analyzed [44][45]. The kinematic coverage for EG1a is

only slightly different that EG1b. However, EG1b, with its much longer running time, provides much
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more data and hence greater statistical precision than the preliminary EG1a experiment. 50

1.5.5 Current measurements of gp
2 (E155x and RSS)

Transverse polarization experiments are, in practice, more difficult to implement than longitudinal

polarization experiments, and even when implemented, the resulting asymmetry provides an (ap-

proximately) equally mixed measurement of the g1 and g2 structure function, rather than a (nearly)

pure spin-result, as in the longitudinal case. Therefore, available gp
2 data are very limited in scope

and detail.

At this point, only two experimental analyses contribute notably to our knowledge of gp
2 . E155x

was an extension of the E155 experiment at SLAC, similar to its parent experiment, except that it

utilized a transversely polarized target to measure A⊥, enabling extraction of the sum g1 + g2 in the

DIS region [49]. The older, E143 experiment placed some constraints on the value of g2, but these

measurements are rendered obsolete by E155x (see Figure 1.14).

Measurements in the resonance region for gp
2 are even rarer. The only available precision mea-

surement comes from the recent Resonance Spin Structure (RSS) experiment in Hall-C at Jeffer-

son Lab. RSS, like EG1, utilized a frozen ammonia target, which could be aligned both parallel

and perpendicular to the beam, with data collected by the High Momentum Spectrometer (HMS)

[52]. While this was a very high precision experiment, the acceptance of the HMS was not nearly

as broad as that of CLAS in Hall-B, so that only a very narrow band at Q2 ∼1.3 GeV2 was cov-

ered by the data. However, the versatility of the polarized target allowed for the measurement of

both A|| and A⊥, so that extraction of both g1 and g2 was possible in the resonance region (see

Figure 1.15). RSS results show unambiguously that g2 6= gWW
2 in the measured kinematic region,

meaning that higher-twist effects, and thus long-range correlations bewteen quarks and gluons, are

likely a determining factor of spin-behavior at this kinematic scale (see Section 1.3.4). Thus, future

measurements of g2 in this kinematic region are of considerable physical interest.

Unfortunately, the EG1 polarized target cannot be set up in a perpendicular polarization config-

uration, so that A⊥ cannot be directly measured in the experiment in this thesis. However, due to

50Prior to this thesis, a majority of the 1.6 GeV and 5.6 GeV data in EG1b were already analyzed in a first pass analysis
[2][46]. This thesis represents a complete analysis of all inclusive proton scattering data in EG1b, with improvements upon
some aspects of analysis used in the first pass.
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(a) Before EG1

(b) After EG1

Figure 1.13: Depiction of world data set for gp
1 , shown before and after the EG1 experiment, loga-

rithmically as a function of Q2 and x. An offset C(x) is added to g1 to separate different values of
x. Plots courtesy A. Deur.
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Figure 1.14: Measurements of xgp
2 for the DIS region from E155x(•), compared to older constraints

from E143(♦). World data for gp
2 are very limited compared to gp

1 . From Ref. [50].
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Figure 1.15: Measurements of gp
2 for the resonance region at Q2 ∼1.3 GeV2 for RSS in Jefferson

Lab Hall-C. The leading order twist curve gWW
2 is shown for comparison. Measurements for gp

1 at
this kinematic value were also made (not shown). From Ref. [51].

the use of multiple beam energies and the very high statistics available in EG1, the method of linear

regression shown in Section 1.4 can be used to extract a lower-precision measurement of A2, and

hence g2, for the proton, over a wider Q2 range in the resonance region than previously available.

This process is described further in Section 8.1.2, near the end of this thesis.



Chapter 2

Experimental Apparatus and Models

2.1 The EG1b Experiment: Introduction

We now set the stage for analysis of the data by describing the experimental apparatus and pro-

cedure. Data were collected over approximately a 7-month period from 2000-2001, with 1-6 GeV

(∼70%) polarized electrons produced at a rate of approximately 20 nA from the CEBAF electron

accelerator, scattered from a (∼70%) polarized target,1 and detected in Experimental Hall-B by the

CLAS (CEBAF Large Acceptance Spectrometer) detector. Data were then archived on tapes for

later analysis.

Technical details regarding the CEBAF accelerator, CLAS detector components, and EG1 polar-

ized targets are archived in the various NIM (Nuclear Instruments and Methods) papers referenced

throughout this chapter. In this thesis, only a brief description of the experimental apparatus is

supplied, with appropriate references, so that the bulk of this chapter can be dedicated to detailed

descriptions of this particular analysis.

In the sections that follow, all experimental components are described, beginning with the beam

injector and accelerator, followed by the EG1 target, the components of the CLAS detector, and

finally the storage of the data for later analysis.

1Only the NH3 target had a polarization this high; ND3 polarizations were considerably lower.
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Figure 2.1: Schematic of CEBAF, the Continuous Electron Beam Accelerator Facility at Jefferson
Lab. See the text for details regarding the components.

2.2 The CEBAF Electron Accelerator

The CEBAF electron accelerator is capable of generating beam energies of up to 5.8 GeV (with a

spread ∆E/E . 2.5× 10−5) 2 at currents of up to 300 µA delivered in 1497 MHz RF modulated

pulses, split between three research halls. 3 Electrons can be (up to 75%) polarized in alternating

bunches of up to 3 pC of charge [53]. 4

Figure 2.1 shows an overall diagram of the CEBAF accelerator. Polarized electrons at 45 MeV

are generated in a beam injector unit, then fed into a pair of 600 MeV linear accelerators employing

RF cryomodules, cooled by a central LHe refrigerator. Recirculation arcs magnetically steer the

2Plans are in place to upgrade the maximum beam energy to ∼ 12 GeV by c.2012.
3This means an effective pulse rate of 499 MHz is delivered to each Hall.
4Beam polarization has reached up to 85% in recent years; the 75% limit corresponds to the time of the EG1b experiment.
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beam through up to 5 passes (controlled by the beam switchyard operator) through the linac pair.

A total maximum beam energy of 6.0 GeV can thus be delivered to each of the 3 research halls. 5

Due to spectrometer instrumentation limits (most particularly the inner layer drift chambers), only a

maximum of 100 nA can be delivered to Hall-B, with only about 20 nA typically used for the EG1

experiment. More details (and references) regarding specific beam components are outlined later

in this section.

2.2.1 Beam Injector

Polarized electrons used in Jefferson Lab experiments are produced initially in the Beam Injec-

tor Unit, prior to their introduction into the North Linac. First a GaAs photocathode (Figure 2.2a)

is activated to a negative electron affinity by introducing Cs and oxidizing NF3 gas to the cath-

ode surface [58]. Then, under ultra-high vacuum (∼ 10−11 Torr), polarized electrons are produced

from the cathode at 100 keV by exciting electrons from the top (spin-biased) valence state into

the conduction band. The excitations are made by circularly polarized light [54] supplied by MOPA

(Master-Oscillator-Power-Amplifier) or Ti:sapphire lasers configured in the ultra-high-vaccuum sys-

tem (Figure 2.2b) [55]. A half-wave plate (HWP) can be inserted in the laser beam to change the

polarization phase by 180◦. The HWP is inserted and removed at semi-regular intervals through-

out the experimental run to ensure that no polarity-dependent bias is manifested in the measured

asymmetry.

The 100 kV electrons are introduced into the injector line (Figure 2.3), through a prebuncher

cavity and two circular apertures (A1 and A2), which pare down the beam in length and diameter

so that it can be passed to the chopper, which splits the beam into 499 MHz bunches for delivery

into each of the 3 experimental halls [55][56]. A buncher cavity, followed by a five-cell graded-

electron capture section, compresses the RF bunches and kicks the beam energy up to ∼500 keV.

Unbunched residual electrons are steered to a beam dump. Then, a quarter-length cryomodule

(containing 2 SRF (superconducting RF) cavities, explained momentarily) accelerates the experi-

mental electrons to 5 MeV, freezing the axial beam dimension to a 90µm (300 fs) bunch. Finally,

then, two complete cryomodules boost the beam energy to 45 MeV, prior to their introduction into

5However, beam quality concerns practically mandate a slightly lower maximum energy of just under 5.8 GeV.
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Figure 2.2: Diagram of a 100 kV GaAs photoelectron gun, used to generate polarized electrons in
CEBAF (top). Alternating pulses from two guns are fed into the photoinjector (bottom) leading to
the rest of the injector unit (Figure 2.3). From Ref. [58].
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Figure 2.3: Diagram of the CEBAF Beam Injector Unit. See the text for details. From Ref. [59].

Figure 2.4: A cryounit, consisting of 2 resonant RF cavities. A cryomodule is a series of 4 cryounits
(see text for details). From Ref. [53].

the North Linac of the accelerator (Figure 2.1) [56]. Electrons are bent through a chicane mag-

net prior to injection, producing synchrotron light. The intensity of synchrotron radiation is directly

proportional to the beam current. Thus, a Synchrotron Light Monitor (SLM) measures the relative

beam current at this stage [57].

2.2.2 0.6 GeV Linac

Each linear accelerator, or linac, is capable of increasing the electron energies by ∼600 MeV, boost-

ing the energy by ∼1200 MeV in each complete pass around the accelerator. Each linac contains

a series of 160 resonant superconducting niobium RF cavities, a pair of which are shown in Figure

2.4. Eight cavities in a series comprise a “cryomodule”, containing vacuum pipes/pumps, and mag-

netic dipoles/quadrupoles for beam steering/focusing.

Cryomodules are cooled by 2.2 K LHe from the central helium refrigerator, with 4.5 K LHe sup-
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plied from an end-station refrigerator for the radiation shields. This lowers the niobum cavities to

well below the 9 K superconductivity point, optimized to minimize BCS energy losses. A 5-kW

klystron generates RF power for each cavity, locked to the master driving RF (at the main injector

cathode) to less than a 1◦ difference in phase. This creates an oscillating phase gradient along each

cavity (regulated by an RF control module to one part in 104) with maxima and minima separated

by a spacing equal to the distance between the nodes in the cavity. This causes a net acceleration

of the electron bunches, because the klystron driving RF is in resonance with the bunch frequency

[53].

Because electrons are such light particles, they effectively travel at the speed of light for ener-

gies ranging from 45 MeV (upon leaving the injector) to 6 GeV. Thus, the same resonant cavities

and driving frequencies can be used to boost the electron energies in every pass through the ac-

celerator, which allows electrons in separate passes to be superimposed. A view of part of the linac

during maintenance is shown in Figure 2.5.

2.2.3 Recirculation Arcs and Beam Optics

Magnetic recirculation arcs are installed on both ends of the accelerator so that multiple passes

can be made through the linacs. Four arcs are located on the west end, and five on the east side

(see Figure 2.1), to accomodate up to 5 passes through both linacs. Although the spacing of all

high energy electron bunches is constant (enabling them all to make multiple passes through the

same linac), the separate recirculation arcs require differing magnetic field strengths for each pass.

A chicane magnet at the end of each linac splits the beam into monoenergetic paths, which then

pass through a series of six “periods” in each arc (Figure 2.6). Each period (nominally) contains

8 dipoles, 8 quadrupole and 4 sextupole magnets [60]. The optical configuration was designed to

avoid beam degradation through dispersion and blurring, provide a path length that is an integer

multiple of the RF wavelength (to avoid phase space dilution), and minimize energy spread due to

the emittance of synchrotron radiation. In total, the optics design of the accelerator requires 2267

individual magnetic elements [53].

A beam switchyard separator either allows the beam to continue unhindered after one complete

pass, or extracts the beam with a chicane from the appropriate recirculation arc after 2-5 passes,
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Figure 2.5: Photograph of a section of a linac during maintenance. Cryounits are concealed inside
the cylindrical cryostats. From the JPIX Jefferson Lab picture exchange.
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depending on the beam energy requested. To deliver beam to all 3 of the research halls (A, B

and C), a 1
3 harmonic RF separator system splits the interleaved bunches using an oscillating,

deflecting magnetic field, steering the desired bunch toward the appropriate opening in a 3 aperture

Lambertson septum, and delivers the beam to the appropriate experimental hall [53]. Different

beam energies can even be delivered to different halls simultaneously by performing a similar “two-

beam” split at the switchward separator. 6 Electrons delivered to Halls A and C must be bent

through arcs with steering magnets. These arcs are used to provide a precise measurement of the

beam energy (see Section 4.2.4). Electrons continuing straight forward can then be delivered to

the CLAS detector in Hall-B, the location of the EG1 experiment.

2.3 Hall B Beam Line Devices

After the Hall-B electron bunches are separated from the main beam line, they approach the en-

trance to Hall-B inside an evacuated beam pipe. Prior to entering (and after exiting) the EG1

polarized target and CLAS detector, the beam passes several devices, including a Møller Polarime-

ter, 3 Beam Position Monitors (BPMs), 3 Harp Scanners and, finally, a Faraday Cup. The uses of

these beam line instruments are detailed in this section. Figure 2.7 shows a schematic diagram of

Hall-B and the locations of these devices.

2.3.1 Møller Polarimeter

At the entrance of Hall-B, a Møller Polarimeter (Figure 2.8) is used to take measurements of the

beam polarization. Møller polarimetry requires the use of a magnetized iron target, so it is an in-

vasive measurement that cannot be done during data collection. Separate Møller data runs (taking

∼30 minutes) were made periodically throughout the experiment.

The polarimeter consists of a target chamber with a 25-µm thick permendur7 foil oriented at

±20◦ with respect to the beam line, longitudinally polarized to 7.5% by a 120 G Helmoltz mag-

6This is a bit more complex, though. An oscillating RF deflection field steers the selected bunch across a septum and
out of the arc. The other two bunches, 120◦ out of phase, are steered slightly in the opposite direction. Their paths are
corrected by subsequent magnets before reinjection into the linac.

7Permendur is 49% Fe, 49% Co, 2% Va.
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Figure 2.6: Photograph of a section of a recirculation arc. From the JPIX Jefferson Lab picture
exchange.
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Figure 2.7: Hall-B schematic, showing the location of CLAS and the approximate locations of the
beam line monitoring devices. One BPM and harp are located further up the beam line and are not
shown.

Figure 2.8: Photograph of the Møller polarimeter in Hall-B, showing upstream (left) and downstream
(right) views. The electron beam travels through the thin central pipe. From Ref. [61].
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Figure 2.9: Schematic diagram of the Hall-B Møller polarimeter. From Ref. [30].

net [62]. Two quadrupoles separate the scattered electrons according to their polarizations. The

electrons then enter one of two lead/scintillator/photomultiplier tube combinations for detection (see

Figure 2.9) [30].

Elastic electron-electron scattering coincidences are used to determine the polarization. The

differential scattering cross-section, in terms of the permendur target polarization (P t) and beam

polarization (P b), is given by [2][61]

dσ

dΩ
∝



1 +
∑

i,j=x,y,z

P t
iAijP

b
j



 (2.1)

where

Ayy = −Axx =
sin4 θCM

(3 + cos2 θCM )2
(2.2)

−Azz =
(7 + cos2 θCM ) sin2 θCM

(3 + cos2 θCM )2
(2.3)

Aij,i6=j ≈ 0 (2.4)

Here, θCM is the scattering angle in the CM frame, z is defined as the beam axis, and the ee scat-

tering plane is defined to be the xz plane. Using knowledge of the scattering kinematics and P t

(from the detectors and foil alignment, respectively), the beam polarization, P b
z , can be determined.

The Møller measurement typically had an absolute statistical uncertainty of 1% and a system-
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Figure 2.10: Screenshot of the online Beam Position Monitor measurement for the x-coordinate (in
mm) during part of the EG1b experiment. The three colored lines represent measurements from
each of the 3 BPMs. The last several minutes of the plotted time period show marginal beam quality
that required correction by the accelerator operators. From Ref. [63].

atic uncertainty of ∼2% [30]. In practice, normalization to the elastic scattering asymmetry is used

to determine the beam×target polarizations (see Section 6.2); the only actual uses for Møller mea-

surements in this thesis are for determining the polarized 15N correction (Section 6.3) and for con-

sistency checks on the PbPt measurements.

2.3.2 Beam Position Monitors (BPM)

Three beam position monitors are located 36.0, 24.6 and 8.2 m upstream from the CLAS center.

They measure the beam position in the xy plane, as well as the (relative) beam intensity. Each

BPM is composed of 3 RF cavities. The beam position is cross-calibrated using the Harp Beam

Profile Monitors (described next), and the intensity is calibrated (periodically) with the Faraday Cup

(Section 2.5). Measurements are taken at a rate of 1 Hz, and these data are used in a feedback

loop to keep the beam centered on the target [30]. An example of BPM measurements along one

coordinate for all 3 monitors is shown in Figure 2.10.

2.3.3 Harp Beam Profile Monitors

The profile and diameter of the electron beam delivered to the target is measured during periodic

harp scans. There are three different “harps” (at 36.7, 22.1 and 15.5 m upstream of the CLAS

center) composed of thin, movable wires (20µm W, 50µm W and 100µm Fe, respectively) in a



93

Figure 2.11: Results of a Hall-B beam harp scan during the EG1b experiment. Note that the PMT
count scale is logarithmic; beam diameters smaller than 0.5 mm are typical. From Ref. [63].

cross-hair pattern. During a harp scan, the wires are slowly moved through the beam, resulting

in scattering events whenever the wire crosses the beam. Photomultipliers (PMT) 10 cm from the

beam line detect the scattered electrons via Cherenkov radiation in the PMT glass window. A beam

profile (in x and y) can then be reconstructed [30].

Figure 2.11 shows the results of a typical harp scan along both the x and y-axes, performed

during the EG1b experiment. Typical beam diameter measurements show an RMS of around 80

µm, so that most of the beam is contained within a 200 µm diameter. Note that, like Møller mea-

surements, harp scans constitute an invasive measurement that cannot be completed during data

collection.

2.3.4 Faraday Cup

The beam line ends at the Faraday Cup (FC), 29.0 m downstream from the CLAS center point. The

Faraday Cup is used to integrate the beam current. The device is a 15 cm diameter long horizontal

cylinder consisting of 75 radiation lengths (4000 kg) of lead, connected to an electric feedthrough
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Figure 2.12: Faraday Cup charge asymmetry plotted against Synchrotron Light Monitor asymmetry
for a set of EG1 runs, indicating a linear relation between measured charge and beam intensity.
From Ref. [64].

to measure the collected charge [30].

It is connected through a logic gate to the CLAS data acquisition system, to record both total

(ungated) and detector live-time (gated) counts. The latter omits charge collected when the readout

electronics are busy. The main RF frequency is used to gate the FC so that readings for each

beam helicity are recorded separately. Figure 2.12 compares Faraday Cup charge asymmetry

measurements compared to asymmetry measurements from the Synchrotron Light Monitor (SLM)

described earlier, from a test for helicity-related bias in the total charge measurement [64].

It is important to note that the narrow FC cylinder width (15 cm) means that the beam must

remain tightly collimated after passing through the polarized target and CLAS detector. If multiple

scattering in the target causes an angular spread in the beam, not all the incident charge will enter

the Faraday Cup. This is a greater problem at lower beam energies, and is, in fact, a considerable

problem in this experiment. Section 4.5 explains how this problem is handled in the analysis.
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2.4 The EG1 Polarized Target

The EG1 target contains target cells of frozen, paramagnetic 15NH3 and 15ND3, kept at 1.5 K

by a bath of liquid helium. Dynamic nuclear polarization was used to create the (longitudinal)

polarization, which was periodically reversed after every few days, to minimize the effects of false

spin asymmetries.

2.4.1 Preparation, Annealing and Rastering of the Target

For DNP to occur, the frozen ammonia must first be doped with paramagnetic radicals, achieved

by irradiating the 1-mm diameter ammonia granules, using the 38 MeV JLab Free Electron Laser

(FEL). 8 Irradiation with a total of 1017 electrons/cm2 was completed at a temperature near 80 K.

The material was then kept cooled until installation in the CLAS target. Irradiation has the effect of

doping the sample with a concentration of ∼10−4 unpaired electrons. NH2 radicals are formed by

ep scattering, rendering the substance paramagnetic.

The target material is installed in CLAS, then lowered to a temperature of 1.5 K in an LHe bath,

and placed in a 5 T (50 kG) magnetic field, generated by a target solenoid [65]. An applied mi-

crowave field then enables the Dynamic Nuclear Polarization process.

Irradiation of the target is only productive up to a certain point. At the lower temperatures neces-

sary for polarization, experimental beam irradiation begins to liberate hydrogen atoms, thus forming

atomic hydrogen in the ammonia target [66]. These free atoms do not contribute to polarization,

and the effect of the continued radiation is an exponential decrease in the net polarization. Figure

2.13 shows beads of ammonia target material showing discoloration due to this radiation damage.

Thus, periodically, one must anneal the target at 80-100 K, removing the beam so that the immobile

atomic hydrogen can recombine with the ammonia radicals or outgas. After a suitable annealing

period, the target can usually be repolarized to its initial maximum. 9

To minimize the effects of depolarization due to heating and radiation damage, the beam is

rastered over the target surface in a circular pattern, alternately spiraling inward and outward over

8The Stanford SUNSHINE facility was also used to radiate the target material in its early development phase.
9After too many annealing cycles, however, the polarization stops returning to its initial value, and the target must be

refilled with fresh material.
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Figure 2.13: Beads of ammonia in a target cup. The purple discoloration is due to radiation damage.

the width of the target window. Helmholtz coils produce the required oscillating fields at the correct

frequencies to produce the desired pattern. Raster magnet ADC amplitudes are recorded in coinci-

dence with each scattering event, so that the raster pattern can be reconstructed (see, for example,

Section 3.3.4).

2.4.2 Dynamic Nuclear Polarization: Overview

The method of Dynamic Nuclear Polarization (DNP) is used to polarize the ammonia target material.

A complete, detailed treatise of this method is beyond the scope of this thesis; only a basic summary

(specific to this experiment) and appropriate references are included here.

For spin- 1
2 nuclei, which only have two possible spin orientations in an external field (+ 1

2 and

− 1
2 ), the polarization along the magnetic field (z) axis is given in terms of the spins J as simply

P = 〈Jz〉/J = n+ − n− (2.5)

where n± represents the fraction of nuclei with each spin. Assuming internal equilibrium, the spins

can then be characterized by the Boltzmann law with a characteristic temperature TS:

n−

n+
= exp(−Em/kTS) (2.6)



97

where Em is the energy differences between the two spin states m = ± 1
2 . Using Em = 2µH (for

a spin of + 1
2 ) where µ is the magnetic dipole moment of the nucleus and H is the magnetic field

magnitude, the polarization in thermal equilibrium is

P =
n+ − n−

n+ + n−
=

1 − e2µH/kTS

1 + e2µH/kTS
= tanh

µH

kTS
(2.7)

However, in a 50 kG magnetic field at 1 K, this gives a polarization of P = 0.00511, clearly too small

for a polarized experiment. Dynamic polarization of the impurities must be employed to improve

this value.

2.4.3 DNP, Neglecting Spin-Spin Interactions

Neglecting spin-exchange interactions between adjacent electrons and adjacent nuclei, the spin

Hamiltonian for an electron of spin S and a proton of spin J can be written [67]

H = HSZ + HJZ + HSJ + HRF (2.8)

where the four terms represent the Zeeman energy of the electron, Zeeman energy of the proton,

the spin interaction of the electron and proton, and the externally applied microwave (RF) field,

respectively. The dipole interaction term can be written [67]

HSJ =
~

2γeγp

r3

[

~S · ~J − 3(~S · ~r)( ~J · ~r)
r2

]

(2.9)

where γe (γp) is the gyromagnetic ratio of the electron (proton). This can be calculated in terms of

the products of the bilinear spin operators Sz,+,− and Jz,+,−. First order perturbation theory yields
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the |pe〉 spin eigenfunctions

|a〉 = | − +〉 + ε∗| − −〉

|b〉 = | − −〉 + ε| − +〉

|c〉 = | + +〉 + ε∗| + −〉

|d〉 = | + −〉 + ε| + +〉

(2.10)

where

ε =
3

4

~γe

r3H
sin θ cos θe−iφ (2.11)

and ε∗ is the complex conjugate of ε. θ and φ represent the polar and azimuthal angles of r with

respect to the polarization axis.

Thus, we see that the eigenstates resulting from the e-p spin interaction are mixtures of the

unperturbed free particle eigenstates. That is, the spin eigenstates |+ +〉, |+−〉, | −+〉, | −−〉 are

’rotated’ into the eigenstates |a〉, |b〉, |c〉, |d〉 by the spin-spin interaction. This is essential, as now

an externally applied field (HRF ) can induce transitions between the new eigenstates, flipping the

spins of both the electron and proton, such as

| + +〉 → | − −〉

| + −〉 → | − +〉

(2.12)

which are forbidden (due to dipole selection rules) if the electron-proton spin interaction is neglected

(see Figure 2.14).
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Figure 2.14: Energy levels of the ep target system in an external magnetic field. The ket notation
|SPSe〉 represents the spin states of the proton and electron. Allowed transitions hνESR (Electron
Spin Resonance) and hνNMR (Nuclear Magnetic Resonance) are shown in blue and red. Other
transitions are forbidden by dipole selection rules in the absence of a changing external field.
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An external oscillating electromagnetic field with frequency

ν = νEPR ± νNMR (2.13)

(where the EPR and NMR energies are shown in Figure 2.14) excites the “forbidden” transition, W+

or W− (shown in Figure 2.15), depending on the sign in Eq. 2.13. The probability ratio of a W±

transition to that of an “allowed” dipole transition is 4|ε|2, as calculated from the matrix elements

HRF applied to the admixed eigenstates [67].

After a simultaneous spin flip (Eq. 2.12), both the electron and proton eventually return to

their ground state, as determined by their respective spin-lattice relaxation times. This relaxation

time is approximately a factor of 106 longer for the proton than the electron [65] (about 10−3 s for

the electron, but 103 s for the proton). Once the electron relaxes, it is again available to interact

with another proton, and induce another “forbidden” spin flip. The process continues, albeit with

a decreasing probability, as the distance r increases as the protons are polarized, shrinking the

magnitude of the Hamiltonian terms in Eq. 2.9. Eventually, a net polarization of the protons is

induced, and an equilibrium is reached. 10 When this occurs, the polarization of the target remains

stable, so long as the magnetic field and microwave radiation are continuously applied.

2.4.4 DNP in a real solid: Equal Spin Temperature (EST) Theor y

The preceding provides a relatively simple model for DNP, where the Zeeman energy levels were

considered infinitely sharp, in the absence of spin-interactions within the electron lattice. However,

in real solids (such as our NH3 target), the spin-spin interactions greatly complicate the system,

effectively “broadening” the energy levels into bands containing many degrees of freedom. In this

case, the thermodynamic approach of Equal Spin Temperature (EST) theory must be used to de-

scribe the system.

EST theory presumes that the proton Zeeman system (described above) is characterized by a

temperature TZ , and that the spin-spin Hamiltonian between electrons is characterized by a second

Boltzmann distribution with temperature TSS [67]. If the radiating microwave energy is fixed, but the

10It is not strictly true that the value of r in the Hamiltonian is the limiting factor in the inducing of polarization in the target;
a mechanism known as spin diffusion is also involved in transporting the polarization to adjacent nuclei.
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Figure 2.15: Energy levels (expressed in a new set of basis kets) after application of microwave
radiation to the magnetized material. The transitions W+ or W− enable forbidden transitions,
excluded from Figure 2.14, that simultaneously flip the spins of both the electron and proton. From
Ref. [67].
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Figure 2.16: Distribution of energy levels in terms of population fraction n. In thermal equilibrium
(a), the average energy separation between the bands is νe = νESR, and a single spin temperature
TS describes the whole system. If the energy separation is slightly perturbed (that is, the separation
is ν = νe − δ), then two characteristic temperatures, TSS and TZ , describe the system. If ν < νe,
(b) then TSS > 0. If ν > νe, (c) then TSS become negative, corresponding to opposite polarization.
From Ref. [67].

“bands” corresponding to the polarization states (depicted in Figure 2.16) contain many (closely

separated) energy levels, then the electron system absorbs an energy h(ν + δ), with ν defined in

Eq. 2.13, with the energy hδ absorbed by the spin-spin thermodynamic system.

The Zeeman and spin-spin temperatures of the electron system move toward thermodynamic

equilibrium TZ = TSS ≡ T` (lattice temperature). In the process of achieving this equilibrium,

energy is emitted or absorbed by the spin-spin system, and the proton Zeeman system (with its

own temperature, TZP
) either emits or absorbs energy νNMR (i.e. the proton Larmor frequency).

The proton Zeeman system “cools” through an electron double-spin flip and proton single-spin flip

[68]. 11 The polarization then stabilizes at thermal equilibrium, with a polarization given by Eq. 2.7,

with the substitution TS → TZP
.

11Note that cooling can occur through emission or absorption of energy, the latter seeming contrary to intuition. For spin- 1
2

systems, however, canonical absolute temperatures can be positive or negative, with negative temperatures corresponding
to spins in the negative direction. Systems with negative temperatures must absorb energy in order to cool [68].



103

2.4.5 15NH3 as a Polarized Target

15NH3 was selected for use as a polarized target due to several specific properties. Free protons

(1H) are required for ep scattering experiments, and these protons must be in a polarizable (spin

1
2 ) configuration. Pure H2 is (unfortunately) not a viable option, because the bonding of the two

hydrogen atoms results in a non-polarizable spin-1 configuration. 12 Traditionally, butanol and

ammonia have been used for polarized targets. Of these two targets, ammonia is much better at

retaining its polarization under prolonged irradiation [69].

Of course, under DNP, the nitrogen nuclei are not immune to the effects of polarization, either,

though the net polarization of the nitrogen is much smaller than that of the free protons. 15N

is selected in lieu of the more common isotope, 14N, because, viewed in the shell model, 15N

has a single (spin1
2 ) unpaired neutron which carries all the polarization, whereas, 14N (a spin-1

nucleus), contains an unpaired proton and neutron, which can both be polarized [70]. EST theory

predicts well the relation between the polarizations of 15N and 1H in NH3; this empirical relation

has been well tested in past target studies [71]. Figure 2.17 shows the polarization of 15N as

a function of proton polarization in the SMC frozen NH3 target compared to the full calculation

of EST theory. Note that, at low polarizations, the relation is fairly linear. At high polarizations,

nonlinear saturation effects begin decreasing the efficiency of the proton polarization against that

of the nitrogen. Asymmetry corrections due to 15N polarization are dealt with later, in Section 6.3.

2.4.6 Polarized Target System

The EG1 target system consists of the following list of elements:

1. Superconducting Helmholtz magnet (to generate the 5 T magnetic field)

2. Refigerator and cryostat unit (to maintain the necessary 1.5 K temperature)

3. Microwave system (for inducing the RF double spin-flip transitions)

4. Continuous wave NMR system (for online monitoring of the polarization)

12As noted in Section 1.5, HERMES utilized a polarized hydrogen target, but only in a gaseous form, which greatly limited
the event flux.
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Figure 2.17: Polarization of 15N as a function of proton polarization in frozen NH3 during the SMC
experiment. Actual data (obtained using two methods) are compared to the prediction of EST
theory. From Ref. [71].

5. Target insert (contains the actual target material, to be changed for different runs)

The target magnet is positioned at the center of the torus magnet inside the CLAS detector (Section

2.5). It surrounds the target, producing a magnetic field coaxial with the beam line. The field is

uniform (accurate within 10−4) over a central cylindrical volume 20 mm in diameter and 20 mm

long [65]. This uniformity is necessary to ensure a narrow ESR linewidth. The axial diameter of the

magnet allows for unimpeded forward scattering within 50◦ of the beam axis. Coil superconductivity

is maintained by an external liquid helium refrigerator.

The 1.5 K temperature necessary to maintain the polarization was achieved by pumping liquid

helium at a rate of 3300 m3/hr through a diagonally mounted cryostat system (Figure 2.18). The

target chamber is injected with LHe from the cryostat. Evaporation occurs through hexagonal vents

around the front end of the target. Temperature was monitored by a 3He pressure bulb inside the

evaporation chamber. Figure 2.19 shows the LHe reservoir as the target assembly is inserted into

the Helmholtz cylinder.

The RF is supplied by an Extended Interaction Oscillator (EIO) that delivers about 1 W of mi-

crowave power with a linewidth of about 10 MHz. The 140 GHz radiation, adjustable over a band-

width of 2 GHz (by varying the length of a remotely controlled resonant cavity), is generated to

match the precise frequency requirements required by Eq. 2.13. The radiation is emitted from a
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Figure 2.18: The polarized target cryostat assembly, shown in its configuration with the target
chamber (banjo), insert, and magnet coil. From Ref. [65].

Figure 2.19: The target assembly being inserted into the superconducting Helmholtz magnet. The
LHe reservoir is clearly visible in the foreground.
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Figure 2.20: Screenshot of the online NMR polarization monitor for an NH3 target. The area under
the curve gives the total polarization, measured as −0.736 in this case.

small metal “horn” (visible later in Figure 2.25) to continuously irradiate the magnetized target vol-

ume.

The NMR system, used for online monitoring of the ammonia (NH3 and ND3) polarizations, con-

sists of a coil wrapped around the polarized target material as part of a resonant RLC circuit. A

varying RF frequency centered about 212.6 MHz (the proton Larmor frequency) is swept through

the circuit. 13 In a plot of voltage vs. frequency, the polarization of the sample is proportional to the

area under the curve. Figure 2.20 shows a screenshot of the online NMR monitor plot for the NH3

target.

Unfortunately, the proportionality constant used to calculate the polarization is difficult to deter-

mine accurately, due to thermal drifts in the NMR circuit [65], and is known to be less accurate

at lower polarizations. Also, the polarization at the center of the target, where scattering actually

occurs (and degradation due to radiation may be greater), may be different than that measured by

13For ND3, the Larmor frequency is 32.6 MHz. NMR analysis for the deuteron RF peak is also different, because two
peaks are involved. See Ref. [65] for details.
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Figure 2.21: Target insert strip showing the 4 target cells used for the EG1 targets: ND3, 12C, NH3

and empty, from the top down. Note the NMR coils that surround the ND3 and NH3 cells. Only the
carbon target is full at the time of this photograph.

the NMR. Thus, although NMR is useful as an online monitor, actual analysis of polarizations relies

on the ep elastic peak ratio method, described in detail in Section 6.2.

The target insert is a thin aluminum strip (25 µm thick at the target cell entrance) consisting of

(nominally) 1-cm thick cylindrical cells, shown in Figure 2.21. These cells contain the target mate-

rial. Frozen NH3 and ND3 beads are placed in two of the cells (surrounded by NMR coils), and a

2.3-mm thick slab of amorphous carbon (for background subtraction) is placed in a third cell. The

fourth cell is left empty, for additional background subtraction purposes. This strip is connected to a

metal vacuum flange (with necessary feedthroughs) and a brass heat sink to maintain a cryogenic

vacuum environment for the target (Figure 2.22). A motor shaft allows vertical motion of the target

strip, so that the target cells can be alternated between experimental runs.
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Figure 2.22: The target stick connected to a vacuum flange (with feedthroughs) for vertical insertion
into the EG1 target system.
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Figure 2.23: The target stick, all cells filled, immersed in a liquid nitrogen bath. The NH3 cell is
shown.

The filled targets must remain immersed in liquid nitrogen when not in use (Figure 2.23), to

maintain the presence of the paramagnetic free radicals. A 50 µm thick Kapton foil cover (Figure

2.24) is used to keep the material in each cell in place. 14 The filled target stick is inserted into

a (nominally) 2.0 cm diameter (127 µm thick) Kapton “minicup” within a cylindrical vacuum-sealed

“banjo” with thin (71 µm) aluminum exit windows (Figure 2.25). The minicup is filled with liquid

helium during the experimental run.

A second (15N) target stick, nearly identical to the first, except that it contained only two cells,

was used for two shorter run sets during the experiment. One cell contained a 2.2 mm thick amor-

phous carbon slab, while the other was filled with isotopically enriched (98%) solid 15N. This target

was used for modeling the relation between 15N and 12C so that amorphous carbon data (collected

throughout the experiment) could be used for accurate background subtraction.

The entire target assembly was mounted together (Figure 2.26) and inserted into the target

magnet and CLAS detector, where the polarization process in the 5 T magnetic field could begin.

More detailed descriptions of all the EG1 target components can be found in Ref. [65]. A much

longer and more detailed description of the target assembly, operation and performance can be

14Kapton is added to the empty target cell, as well.
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Figure 2.24: Kapton foil coverings used on the target cell. Kapton foil is used in nuclear physics
experiments due to its high resistance to radiation damage.

found in Ref. [32].

2.4.7 Modeling the Target for Background and Radiative Corr ections

The measured vertex resolution of scattered events in the EG1 experiment is good enough to

subtract scattering contributions from the vacuum windows, but not nearly good enough to separate

scattering events from the banjo windows, Kapton and aluminum cell windows, or minicup. Also,

scattering occurs from LHe in the minicup, as well as from the 15N nuclei. Dilution factors must be

determined to remove the contributions from all these elements, leaving only the sums over proton

scattering events. This procedure is described in Chapter 5. Making these calculations requires a

precise model of the thicknesses and densities of the target through the beam path and through all

possible forward scattering angles.

Table 2.1 lists the densities and thicknesses of all materials in the target(s) within ∼5 cm of the

target center. 15 Note that length of ammonia is only approximate, due to the unknown packing

fraction of frozen granules, which can “powder” and settle within the target cell. The 15N target

length is also not exactly known, since the amount of frozen material is not necessarily constant.

The LHe (total cell) length is also uncertain from the target dimensions, due to possible warping of

15This includes all target materials inside of the wide event vertex cut that will be made later.
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Figure 2.25: An internal view of the banjo, showing the (orange) Kapton cylindrical LHe minicup
into which the target stick is inserted. Note the metal “horn”, the source of microwave emission, on
the left side.
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Figure 2.26: The assembled EG1 polarized target, viewed downstream, prior to insertion into CLAS.
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the Kapton minicup. These quantities are calculated from event data in a more rigorous manner

in Chapter 5. Of course, there is a limit on the accuracy of length and density measurements,

particularly the latter, as densities can vary with temperature. These inaccuracies are dealt with in

the calculation of target model systematic errors (Section 7.2.1).

Table 2.1: Densities and lengths of materials in the EG1 target. Values are from Ref. [72] and Ref.
[73]. Numbers in square brackets [ ] pertain only to the 15N target stick.

Material Density (g/cm3) Density (mol/cm3) Total thickness(cm)
ammonia (NH3) 0.917 0.0508 ∼0.6
ammonia (ND3) 1.056 0.0502 ∼0.6

carbon (12C) 2.17 0.180 0.23[0.22]
nitrogen-15 (15N) 1.1 0.073 ∼0.5

liquid helium (LHe) 0.145 0.0362 ∼1.9 minus solid target material
Kapton (K) 1.42 0.00371 0.0304(0.0384 after 27997)[0.0354]

aluminum (Al) 2.69 0.0997 0.0167

Material Present in target Comment
ammonia (NH3) NH3 length dependent on packing fraction
ammonia (ND3) ND3 length dependent on packing fraction

carbon (12C) carbon carbon in 15N target stick
is 100 µm thinner

nitrogen-15 (15N) nitrogen-15 length and density not well known
liquid helium (LHe) all length dependent on other thicknesses

& total minicup length
Kapton (K) all extra 80µm added after Run 27997;

extra 50µm of Kapton on 15N target stick
aluminum (Al) all includes cell window and banjo windows

Note that a leak in the ND3 target during a later run set necessitated the addition of extra

Kapton foil. The Kapton and target lengths also vary (slightly) between the two (ammonia and 15N)

target sticks. The NH3 and ND3 lengths are also subject to change when the target material is

refilled during the experiment. Table 2.2 contains some other quantities related to the densities and

lengths that are useful later in the analysis.
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Table 2.2: Some other useful quantities for calculating target parameters. Numbers in square
brackets [ ] pertain to the 15N target stick.

Quantity Value Description
ρC`C 0.498 g/cm2 = 0.0415 mol/cm2 mass thickness of carbon

[0.476 g/cm2 = 0.0397 mol/cm2]
ρK`K 0.0432 g/cm2(0.055 g/cm2 after 27997) mass thickness of Kapton

[0.0503 g/cm2]
ρAl`Al 0.045 g/cm2 mass thickness of aluminum
ρF `F 0.0882 g/cm2(0.0996 g/cm2 after 27997) mass thickness of Al + K foils

[0.0952 g/cm2]
f 0.177(0.200 after 27997)[0.235] ρF `F /ρC`C

2.5 The CLAS Detector

The CEBAF Large Acceptance Spectrometer (or CLAS) detector is a large-acceptance detector ca-

pable of reconstructing multiple particle (exclusive) events, as well as providing a large acceptance

(8◦ < θ < 49◦ in 6 azimuthal sectors) for the detection of inclusive electrons and other particles.

The detector uses a toroidal magnetic field (Section 2.5.1) for momentum determination. A 3-layer

drift-chamber (DC) (Section 2.5.2) is used to reconstruct charged particle tracks, with time-of-flight

gauged by an extensive scintillation counter (SC) system (Section 2.5.4). Cherenkov counters

(CC) (Section 2.5.3) aid in particle identification at forward angles, while electromagnetic calorime-

ters (EC) (Section 2.5.5) provide identification of neutral particles, additional timing information, and

additional particle identification parameters [30]. 16 Figure 2.27 shows a cutaway of the detector

along the beam line. Figure 2.28 shows a cutaway perpendicular to the beam axis, showing the

azimuthal 6-sector symmetry of the detector. In this section, a brief explanation of the functionality,

capabilities and calibration of each of these detector components is given.

2.5.1 Torus Magnet

A toroidal superconducting magnet, approximately 5 m in length and diameter (Figure 2.29) is used

to generate a ~B-field along the φ-direction [30]. The torus can generate up to a 2.5 T·m field

16Additional elements are also present, including a tagger for the generation of photon beams, and a large angle calorime-
ter (LAC) for the identification of wide-angle-scattered exclusive channels, but these are not utilized in this analysis, and
hence not discussed here.
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Figure 2.27: Cutaway diagram of the CLAS detector, showing components used in this analysis.
A reconstructed ep scattering event is superimposed; the top track shows an inbending electron,
radiating a photon in the layer 2 drift chamber, and creating a particle shower in the calorimeter.
The bottom track shows the correlating proton, which bends in the opposite direction in the torus
field and creates little to no calorimeter shower. From Ref. [30].
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Figure 2.28: Cutaway diagram of the CLAS detector, perpendicular to the beam line. All detector
components mentioned in this section are constructed in this six-fold symmetry. From Ref. [30].

integral in the forward direction, 17 where the field is at its maximum intensity, to better differentiate

the spectrum of high-momentum particles scattering at forward angles. Torus currents of 1500 A

(at low beam energies) or 2250 A (at high beam energies) were employed in this experiment. The

torus current was periodically reversed; negatively charged forward particle (i.e. electron) paths

were bent toward the center for + torus current, or inbending data, while electrons were bent away

from the center for − torus current, or outbending data. The former allows for better spatial detector

acceptance at large scattering angles (high θ), while the latter allows for better acceptance at small

scattering angles (low θ). Employing both polarities provides for high-precision measurements over

a larger momentum range than would be possible with only a single torus current direction. The

central, field-free region allows for the operation of a polarized target (Section 2.4). Coils of Nb

Ti/Cu wire wrap around each of the six magnet spools. Superconductivity is maintained by cooling

the coils to 4.5 K with LHe in cooling tubes at the edge of the wire windings.

The purpose of the torus magnet is to maintain a magnetic field, reasonably homogeneous in

17This value corresponds to the maximum achievable torus current of 3860 A.
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Figure 2.29: View of the torus magnet frame, showing the relative placements of the Region 2 and
3 drift chambers. The Region 1 drift chambers (not shown) are placed in the central (field-free)
region of the torus. Superconducting wires are wrapped around the edges of the 6 kidney-shaped
frames to generate an azimuthally-directed field. From Ref. [30].

φ, for the identification of momenta based on particle path curvature. While a rudimentary map

of the magnetic field exists [30], a thorough map of the CLAS torus field was never successfully

completed. Calibration of the momenta using well-understood events (typically elastic ep events) is

therefore necessary (see Section 4.2.8).

2.5.2 Drift Chambers

The CLAS drift chambers consist of three “regions” (Figure 2.29), each of which contain two “su-

perlayers” of 6 layers of multiple hexagonal cells18 (Figure 2.30). The DC chambers in each sector

are installed between and around the frames of the torus magnet; one of the DC layers for a sector,

prior to installation, is shown in Figure 2.31.

Each individual hexagonal cell in the drift chamber contains a voltage wire (140 µm Au-plated

Al) and detection wire (20 µm diameter Au-plated W) surrounded by a 90%/10% Ar/CO2 mixture

[74]. This mixture of gas is optimized to produce a high ionization gain of induced charge when

18The exception is Superlayer 1, which contains only 4 layers.
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Figure 2.30: Diagram of a particle passing through the cells of the outer layer drift chamber, giv-
ing an initial estimate of the path of the particle through hit-based tracking. Each hexagonal cell
contains a perpendicular sensor wire in its center. From Ref. [74].
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Figure 2.31: Photograph of one sector of an outer layer drift chamber section prior to installation in
the CLAS detector. From the JLab JPIX picture exchange.

energetic particles pass through the cell. This induced charge drifts toward the sense wire and

produces a current, thus providing information that a particle has passed through the cell. This in-

formation provides initial hit-based tracking information about the particle trajectory, reconstructing

the actual particle momenta within an accuracy of 3-5%.

Wires are strung perpendicular to the magnetic field in one of the two superlayers of each region,

and at a 6◦ angle around the cell radius in the other superlayer, to provide φ-direction information.

In total, about 130,000 wires are strung through the cells of the drift chambers. Cell material was

minimized, so that only ∼1% of a radiation length would (on average) be encountered by a particle,

to lower the incidence of multiple scattering events. There are 1296, 2262, and 2304 individual

hexagonal detection cells in each sector of the Region 1, 2, and 3 drift chambers, respectively. The

sizes of the individual cells range from 15 mm in Region 1 to 45 mm in Region 3 [74].

Charge induced by an ionized particle drifts toward the sensor cell at a relatively slow velocity of

around 4 cm/µs. More accurate path information can be provided once the total time-of-flight of the

particle is determined by the scintillation counters (Section 2.5.4). Then, a reference time can be

used to indicate when the particle passes through each cell, and this can be compared to the TDC

time of the signal generated in the sense wire. If the relation between drift time and distance within
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individual hexagonal cells is known, the distance of closest approach (DOCA) to the sensor wire

in each cell can be calculated, thus greatly improving the accuracy of the path through time-based

tracking (see Figure 2.32). The DOCA function is fit by a χ2 minimization of a polynomial function

to the observed drift times. For example [74], Region 3 is fit with the function

x(t) = v0t+ η

(
t

tmax

)p

+ κ

(
t

tmax

)q

(2.14)

where v0 is the saturated drift velocity (at t=0), tmax is the maximum drift time (at the cell edge) and

η, κ, p and q are fit coefficients, determined by the minimization of

χ2 =
|x(t) − xpath|2

σ2
path

(2.15)

where xpath and σpath are the DOCA distance from the sense wire along the path and the error

on this quantity, respectively. Polynomial forms are used for Regions 1 and 2. 19 A sample of the

parameterized DOCA vs. drift time is shown in Figure 2.33. The value |x(t) − xpath| is called the

residual of the fit; the magnitude of this value is used to evaluate the quality of the drift chamber

calibrations (see Figure 2.34). Time-based tracking is capable of increasing the precision of track

measurement to a certainty of <500µm (for the largest cells; i.e. Region 3). The radius of curvature

in the magnetic field can then be used to determine the particle momentum to within a fraction of a

percent accuracy.

2.5.3 Cherenkov Counters

Once forward angle particles pass through the regions of the drift chamber, they enter the Cherenkov

counters (CC), which are used to aid in particle identification, particularly the separation of forward-

scattered electrons from inelastically produced pions. The Cherenkov counters are used to detect

electrons in all 6 sectors scattered at forward angles of up to ∼45◦. Each sector of detectors (Figure

2.35) contains a total of 18 symmetrical mirrored chambers (segments), filled with perfluorobutane

(C4F10) gas. Individual segments are divided in half, with a photomultiplier (PMT) tube on each half

19Region 2 requires an additional correction for the fact that the main torus fields causes perturbation of the electric
potential map; see Ref. [74].
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Figure 2.32: Cutaway view of a drift chamber, showing how path accuracy can be increased by
the calculation of the distance of closest approach (DOCA) through time-based tracking. From Ref.
[75].

Figure 2.33: Parametrized DOCA (in cm) vs. drift time (in ns) for the CLAS drift chambers. From
Ref. [2].
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Figure 2.34: Typical residuals |x(t) − xpath| (in cm) after track-fitting for the Superlayer 5 (Region
3) drift chamber, for 5.7 GeV beam energy data in the EG1b data set. Colors show residuals for
each of the 6 sectors. Accuracies of ∼500µm = 0.05 cm (as shown here) are typical for the Region
3 DC. Regions 1 and 2 have smaller cell sizes, and, correspondingly, smaller residuals.

Figure 2.35: A schematic drawing of the 18 symmetrical mirrored segments in one sector of the
CLAS Cherenov Counter. From Ref. [76].
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to detect Cherenkov radiation from particles passing through the gas.

High-energy scattered particles have velocities that approach the speed of light c in a vacuum,

where the index of refraction n = 1. If a high energy particle enters a medium where n > 1, like

the aforementioned C4F10 gas (maintained at a positive pressure of 340 Pa), such that the particle

velocity β ≡ v/c is given by

β >
1

n(f)
(2.16)

where n(f) is the index of refraction of light, as a function of of frequency f (that is, the speed

of the particle is greater than that of light in the medium), then a electromagnetic shock wave will

be produced. 20 The shock wave has a coherent wavefront, conical in shape, with axial angle θC

defined (in a thick medium) as [8]21

cos θC =
1

βn(f)
(2.17)

This Cherenkov light is reflected between a (forward) elliptical mirror and (rear) hyperbolic mirror,

with the optics optimized to direct reflected light from (almost) any entry point to a parabolic reflect-

ing “cup”. The cup directs light into a photomultiplier (PMT) vacuum tube at the chamber edge (see

Figure 2.36). The PMT tubes convert the UV Cherenkov light into an ADC signal corresponding to

the number of photoelectrons. 22 The PMT tubes are magnetically shielded from the effects of the

torus field [76].

The Cherenkov counters exhibit an efficiency that falls off sharply near the PMTs and the outer

edges of the chamber, as well as along the center “ridge” in the case of an outbending (negative

current) torus field. This is partly due to the imperfect mirror optics and reflectivity, and partly due to

the residual effects of the torus field on the PMT. Cherenkov Counter efficiency is the limiting factor

in the acceptance of CLAS measurements. This is further explored and accounted for in detail in

Section 4.4.

The primary purpose of the Cherenkov counters is to distinguish light hadrons (primarily pions)

from electrons, by their Cherenkov response threshold. Electrons, practically massless, radiate

Cherenkov light at relatively low energies, while pions only reach a value of β sufficient to produce

20This is analogous to the effect of a “sonic boom” for objects exceeding the speed of sound in air.
21Note that this relation holds exactly only for an infinitely thick medium. The real relation is somewhat more complex

(see, for example, Ref. [8]). For the Cherenkov counters in CLAS, however, Eq. 2.17 is a good approximation.
22Calibration of this signal is performed by a single fit function detailed in Ref. [76].
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Figure 2.36: Diagram showing the reflection of Cherenkov radiation toward a PMT in half of a CC
segment. From Ref. [76].

Cherenkov light at p ≈ 2.7 GeV or higher.

Naturally, this separation works best at lower momenta, where β differs the most between elec-

trons and the (considerably more massive) pions. More detail on the identification of particles by

their Cherenkov spectra is given in Section 3.4.1. A view of the CLAS Cherenkov counters can be

seen in Figure 2.37.

2.5.4 Scintillation Counters

The scintillation counters (SC) surround the CLAS detector around the full solid angle of the drift

chambers (DC). The scintillation counters are used to measure the time of flight (TOF) of scattered

particles int order to establish time-based tracking in the drift chambers, and set a baseline time

standard for event measurement. The SC system is composed of 48 paddles in each sector (see

Figure 2.38). Each paddle consists of a length of scintillation material capped with photomultiplier

tubes (PMTs) on either end. The scintillators are 15 or 22 cm wide23 bars of transparent material

that produces violet (425 nm) light when its molecules are ionized by charged particles. Al foil is

23The scintallators are 15 cm at forward angles, 22 cm at large angles, as per Figure 2.38.
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Figure 2.37: A view of the CLAS Cherenkov counter (CC), separated from the drift chambers (upper
right corner) for maintenance. From the JPIX JLab picture exchange.

wrapped around the scintillator to prevent loss of light, as it reflects internally toward the PMTs.

Light guides (twisted at the backward angles) are used to direct the signal to the PMT windows.

Cylindrical mu-metal tubes are used to shield the PMTs from the effects of the main torus magnet

[77].

There are 48× 6 = 288 paddles, and a total of 288× 2 = 576 PMTs in the SC. This necessitates

an extensive sequence of calibrations to make the SC detector work as a coherent unit. Calibrations

are performed in 3 stages:

1. ADC and TDC channels from each PMT are calibrated, so that a signal incident on a PMT at

time t records a signal correlating to this exact time. These calibrations ignore the scintillator

entirely; they are performed by feeding electrical or luminous luminous LED signals directly

into the PMTs. First, a pedestal value P must be subtracted to provide for the “zero signal”

threshold of the ADC value A to get the true signal amplitude A′:

A′ = A− P (2.18)
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Figure 2.38: Diagram of the CLAS scintillation counter (SC) is one sector. The large red box
contains a whole paddle, while the smaller yellow boxes surround PMTs. Modified from Ref. [77].

(a) (b)

Figure 2.39: ADC channels in SC PMTs as read from electronic pulser trigger data, shown before
and after the addition of pedestals. CLAS detector components require the addition of pedestals to
define the ADC readout for a null signal.
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Figure 2.40: Time-walk evolution of pulse height (ADC value) vs. time (TDC value) for the left PMT
on Paddle 6, Sector 1. The values of the three fit constants w0, w1 and w2 are shown.
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(see Figure 2.39). Then, input from a pulse generator is used to calibrate the TDC signal T

to the true signal time t with a quadratic fit:

t = c0 + c1T + c2T
2 (2.19)

Then, laser light generated by photodiodes on each PMT is used to calibrate against the

dependence of the TDC signal on the ADC amplitude (a phenomenon known as time-walk ).

This fit is considerably more complex [78]; the corrected time tw is given by

tw = t− fw

(
A′

Th.

)

+ fw

(
600

Th.

)

(2.20)

where Th. is the TDC channel number corresponding to the leading pulse edge24 and

fw(x) =







w1

xw2
(x < w0)

w1

w
w2
0

(1 + w2) − w1w2

w
w2+1

0

(x > w0)
(2.21)

where w0, w1 and w2 are fit constants (see Figure 2.40).

2. Once a consistent time and amplitude response is obtained from the individual PMTs, each

paddle, composed of 2 PMTs and a length of scintillator, must be calibrated so that it provides

a consistent TOF response from particle hits along any point of the scintillator length. Cosmic

rays can be used for these calibrations, as can actual scattering data. 25 Light from ionization

requires finite times tL and tR to travel to the left and right PMTs, respectively. A hit at the

exact center of the paddle (i.e. the center of the hit distribution) should record a simultaneous

signal on both PMTs. To enforce this, it is necessary to add a left-right calibration offset [78]

δtLR = (edgeL + edgeR)/veff (2.22)

to the TDC output (see Figure 2.41), where edgeL/R is the coordinate distance from the central

point to the appropriate edge of the of the scintillator, and veff is the effective velocity of light

24600 is the ADC channel corresponding to an MIP (minimum ionizing particle) response.
25Cosmic ray runs are the only way to ensure accurate calibration over the full detector acceptance.
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Figure 2.41: Left-right alignment plots for Sector 6, shown before and after calibration. The axes
represent paddle number vs. distance from the scintillator center, in cm.

along the scintillator toward the PMTs. The effective velocity is less than the speed of light

in the scintillator, due to oblique internal reflections of light within the scintillator. Effective

velocity is determined by using [78]

tL/R = t0 ±
y

veff
(2.23)

where t0 is the measured time of an event at the geometric scintillator center, and y is the

position along the scintillator. The value of veff is approximately 16 cm/ns, and in fact, this

value can be assumed with little reduction in timing resolution. 26

In addition, the ADC channels are calibrated for energy loss and attenuation (i.e. dispersion

of the light signal) along the scintillator. The attenuation is exponential; the fit to the ADC

channels (see Figure 2.42) is

A′
L/R =

M0L/R

10 MeV
Ee−y/λ (2.24)

where E is particle energy deposited in the scintillator, M0L/R/10 MeV is a normalization

26This is indeed the case for this analysis.
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Figure 2.42: Plot of the log of the ratio of ADC values vs. scintillator position (in cm) for Paddle 13,
Sector 1, after the attenuation length calibration of Eq. 2.24.

factor (determined in the fit), λ is the fit attentuation length and y is again the hit position,

defined by

y =
veff

2
(tL − tR − yoffset) (2.25)

where yoffset is another fit variable. Note that due to the codependence of the variables, the

calibration steps for the paddle must be performed iteratively, with reasonable initializations

of the fit parameters [78].

3. When individual paddles are properly calibrated, the final step is to ensure that all the active

paddles in every sector act as a coherent, single detector, tracing the start time of an (approx-

imately zero-mass) electron scattered through any angle properly back to the vertex point.

Then, the TOF of slower, heavier particles, and hence their mass, can be calculated.
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(a) (b)

Figure 2.43: RF bunch timing offsets, before and after calibration of the RF start time. The points
represent the reconstructed start time of electron events vs. the position in the RF bunch. A
polynomial offset function is fitted in segments to center the offset at zero.

First, the start time must be determined. As detailed in Section 2.2, the electron beam is

delivered to Hall-B in RF-pulsed bunches. The phase of these bunches is subject to periodic

changes. Event start timing is offset by a function of its phase within the RF signal. To adjust

the start time, a third-degree polynomial and an overall offset constant are fit as a function of

offset time within the pulse distribution27 (see Figure 2.43).

Finally, then paddle-to-paddle or counter-to-counter delay offsets cc2c are determined for each

paddle from a fit of scattered electron and/or pion data [78]:28

tL/R = tw ± δtLR

2
+ cc2c (2.26)

Plots of reconstructed hadron mass before and after this calibration are shown in Figure 2.44.

27In event that the RF pulse information is unavailable, in fact a problem for large sections of the EG1b run set, electron
TOF was used to normalize the start time of the heavier hadrons.

28This equation is slightly different than the one shown in Ref. [78], as unused calibration constants are omitted here.
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Figure 2.44: TOF-reconstructed mass squared (in GeV2) vs. paddle number for sector 5 events,
before and after paddle-to-paddle delay calibrations. The wide band represents protons (M2 =
0.879 GeV2) and the bottom band represents pions (M2 = 0.019 GeV2). (Paddle 20 failed to
calibrate properly with the automated software (right plot), and required manual recalibration.)

Assuming these offsets are chosen properly, the time-of-flight t for any SC hit can be found as

t =
tL + tR

2
(2.27)

The time of flight not only establishes time-based tracking in the DC, it normalizes timing for the EC

and CC. Timing resolution within 0.2-0.3 ns can usually be achieved with proper calibration of the

SC constants.

2.5.5 Electromagnetic Calorimeters

After passing through the various (DC, CC, SC) detector components, forward-scattered particles

enter the outermost detector portion in CLAS, the electromagnetic calorimeters (EC). The EC ab-

sorbs energy from the scattered particles in 15 radiation lengths of lead, interleaved with scintillation

detectors that provide energy and timing information for the scattered particle.

The calorimeters in each sector are composed of 39 dual alternating layers of (2.2 mm thick)

Pb and (10 mm thick) scintillator, the lengths optimized for maximal energy resolution and minimal

transverse light attentuation [79]. The calorimeter in a given sector is triangular in shape. The scin-

tillators are cut into 36 parallel strips in each layer. The scintillator direction alternates to provide
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Figure 2.45: Diagram of one sector of the CLAS electromagnetic calorimeter, showing the stacks
of scintillator strips aligned along 3 different orientations, alternating with lead sheets. Fiber light
guides send light from the scintillator planes to the PMTs. From Ref. [79].

spatial resolution along 3 orientations, labeled as U, V, and W (see Figure 2.45). Each orientation

thus has 36 ÷ 3 = 13 Pb/scintillator layers. Light from the first 5 scintillators along a given orienta-

tion (ECin) leads through light guides to one PMT, while light from the remaining 8 scintillators along

a given orientation (ECout) leads to a second PMT. This arrangement is capped with steel/foam

plates. A diagram of this configuration is shown in Figure 2.46. Each “column” of 13 strips has its

own pair of PMTs, for a total of 13 × 3 × 36 = 216 PMTs in each sector [79].

Incident charged particles in the EC (above a minimum energy threshold of ∼0.5 GeV) pro-

duce either ionization reactions (in the case of incident hadrons) or showers of e+e− pairs and

Bremsstrahlung photons (in the case of incident electrons or positrons). 29 Ionizing tracks are the

easier case to localize; the hit location along the intersection of the U, V, and W orientations gives

the location of the particle. Showering events, which produce several signals over the scintillators in

each layer, require more sophisticated reconstruction. First, adjacent strips along each orientation

meeting a certain energy threshold are grouped, and peaks, in the form of a centroid and RMS of

29Neutrons and photons can also be detected in the EC, but this is of little relevance to inclusive analysis, and is not dealt
with in this thesis.
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Figure 2.46: Vertical cross section of one edge of the EC in one sector, showing lead (Pb) plates
and scintillators (SC), light guides (LG), fiber optic bundles for the inner and outer calorimeter
layers (FOBIN and FOBOU) and the inner plate (IP) of steel face sheets and foam core, needed for
structural support. From Ref. [79].

each group, are calculated. Then, the peaks above another threshold are matched for geometrical

compatibility in a three-iteration loop over the U, V and W coordinates to produce a hit location.

Once the hit is identified, energy measurements for ECin, ECout, and the signal sum ECtot are

recorded for all PMTs in the peak. The total energy deposited in the EC is equal to the total particle

energy multiplied by a sampling fraction fs. The EC energy resolution is then

σ

E
∝
√
ts
fs

(2.28)

where ts is the calorimeter thickness in radiation lengths. A fairly constant sampling fraction of

fs = 0.27 ± 0.02 is characteristic at electron energies higher than 1.5 GeV, with lower (and less ac-
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Figure 2.47: Difference between EC and SC times (in ns) for reconstructed electron events in sector
4, after EC timing calibrations.

curate) sampling fractions for lower energies [79]. Thus, to translate EC energies to actual particle

energies, the EC energies must be divided by 0.27.

Much like the TOF (SC) detectors, the scintillators and PMTs in the EC require calibrations. As

for the SC, PMTs require internal calibrations (for ADC pedestals), as well as corrections due to the

scintillator properties (i.e. exponential attentuation). Gain matching is also required, such that the

sum of channel energies totals E × fs. 30 After the experimental run, during pre-analysis, the EC

timing signal is calibrated to the SC signal, by using a 5-parameter model to minimize the average

difference between the SC and EC timing. A sample plot of the overall resulting time resolution is

shown in Figure 2.47.

The main purpose of the EC in the EG1b experiment is to help aid in particle identification.

Due to the e+e− showers produced by incident electrons at high energies, the EC is most effec-

tive at discriminating between electrons and hadrons with higher momenta (unlike the CC, which

discriminates most efficiently between low-momentum particles). The use of the EC in particle

identification is dealt with in detail in Section 3.4.2. The secondary purpose of the EC is to supply

additional timing information to aid in event reconstruction (see Section 2.6.2).

30This is the ADC analogy to paddle-to-paddle calibration of TDC values described in Section 2.5.4.
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Figure 2.48: A photograph of the CLAS detector, partially assembled. The spherical drift chambers
(DC) are in the center. The foil-wrapped, hexagonal scintillation counters (SC) surround the DC on
all sides when enclosed. On the far right, gas feedthroughs into the Cherenkov counters (CC) and
PMT feedthroughs into the electromagnetic calorimeters (EC) can be seen.

2.6 Data Collection

The individual CLAS components, shown together in Figure 2.48, must be made to operate together

during the data collection process. A brief description of the detector electronics, data acquision

(DAQ) system, and simple event builder (SEB) used for event reconstruction follows, along with a

brief summary of the EG1b data set. Again, the goal is not to provide a complete blueprint of the

data collection and event reconstruction procedure, but merely to provide an outline and direction

to relevant references regarding the hardware and software methods.
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2.6.1 Data Acquisition

All analog signals from the CLAS detector are digitized by FASTBUS and VME modules in 24

crates. CLAS has two different trigger levels that can be used as conditions for event recording.

For this experiment, Level 1 triggers, which require minimum thresholds in both the inner layer EC

and in the CC [2] were employed. All PMT signals (i.e. SC, EC, and CC) within 90 ns of the trigger

are processed, as well as drift chamber TDC signals [30]. The trigger supervisor (TS) electronics

board then takes the Level 1 trigger inputs and generates all signals, busy gates and resets required

to generate event parameters. These are then fed into the data aquisition, or DAQ system.

The CLAS DAQ system was designed to handle event rates of up to 2 kHz and data rates of 25

MB/s [30]. 31 CLAS data flow is shown in Figure 2.49, and is described in this brief outline:

1. Digital output from the 24 crates is read into 24 Readout Controllers (ROCs), then through

fast ethernet lines into the central DAQ.

2. The Event Builder (EB) software assembles the digital signals into complete particle events.

Each event is labeled with a number and the trigger bits (see Section 3.6.2).

3. Assembled event data is passed through shared online memory managed by the Event Trans-

port (ET) system, so that online reconstruction and monitoring can take place. ET1 manages

the memory, sending data to ET2 for online monitoring, and ET3 for online reconstruction and

analysis (see Figure 2.50).

4. ET1 sends data to the Event Recorder (ER), which in turn temporarily stores the data on local

RAID (Redundant Arrays of Inexpensive Disks) disks.

5. Data is transferred (in parallel) to be written on magnetic tapes in a remote recording and

retrieval silo. The data can then be retrieved as needed for analysis.

Data collection is managed by CODA (CEBAF Online Data Acquisition) software [80], which

provides the configuration of the DAQ components outlined above. The CODA software writes the

data separated into 2 GB file blocks. Typically, 15-30 of these file blocks constitutes a complete

31These figures correspond to 2000-01, when these data were taken. The DAQ has received substantial upgrades since
that time.
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Figure 2.49: A flowchart showing data transfer in the CLAS DAQ system. See the text for details.
From Ref. [30].

Figure 2.50: A screenshot of online event reconstruction at 1.7 GeV beam energy during the EG1
experiment. The left plot shows total reconstructed event counts in terms of missing mass W (in
GeV). The right plot shows the raw double-spin asymmetry (Eq. 1.209). In both cases, the elastic
peak (W = 0.938 GeV) and the ∆-resonance (W = 1.23 GeV) are clearly visible. The absolute sign
of the asymmetry is inverted due to a negative beam-target polarization product. From Ref. [63].
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data run. There were approximately 2000 runs in the EG1 data set, meaning at least 40 terabytes

of data were written to the silo data tapes. Because this is an unwieldy quantity of data for analysis,

several stages of data compression were employed.

2.6.2 The Simple Event Builder (SEB)

The simple event builder (SEB) is used during a process known as “cooking” to convert the raw

TDC and ADC channel data into kinematic and particle identification data by incorporating geo-

metric parameters and calibration constants. Calibration and mapping constants are read from the

CalDB (calibration database). The CalDB is a MySQL database with a user interface that contains

all ADC and TDC offsets and corrections, geometric constants, status flags and run information for

all Hall-B experiments [81].

Once particle track momentum, geometry and crucial EC and CC information has been estab-

lished, the superfluous digital channel data can be excluded from the new, compressed files. The

RECSIS (Reconstruction and Analysis) package uses a Tcl initialization file to instruct the SEB to

produce smaller “cooked” data files from the “raw” data files, writing data only into specified banks

to minimize the required disk space [82].

The SEB works by matching tracks/hits in the CLAS coordinate system [83], which is defined

geometrically in terms of x (horizontally), y (vertically) and z (along the beam axis) for the DC, EC,

and SC, and along polar coordinates φ and θ for the CC. First, the geometric DC cell tracks for each

particle are assumed to be master tracks, then hits in the CC, SC and EC (ai) are matched to the

track in the detector plane (apl) by the minimizing

χ2 =
∑

i

a2
i − a2

pl

σ2
ai

(2.29)

Neutral particles, of course, have no DC track, so straight lines from their EC hit points traced to the

target vertex (at z = −55.1 cm) are used as the master tracks. This process is known as hit-based

tracking.

The SEB then cycles through particles in the event to search for a single trigger electron32 as
32That is, it looks for an electron unpaired (by momentum conservation) with a positron, as that would indicate a e+e−

pair production, not a scattered electron.
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the trigger particle, requiring that it has a negative charge and produces an EC shower. If more

than one electron candidate is found, the one with the highest momentum is selected. Tracing this

particle back to the vertex along its geometric path (assuming v = c) determines the trigger start

time. The time-of-flight of other particles can then be determined relative to the start time using SC

TDC values. EC TDC values are used if SC values are not available for the particle. The mass m

of any charged particle in the event can then be determined from the relation

tSC − tstart ± δ =
`path

β
=
`path

c

√

p2 +m2

p2
(2.30)

where tSC and tstart are the particle SC time and trigger start time, `path is the particle path length

(determined by hit-based tracking), c is the speed of light, p is the particle momentum, and β ≡ v/c.

The uncertainty δ is the inherent Gaussian detector error in determining the TOF; it is usually in

the neighborhood of a few to several hundred picoseconds after TOF calibration. A (preliminary)

particle type ID can then be assigned to each particle based on its position in the TOF spectrum

(see Figure 2.51). This is known as time-based tracking, and it provides the minimal present criteria

for an event to be considered for further analysis.

2.6.3 The EG1b Data Set: Preparation for Analysis

The EG1b experiment collected electron data at 4 approximate beam energies (1.6, 2.5, 4.2, and

5.7 GeV). In reality, beam energies could not be kept at precisely these values for the whole 7 month

EG1b run, so several different beam energies (1.606, 1.723, 2.286, 2.561, 4.238, 5.615, 5.725

and 5.743 GeV) were used, with two possible (inbending and outbending) main torus currents.

Calibration constants were determined for a total of 12 different data sets (or brackets) for each

combination of beam energy and torus current. CLAS runs 25488-28570 comprise the EG1b data

set. Kinematic coverage of the EG1 data for the 4 nominal beam energies is shown in Figure 2.52.

Comparing to Figure 1.13, one can indeed see that the new data provides coverage in the low x

and Q2 region.

Each bracket contains runs using each of the available targets on the main insert: NH3, ND3,
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Figure 2.51: TOF mass (in GeV) of secondary (non-trigger) particles for an EG1b data run, shown
after TOF calibration. Mass is given in GeV. The pion and proton peaks can clearly be seen at 140
and 938 MeV. Much smaller kaon and deuteron peaks can also be resolved at 494 and 1876 MeV.
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Figure 2.52: Kinematic coverage of data (by energy) in terms ofQ2 and x in the EG1b data set. This
plot was constructed by analysis of the events of an inbending and outbending run at each of the 4
energies. The solid and dotted lines mark missing mass W= 1.08 GeV and 2.0 GeV, respectively.
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12C, and empty (LHe and windows only). Shorter, special run sets were taken with the 15N target

insert, as well. In addition to these production runs, numerous other calibration and test runs were

made, including runs for DAQ tests, Møller runs, cosmic ray calibration, TDC calibration, laser

calibrations and pedestal calibrations [84]. These runs were separated from the production runs.

After calibrations were completed as outlined in Section 2.5, quality checks of the calibration of

each data set were made. The RECSIS code was applied to the whole run set, first for only the first

file in each data set, a procedure referred to as pass0 cooking, to test overall TOF quality, EC timing

quality, and residuals from DC calibrations. Necessary adjustments to subsets of runs (sometimes

required for a change in RF offset, for example) were then made. Figure 2.53 shows mean electron

RF timing offsets after pass0 cooking for the 2.286 GeV data. Assuming the calibration quality of

the run set is acceptable, then, pass1 cooking is done, processing all production data into time-

based tracking event data for physics analysis. Analysis of these “cooked” data is the subject of the

remainder of this thesis.

2.7 Structure function and asymmetry models

Section 1.4 indicated that quantitative models parametrizing the contributions from physical quan-

tities are required to extract structure functions from the data. This section provides a brief de-

scription of the models package (designed by S. Kuhn et al.) used to evaluate contributions from

unpolarized structure functions and virtual photon asymmetries. The ’models’ are parametrized by

FORTRAN code originally included in the RCSLACPOL code used at SLAC, modified for the lower

beam energies found at JLab, especially in the resonance region.

2.7.1 Model of unpolarized structure functions F p
1 and Rp

The F1 and F2 structure functions for the proton have long been well-parametrized by data in the

DIS region. The ratio of longitudinal to transverse cross-sections for unpolarized scattering, R (Eq.

1.65), is related to F2 and F1 by Eq. 1.79. The fit forR uses JLab Hall-C High Momentum Spectrom-

eter (HMS) measurements of L/T separated virtual photoabsorption cross-sections [85] combined

with an older SLAC parametrization of DIS world data [86]. Specifically, Hall-C measurements of
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(a)

(b)

Figure 2.53: Quality check plots for event timing of the 2.286 GeV data. a) shows the mean
difference in electron trigger start and RF bunch time for the first file in each data set. This plot
shows an improper RF offset for the last several runs, which is shown corrected in b). All times are
in ns.



145

the reduced cross-section [87]

σr =
1

Γ

dσ

dΩdE′
= σT (W 2, Q2) + εσL(W 2, Q2) (2.31)

were used, where the virtual photon flux Γ is given by

Γ =
αE′(W 2 −M2)

(2π)2Q2ME(1 − ε)
(2.32)

Values of σL and σT were extracted from σr using the older DIS fit to R. These extracted data

were then fit independently, and the newly determined R value was used to iteratively extract new

values of σL and σT until convergence was reached. With R known, fits to the total unpolarized

cross-sections, together with Eq. 1.79, were used to extract F1 [87]. Values of F p
1 are known to a

precision of better than 3%; Rp errors are accurate to approximately 3% over the kinematic range

covered by EG1b.

The total cross-section is fit by contributions from resonant production (described by threshold-

dependent Breit-Wigner forms and Q2-dependent amplitudes) superimposed on a smooth non-

resonant background. Data from JLab and SLAC are used for the resonance and DIS regions,

while DAΦHNE and other older photoproduction data constrain the Q2 → 0 limit. Exact details of

the fit equations, data sets, and a full description of the fit procedure by E. Christy and P. Bosted

can be found in Ref. [87]. Plots of the unpolarized structure function models of F p
1 and Rp for

various Q2 bins are shown in Figures 2.54 and 2.55. In this thesis, the F1 model provides the basic

unpolarized ratio for the extraction of g1 and g2 from virtual photon asymmetries, while R is used

exclusively for calculation of the depolarization factor D (Eq. 1.19).

2.7.2 Model of virtual photon asymmetries Ap
1 and Ap

2

Fits for modeling the virtual photon asymmetries A1 and A2 utilized all the pre-EG1b data described

in Section 1.5, i.e. E80, E130, EMC, SMC, E143, HERMES, E155 and EG1a for A1 and g1; and

E155x for A2 and g2. 33 The A1 model was generally used only for comparison and general

33RSS data was not yet included in the model fit at the time of the writing of this thesis.
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Figure 2.54: Model values of F1 [87] for the proton used to extract the g1 and g2 structure functions
in this thesis, shown in terms of missing mass W . Each curve corresponds to a different Q2 bin.
The highest Q2 value shown in the top plot is the same as the lowest Q2 value shown in the bottom
plot.
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Figure 2.55: Model values of R = σL/σT [87] for the proton used to extract the g1 and g2 structure
functions in this thesis, shown in terms of missing mass W . Each curve represents a different Q2

bin. The highest Q2 value shown in the top plot is the same as the lowest Q2 value shown in the
bottom plot.
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weighting between target polarizations, while the A2 model was essential for extracting the A1

asymmetry. In fact, the A2 model incurs the single largest systematic error on the extraction of A1;

see Section 8.1.1.

The parametrization by N. Bianchi [89] uses Regge theory to constrain the A1 fit at Q2 = 0,

describing high-energy cross-sections as

σ
1
2 − σ

3
2 ∼ sα0−1 (2.33)

(with s defined in Section 1.1.3) and

α0 = J − α′m2
t (2.34)

is given in terms of a spin J and mass mt of an exchanged meson, assumed to be the a1(1260)

or f1(1285) for the isovector and isoscalar contributions to the cross-section, respectively [89], and

α′ ∼ 0.85. A global fit in terms of W was applied using this general form at the real photon point.

The parametrization in the resonance region uses an extrapolation from the DIS fit to the world

data, with resonance data added as a separately parametrized contribution, fit with a total of 9

parameters.

Very little data exists to parametrize A2, but some constraints can be applied to develop a

rudimentary model of this quantity. The first constraint, which can be derived from Eqs. 1.214,

1.220 and 1.219, is the Soffer bound [90]

|A2(x,Q
2)| ≤

√

A1 + 1

2
R(x,Q2) (2.35)

The Wandzura-Wilczek relation (Eq. 1.202) and Burkhardt-Cottingham Sum Rule (Eq. 1.204) were

used as further constraints to the model, although it is not yet known at this point whether they hold

exactly. 34 The model also makes the assumption that all higher twist effects are contributed by the

resonance region, with a smooth transition to the DIS region,35 where A2 → 0 in the scaling region

[90]. Model values of A2 used in this thesis are shown in Figure 2.56.

34In fact, we know from RSS data that it is very unlikely at least one these rules holds exactly, but RSS was not incorporated
into the described version of the model, and, in any case, these rules serve as a good first-order approximation.

35not necessarily true, but compatible with a fit to E155x data
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Figure 2.56: Model values of A2 [90] for the proton used to extract the g1 and g2 structure functions
in this thesis, shown in terms of missing mass W . Each curve represents a different Q2 bin. The
highest Q2 value shown in the top plot is the same as the lowest Q2 value shown in the bottom plot.
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2.7.3 Model for σn/σd

Derivations of the dilution factor in the elastic region rely partially upon the assumption that electron

scattering cross-sections of the various target materials are proportional to the number of n-p pairs

in the nucleus. Neglecting the small nuclear EMC effect (see Section 2.8), this is generally a valid

assumption. However, when using 12C to model the 15N (for background subtraction), we must

account for the effects of the unpaired neutron in 15N. This requires knowledge of the ratio of the

neutron cross-section σn to that of the deuteron σd. For inelastic scattering, Equation 1.75 gives,

for the neutron (n) or proton (p),

σ(n,p) ∝ 2 sin2

(
θ

2

)

F1(n,p) +
M

ν
cos2

(
θ

2

)

F2(n,p) (2.36)

in the inelastic region (W ≥ 1.07 GeV). The Rosenbluth formula (Eq. 1.49) gives, for elastic scat-

tering,

σn,p ∝
G2

E(n,p) + τG2
M(n,p)

1 + τ
cos2

(
θ

2

)

+ 2τG2
M(n,p) sin2

(
θ

2

)

(2.37)

In both cases, the proportionality constants for the proton and neutron are equal. Neglecting Fermi

smearing in the deuteron, we assume

σn

σd
=

σn

σn + σp
(2.38)

For elastic scattering events, values of GM and GE for the neutron and proton are derived from fits

to the world elastic scattering data [14]. For inelastic scattering, the F1 and F2 models explained

in the previous section are used for the proton. The structure function F1 for the deuteron is fit to

the world data in a similar method as described in the previous section, with F1 for the neutron in

the DIS region extracted using a specific free nucleon fit form, also developed by E. Christy and P.

Bosted as detailed in Ref. [88].

If we use Eq. 1.79 to rewrite Eq. 2.36 as

σ(n,p) ∝
[

2 sin2

(
θ

2

)

− M

ν

2x

1 + 1/τ
cos2

(
θ

2

)

(R(n,p) − 1)

]

F1(n,p) (2.39)
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and make the assumption that the longitudinal to transverse virtual cross-section ratio is approxi-

mately equal for all nucleons, that is

R(p) ≈ R(n) (2.40)

then we can see that its contribution to the cross-section ratio is negligible,36 so that

σn

σd
≈ F1(n)

F1(n) + F1(p)
(2.41)

and F2 can be neglected within the systematic bounds of accuracy for this model (see Section 7.2).

2.8 Radiated nuclear cross-section models

In order to properly calculate a model for dilution factors (Chapter 5) to remove scattering contribu-

tions from background material in the target, it is essential to have good models of the unpolarized

cross-sections of the various materials in the target. As shown in Section 2.4, the materials present

in the targets that must be modeled are free protons (p) and nitrogen-15 (15N) in the ammonia,

aluminum (Al) and Kapton (C22N2O5H10) in the target entrance and exit windows, helium-4 (4He)

used to freeze the ammonia, and carbon-12 (12C), used in a separate cell to determine the total

length L of the target + helium and the effective length `A of the frozen NH3 target material.

The unpolarized cross-section models used in this thesis are generated by a code developed by

P. Bosted, and include radiative corrections using the (now standard) treatment of Mo and Tsai [91].

Modeling radiative effects requires both internal and external corrections; detailed explanation of

these radiative corrections is deferred until Section 6.4. A cross-section of the form

σTOTAL = σBorn + σRC (2.42)

is derived for each material compared. Ratios of all the cross-sections involved are required for

determination of the material lengths and dilution factors (see Chapter 5).

The Born cross-section σBorn is the basic (tree-level Feynman diagram) scattering cross-section

36At the large energies involved in inelastic scattering, electric and magnetic modes of the virtual photon are comparable,
so that the quantity (R − 1) is small, allowing this approximation.



152

W(GeV)
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

cr
os

s-
se

ct
io

n 
ra

tio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=0.012Q

=0.0142Q

=0.022Q

=0.0352Q

=0.052Q

=0.0712Q

=0.102Q

=0.142Q

=0.202Q

=0.292Q

 at 1.606 GeVdσ/nσModels Fit of 

W(GeV)
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

cr
os

s-
se

ct
io

n 
ra

tio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=0.292Q

=0.502Q
=0.712Q

=1.002Q
=1.402Q

=2.002Q
=2.902Q
=5.002Q

=7.102Q
=10.002Q

 at 1.606 GeVdσ/nσModels Fit of 

Figure 2.57: Model values of σn/σd [87][88] used in the statistical (bin-by-bin) method of unpolarized
background calculation later in this thesis. Each curve represents a different Q2 bin. The highest Q2

value shown in the top plot are the same as the lowest Q2 value shown in the bottom plot. The flat
region for W < 1.08 GeV shows the elastic cross-section ratio. All other values are W -dependent
inelastic ratios. The values depend slightly on beam energy (E = 1.606 GeV in this figure).
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from the nucleon; its value is dependent only on the 3 free inclusive parameters E, Q2 and W .

For the nuclear cross-sections (4He, 12C, 15N, Al) the effective charge radii of the nuclei was taken

from Ref. [92]. To parametrize the quasi-elastic peaks37, the formalism of superscaling by Donnelly

and Sick [93] is used, in which cross-sections are determined in terms of a kinematic function ψ

which gives results independent of A (atomic mass) and the momentum transfer q. Specifically, a

polynomial fit to the superscaling function of Ref. [94] was used, with binding energies per nucleon

Es ranging from 15-20 MeV, and the effective Fermi width parameter KF used in Fermi smearing

ranging from 180-260 MeV, depending on the nucleon species [95]. This function was fit to both

longitudinal and transverse cross-sections in the quasi-elastic region, with values for the GE and

GM form factors parametrized in Ref. [13].

For inelastic scattering, a Fermi-convolution of the smearing of free nucleon cross-sections was

fit to cross-section data. The fit equation employed a total of 15 free parameters Fi and 15 Fermi-

smearing parameters ηi in the form [95]

σA(W,Q2) =

15∑

i=1

[Zσp(W
′
i , Q

2) + (A− Z)σn(W ′
i , Q

2)]Fi (2.43)

where

(W ′
i )

2 = W 2 + ηiKF |~q| − 2Es(ν +M) (2.44)

Specific values for all the parameters ηi, F1, KF and Es can be found in Ref. [95]. Cross-sections

for the free proton and deuteron (neutron) were calculated from a fit to the world data of F p
1 and F p

2

[87], or Fn
1 and Fn

2 [88], respectively (see Eq. 1.75).

The last factor that needs to be employed in any A-dependent nuclear scattering model is the

well-known nuclear EMC effect [97], which is, in effect, a deviation from the linear scaling of inelas-

tic scattering cross-section magnitude as a function of A. This effect was parametrized using SLAC

data [98],38 and was assumed to be only x-dependent, with no dependence on Q2 or beam energy,

and assumed constant for x > 0.7.
37The term quasi-elastic is used because scattering from events in a bound nucleus at W ∼0.938 GeV can include

correlations between nucleons, and thus aren’t elastic in the true sense.
38This reference contains an empirical fit to scattering data from nuclei in various targets ranging from A = 4 to A = 197,

specifically measuring the A-dependence of cross-sections at SLAC energies.
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The radiative correction cross-section σRC , unlike σBorn, directly depends on the thickness of the

material, due to external radiative correction and range staggling effects. In practice, the radiated

cross-section for 1% and 2% of a radiation length39 X0 is calculated. The target mass thickness is

approximately 1.5% of a radiation length. The total cross-section σTOTAL is given simply by interpo-

lating to the radiation length fraction ρ`/X0 of the material. Note that the radiation length of 15N is

not well known, so it is assumed that X0(
15N) = 15

14X0(
14N). Radiation lengths of the various target

materials are listed in Table 2.3.

Using the formalism for unpolarized cross-sections outlined in Section 6.4, the radiative correc-

tions to each Born cross-section can be found, and using

n ∝ ρ`σTOTAL (2.45)

the model can be used to determine the ratio of counts attributable to unpolarized backgrounds.

The probability of external Bremsstrahlung goes as t dν/ν, where ν is the photon energy, and t is

the thickness in terms of X0. External radiative corrections must take into account the total value of

t, so precise knowledge of mass thicknesses (in g/cm2) is needed for accurate radiative corrections

to unpolarized cross-sections. The following materials are accounted for:

1. Materials along the beam line from the back edge of the target to the scattering center (ttarg)

2. Materials from the scattering center to the edge of the target along the scattering path (ttarg/ cos θ)

3. Combined thickness of banjo windows and target cell exit windows (see Section 2.4).

4. All elements external to the target traversed by the scattered electron.

The last of these is an explicit function of θ, and accounts for aluminum in the (inward bowed) target

vacuum shield exit window, aluminum in the thermal shields (which increases in thickness at wider

angles), layers of superinsulation (for the target solenoid; see Section 2.4), air (outside the vacuum

shielding), and the inner layer drift chambers (see Section 2.5). 40 The total mass thickness of

39A radiation length is defined as the amount of a material, usually measured in g/cm2, necessary to cause a high-energy
electron to lose all but 1/e of its original energy; it is characteristic to a given material in terms of Z and A.

40Of the 3 layers of drift chambers, only the first is considered for radiative corrections. The complex magnetic torus field
dominates the second layer (so it is neglected). By the time the third layer is reached, any radiated photons will be emitted
in the particle direction, and hence absorbed by the calorimeters, so they are not considered.
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these external elements as a function of θ is shown in Figure 2.58. As one can see, the radiation

lengths of these external elements (ranging from 1.1% to 1.5% of X0) are comparable in magnitude

to that of the actual target, and therefore need to be accounted for if accurate modeling of the cross-

sections is to be made.

Table 2.3: Radiation lengths of irradiated materials in the EG1 experiment. Kapton has a very simi-
lar cross-section and radiation length to 12C, and the latter is used for its cross-section calculations.

Material Radiation Length(X0)(g/cm2)
p (free proton) 61.28

d (free deuteron) 122.4
4He (liquid helium) 94.32

12C (amorphous carbon) 42.7
15N (nitrogen-15) 37.99× 15

14=40.70
Al (aluminum) 24.01
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Figure 2.58: Mass thicknesses, expressed as a dimensionless fraction of radiation length X0, at-
tributable to materials outside the target (e.g. thermal shields, insulation, air, inner layer DC; that
is, item 4 in the text) as a function of θ. Arrows point out reasons for sudden increases in the mass
thickness. The approximate limits of acceptance for this experiment are bounded by the vertical red
lines.



Chapter 3

Helicity and Particle Identification

3.1 Reading the Data Summary Tapes (DSTs)

3.1.1 DST organization

All crucial information regarding reconstructed events (produced by the SEB) and their constituent

particles is written to Data Summary Tape (DST) files and stored in the permanent storage silos

with the other important (raw data, n-Tuple, etc.) files from the EG1 data set. Only information

relevant to the analysis of reconstructed events (i.e. kinematics, event- and particle-correlated ADC

measurements required for particle identification, Faraday Cup counts, etc.) is recorded in the the

DST files, to conserve both analysis time and disk space.

When all calibration and raw data processing were completed, the final versions of the DST files

were uploaded from the silo to a semi-permanent 3 terabyte cache disk for easy reading. DST files

from viable runs1 were then organized in directories by beam energy and torus current (see Table

3.1).

1This includes all sets utilizing a normal electron beam, consistent main torus current and one of the main EG1b targets
(either NH3, ND3, 12C, empty (LHe), or frozen 15N).
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Table 3.1: All EG1b run sets with usable electron beam data, organized by beam energy and torus
polarity. These set labels are used throughout this and later chapters.

Set Label Run Number Range(s) Beam Energy(GeV) Torus Current(A)
1.6+ 25488-25559; 25669-26221 1.606 +1500
1.6− 26222-26359 1.606 −1500
1.7+ 28512−28526 1.724 +1500
1.7− 27644-27798; 28527-28532 1.724 −1500
2.3+ 27205-27351 2.288 +1500
2.5+ 28001-28069 2.562 +1500
2.5− 27799-27924; 27942-27995 2.562 −1500
2.8− 27936-27941 2.792 −1500
4.2+ 28074-28277; 28482-28494; 28506-28510 4.239 +2250
4.2− 28280-28479; 28500-28505 4.239 −2250
5.6+ 27356-27364; 27386-27499 5.627 +2250
5.6− 27366-27380 5.627 −2250
5.7+ 27069-27198 5.735 +2250

5.73− 26874-27068 5.735 −2250
5.76− 26468-26722; 26776-26851 5.764 −2250

3.1.2 Reading particle data from the DST

The data in the DST were written in a compressed format using a a FORTRAN-based bit-packing

algorithm [99]. Events were written to sequential “buckets” containing a single beam helicity. A

C++ program, constructed around a previously used DST bank opening prototype [100], unpacked

the compressed data banks and converted the data to numerical arrays. After unpacking and

accessing the event-by-event DST data, it was then possible to make kinematic corrections and

cuts not included in the SEB or calibration processes. In practice, it was easiest to compress the

data to successively more compact forms (beginning with ROOT trees [101]) for quick, successive

reading. The basic particle identification cuts and kinematic corrections were implemented in the

DST reader, and the output was written to ROOT tree files for temporary storage. More specific

cuts and corrections could then be added later, so that various cut options could be applied and

tested as needed with relative ease.

The basic purpose of the DST reader was to:

1. Read run, helicity, event and particle information from the DST file.
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2. Truncate unwanted helicity buckets that could potentially lead to biased or erroneous asym-

metry measurements (see Section 3.2).

3. Apply basic particle identification (PID) cuts on the scattered electron candidate for each event

(see Section 3.4), and cut out pion background (see Section 4.1).

4. Correct momentum and other kinematic quantities for all particles (see Section 4.2).

5. Write the needed electron event data to a ROOT tree file, along with data pertaining to any

additional particles in each event. Secondary charged particles in a 2-charged particle event

are candidates for an elastically scattered proton, needed for determination of beam × target

polarization (PbPt) (see Section 6.2.2).

3.1.3 Tree File Structure

A ROOT Tree is an array, or n-Tuple, with elements that need not be of the same data type [101].

2 Each event constitutes an entry in the tree. Each entry has members divided into branches for

organization. Separate branches are defined to hold crucial run information (e.g. beam energy,

torus current, etc.), event-specific information (e.g. beam raster position, number of particles, he-

licity information etc.), and additional branches pertain to crucial information for each particle in

the event (e.g. x, y and z position and momentum, EC and CC channel data, etc.) Text log files,

containing scalars, including total gated and ungated Faraday cup charges, were also produced.

Tree files provide a legible repository of event-by-event data, are much faster to read than the

compact DST files, and are useful for the application of cuts requiring refined detail (such as fiducial

cuts (Section 4.4) and elastic proton kinematic cuts (Section 3.5)). However, there are still millions

of electron events in each run, leading to a tree file size exceeding 2 GB for some runs. 3

It became clear that more data compression was required for an efficient, repeatable analysis

in kinematic bins of Q2 vs. W . This process is outlined at the end of this chapter in Section 4.6.

First, however, details must be provided regarding the basic cuts and corrections made prior to the

further compression of data.

2In fact, they need not even be numbers. C++ and ROOT data objects can also be members of a ROOT tree.
3Low energy outbending runs, in particular, included up to ten times as many reconstructed events as a higher energy

inbending run.



160

3.2 Removal of Problematic Helicity Buckets

3.2.1 Identifying helicity buckets for removal

The electron beam is longitudinally polarized, with the polarization direction alternating pseudoran-

domly at a rate of 30 Hz. The events that occur within the ∼0.03 second window are referred to as

a helicity bucket. The raw asymmetry is a function of the kinematics, defined as

A =
n− − n+

n− + n+
(3.1)

where n+ and n− are the count rates of scattered events in the + and − helicity buckets, respec-

tively. Measurement of asymmetries is the goal of this analysis. Thus, it is very important that the

helicity buckets are properly identified. Also, one must be careful not to remove problematic helicity

buckets (those containing unreadable data, for example) in a way that biases one of the two helic-

ities; this can also result in a non-physical asymmetry. For this reason, whenever a helicity bucket

is labeled for removal, the opposite member of its pair, or complement, is also removed to prevent

possible bias in a measured asymmetry.

Helicity buckets alternated pseudorandomly at 30 Hz, and the helicity state information was

recorded in two separate data outbank files. 4 Occasionally, due to detector dead time or other

errors, mistakes occured in the recording of helicity buckets. To correct these errors, a synchro-

nization clock signal with exactly double the frequency of the polarization switch was used to identify

skipped helicity buckets (see Figures 3.1 and 3.2), and reorder helicity buckets by pair. They could

then be labeled according to Table 3.2. Helicity buckets without a complement were deleted from

the data.

This makes the identification of unpaired helicity buckets (unpaired because their “partners”

failed to write due to dead time or other reasons) very easy, as a bucket labeled 1 should always

be followed by a 4, and a 2 always followed by a 3. Buckets that do not properly fit into this scheme

were flagged with a negative number label for removal.

To ensure that the helicity bucket filtering worked as expected, HeLP (Helicity Pairing) tables

4These are labeled TGBI and HLS, with the latter taking precedence where the information differs - see Ref. [46], pages
121-123.
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Figure 3.1: The clock sync bit is used to detect a missing helicity bit and arrange the helicity
buckets into original/complement pairs labeled 1 through 4, according to helicity and position in the
pair. This aids in identifying bad helicity buckets. (See also Ref. [2], p.97-98.)

Table 3.2: Helicity label definitions.

Label Polarization Position in Pair
1 − original
2 + original
3 − complement
4 + complement
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Figure 3.2: Helicity bits monitored online during the EG1b experiment, as explained by Figure 3.1.
Helicity bits are shown in yellow (Ch1); and the original/complement states in cyan (Ch2). The
magenta (Ch3) shows the triggering of the helicity flips by the clock sync bit. From Ref. [63].

were generated, listing the sequence of helicity labels, polarization states and applied flags (see

following subsection).

3.2.2 Further helicity bucket problems

In spite of the above precautions, review of the HeLP tables showed that the algorithm used to

eliminate unpaired helicity buckets when generating the DSTs did not work perfectly. Namely, the

following problems were found:

• Not all unpaired helicity buckets were properly flagged.

• Not all event numbers were properly matched between the two helicity data banks and HeLP

tables.

• A possible file closing error generated suspicious-looking helicity labels at the end of every
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Table 3.3: Short excerpt from a HeLP (Helicity Pairing) table. The three (normally) single digit num-
bers are, from left to right, the helicity label, polarization and status flag, respectively. A status flag
of 1 represents a good bin, while negative flags mark helicity buckets that are removed from the
analysis. Note the unpaired “2” helicity label that is flagged with a “-1000” for removal by the “patch”
program. This is done to complement the “-500” (an unreadable helicity), previously flagged for
removal in the data banks. The other (6-digit) numbers represent the ranges of reconstructed scat-
tering event numbers (which number around 100-200 for a given bucket in this particular sample).
Events numbered in the specified range are assigned the nominal polarization if the flag is equal to
1.

.

.

.

751719 751863 1 1 751719 751863 1

751865 752012 4 0 751865 752012 1

752013 752152 2 0 752013 752152 1

752154 752276 3 1 752154 752276 1

752285 752412 1 1 752285 752412 1

752417 752543 4 0 752417 752543 1

752546 752689 2 0 752546 752689 -1000

752986 753083 -500 -500 752986 753083 -10

753084 753205 1 1 753084 753205 1

753207 753326 4 0 753207 753326 1

753328 753454 2 0 753328 753454 1

753457 753593 3 1 753457 753593 1

753597 753763 1 1 753597 753763 1

753767 753931 4 0 753767 753931 1

.

.

.

file, possibly corresponding to repeated writing of the same events.

A C++ program and PERL script were written [102] as a patch for the DST reader, which reads

the HeLP tables, looks for the above discrepencies, adds appropriate flags5 and rewrites the table.

This new table is then used as a reference for labeling the helicity states of particles when the DST

reader loops through the particle events (see Table 3.3).

Note that these tables determine the relative helicities between events in adjacent helicity buck-

ets, since insertion of the half-wave-plate and energy-dependent spin precession can reverse the

meaning of the recorded labels. To determine the absolute helicities (i.e., whether 0, 1 represents

5The last of these three problems is solved simply by flagging all helicity buckets a fixed distance from the end of the file
for removal.
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+, − or −, +) are determined by checking that the sign of the elastic asymmetry is always positive

(see Section 3.3.3).

3.3 Quality Checks

There are over 2000 runs in the EG1b data set, but not all of them contain usable data. Runs

are categorized by target (either NH3, ND3, 12C, empty, or 15N), and removed from the data pool if

unusable. Runs used for diagnostic purposes (Møller runs, DAQ tests, cosmic ray runs, etc.) were

excluded, as well as runs with problems encountered during data collection (bad beam charge

asymmetry, massive DC high voltage trips, loss of target polarization, etc.). In cases where prob-

lems only affected part of a run, individual DST data files in the run were systematically checked

and kept if possible.

3.3.1 Beam charge asymmetry check

The Faraday Cup records the cumulative beam charge incident on the target (Section 2.3.4). It

is desirable to have the same amount of beam charge corresponding to both of the beam helicity

states, in order to avoid a false asymmetry that might correlate with unknown deviations in the

behavior of the Faraday Cup over time. Thus, the total beam charge asymmetry was measured for

each file in every run:

Abeam =
FC+ − FC−

FC+ + FC−
(3.2)

where FC± is the ungated Faraday Cup counts for a + or − helicity state. 6 A rigorous study of the

beam charge asymmetry was made [64], finding the expected null result. The study showed that

a cut of ±0.005 on the beam charge asymmetry removed only obviously anomalous files. Figure

3.3 shows this cut applied to two different runs. Because a beam charge asymmetry affects only

the polarized data, this cut was not enforced on unpolarized background subtraction runs (carbon,

frozen nitrogen and empty).

6The ungated charge is desired because the task at hand is the search for biases in the physical beam line and detector,
independent of DAQ performance.
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Figure 3.3: Beam charge asymmetries for two two representative runs. Files with asymmetries of
greater magnitude than 0.005 were cut, including several of the early files in Run 26292 (left). This
is an unusual case; less than 1% of the total data were excluded by this cut. Run 27313 (right)
was a more typical case. (Half-integer file numbers represent data overflow from the previous file
exceeding the 2 GB file size limit.)

3.3.2 Event rate check

Measurements of the count rates, normalized by the (livetime gated) Faraday Cup, are useful for

checking the quality of the detector data. A sudden change in the count rate of inclusive electrons

in an isolated sector can indicate a high voltage trip or detector problem (usually in the DC or EC

channels). Uniform drops in count rate across all sectors indicate a change in the target, DAQ

or general electronics (e.g. a leak in the target, an unrecorded change in EC thresholds, etc.).

Also, because the count rates varies with target type, it is possible to identify an improperly labeled

target or Faraday Cup bit (see Section 4.5). Figure 3.4 shows an example of this method of target

identification. 7

Count rates were studied individually for all DST files in every run containing viable data. A

change in count rate likely indicates a change in detector acceptance, which does not in any way

alter an asymmetry measurement (see Section 1.4). Therefore, no NH3 files were cut from the

asymmetry measurement based on count rate. However, for the purposes of determining dilution

factors (and other background subtraction), it is important for the acceptance of the NH3 runs to

match that of the 12C and LHe runs.
7Unfortunately, the software configuration at the time of this experiment necessitated the manual entry of the target label

by shift-takers for each run, resulting in many erroneously labeled runs.
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Figure 3.4: Charge-weighted count rates in all 6 sectors for a subset of the 2.3 GeV inbending data.
The change in count rates corresponds to differing targets. Most runs are ammonia (NH3) with 4
carbon (12C) runs and 2 empty target (LHe) runs corresponding to the points with obviously lower
rates. Plots like this were useful for verifying the target labels. (The LHe target count rates here are
plotted before the Faraday Cup bit correction (Section 4.5.2), so these two runs show count rates
that are too high by a factor of 2.)

The unpolarized target runs are interspersed throughout the experiment, so that long-term

changes in the behavior of the detector affect all data equally (see Section 2.4). However, short-

term changes (due to HV trips, for example) can lead to a change in the count ratio bewteen targets,

causing an error in the dilution factor. For this reason, the count rates of every file in every run were

measured for each individual sector. Files with a count rate (in any one or more of the six sectors)

outside a ±5% limit relative to the count rate average for a given target in a given set were cut from

the files used to calculate dilution factors and other background. This limit was kept in place for the

lower energy (1.x and 2.x GeV) runs. The higher energy runs, however, showed greater statistical

fluctuations in their count rate,8 so the threshold for the higher energies (4.x and 5.x GeV) was

increased to ±8% (see Figure 3.5).

Whenever there was a prolonged change in the file count rate, an effort was made to scrutinize

the online electronic logbook [63] for the cause. Drops in count rate caused by acceptance changes

could then be removed with confidence. Changing rates caused by target refills (a particularly

prevalent issue with the 2.5 GeV outbending data) did not warrant removal of data. 9 In virtually

8This is due to a greater spread in the momentum of inclusive electrons from scattering processes.
9Instead, the averaged value of the count rate and resulting ammonia target length was incorporated into the dilution

factor for this case. Because this change in count rate actually corresponds to a change in the physical composition of the
target, the change needs to be incorporated into the overall dilution factor. In the case where target refills caused a count
rate change, the average rate was calculated for each segment of runs between the target refills, and the ±5% limit was
enforced for each of these subsets individually.
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Figure 3.5: A sample count rate check in Sector 3 for 5.76 GeV outbending NH3 runs (highlighted
in blue). The dotted line is the average count rate; files outside the range of the solid lines (denoting
the ±8% cut limit) are removed from the dilution factor and background calculation data (but still kept
for asymmetry measurement). Gray points represent files for other targets (analyzed separately).
Note that the scale is selected to show details in the fluctuations.

Figure 3.6: A example of the identification of data collection problems for 5.7 GeV inbending data in
sector 5. The online logbook was used to correlate the problems with recorded issues during data
collection. FC-weighted count rates are shown. Magenta-highlighted data are NH3 runs.

all cases where the count rate dropped suddenly in a sector for prolonged time periods, the reason

was clearly identified, and the proper course of action was taken (Figure 3.6).

3.3.3 Target polarization and half-wave plate check

Measurement of the double-spin asymmetry is dependent on the relative longitudinal polarization

direction between the beam and the target. The beam polarization flips approximately every 30

ms (Section 2.2); great care has already been taken that “buckets” of alternating beam helicity are

symmetrically labeled (Section 3.2). The constant alternating of this helicity prevents any bias in the

double-spin asymmetry resulting from acceptance changes over time. The half-wave plate (which

reverses the beam helicity states) is also periodically inserted into the beam injection line (Section
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2.2.1) to rule out any possible false asymmetries dependent the absolute polarity. The target po-

larization remains constant throughout periods lasting several runs (see Section 2.4), but is also

periodically reversed to minimize systematic errors from single-spin scattering or inherent detector

asymmetries.

Unfortunately, the half-wave-plate (HWP) status and target polarization were not always recorded

correctly in the DST. 10 To further complicate matters, electron spin precession in the recirculation

arcs causes multiple reversals of the beam polarity within the accelerator. This phenomenon is

beam-energy dependent, meaning some energy sets require a factor of −1 on the double-spin

asymmetry, in addition to the HWP and target polarization sign corrections.

Fortunately, the elastic double-spin asymmetry is known to be positive by definition (Section

1.4). This fact, along with the information recorded in the online logbook [63], was used to resolve

ambiguities in the HWP status, target polarization and spin precession factor. For each individual

DST file, the inclusive double-spin asymmetry (Eq. 3.1) was measured in the elastic region only.

This region was defined by a cut on W depending on the elastic peak resolution for the given beam

energy (found later in Table 6.4). If all three of the above Boolean (+/−) variables are properly

defined, the asymmetry should be positive (or, equivalently, the raw elastic assymetry (corrected

only for spin precession) multiplied by the HWP status should have the same sign as the target

polarization - see Figure 3.7). If the asymmetry is not positive, one or more of these variables must

be fixed in the database, usually based on a careful reading of the online logbook.

Once these factors are correctly determined, the corrected value of the raw asymmetry evalu-

ated henceforth is given by

Araw(corr) = Araw × ftarg × fHWP × flinac (3.3)

where the factors f are the corrective values (±1) for the target polarization, HWP status and

electron spin precession.

Ultimately, a reference table was compiled containing correct target labels, HWP status, target

polarization, spin precession factor, and Faraday cup charge corrections after a check of all runs.

10Typically, the polarization reading was only faulty at the experiment start (1.6+ data) and during an NMR readout failure
in the 2.3+ set, but the recorded half-wave-plate status was often incorrect throughout the whole experiment.
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Figure 3.7: Plots showing the raw elastic asymmetry times HWP, against the target polarization sign
(colored background). Also shown are the averaged asymmetry value and NMR target polarization
readout. Each color represents a different target. The first plot shows the correct HWP and target
sign for an NH3 run (indicated by cyan); note that the HWP corrected asymmetry matches the target
sign (negative). The second plot shows an ND3 run (magenta) for 5.7 GeV with the wrong HWP sign
(note the HWP-corrected asymmetry does not match the target polarization). Asymmetry signs for
ND3, especially at high energy, were the most difficult case to discern, but were necessary to know
to put together a complete experimental history. The third plot is a carbon target (red) with no
discernable elastic asymmetry. The recorded target polarization for these (and other unpolarized)
runs was changed to zero. The last plot shows an NH3 run that reversed target polarization during
the middle of a run due to a polarized target malfunction; this run was removed from the analysis.
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Figure 3.8: Histogram of event rate density over different regions of the beam raster. The blue
area at the top is an area of lower event density, most likely caused by settling of the frozen NH3

suspension in the surrounding LHe. The ’crosshair’ pattern is an anomaly caused by a bug in the
null ADC channels, and has no physical meaning.

3.3.4 Raster pattern check

Another useful test for checking file quality is the plotting of the number of events as a function of

raster coordinate position, as is shown in Figure 3.8. Inhomogeneities in these plots were then

carefully scrutinized to determine if they were inconsequential to the analysis (like the area of lower

rate seen in Figure 3.8), or whether they indicated a possible problem with the run. In general, a

lower count rate area (particularly near the top of the pattern) indicates “settling” of the target mate-

rial, and does not affect overall packing fraction or consequent dilution factors/asymmetry, while an

area of elevated count rate (particularly a crescent-shaped “hot spot”) indicates the electron beam

scraping the target edge or other interfering material in the target. These runs must be checked for

further problems, then either be removed or corrected as necessary. Few runs exhibited problems

requiring further investigation, but two specific recurring cases warrant mentioning here.

Two separate target inserts were used in EG1b (Section 2.4), one containing the main (NH3 and

ND3) targets, and the other the frozen 15N target. Both inserts contained a 12C target. All carbon

run raster patterns in the first (of two) 15N/12C “mini-experiments” (runs 27326-27380) showed a
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strange ’crescent’ shape of unknown origin (Figure 3.9). A comparison was made between the

count rates in the top half vs. the bottom half of the target. By application of the same model used

for packing fraction calculation (Section 5.5.2, applied to the carbon instead of ammonia target),

it was determined that the rate difference corresponded to no more than a 2% error in the overall

effective carbon target length, so the runs were kept, accounting for this systematic error [95].

Of greater concern was a raster pattern anomaly that appears in all empty target (LHe only)

runs, beginning at Run 27899, persisting through the end of the EG1b experiment. The start of the

problem correlates to the identification of a leak in the ND3 target during the 2.5 GeV outbending

set. The crescent-shaped “hot spot” that persists in the empty target thereafter (see Figure 3.10)

likely results from a wire or other debris in the window path after the disturbing of the target. 11

The empty (LHe) target is of crucial importance to the measurement of the total target length L,

needed for unpolarized background subtraction. The special correction required to this target data

is discussed later, in Chapter 5.

3.3.5 Inclusive W -spectrum check

Due to the beam energy dependence of the elastic peak prominence, it was sometimes difficult to

identify the difference between ammonia and carbon targets based on an overall inclusive count

rate. Also, there were occasionally slight changes in count rate within a particular target type (due

to target leakage or EC threshold change, for example) that warranted closer inspection.

As a final check on overall run quality, the spectrum of each run, in terms of invariant mass

W , was checked for the presence of any obvious problems (see Figure 3.11). Where integrated

inclusive count rates between differing ammonia and/or carbon targets are similar, the identification

of an elastic peak at W = 0.938 GeV easily distinguishes these cases. In the case of a varying EC

threshold, a slight shift in the high-W limit was noticed. Runs with the differing count rate12 were

excluded from dilution factor analysis (but still kept for asymmetry measurements).

11An analysis of the “hot spot” indicated no sign of an elastic proton peak, so it is not frozen ammonia or frozen H2O
contamination.

12This indicates a change in the detection threshold at low momenta, occurring in the early part of the 2.3+ data. The
effect diminished when a reasonable low-momentum cut was implemented.
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Figure 3.9: Raster pattern quality checks for three different runs. The top pattern shows the (good)
raster pattern from a 12C run on the main (ammonia) target insert (Run 27313). The middle pattern
shows the problematic raster pattern common to 12C runs on the nitrogen/carbon target insert, in
the first of these special run sets (Run 27340 shown). The third pattern shows a nearby 15N raster
pattern (Run 27342), indicating this problem affected only the carbon runs, not the whole target
insert. This figure is also found in Ref. [95].
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Figure 3.10: Raster pattern for an empty (LHe) target run in the latter part of the EG1b run set. The
elevated count rate in the lower right indicates a problem of unknown origin.

3.3.6 Miscellaneous issues

Naturally, given the large number of variations that occur during an experiment of this duration,

many issues arise that cannot be encompassed by a simple set of well-defined rules for inclusion

and exclusion of data. Where cases involving selection based on quantifiable measurements oc-

curred (i.e. beam charge asymmetry, count rates, etc.), data were cut according to strict criteria

unrelated to the douple-spin asymmetry, so as to avoid introducing any unintentional bias into the

analysis.

Scrutiny of the online logbooks revealed many underlying problems with certain runs that usu-

ally, but not always, correlated to one or more of the previously described quality check violations.

Obviously problematic runs were removed from all analysis. Problems explicitly labeled in the log-

book included13

• Experiment not ready (all runs prior to 25747)

• DAQ problems (26275,26230,28388)

13This list is not by any means comprehensive, and is intended only to serve as an example of problems encountered
during data collection.
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Figure 3.11: W -spectra check for three EG1b runs. The blue and red represent positive and nega-
tive relative polarization inclusive counts, respectively; these generally overlap, in the shown plots.
The top two diagrams show the spectra of two consecutive runs (26720, 26721), the top NH3 and
the middle 12C. Note the difference in the (quasi)elastic peak (W ∼ 0.938 GeV) region. These
two runs are high-energy (5.76 GeV) runs. Low energy runs have a much more prominent elastic
peak (bottom diagram, run 25790, 1.6 GeV). Note the obvious asymmetry between the polarization
states in the elastic region at the lower beam energy.
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• Torus current malfunction (26723-26775)

• Large number of HV trips (26506)

• Beam off target (26558-26559, 27835, 26903-26924)

• Target irradiation/annealing not completed (26842)

• Bad EC thresholds (27490)

• Bad CC threshold (28310)

• Incorrect pedestal values (28343-28349)

• Thresholds set for wrong energy (28513-28521)

• Sudden target polarization loss/change (25802,27263)

• Beam helicity labels changed during run (25888)

• Wrong DAQ configuration file (26510-26522,27123)

• Target not yet polarized (26036)

• Changed target during run (26178)

• Wrong size raster and thresholds (26468-26480)

• Time-of-flight malfunction in 3 sectors (27399)

• Missing EC, CC channels (27445)

• Target only half full (27803-27819; 27821)

• Beam energy 200 MeV higher than rest of set (27933-27941)

• HWP inserted during run (28324)

• Wrong beam energy used in SEB reconstruction (28415,28444)
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In addition, all runs containing 2 or fewer raw data files14 were also removed, regardless of

documentation. These runs compose only a very small minority of the data, and runs were usually

stopped this quickly only if a problem occurred.

3.3.7 Data Organization and Tests of Quality Checks

After comprehensive lists of good files for the cases of asymmetry measurement and background

removal were organized, directories containing soft links to the cached files were created. One was

(labeled RATE/) for files of all targets used for background removal (including cuts on the inclusive

count rates), and another (labeled ASYM/) linked only to frozen ammonia target runs considered

good for asymmetry measurements (no count rate cuts included).

As a final check, tests on the overall asymmetry sign (Figure 3.7) were rerun using corrected

polarizations. Also, count rate checks for complete runs (Figure 3.4) were redone to check for

correct target labeling and rate cuts.

With confidence that only high-quality data are referenced in the database, and all preliminary

particle identification cuts and kinematic corrections in place, analysis then proceeded to the next

steps.

3.4 Electron Identification

The SEB labels particles by their time-of-flight, charge and momentum, mainly as determined by

the scintillation counter (SC) and drift chamber (DC) detectors (see Section 2.6.2). However, it is

difficult to distinguish light hadrons (especially π−) from electrons simply by their trajectory and flight

time, as, at GeV energies, their time-of-flight distributions overlap, especially at forward scattering

angles [30]. Fortunately, the interaction of hadrons with matter differs significantly from that of

electrons. This fact is exploited by the Cherenkov counters (CC) and electromagnetic calorimeters

(EC) to make a basic preliminary particle identification (PID) for the DST reader to utilize as a

starting point in identifying the electron and its associated particles. In addition to the requirement

that the charge q = −1 and β ≡ v/c = 1 (a good approximation at GeV beam energies), limits

14Complete runs typically contained around 20 raw data files.
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are set on the values of the ADC signals associated with the EC and CC for the particle to be

considered an electron candidate.

3.4.1 Cherenkov Counter Cuts

As previously noted, the Cherenkov Counter is used to distinguish electrons from hadrons by count-

ing the radiated photons as a superluminal particle travels through a gas (see Section 2.5.3). The

rate of photon production (with respect to distance traveled, x) of a negatively charged particle due

to Cherenkov radiation can be calculated to be [8]

d2N

dλdx
=

2πα

λ2

(

1 − 1

β2n2(λ)

)

(3.4)

where α = 1
137 is the fine structure constant, λ is the wavelength of the emitted light, and n(λ) is

the refractive index of the medium.

At the 1-6 GeV energies of Jefferson Lab, electrons can safely be considered ultrarelativistic

(β ≈ 1). Pions, however, have velocities considerably smaller than c. Therefore, one expects a

smaller number of Cherenkov photoelectrons for pions than for electrons. Recall from Section 2.5.3

that particles do not emit Cherenkov light unless β > c/n(λ); this condition is not met for pions

below a momentum of 2.7 GeV, making the CC the ideal tool for separating low momentum pions

from electrons. Statistical (Poisson) distributions of measured photoelectrons are expected. 15

Specifically, we observe two approximately overlapping Poisson distributions with different peaks

corresponding to pion and electron events, with pions having a sharper, lower peak, consisting

mostly of sub-threshold noise. Figure 3.12 shows these distributions.

A minimum of a 2.0 photoelectron signal was required for an electron candidate at momenta of

less than 3.0 GeV. This removes a large number of pions from the inclusive electron candidates,

but not all of them, of course, as the upper tail of the Poisson distribution trails under the electron

distribution. At higher momenta, where β → 1 for both pions and electrons, it is not possible to

segregate the electrons and pions in this manner without incurring a very high electron loss, as

they mix heavily (see lower figure). Therefore, at momenta greater than 3.0 GeV, a very low cut of

15 Poisson distributions are generally expected whenever a phenomenon with a constant expected number of events per
unit time is measured during a sufficiently high number of observations [103].
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0.5 photoelectrons is used, 16 and other methods, outlined in the following sections, are relied upon

to prevent pion contamination.

3.4.2 Electromagnetic Calorimeter Cuts

The Electromagnetic Calorimeter (EC) separates electrons from pions by the differentiation of min-

imum ionizing particles (MIPs), which include high-energy pions (and other hadrons), from elec-

trons, through their differing interactions with matter.

Pions, with a mass of ∼140 MeV, are considerably more massive than electrons (∼0.5 MeV).

The primary mechanism of energy loss for pions is through collisions with heavy nuclei. High-

energy pions obey the Bethe-Bloch formula of energy loss (see Eq. 4.25). According to this for-

mula, the energy loss rate dE/dx of a heavy charged particle decreases with increasing energy

and reaches a minimum at β≈0.96. At speeds higher than this, it begins to increase again, but only

very gradually, never again achieving the energy loss rate exhibited at lower energies [8]. 17 Past

this threshold of minimum energy loss, particles are referred to as minimum ionizing.

At energies in the GeV range, pions can safely be considered to be minimum ionizing. Elec-

trons, on the other hand, cannot be considered MIPs, due to the fact that the energy loss mecha-

nism governing electrons is very different than that for heavier particles, due to their much higher

charge-to-mass ratio. High-energy electrons, even at energies as low as 100 MeV, lose energy

primarily through Bremsstrahlung radiation (i.e. photon radiation emitted due to negative accelera-

tion of the charge) resulting in subsequent electron/positron pair production. The photon emission

probability varies as the inverse square of the particle mass [8]

σ ∝ e2

(mc2)2
(3.5)

meaning photon radiation loss by electrons is almost 80000 times as intense as from pions. The

energy loss rate dE/dx varies considerably with the energy of the electron, in contrast to the nearly

constant energy loss rate of MIPs [8].

16Below this value, PMT and other internal noise dominates the CC response.
17When energies near ∼100 GeV are reached, Bremsstrahlung radiation becomes significant; but this is far beyond the

energy range encountered at Jefferson Lab
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Figure 3.12: Spectrum of photoelectrons (p.e.) corresponding to photons detected by the
Cherenkov counters for the leading particle in each event. There are two superimposed (approx-
imately Poisson) distributions in each plot. The high peak at <2 p.e. represents primarily π−

particles, while electrons dominate the wider, higher distribution. The line represents the minimum
cut requirement imposed on the data. At high momenta (> 3 GeV), a minimal cut of 0.5 p.e. (to
block out sub-threshold noise) is used. Data shown are from the 5.76 GeV beam energy set.



180

Figure 3.13: Total energy deposited in the calorimeter vs. energy deposited in the inner calorimeter
layer only, for high (> 3 GeV) outgoing momenta in 5.7 GeV data. Pions appear as a small spot in
the lower left, while electrons fan out over a wide range of deposited energies. The enforced cut is
shown by the black line and arrows.

To differentiate between electrons and pions in the electromagnetic calorimeter (EC), plots of

EECtotal vs. EECinner were generated. This shows the total energy deposited in the calorimeter vs.

the energy deposited in the inner layers of the calorimeter only (see Section 2.5.5 for more details

on the calorimeter layer structure). The differences exhibited between pions and electrons are

dramatic, especially at higher momenta, as shown in Figure 3.13. The minimum ionizing nature

of the pions, resulting from their nearly constant energy loss rate, confines them to a very small

region on the plot, as opposed to the wide range of energy loss spanned by the photon radiation

and subsequent e+e− pair-production loss characteristic of electrons in matter. A lower minimum

of 0.22 GeV energy loss in the inner layer of the calorimeter18 was used to define an inclusive

electron.

Because the energy loss of electrons and pions is statistical, inserting a simple cut on the EC

18This corresponds to an actual reading of 0.06 in the inner EC channel ADC. EC values must be divided by 0.27 to
convert to actual energy lost. See Section 2.5.5.
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Figure 3.14: A final cut on the total EC energy per unit momentum restricts accepted particles to
the region of electrons. Plots for all 4 beam energies are shown. The other CC and EC parameter
cuts, as well as fiducial cuts (see Section 4.4) have already been implemented in these plots. Note
the resulting discontinuity in the histogram totals at p=3.0 GeV in the latter two figures.

energy does not completely separate the two particles. To improve the situation, cuts are also made

on the ratio of the deposited energy to particle momentum. With all the previous (CC and EC) cuts

in place, plots of ECtot/p vs. p (where p is particle momentum) were generated. Additional cuts

were then implemented to remove the bulk of any remaining pion contamination. More stringent

cuts were used at p >3.0 GeV to remove the greater π− background (see Figure 3.14). Based on

these plots, a minimum EC energy absorption to momentum ratio of 0.74 for p <3.0 GeV and 0.89

GeV for p >3.0 GeV were used for identifying electrons. 19

19These correspond to values of the EC ADC channel/p (with p in GeV) of 0.20 and 0.24, respectively.
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3.4.3 Particle identification parameters for elastic ep events

Exclusive analysis of elastic electron-proton scattering events is also required to measure the beam

× target polarization (Section 6.2.2). Momentum and kinetic energy conservation at the interaction

vertex is applied to 2-particle events for identification. 20 Because of the strict constraint of 4-

momentum conservation, we can afford to loosen the CC and EC cut criteria considerably without

contaminating the sample with non-electron triggered events. Instead, we rely on the restriction of

the kinematic conservation requirements to remove pions and other inelastically generated parti-

cles. Very loose cuts are used for both the electron and proton. The cut requirements used for all

4 cases in this analysis (inclusive electron (p <3 GeV), inclusive electron (p >3 GeV), exclusive ep

electron (p <3 GeV), and exclusive ep electron (p >3 GeV) and exclusive ep proton are recorded in

Table 3.4.

Table 3.4: PID cuts for electrons in inclusive and exclusive elastic ep analysis. EC values are given
here as EC ADC parameters for easy reference. All EC values must be divided by the sampling
fraction of 0.27 to get the actual absorbed energy in GeV.

Quantity Inclusive (p <3.0) Inclusive (p >3.0)

CC photoelectrons >2.0 >0.5
EECinner >0.06 >0.06
EECtotal/p >0.20 >0.24

Quantity Exclusive ep (pe <3.0)) Exclusive ep (pe >3.0)

CC photoelectrons >0.5 >0.5
EECtotal/p >0.15 >0.20

20Actually, all events with 2 charged particles are looked at. Neutral particles, which could just be Brehmsstrahlung
photons, are ignored.
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3.5 Elastic ep Event Selection

In addition to inclusive electrons, which must be very strictly identified by the cuts explained in this

chapter, exclusive ep events, scattering elastically as

ep→ ep (3.6)

are required for this analysis, not only for momentum corrections (Section 4.2.8), but for asymmetry

measurement for PbPt determination (Section 6.2.2).

For the identification of these protons, only events with 2 detected charged particles (including

the electron) are considered. Cuts used to make a preliminary identification of the electron are

identified in Section 3.4 and Table 3.4. Protons were identified by their time-of-flight using Equation

2.30, with the condition |δ| ≤ 0.9 ns. Cuts exploiting 4-momentum conservation are placed on the

proton, dependent on the kinematics of the electron, to identify elastic ep events.

The energy of elastically scattered electrons can be calculated by setting W = M in Eq. 1.9 as

[7]

E′
e =

Ebeam

1 + 2Ebeam sin2(θe/2)/M
(3.7)

where M is the proton mass and θe is the polar electron scattering angle. If we apply energy

conservation

Ebeam +M = E′
e + E′

p (3.8)

and use sin2(θe/2) = 1
2 (1 − cos(θe)), this yields

E′
p = Ebeam +M − MEbeam

M + Ebeam(1 − cos θe)
(3.9)

By noting E =
√

p2 +M2, the “missing energy” of the proton can then be defined as

∆E = Ebeam +M − MEbeam

M + Ebeam(1 − pze
/pe)

−
√

p2
p +M2 (3.10)
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This quantity is used to help define an elastic ep event. Constraints can also be placed on the polar

angle θp by using momentum conservation on the z-axis:

Ebeam = E′
e cos θe + pp cos θp (3.11)

Solving for cos θp and applying relativistic momentum, this gives

cos θp =
Ebeam − E′

e cos θe
√

E′
p
2 −M2

(3.12)

so that the “missing theta” is given by

∆θ = arccos




Ebeam − E′

e cos θe
√

E′
p
2 −M2



− arccos(pzp
/pp) (3.13)

Momentum conservation in the radial direction must also be considered. Since the initial momen-

tum in this direction is zero, the particles should travel in directly opposite radial directions, so that

the “missing phi” (in radians) is defined by

∆φ = |φp − φe| − π (3.14)

or, in terms of momenta,

∆φ = | arctan(pyp
/pxp

) − arctan(pye
/pxe

)| − π (3.15)

If the event is an elastic ep event, the ∆E, ∆θ and ∆φ should all be close to zero, within a margin of

error allowing for CLAS resolution. Deteriming optimal cuts was an iterative process. Histograms of

the “missing” quantities were made for all charged 2-particle candidates meeting the electron ep cut

criteria in Table 3.4 and proton TOF cut. Very wide elastic cuts were initially applied. The histograms

were then regenerated, with all these cuts in place (except the cut on the plotted quantity), and

the cut was tightened to border the (now narrower) elastic peak. This was continued until peak
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Figure 3.15: Cuts on ∆E, ∆θ, and ∆φ for elastic ep events in a 5.7 GeV outbending data run. Each
plot has the cuts on the other two quantities already applied. Also, a cut of 0.88 GeV < W < 0.99
GeV was used prior to plotting.

resolution reached its limit. Final plots of ∆E, ∆θ and ∆φ for a 5.7 GeV NH3 run are shown in

Figure 3.15.

In addition to these cuts, a cut was placed on the missing mass W . Depending on the resolution

of the elastic peak (which worsens as beam energy increases), a cut of 30-60 MeV from W = M =

0.938 GeV is used (these are listed explicitly in Section 6.2). Because the data skim files preserve

the W and Q2 values of the event (Section 4.6), it is not necessary to implement a fixed W cut in

this analysis stage. The W cut is instead optimized according to the resolution for each data set

just prior to the measurement of PbPt. The other final cuts used for elastic ep events are listed in

Table 3.5.

Of course, a small percentage of the isolated events are not actual ep events scattered from the
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free protons in the NH3, but are instead quasielastic background events scattered from 15N, LHe

and the target windows. Removal of the background is done by scaling of the same data from 12C

in the “wings” of the φ distribution; this procedure is also outlined in Section 6.2.

Table 3.5: Kinematic cuts used to select elastic ep events. See the text for details on these variables.
W -cuts are energy-dependent and not implemented until after binning of the data takes place.

Quantity cut

∆E ±0.15 GeV
∆θ ±1.5◦

∆φ ±2.0◦

W See Table 6.6

3.6 Miscellaneous Minor Cuts

At this point, all preliminary PID cuts have been developed for application to the data. Now, some

minor cuts are added addressing various issues, to prevent spurious events from surfacing in the

data.

3.6.1 Vertex cut

To help ensure scattering from target materials only, a longitudinal cut on the reconstructed z-vertex

position vz must be considered. Unfortunately, the target configuration makes it impossible to cut

out the target window material with a vertex cut, as the resolution of the event vertex reconstruction

is not fine enough to resolve distinct scattering peaks within the ∼2.3 cm distance of the target

banjo length. Thus, other techniques (i.e. dilution factor calculation) must be used to eliminate

contributions from the aluminum, Kapton and liquid helium on either end of the frozen ammonia

target material.

This considered, a vertex cut was put in place narrow enough to exclude events that scatter

off the LHe refrigerator ends21 but still include all properly scattered events within 3σ of the target

21This can be seen by the secondary purple “stripe” on the right of Figure 4.9, later in the text.



187

Figure 3.16: Average z-vertex position (in cm) as a function of run number. The error bars on
each run correspond to the standard deviations of the vertex position distributions of each run. The
weighted average over all runs agrees quite well with the nominal value of −55.1 cm. Plot courtesy
J. Pierce.

center (nominally located at -55.1 cm in CLAS coordinate space). The loose cut

−58 cm < vz < −52 cm (3.16)

was therefore placed on the data. Figure 3.16 shows the average z-vertex position as a function of

run number for the EG1b data.

Cuts on the x and y positions of the vertex were not made. However, raster patterns were

inspected for each run to ensure that the beam impacted the target and not the surrounding cell

(see Section 3.3.4).
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3.6.2 Trigger bits

Every reconstructed event in the DST contains a trigger bits variable.This integer represents a

16-bit binary number. An N-bit binary number can be represented in the form

a12
0 + a22

1 + a32
2 + ...+ aN2N−1 (3.17)

where the coefficients an are either 1 or 0 (i.e. the bit is present or not present). A trigger bit of

49313, for example, can be written as

49313 = 20 + 25 + 27 + 214 + 215 (3.18)

meaning that bits 1, 6, 8, 15, and 16 are present, in this example. Trigger bits 1-6 represent a

proper event trigger (CC + EC) in respective sectors 1-6. Trigger bits 7 and 8 represent triggers in

the EC only, with 8 representing a lower EC threshold than that normally used for event triggers.

Trigger bits 9-14 are unused, and trigger bits 15-16 (redundantly) record the value of the helicity

bucket. 22

Only events that contain valid hits in at least one sector are desired for inclusive analysis, so only

events containing trigger bits 1-6 were included in the data. Events with only bits 7 and higher were

cut. For pion background analysis, it was important to consider the behavior of the EC background

triggers, so trigger bits 7 and 8 were used for these studies (see Section 4.1).

3.6.3 Status flags

Each individual particle in the DST was correlated to a one or two-digit status flag variable indicating

the nature of the detector signal corresponding to the particle. A flag least digit value greater

than 5 corresponds to trajectories reconstructed from hit-based tracking only (Section 2.6.2). Only

accurately reconstructed events using time-based tracking are desired; these correspond to flag

least digit values in the range 0-5.

In the event that a particle is detected in all 3 superlayers of the DC (see Section 2.5.2), resulting

22Bits 15-16 are overriden by the modified variable read from the fixed helicity tables (see Section 3.2) and are not used.
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Figure 3.17: Difference in deposited EC energy between the total signal and sum of both layers of
the calorimeter. Events far from zero indicate an inconsistency in the internal signals of the EC.

in a very accurately reconstructed trajectory, a +10 is added to the flag variable. These are definitely

events that should be kept. Therefore, particles corresponding to 0 ≤ flag ≤ 5 or 10 ≤ flag ≤ 15

are kept, while all other particles are discarded.

3.6.4 EC energy sum correction

The Electromagnetic Calorimeter records 3 ADC signals for the energy deposited by an incident

particle, denoting the inner calorimeter layer (ECin), outer calorimeter layer (ECout) and total energy

deposited (ECtot) (see Section 2.5.5). Occasionally, the readings in these channels did not match.

That is, ECtot 6= ECin+ ECout (see Figure 3.17). This occurred because, occasionally, part of the

energy was not recorded in one or more of the channels, even though these represented perfectly

good events in every other respect. Thus, the correction

ECtot = max(ECtot, ECin + ECout) (3.19)

was enforced to ensure that the full measured EC energy was employed in the PID cuts.
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3.6.5 Minor kinematic and geometric cuts

Analysis of CLAS data becomes problematic when scattered particles get too close to the edge of

the geometric acceptance of the detector, or when momentum becomes so low that the efficiency

of the detectors and momentum measurement is unpredictable. Also, certain events (such as those

with E′ > E) are obviously non-physical particles. For that reason, the following cuts are added for

inclusive electrons:

ν ≡ E − E′ > 0 (3.20)

y ≡ 1 − E′

E
< 0.80

8.5◦ < θDC < 49◦

Here θDC is the polar angle measured at the inner layer drift chamber. The low angle here marks the

innermost forward angle definitively covered by CLAS acceptance, and the upper angle is limited

by physical interference from the target magnet coils.

Another cut necessitated by closer inspection of the data in each sector is

θDC < 18◦ and θDC > 22◦ (Sector 5 only) (3.21)

A comparison of plots of θDC between sectors showed a discrepancy in the angle reconstruction of

inclusive electrons in sector 5. This was confirmed by plotting the reconstructed z-vertex position

vs. θDC (see Figure 3.18). Data in the excluded range were obviously reconstructed incorrectly by

the SEB, possibly due to mislabelled channels in the drift chamber wire map.
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Figure 3.18: Reconstructed event vertex position (in cm) along the longitudinal axis vs.θ (in de-
grees), as reconstructed from the drift chamber data, for sector 5 data only. Note the obviously
incorrect vertex position between 18 and 22 degrees.



Chapter 4

Precision Cuts and Corrections

4.1 Pion Background Removal

4.1.1 Remaining pion background

The detector cuts explained in the previous chapter remove a large percentage of remaining pions

among the inclusive electrons. However, due to the statistical nature of the pion and electron

distributions in terms of these cut parameters, it is not possible to remove all pions from the electron

data sample using such basic cut parameters. A small but significant background of pions still

remains in the data.

By inverting the electromagnetic calorimeter cuts in the previous sections, and selecting trigger

bits corresponding only to particles not matched to Cherenkov triggers,1 the shape of the pion

distribution in the Cherenkov counter photoelectron spectrum (Figure 3.12) can be estimated [104].

Figure 4.1 shows a comparison of photoelectrons remaining after all the applied PID cuts (except,

of course, the CC cut) and the approximate photoelectron spectrum of pions. Of course, due to

the unknown relative cross-sections of the cut regions, the relative height of these spectra is of

little relevance. However, a look at the π− spectrum shows a statistical tail that overflows into

1See Section 3.6.2 for definition and selection of trigger bits. For the plots shown in this section, “pions” were identified
by cuts of EECtot/p <0.24 and EECtot/p <0.28 were used for p <3.0 and p >3.0 GeV, respectively, along with a general
cut of EECin <0.01 (all values given in ADC channels, not GeV). Events containing trigger bits 1-6 were excluded from pion
spectra.

192
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Figure 4.1: The Cherenkov photoelectron distribution for a given bin in p and θ. Distribution shapes
for both negative pions and electrons, as determined by calorimeter and trigger bit cuts, are shown.
Pion tracking and timing cuts (Sections 4.1.2 - 4.1.4) are not yet used in this plot. Data shown are
from a combination of 5.x GeV NH3 runs.

the electron distribution. Part of this tail is, no doubt, electrons, but at least a portion of it is part

of the pion distribution. Apparently, π− contamination is still an issue above the threshold of the

Cherenkov photoelectron cuts (Table 3.4).

Older analyses of CLAS inclusive electron data utilized a model to estimate the magnitude of

remaining pion contamination as a function of p and θ, and a function was fit to the data. This

function was subtracted as background from the inclusive spectrum, and counts were rebinned the

in terms of Q2 and W [2][46]. 2 Unfortunately, this method of background subtraction is prone to

high systematic error.

M. Osipenko et al. have determined that most of the pion background results from indeterminate

track matching of the Cherenkov counter photomultipliers to the DC and SC-determined track path

and timing, allowing internal PMT noise to correlate with the particle [105]. Applying restrictions to

the geometry and trigger timing in the CC, the overwhelming majority of remaining π− background

can be removed, and the (very low) remaining residue can be considered a systematic error (see

2A (more accurate) variant of this method is still used for removal of the e+e− pair production background removal. See
Section 6.1.
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Section 7.2.5).

4.1.2 Geometric cuts on accepted CC triggers

For a hit triggering a given CC segment3, a geometric cut of the form

|θp − θcenter
p − θoffset

p | < 3σp (4.1)

is used, where θp is the polar angle of the particle angle in the CC projective plane, calculated using

the SC-plane trajectory angle. A detailed depiction of this projective plane is shown in Figure 4.2.

The quantity θcenter
p is the polar angle of the CC segment center image in the CC projective

plane, and θoffset
p is the difference between the hit distribution center of θp−θcenter

p (see Figure 4.3).

The CC projective plane is the plane through all points extrapolated from the original Cherenkov

ray direction through the equivalent distance traveled to the CC PMT [105]. In the CLAS coordinate

system, this plane is given in xS and z by

1 − axS − bz = 0 (4.2)

where a =0.0007841 cm−1, b =0.001681 cm−1, and xS is the radial particle distance along the

sector center line. 4 The distribution width, σp, is the width of the θp distribution for the electron

events. Figure 4.3 demonstrates the efficacy of this geometric cut.

4.1.3 PMT cuts on accepted CC triggers

Each segment of the Cherenkov Counter contains two different photomultiplier (PMT) tubes for the

detection of Cherenkov light. Once θp and φp (the polar and azimuthal angles of the track with

respect to the projective plane) are known for an electron track, the PMT corresponding to the half

318 segments per sector × 6 sectors = 108 segments. See Section 2.5.3.
4This is x in CLAS sector coordinates.
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Figure 4.2: A profile of the location of the Cherenkov counter projection plane for a particular CC
segment. The blue arrows represent the paths taken by incoming particles, and the reflection paths
of their subsequent Cherenkov light between the mirrors to the PMT. To form the projective plane,
the equivalent distance to the PMT is traced along the initial direction of the particle (red arrows);
the resultant plane formed by the projection of possible paths is the projective plane. The angle
between an extended red arrow and the normal to the projective plane is θp, and the angle made
with the center projection (vertical dotted line) and the plane normal is θcenter

p .
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Figure 4.3: The difference θ − θp for low photoelectron peak events (red) and events with > 2.5
photoelectrons (blue). Actual electrons exhibit a sharp peak, easily distinguishable from the back-
ground from a simple cut (black lines). Note the small offset (θoffset

p ) from zero. Data shown are
from 4.2 GeV outbending data specific to sector 4, CC segment 9. (Compare to Ref. [105], Fig. 5.)

of the counter segment containing the track can easily be identified. If the event-triggered PMT

does not correspond to the electron track identified as the event trigger, then the event is cut from

the data, as it is most likely a pion with a PMT triggered by background particles and/or noise. In

simpler terms, a good event is identified by φS < 0 for a left PMT trigger, and by φS > 0 for a right

PMT trigger (with φS being the azimuthal angle with respect to the sector center).

4.1.4 Timing cuts on accepted CC triggers

Assuming that the SC and CC are triggered by the same particle, the expected time difference

between the two signals is obviously given by dividing the distance difference by the electron speed.

That is, 5

∆tcoincidence = −r
SC − rCC

cβ
(4.3)

5This must be done after time-of-flight calibration, of course, so that effective velocity of light in the scintillator need not
be considered. See Section 2.5.4
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Figure 4.4: This is the same data shown in Figure 4.3, except in terms of ∆tSC−CC . Due to the
multiple peak structure exhibited by good electrons at higher ∆tSC−CC , only a lower cut (black line)
is used. (The narrow twin peaks are caused by timing differences in the CC PMTs, while the wider
peak at ∼55 ns is of undetermined origin but definitely internal to the CC.) (Compare to Ref. [105],
Fig. 6.)
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where rSC − rCC is the track distance between the SC paddles and CC projection plane. The

observed time difference from that expected is thus given by

∆tSC−CC = tSC − tCC − rSC − rCC

cβ
(4.4)

As with the geometric cuts, the electron peak (now measured in terms of this time difference), rises

above the pion background. The edge of this peak is again used to determine the edge of the cut.

A plot of the event rates vs. ∆tSC−CC is shown in Figure 4.4. The timing cut is decided based on

this and similar figures for each CC segment. Due to a strange prominence at the upper end of the

spectrum, related to timing discrepancies internal to the CC [105], only a lower edge cut is used

on ∆tSC−CC , to avoid cutting electrons that may be present in the structures at higher ∆tSC−CC

values. 6

4.1.5 Results of Osipenko’s cuts and Implementation

The effectiveness of these cuts can be investigated by looking at the Cherenkov photoelectron

spectrum in various p and θ bins, with and without the cuts, demonstrated in Figure 4.5. Figure

4.6 shows that very little pion contamination remains after these cuts are implemented. The shape

of the photoelectron distribution is not well understood [105], but a function of x2 or x3/2 times a

Gaussian worked well for fitting the post-cut photoelectron distribution. This curve is extrapolated

to the low photoelectron region and subtracted to approximate the remaining pion contamination

at the low end of the spectrum. The contamination beyond the range of the CC PID cut can then

be estimated by scaling the pion distribution (shown in blue in Figure 4.1) to the height of the

difference, and extrapolating the fit into the high-photoelectron region. 7 The small remaining π−

contribution can then be treated as a systematic error on the asymmetry (Section 7.2.5).

To implement these cuts, a function is referenced with the necessary input parameters. Values

for θcenter
p , θoffset

p , σp and the lower cut on ∆tSC−CC were uniquely determined for each CC seg-

6The origin of this extra “hump” in Figure 4.4 is not well understood, but is definitely internal to the CC, as can be
determined by replacing the SC timing signal with the EC timing signal (see Ref. [105]). It may represent electron signals
undergoing extra reflections in the CC, and cannot be assumed to be pion background.

7This may seem like a rather slipshod method of calculating the background, but it is only an estimation of what turns out
to be a very small remaining contamination. Due to the presence of electrons in the “pion” distribution, it is guaranteed to at
least slightly overestimate the remaining contamination, so the error is on the side of caution.
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Figure 4.5: Photoelectron spectra for 5.7 GeV electrons in three different p and θ bins, before (red)
and after (black) M. Osipenko’s Cherenkov tracking geometry and timing cuts. Note the nearly com-
plete diminishing of the low photoelectron peak. The contamination problem becomes somewhat
worse near the edge of geometric acceptance (bottom diagram).
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Figure 4.6: Photoelectron spectra for 5.7 GeV electrons (on a logarithmic scale), showing low
photoelectron contamination before (top) and after (bottom) Osipenko’s cuts. In the top diagram,
the post-cut electron spectrum is shown scaled (yellow) to the total pre-cut electron spectrum (red).
A fit function to this curve in the region p.e. > 3 was extrapolated downward; this was subtracted
from the electron curves to show the remaining pions in the low p.e. region (magenta). The pion
curve (blue in Figure 4.1) is scaled to this difference and extrapolated upward (green) to show
an estimate of the π− contamination before the cuts described in this section. The bottom fig
shows the same principle after Osipenko’s cuts, with the post-cut electrons (black histogram), the
remains after subtracting an extrapolated fit (gray) and the extrapolated scaled pions (cyan), which,
compared to the green curve above, shows a significant reduction in the remaining pions.
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ment and sector by N. Guler. Because of the differing path track geometries and timing, separate

cut parameters were used for inbending and outbending data. A complete record of these variables

for reference purposes is included in Table B.3.

4.2 Kinematics Corrections

4.2.1 The kinematics correction package

Necessary kinematic corrections were integrated directly into the DST reading program. Adjust-

ments were made to the momentum components px, py, pz and the vertex position vz to compen-

sate for both known inaccuracies in the CLAS detector and lack of precision in the event recon-

struction code. The following corrections were made for each particle:

1. Raster correction (to correct for vertex position given by the beam raster point on the target

at the time of the event)

2. Torus scaling correction (to correct for discrepancies between the physical torus current

and the current used for event reconstruction)

3. Beam energy correction (to make sure the exact beam energy is used, corrected for energy

loss of the beam within target materials prior to the event vertex)

4. Multiple scattering correction (to correct for the angle and vertex displacement caused by

multiple scattering of all particles before they exit the target)

5. Stray magnetic field correction (correction for angular deflections in particle path caused

by the target solenoid field)

6. Energy loss correction (dE/dx corrections for each scattered particle to account for energy

loss in the target after scattering)

7. Momentum correction (final sector-by-sector calibrations due to inaccuracies in magnetic

field mapping and drift chamber geometry).

Each correction is described individually in detail in this section.
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4.2.2 Raster correction

Translation of raster ADC coordinates

As explained in Section 2.4.1, the electron beam is continuously rastered in a spiraling, circular

pattern. The x and y rastering amplitude ADC values were recorded for each reconstructed event

time in the DST. Assuming a linear relation between the magnet ADC values and the raster dis-

placement, 8 the ADC amplitudes can be converted to centimeters as

xcm = (xADC − x0)xscale (4.5)

ycm = (yADC − y0)yscale

The translation coefficient values are shown in Table 4.1. 9

Table 4.1: Raster ADC to cm translation parameters for EG1b, for use with Equations 4.5

Run Set x0 xscale y0 yscale

1.6+; 1.6− 3800 −0.000175 5600 −0,000180
5.76−; 5.73−; 5.7+ 4250 −0.000195 6360 −0.000190

2.3+ 3900 −0.00048 4000 −0.00048
5.6+; 5.6− 3900 −0.00019 4000 −0.00019

1.7− (main set) 3900 −0.00060 4000 −0.00060
2.5−; 2.5+ 3900 −0.00041 4000 −0.00041
4.2+; 4.2− 3900 −0.00026 4000 −0.00026

1.7+; 1.7− (12C/15N) 3900 −0.00060 4000 −0.00060

Using this coordinate system, it is possible to create a histogram image of the number of events

in the physical raster coordinate space, as was done in Figure 3.8.

Due to the varying entry point of the beam into the target, a geometric correction was made to

the vertex position. The basic correction method is outlined in [106], and the correction geometry

is elucidated here.
8Given the very small displacements, this is a reasonable assertion.
9These were determined as fit parameters for each set by actually applying the geometric corrections described in this

subsection to the z-vertex position (vz) and using MINUIT to minimize χ2 =
P

(vz(corr) − vz0)2. See Ref. [106] for more
details.
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Correction of vertex coordinate vz

If one takes into account that the beam entry point into the target cell is actually along a path parallel

to the “center” assumed by the SEB for kinematic reconstruction10, then it becomes obvious that the

actual location of the scattering event vertex along the z (beamline) axis is slightly displaced from

the scattering point, had the event actually occurred at the target center. To correct the position vz ,

first the sector angle is defined as

φs = (sector# − 1) × 60◦ (4.6)

and the azimuthal scattering angle (φ = arctan(py/px)) is calculated.

Then, the, projection of the raster coordinates rx and ry (in cm) on to the radius sector ray at φs

is calculated as

s = rx cosφs + ry sinφs (4.7)

as shown in Figure 4.7. Then, this segment is projected on to the φ component of the SEB re-

constructed track direction to get the displacement of the particle along the the r-direction of the

track:

x′ = s/ cos(φ− φs) = (rx cosφs + ry sinφs)/ cos(φ− φs) (4.8)

Then, finally, the corrected vertex position along the z-direction vzc can be calculated from the

uncorrected position vz0
by backtracking:

vz(corr) = vz0 + x′/ tan(θ) (4.9)

as shown in Figure 4.8.

10Strictly speaking, of course, the beam path isn’t exactly parallel for every point on the raster, but the raster magnet
is distant enough relative to the target dimensions that the approximation of parallel beam paths at every raster point is
adequate.
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Figure 4.7: Raster correction geometry, viewed from the front of the target. The black dotted line
represents the (uncorrected) particle trajectory; while the solid black line (s) is the reference line of
the triggered sector. The projection of the raster coordinates (green) on the trajectory is defined as
x′ (blue).

Figure 4.8: Raster correction geometry, viewed from the side. The corrected z-vertex position
vz(corr) is calculated from the uncorrected position vz0 by backtracking through the end of x′ (drawn
in Figure 4.7). Here, the black ray is the uncorrected particle path, the red ray is the “backtracked”
ray, and the blue path is the final, raster corrected path through the true vertex.
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φ correction due to vz shift

The SEB code automatically scales the azimuthal deflection through φ to compensate for the 5 Tesla

magnetic field in the vicinity of the target (see Section 2.4). However, due to the raster correction

to the position of the z-vertex, the amount of time the particle spends in the target magnetic field is

different than that assumed by the SEB, so the φ deflection must be corrected.

The correction required exactly compensates for the extra distance traveled, just as the SEB

reconstruction code:

φc = φ0 − (q × 50 × x′/100 × 0.02998/pt) (4.10)

where the charge q = ±1, 50 kG = 5 T is the field strength, 0.02998 = c (in cm/µs) and pt = p sin θ

is the transverse momentum (in GeV) [106].

For inclusive electron analysis, however, the φ-component is not a concern. Even for exclusive

ep analysis, which is used in this procedure,11 the signs of both x′ and the charge q reverse sign

under an exchange of e and p, causing an identical φ shift for both (oppositely directed) particles,

so the analysis is unaffected. Only in multiple-particle exclusive events (such as epπ+π−) does the

φ correction become relevant, but it is mentioned here for completeness. The improvements made

to inclusive events in terms of φ and vz due to raster corrections can be seen in Figure 4.9.

4.2.3 Torus scaling correction

During the pass1 SEB and DST generation process (see Section 2.6.3), there was a coding error

in some of the Tcl files omitting the fixed torus current. Instead, the value for read from a current

monitoring transducer was used in track reconstruction. This torus current value produced values

fluctuating by up to ±8 A between runs, in contrast to the fixed, regular values consistent with a

superconducting electromagnet. The SEB tracking code allows for a margin of error of 0.2% within

this fluctuation range for the commonly used settings [107]12, so that, in most cases, despite the

coding error, the correct torus current was used in particle reconstruction, and no correction was

required.

11Elastic exclusive events are needed for PbP t calculations. See Section 6.2.2.
12These “common” settings include the ±1500 and ±2250 A used in this experiment.
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Figure 4.9: Plots of φ vs. z-vertex position before and after raster corrections, shown for 1.6 GeV
inbending data (no other kinematic corrections added). Note the significant increase in vertex
resolution after the correction. The purple “strip” on the far right represents scattering from the
vacuum shield/refrigerator end. These events are removed with a wide vertex cut (Section 3.6.1).
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However, for some runs, the torus current transducer reading occasionally fluctuated to a value

that did not fall within the ±0.2% limit of self-correction. Therefore, the wrong torus current was

used in the event reconstruction. Also, in one case (the 4.2 GeV outbending data), a fixed torus

current was used, but the value was 10 A too high (i.e. 2260 A instead of 2250 A). In these cases,

the reconstructed particle momentum required correction to reflect the actual magnetic field value.

Since the magnetic field B is proportional to the torus current, and the measured momentum of

the particle is proportional to the field, it is easy to see that the first-order correction to the initial

(incorrect) momentum pi is given by

ptrue =
Btrue

Bi
pi =

Itrue

Ii
pi (4.11)

This leading-order correction suffices for the 0.4% torus current error in the 4.2 GeV outbending

data, as seen in Figure 4.10. Other run sets requiring the correction fluctuate within an even smaller

limit, making this crude correction adequate. The torus scaling was applied to all 4.2 GeV runs with

negative torus current,13 as well as a few other data sets in which the used torus current incorrectly

fluctuated (specifically, 2.3+, 2.5+, 2.5−, and 4.2+).

4.2.4 Beam energy correction

High precision knowledge of the beam energy prior to the electron-nucleon interaction is crucial for

accurate kinematics determination. Therefore, precise determination of the beam energy electrons

prior to interaction with the target and degradation due to the beam energy loss dE/dx within the

target are implemented into the kinematics correction package.

Accurate determination of real beam energy

Nominal beam energy measurements are supplied from the MCC (Machine Control Center) based

on the number of passes through the accelerator and spin precession, measured by beam po-

larimeters [62]. This nominal number is limited in accuracy, however, and may not accurately reflect

13For the specific case of 15N/12C analysis, the DSTs for involved runs were regenerated with I =2250 A for precision
measurements of the cross-section ratios [96]. For general calculation of the dilution factor, though, any accuracy gained
thereby is overshadowed by other systematic errors, so the scaling method is deemed satisfactory for this analysis.
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Figure 4.10: 4.2 GeV inbending data before (blue, top stats box) and after (red, bottom stats box)
torus current corrections. (Both plots are raster corrected, but no other kinematic corrections are
applied.) The distribution width (sigma) is not changed much (and is actually not improved until later
corrections), but the peak location is improved significantly due to the momentum scaling, moved
closer to the true elastic value of W = 0.938 GeV.
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the true Hall-B beam energy. To better determine the delivered electron energy, accurate energy

measurements made during the same time period by Hall-A were scaled by the relative number of

passes of the beam through the accelerator to get the Hall-B energy.

Two methods were used by Hall-A to determine the beam energy, accurate within a factor of ∼2

× 10−4 [108]. The first method is a direct measurement of the beam energy as it passes through

a series of magnets in the 40 m arc section between the accelerator and experimental Hall-A (see

Figure 2.1), in terms of the magnetic field integral
∫

B · dl and the bend angle φb, using the equation

E =
c

φb

∫

B · dl (4.12)

summed over the eight bend magnets. 14 The second method [109] utilizes a more complex

iterative procedure utilizing Hall-A BPMs (calibrated against magnetic measurements from the 9th

dipole of the arc magnets) combined with the field integral of Eq. 4.12.

Both methods gave very close results for the Hall-A beam energy. The average was assumed

to be the correct Hall-A energy. Then, the average energy E` produced in each linac can be found

from the Hall-A energy EA by

E` = (EA − 45 MeV)/2NA (4.13)

whereNA is the number of accelerator passes made for the Hall-A beam, and 45 MeV is the injector

energy (see Section 2.2.1). The Hall-B energies are then found simply, depending on the number

of accelerator passes delivered (NB), as

EB = 2NBE` + 45 MeV (4.14)

The validity of this relationship within a value of 2 MeV can be verified by comparing Hall-A and

Hall-C direct measurements from the same time period [110].

If the magnetic field map in Hall-B was precisely known, the exact beam energy could be verified

by selecting elastic ep events and measuring the scattering angle of each particle. The energy

14The magnetic field must be measured indirectly through comparison to a reference magnet connected in series to the
other magnets, since the arc is inaccessible. See Ref. [108] for more information.
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would then be given by [111]

E ≈Mp
cos θe + (sin θe/ tan θp) − 1

1 − cos θe
(4.15)

However, because of lack of precise knowledge of the magnetic field, the exact beam energy is

required for performing momentum corrections (Section 4.2.8), to center the elastic peak at its

correct kinematic location. Therefore, elastic ep events cannot also be used to calculate the Hall-B

beam energy, and external sources must be relied upon instead. The scaled (Hall-A determined)

vs. nominal (MCC) beam energies for EG1b are listed in Table 4.2.

Table 4.2: Nominal vs. actual beam energies for EG1b

Set Label Nominal Beam Energy(GeV) Actual Beam Energy(GeV)
1.6± 1.606 1.606
1.7± 1.724 1.723
2.3+ 2.288 2.286
2.5± 2.562 2.561
4.2± 4.239 4.238
5.6± 5.627 5.615

5.7+;5.73− 5.735 5.723
5.76− 5.764 5.743

Effective beam energy due to dE/dx in matter

At energies in the GeV range, energy loss due to Bremsstrahlung radiation outweighs the en-

ergy loss by atomic collisons by an order of magnitude or more [112]. However, the effects of

Bremsstrahlung radiation are accounted for by external radiative corrections (Section 6.4), so they

should not be accounted for prior to that point. Energy loss due to atomic collisions (dE/dxcoll)

prior to the interaction vertex, however, must be subtracted to accurately determine the initial elec-

tron energy, E. Since this, like all other corrections in this package, is a leading order correction,

only a good estimate, not an exact value, for dE/dxcoll is needed. Assuming a 12C target15 and

βγ = p/(Mc) ∼ 2000, the energy loss rate dE/dxcoll measures as approximately 2.8 MeV/(gm/cm2)

15This is a good approximation, since the value of dE/dx is proportional to Z/A, which is roughly the same for all the
EG1 targets
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[5]; this value was used for the energy loss of electrons. The energy loss due to collisions remains

fairly constant as a function of electron momentum in this energy range, so using a constant value

is an adequate approximation. Using the modified vertex position vz , the amount of energy loss

can easily be calculated from the densities and lengths listed in Table 2.1 as

∆E[MeV] = 2.8ρ∆x (4.16)

with mass thickness ρ∆x given by

ρ∆x
[ g

cm2

]

= 0.4 + 0.6(0.5 − δz) (4.17)

where δz is the distance between vz and the target center (i.e. (−55.1 cm)−vz). The other numbers

correspond to the mass thicknesses of target window materials plus LHe and NH3 (0.4), packing

fraction (0.6), and target half-thickness (0.5). See Section 4.2.7 for details on these numbers. 16

The average energy loss is typically ∼2.0 MeV. The effective energy Ebeam is adjusted accordingly

downward to account for this loss.

4.2.5 Multiple scattering correction

After an eN event occurs, the scattered particles usually still have a short distance left to continue

traveling through the target material before continuing on to the detector. During this interval,

the particle(s) undergo multiple scattering within the target material. Also, unwanted scattering

can occur between the electron and detector components (especially the drift chambers). These

multiple scattering collisions cause both a net angular deflection and displacement of the apparent

vertex position (see Figure 4.11).

The GEANT Hall B simulation package GSIM [113] was used to study the effects of multiple

scattering in the EG1 configuration [114]. The angular effects of multiple scattering produce an

(approximately) Gaussian distribution about the mean angle, and are accounted for as part of the

systematic error on the kinematic precision (see Section 7.2.6). The GSIM study showed, though,

16Specifically, use the same equations as in Section 4.2.7, excepting that the particle is entering, not leaving the target
(δz → −δz), and θ = 0.
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Figure 4.11: A greatly exaggerated picture of multiple scattering effects. The true vertex position
and apparent angle are distorted by this effect. The black arrows show the true angles and vertex,
while the blue dotted lines show the apparent angle and vertex positions of the scattered particles.
Notice, in this case, that the true vertex position lies between the apparent vertex positions for each
particle. While this is not necessarily the case for a specific event, using the weighted average of
the vertices does, on average, increase the kinematic precison.
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that using the weighted average of all vertex positions

〈vz〉 =

∑
vzi/σ

2
i

∑
1/σ2

i

(4.18)

as the particle vertex (in place of the vz value for the individual particle) increased the accuracy of

the determination of φ and θ, where the weighting factor σ is 17

σ ≡ 0.10/
(

β
√

p2
x + p2

y

)

(4.19)

The (raster-corrected) vertex positions for all particles in each event were used to calculate this av-

erage. This derived vertex position is then used as the “real” vertex position for all other corrections.

The GSIM study also showed a necessary correction to the polar angle θ correlating to multiple

scattering within the Region 1 and Region 2 drift chambers (Section 2.5.2):

dθ = −δz(0.018θ+ 0.002/p) (4.20)

where the particle momentum p is measured in GeV, and δz ≡ vz − 〈vz〉.

As in the case of raster corrections, a correction must also be made to the azimuthal scattering

angle φ, due to effects of the target magnet and the changed location of vz . The GSIM parametrized

correction needed is 18

dφ = 0.015qδz/p (4.21)

where the charge q = ±1 as appropriate.

4.2.6 Stray magnetic field correction

The SEB track reconstruction software accounts for the target solenoid field in the vicinity of the

target. However, it is unable to account for the effect of the field in the region of overlap with the first

layer of drift chambers and outward (see Section 2.5.1). Along with the multiple scattering effects

17See the note in Ref. [114], Section 5 and Ref. [8] Eq. 2.86 (for example) for a justification of this weighting scheme.
18Unlike the case for the φ-correction in Eq. 4.10, this φ-correction can affect elastic ep analysis, because the value of δz

can be different for both the electron and proton.



214

(previous section), the GSIM software was used to parametrize the necessary corrections due to

extension of the magnetic field into the inner detector components.

dθ = 0.005(θ− 0.26)/p (4.22)

and

dφ = −0.0015q
√

2.2(θ)/p (4.23)

are the corrections,19 fit from a parametrization of the GSIM data, with θ and φ expressed in radians.

A reevaluation of the beam energy using elastic ep data and Eq. 4.15 showed beam energies in

much closer agreement with the the Hall-A scaled beam energies than previous studies after this

correction was applied [114].

4.2.7 Energy loss ( dE/dx) correction

As explained in Section 4.2.4, particle energy loss through collisions within the target must be taken

into account for accurate energy/momentum determination. The situation is slightly more complex

for particles emerging from the target after the scattering event.

The correction is identical, in principle, to the beam energy loss correction, except that there is

a polar scattering angle through the remainder of the target thickness, meaning the total energy

loss of the scattered particle must be divided by cos θ. Also, while the collisional energy loss of 2.8

MeV/g-cm2 (see Section 4.2.4) can be used again for electrons, for which β ≈ 1, collisional energy

loss for hadrons is β-dependent, and can vary considerably.

Collisional energy loss in heavy ionized particles is governed by the Bethe-Bloch formula [8]:20

−1

ρ

dE

dx
= 4πNar

2
emec

2Z

A

1

β2

[

ln

(
2mec

2γ2β2

I

)

− β2

]

(4.24)

19These equations are similar to, but not exactly the same as those listed in Ref. [114]. This is due to an update in the
parametrization since Ref. [114] was written.

20We have used Wmax = 2mc2β2γ2 (a valid high-energy assumption) and β = v/c to get this form from that shown in
Ref. [8]. The constant re is the “classical electron radius”, and Na is Avogadro’s number.
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Using the approximations Z/A ≈ 0.5, and I ≈ 10 eV × Z ≈ 90 eV (where I is the mean excitation

potential), this yields

−1

ρ

dE

dx

[
MeV
g cm2

]

= 0.306× 0.5

β2
×
[
ln(2 × 511β2γ2/0.090)− β2

]
(4.25)

which is the energy correction for scattered hadrons.

To calculate the total energy loss, ∆E, the above quantity must be multiplied by ρ∆x,21 with

ρ∆x[g/cm2] = [(δz + 0.5 cm)ρNH3
+ ρAl`Al + ρK`K + ρHe`He] / cos θ (4.26)

where δz is the distance between the target center (-55.1 cm) and the average vertex position (given

by Eq. 4.18), θ is the polar scattering angle of the particle and 0.5 cm is the (approximate) distance

from the center of the target material to the window. The remaining densities and lengths are given

in Table 2.1. Using these values (for ammonia, aluminum, Kapton and liquid helium)22 we find

ρAl`Al + ρK`K ≈ 0.1 g/cm2 (4.27)

and

ρHe`He ≈ 0.3 g/cm2 (4.28)

We also have ρNH3
≈ 1 g/cm3, but this must be multiplied by the packing fraction, that is, the fraction

of the target volume actually occupied by solid ammonia. This quantity is derived formally in Section

5.5.1, and equals approximately 0.6. Thus, we have

ρ∆x[g/cm2] = [0.6(δz + 0.5) + 0.4]/ cosθ (4.29)

21 ∆E
∆x

= dE
dx

can safely be assumed for a thin target and high energies.
22Naturally, this equation holds “strictly” only for the ammonia target runs. However, the carbon target was chosen so

that it has the same approximate radiation length X0 as the ammonia target, so that the same correction is usable as an
approximation. The 15N target is also approximately the same in dimensions and density as the ammonia target. The empty
LHe target differs considerably in radiation length, but the empty target is only used as a small correction to the inclusive
dilution factors, utilizing only high energy electrons, which are only minimally affected by dE/dx corrections. Measurements
of the total cell length L also use the LHe target, but these again rely on an average across all DIS electrons compared
to carbon, and are radiation length corrected. The dE/dx corrections for the ammonia target thus sufficed generally as a
leading-order correction.
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for the desired quantity. This is multiplied by Eq. 4.25 (for hadrons) or 2.8 MeV/(g/cm2) (for elec-

trons) for the appropriate correction to the outgoing particle energy. This value must be added to

the measured energy, as it reflects energy lost in the target and missed by the detectors. 23

Note that by no means is this an exact correction, due to all the approximations involved, and the

margin of error involved in the calculation of the vertex position. The total internal target energy loss

is generally less than a few MeV for inclusive electrons,24 though, making this approximation gen-

erally adequate for energy scales on the order of 0.1-5.0 GeV. Like the other kinematic corrections

detailed in this section, it is only a first-order correction meant to improve the general precision and

accuracy of particle momentum measurements, and provide as reliable as possible a starting point

for the momentum corrections, the most important and final part of the base correction package.

4.2.8 Momentum corrections

The kinematics corrections previously described account for the physical effects of known, directly

quantifiable phenomena. These corrections serve to reduce the systematic biases in the measure-

ment of particle momenta and angles (a necessary precursor to a complete momentum correction

scheme [115]). However, the task still remains to account for the effect of “unknowns” on the par-

ticle kinematics, that is, effects that cannot, due to practical considerations, be accounted for by

direct physical measurements or calculations. Such effects include (but are not limited to)

• Slight misalignment of the drift chambers from their nominally determined geometric positions

• Errors in the calculation of the location of drift chamber wire feedthrough holes

• Effects of gravitational sag and thermal expansion on the drift chamber wires

• Inexact knowledge of both the main torus and target solenoid magnetic fields

• Possible (but indeterminable) errors and/or miscalculations regarding the physical effects ac-

counted for in previous stages of the kinematic corrections (e.g. raster ADC timing lag, un-

known torus current offset, systematic timing errors missed during calibrations, etc.)

23The resolution limits of the z-vertex occasionally resulted in a particle with a reconstructed vertex outside the target
window. In that case, the vertex was assumed to be on the target edge for purposes of the dE/dx calculations.

24Multi-particle exclusive event data have have lower momentum and higher dE/dx. Low-momentum protons, for exam-
ple, can lose up to 20 MeV in this manner.
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These miniscule but cumulatively significant effects can definitely not be accounted for by spe-

cific physical corrections. Obviously, other, more indirect means must be used to correct for these

effects.

Momentum corrections: initial strategy

The process used to precisely correct the EG1b particle momenta utilizes the fact that 4-momentum

conservation is required for specific dynamic scattering processes (i.e. resonances). The particle

momenta are corrected for these miscellaneous effects by the fitting of an expression, containing

14 different correction coefficients, corresponding to the most pertinent of the expected physical

effects mentioned above. The expression is fit (separately, in each of the 6 CLAS sectors) to the

momentum and scattering angles corresponding to these resonances, such that 4-momentum is

conserved to the best possible precision [115].

Eight fit parameters (A − H) were used to parametrize the effect of drift chimber dislocations

(relative to Region 1) on p and θ in terms of p, θ and φ (with φ written in sector coordinates, that is,

(φ− φS) → φ, where φS marks the center “baseline”of the sector):25

∆θ = (A+Bφ)
cos θ

cosφ
+ (C +Dφ) sin θ (4.30)

∆p

p
=

(

(E + Fφ)
cos θ

cosφ
+ (G+Hφ) sin θ

)
p

qBtorus
(4.31)

Terms are included to correct for offsets in the radial position (factor cos θ/ cosφ)26, φ-dependent

radial displacements (i.e. rotations around the z-axis; factor φ cos θ/ cosφ terms), displacements

along the z-axis (factor sin θ)27, and rotations about the φ-direction (factor φ sin θ). The quantity

Btorus ≡
∫
B⊥dl along the track path is given by [116]

Btorus = 0.76
Itorus sin2(4θ)

3375 · θ (θ < π/8) (4.32)

25Note no φ-correction terms are included. This is because φ-coordinates are calculated with a larger intrinsic uncertainty,
so that the precision corrections in this phase would have little, if no noticeable effect on the final resolution [115].

26The factor of cos θ arises from a vertical offset ∆y because the offset in p and θ becomes largest at forward (smaller)
angles. The 1/ cos φ factor arises because of the flatness of the drift chambers and because the particle track in φ is only
perpendicular to the DC surface at φ = 0, the sector center.

27The factor of sin θ arises from a horizontal offset because the effect of the offset is greatest at larger polar angles.
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Btorus = 0.76
Itorus

3375 · θ (θ ≥ π/8)

with θ given in radians.

As well as mechanical displacements of the drift chambers, differences between the real mag-

netic field and the field map used in event reconstruction must be taken into account. As these

corrections are a function only of the field geometry, no p-dependence is expected. To account for

this effect, the terms

J cos θ +K sin θ + L sin(2θ) + (M cos θ +N sin θ +O sin(2θ))φ (4.33)

were added to Eq. 4.31. 28 Note that each variable A-O represents six actual variables, one for

each sector. From this point on, it is implicitly assumed that the fit variables A,B,C, ..., O are actu-

ally As, Bs, Cs, ....Os where s = 1...6 corresponds to the sector number of the particle.

Drift chamber dislocation and magnetic field uncertainty are the two greatest impediments to

accurate momentum determination, and are the effects directly accounted for by the terms in the

momentum corrections. However, other, smaller effects on the momentum not accounted for ear-

lier are also absorbed into the 14 × 6 = 84 coefficients used in the momentum corrections, as the

missing momenta in exclusive reactions are centered exactly at zero by the correct choice of coef-

ficients. For this reason, care was taken that prior corrections were not be altered in any way once

the coefficients A-O were determined.

To determine the coefficients, the transverse momenta (px, py, pz) of elastic ep scattering events

were analyzed. For each event, the missing momenta and energy were calculated:

pxmiss
= pxe

+ pxp
= pe sin θe cosφe + pp sin θp cosφp (4.34)

pymiss
= pye

+ pyp
= pe sin θe sinφe + pp sin θp sinφp (4.35)

pzmiss
= pze

+ pzp
− Ebeam = pp cos θe + pp cos θp − Ebeam (4.36)

Emiss = pe +
√

p2
p +M2 −M − Ebeam (4.37)

28Unlike the drift chamber position terms, the field correction terms were arrived at by trial-and-error [115], and are not
easily respresented term-by-term as dependent on phenemonological corrections.
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Then, the functions for ∆p and ∆θ were added to the values of p and θ in the missing momentum,

to find values of the coefficients A-O that brought the χ2 of these values closest to zero. Eqs. 4.30

- 4.33 were applied (starting with all coefficients A-O at zero), the substitution

θ → θ + ∆θ ; p→ p

(

1 +
∆p

p

)

(4.38)

was made, and the missing 4-momenta (Eq. 4.34-4.37) were recalculated.

The sum

∆χ2 =
∑

events

(

E2
miss

σ2
E

+
p2

xmiss

σ2
px

+
p2

ymiss

σ2
py

+
p2

zmiss

σ2
pz

)

+

6∑

sector=1

14∑

a=1

X2
a

σ2
Xa

(4.39)

was then minimized (through iterative reapplication of the correction equations), resulting in the

best values for the parameters A-O in each sector using the MINUIT minimization package. 29

The intrinsic measurement uncertainties for the 4-momenta are set to σE = σpz
= 0.020 GeV and

σpx
= σpy

= 0.014 GeV.

The sum over coefficients at the end of Eq. 4.39 is added in order to prevent the problem of

“runaway solutions” for the fit variables (a common problem in fitting large numbers of variables in

any fitting algorithm). Here the Xa are the 14 fit variables A-O specific to each sector. An intrinsic

uncertainty of 0.001 was used for σXa
, except for the φ-dependent displacement terms (F and H),

which have a larger intrinsic uncertainty (σF = σH = 0.01).

Once MINUIT optimized the fit variables, the correction Eqs. 4.30 - 4.33 were applied to px =

p sin θ cosφ, py = p sin θ sinφ and pz = p cos θ as part of the kinematics correction package, prior

to writing these quantities to the ROOT tree files. This method makes a significant improvement

to both the precision and accuracy of the elastic peak location, as the cumulative effect of the

corrections shows (Figure 4.12).

29Minimization of 84 variables might appear to be formidable task for MINUIT. However, many of the constants are ef-
fectively decoupled from one another (e.g. variables in different sectors; magnetic field from DC displacement constants (if
inbending and outbending are both included), etc.), and the stable equilibrium diplacement is close enough to the initializa-
tion point that the values rapidly converge when Eq. 4.39 is applied [117].
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Figure 4.12: Deviations of elastic ep scattering kinematics (of the electron) from the values expected
for elastic events. Missing energy, theta, and phi values are expected to be centered at zero, while
invariant mass (W ) should equal the proton mass (0.938 GeV). (See Section 3.5 for calculation
of these quantities.) The blue histograms represent data with raster and torus scaling corrections
only; the red histrogram adds energy loss and beam energy corrections; green adds stray target
field and multiple scattering corrections; and black marks the addition of final sector-dependent
momentum corrections. Combined ep data from all 2.x GeV NH3 runs are shown.
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Additional corrective terms

After the completion of momentum corrections, there were still a couple minor problems with the

proper centering of the elastic W -peak between inbending and outbending sets, when using the

same correction constants for every set. It was determined that the resolution of the elastic missing

mass peak could be improved if the total momentum was slightly shifted for the outbending (i.e.

negative torus current) sets:
(

∆p

p

)

final

=
∆p

p
+ Tset (4.40)

This minor correction was necessary to preserve the ease of drawing from a single set of constants

with uniform utility. As one can see from a quick look at the Tset values in Table 4.4, they are very

small corrections indeed. In the largest case, less than half a percent of an adjustment is made to

the total momentum.

It was very difficult to get a correct fit of the parameters to low momentum particles, due to their

sensitivity to changes in the coefficients. Since these particles do make some contribution to the

elastic peak,30 it is possible to include correction terms that give a slightly better improvement to

elastic events if a correction is also applied directly to p instead of just to ∆p/p. In practice, two

terms are added to the total momentum, one of them a factor of φ:31

pfinal = p+Q+Rφ (4.41)

where Q and R are sector-dependent constants of opposite signs. While these are negligible

corrections for high momentum particles, they contribute a comparably larger percentage to the

correction as momentum decreases, since the terms are added directly to the momentum, not the

ratio ∆p/p.

After adding these additional torus polarity-dependent and low-momentum corrective terms, the

fit was redone, and found to give a better distribution for the elastic peak region than Eqs. 4.30 -

4.33 alone.
30One can calculate My = 2E sin2(θ/2), for elastic events. Thus, these events are at the largest measurable scattered

angles in CLAS.
31The angle φ is defined, as before, in the sector coordinate system.
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Figure 4.13: Distribution in θ of elastic ep events for the 2.5 GeV outbending data. Approximately
equal numbers of events were sampled from each shown bin for momentum correction. Bins with
too little data for a significant sample were not used in the fit at all.

Proper weighting of the correction function in θ

Because the distribution of scattering events is a statistical function, the correction factor must be

weighted properly as a function of the magnetic field and detector geometry. The scattering is ho-

mogeneous in φ, so this coordinate constitutes no problem. However, the distribution is definitely

not homogeneous in θ (see Figure 4.13), leading to a heavier weighting of the function in certain

regions (peaking at θe = 27◦ in the shown set). The correction function should not be given prefer-

ential weighting for events in any specific part of the detector geometry.

To correct for the possibility of improper weighting, elastic ep events were divided into 1◦ θ-bins,

and only a certain percentage of events in each bin (selected randomly) were used in making the

MINUIT fit. The percentage used for each bin was chosen so that the distribution of the elastic ep

events used for the momentum correction was constant in θ, eliminating any possibility of a weight-

ing bias introduced by the strong polar angle dependence of the detected elastic events.

In spite of this precaution, extension of the fit to far forward scattering angles (θe < 12◦) still

proved to be problematic, as there simply were not enough exclusive scattering events in this kine-

matic range for a reliable fit. This problem is addressed in Section 4.3.
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Extending the fit to the resonance and DIS region

Although this fit gives satisfactory results for elastic ep events at W = M = 0.938 GeV, the question

remains open as to whether extrapolation of the fit to the inelastic region (W > 1.077) gives equally

valid results. To ensure a reasonable fit to the data at all kinematics, a scattering reaction was

chosen for the fit in the inelastic region, in addition to the elastic ep events. The exclusive reaction

ep→ epπ+π− (4.42)

is a dominant decay channel, just far enough in the inelastic region (W ≈ 1.23 GeV) to serve this

purpose, while still providing enough statistics to contribute significantly to the fit, assuming an

appropriate weighting scheme is used.

The process for incorporating these events is virtually identical to that used for elastic ep events.

Events where all 4 outgoing particles can be identified (by time-of-flight) are used to reconstruct

the given events. Then, 4-momentum conservation is enforced for the sum over all particles at the

vertex (resulting in twice as many terms for the fit equation parameters in the equations analogous

to Eq. 4.34 - 4.39, of course). For each configuration of beam energy and torus current, the ratio of

epπ+π− to ep events used for the corrections was approximately 1:5. 32

Study of the distributions of missing transverse and longitudinal and momenta for exclusive

epπ+π− reactions before and after corrections [114] show that the momentum corrections improve

the kinematic fit in the inelastic as well as elastic region. It is important to keep in mind that these

fits are iterative in nature. After a fit is done with the initialization of A-R and Tset all to zero initially,

it is redone with improved values of these coefficients until stable values are reached. Final values

of the correction coefficients are listed in Table 4.3. If done correctly, only one set of fit parameters

is needed, regardless of the beam energies and torus currents used. 33

With these final corrections applied, the most accurate and precise momentum corrections pos-

sible with the available data can be ensured, as the procedure utilizes well-known reactions and

the actual data, as opposed to externally measured parameters. Two differing scattering processes

3210000 epπ+π− and 50000 ep events per set were used, specifically. If 10000 inelastic events were unavailable, then
the fit was simply done with a lower ratio of inelastic to elastic events. Also, no theta-dependence scaling was employed for
the epπ+π− events.

33The sole exception is the single Tset correction variable.
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(one elastic and one inelastic) are used, removing the inherent uncertainty of extrapolating from

a single value of invariant mass W . Figure 4.14 demonstrates the net improvement of missing

momentum as function of φ as a result of this correction.

Table 4.3: Sector-dependent Momentum Correction Parameters for EG1b.

Parameter Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6

A 0.00091 0.00085 -0.00005 -0.00084 -0.00152 -0.00162
B -0.00265 -0.00112 -0.00425 0.00269 -0.00052 0.000145
C -0.00369 -0.00465 -0.00130 0.00103 0.00147 0.00091
D 0.00236 0.00266 -0.00156 -0.00363 -0.00355 -0.00534
E 0.00003 -0.00063 -0.00423 0.00239 0.00041 0.00072
F 0.02302 0.01214 0.01677 -0.01380 0.00404 -0.02218
G 0.00261 0.00715 0.00510 -0.00439 -0.00065 -0.00552
H -0.03800 -0.01755 -0.01946 0.02098 -0.00409 0.04574
J 0.00117 -0.00593 -0.00277 0.00258 0.00273 0.000992
K -0.00348 0.00304 -0.01295 -0.01154 -0.780 -0.00584
L -0.00000976 -0.00000899 0.00000164 -0.0000162 -0.0000183 -0.00000878
M -0.00200 -0.00393 0.00 -0.00400 -0.00678 0.00319
N -0.00778 -0.01507 -0.01295 -0.01491 -0.00755 -0.00623
O -0.0001340 -0.0000603 0.0000082 0.0000144 -0.0000485 0.0000755
Q 0.00196 0.00183 0.00120 0.00117 0.00080 0.00139
R -0.00094 -0.00463 -0.00486 -0.00523 -0.00120 -0.00437

Table 4.4: Torus current-dependent parameter Tset for outbending sets.

Set Tset

1.6− -0.000159
1.7− 0.000705
2.5− 0.000308
4.2− 0.003203
5.6− -1.64×10−12

5.73− 0.000854
5.76− -0.000589

4.3 Momentum Correction at Low θ

The momentum corrections described in the previous section are satisfactory for the correction of

data in kinematic regions where exclusive ep and epπ+π− events are plentiful, which is over most

of the CLAS acceptance. However, at low values of θ (the electron scattering angle) there are no
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Figure 4.14: Plots of φ vs. ∆p/p for elastic ep events before and after sector-dependent momentum
corrections, shown for sector 3 for 2.5 GeV outbending data. The mean value of ∆p/p is greatly
improved after application of the correction.
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elastic ep events34 and very few epπ+π− events. Therefore, in the region θ . 12◦, the momentum

corrections of Section 4.2.8 are using an unreliable extrapolation of the momentum correction func-

tions into the forward angle region. A large proportion of the inclusive data (especially at low Q2)

lies in this low angle range, so that accurate momentum corrections are essential for a complete

analysis.

Study of inclusive scattering events at low angles, after momentum corrections were complete,

indeed showed that the elastic peak location was not consistent as a function of φ. Only inclusive

scattering events consistently cover this kinematic region, meaning that momentum conservation

at the vertex cannot be employed to correct the kinematics. Instead, a correction function in terms

of φ and θ is fit to the momentum p such that the offset of the elastic missing mass peak value

Wpeak −M is minimized.

P. Bosted and N. Guler developed, through trial and error, a fit function that changed rapidly

enough in θ to accomodate the complex magnetic field in the forward region:

E′
f = E′

i

{

1 + 0.02

[

U +

(

V +W
1

30◦
(φ− 30◦)

)(
10◦

θ

)3
]}

(4.43)

where U , V and X are fit coefficients, determined independently in each of the 6 sectors. 35

Separate parameters are required for inbending and outbending torus currents, but there is no

dependence on the torus current magnitude or beam energy. Note that the listed values (in Table

4.5) correspond to negatively charged particles. Particles with positive charge require use of the

coefficients corresponding to the opposite polarity.

Because inclusive electrons are scattered from NH3 molecules, not just free protons, the W -

peak is not just an elastic peak, but rather an elastic peak superimposed on a broader quasi-elastic

background, contributed by scattering from the 15N nucleus. To better locate the true W -position

of the elastic peak (rather than the position of the peak plus background), it is useful to divide the

normalized count rate of NH3 events by that of the ND3 target scattering events. 36 Then, the 15N

34This is due to an inability to detect back-scattered protons, at large angles where the target solenoid and support frame
cut off the acceptance.

35Here, θ and φ are determined at the inner layer drift chamber, not the event vertex.
36In 2.3 GeV inbending, where ND3 is unavailable, 12C was substituted. This gives similar results, though with less

statistics.
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Figure 4.15: Ratios of NH3/ND3 spectra for six different φ-values in Sector 1, at θ < 13◦, separated
by an arbitrary offset for visibility. Corrections are obviously needed to center the peaks at the
proper elastic value of W = 0.938 GeV. Plot courtesy P. Bosted.

background cancels in the ratio, leaving the ratio of the free proton elastic peak to the deuteron

quasi-elastic peak. The deuteron peak is considerably more narrow than the 15N peak, resulting

in considerable narrowing and more precise location of the exact elastic peak position. This ratio

was calculated in 10◦ φ and 1◦ θ bins, and the peak location Wpeak was then simply the maximum

point of this ratio. 37 Figure 4.15 shows a (pre-correction) example of this peak ratio in each of the

6 sectors.

The coefficients U -X were then fit using MINUIT such that

∑

θ,φ

Wpeak(θ, φ) −M → 0 (4.44)

An example of the fit, made individually for each sector, is shown in Figure 4.16. Sector 6 did not

37This assumes a reasonable W -range of course. At extreme low W , where statistics are low, the count ratio can trail
spuriously up to extreme values that are obviously not associated with elastic events.
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Figure 4.16: A fit of the low angle momentum corrections for 8◦ < θ < 9◦ for 4.2 GeV outbending
data, shown for missing momentum ∆p/p. Lines represent a fit to the data points after the correc-
tions of Section 4.2.8. Error bars are estimated, and depend only on beam energy. The × points
represent the data before the momentum corrections of Section 4.2.8. Plot courtesy P. Bosted.

behave according to any easily fit function; the improvement in this sector is only slight compared

to the other five.

Fit coefficients in each of the 6 sectors are listed in Table 4.5. The fit function is designed to

maximize influence at forward angles (manifested by the inclusion of the 10◦/θ term). It has little ef-

fect in higher θ regions, where the momentum corrections of Section 4.2.8 have already adequately

calibrated the momentum. At small θ, however, the corrective effect is quite significant (see Figure

4.17), and indeed necessary for consistent kinematic determination between energy sets.

In practice, the correction was most effective for data with low beam energies and outbending

torus current, where low Q2 data are most abundant. This “patch” correction was thus applied only

to the data sets where improvement in the elastic peak resulted, namely all outbending data where

Ebeam ≤ 4.2 GeV, as well as 1.6 GeV inbending data. Note these coefficients were determined
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Figure 4.17: Inclusive electons for θ < 11◦ shown for Sector 1, from one run of 2.5 GeV outbending
data. The histograms represent events in φ vs. W −M before (left) and after (right) the special low-
θ momentum corrections. In both cases, the standard corrections of Section 4.2 have already been
applied. The corrections are not perfect, but do show a marked improvement, without sacrificing
the smoothness ensured by a global correction.

independently of the momentum corrections of the previous section, only after the previous correc-

tions were completed. Figure 4.18 shows the net effects of all the kinematic corrections on some

sampled data.

Table 4.5: Sector-dependent forward-angle correction coefficients for EG1b, for inbending and out-
bending electrons. For positively charged particles, coefficients corresponding to the opposite torus
polarity are used.

Parameter Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6
Outbending

U -0.0472 -0.0378 -0.2485 -0.0066 0.0257 -0.5182
V -0.2235 -0.1650 -0.0532 -0.2370 -0.2588 0.1406
X -0.2730 -0.1789 -0.4687 -0.1929 -0.1733 -0.2743

Inbending
U -0.2238 -0.2621 -0.0024 -0.1918 -0.1217 -0.1203
V 0.2786 0.3348 -0.4065 0.3624 0.2378 0.1846
X -0.963 -0.748 0.713 0.591 -0.032 -1.070

4.4 Fiducial Cuts

As already noted, the calculation of asymmetries does not require knowledge of the acceptance

of different detector regions. However, the calculation of dilution factors (see Chapter 5) requires
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Figure 4.18: Net effect of kinematic corrections at θ = 13◦ for 4.2 GeV outbending data on the
inclusive event spectrum. Various colors represent differing φ-bins, all in Sector 3. Plots courtesy
N. Guler.

that the acceptances of the 12C and LHe runs are the same as the acceptance of the NH3 runs,

as dilution factors are directly dependent on the ratios of counts from these differing targets. The

kinematic acceptance of a detector is a direct function of the geometry of the apparatus. Therefore,

specific regions of the detector where the acceptance is not well-understood must be removed from

the analysis.

Drift wire chamber and scintillator components of the CLAS detector (i.e. the DC, SC, and EC)

can be considered as “perfectly” efficient devices, in that they respond to practically 100% of in-

clusively scattered electrons. 38 Due both to limitations incurred by properties of the Cherenkov

gas, and reflective loss within the mirror geometry, however, the Cherenkov Counter (CC) exhibits

definite inefficiencies in the identification of electron triggers.

The purpose of fiducial cuts, then, is to remove electron hits in inefficient regions of the Cherenkov

Counter from the data used in any acceptance-dependent calculations. In an inefficient region of

the CC, statistical fluctuation in the number of observed photoelectrons is too great to determine an

accurate measurement of electrons, due to the narrow Poisson distribution of the photoelectrons.

38This is true during gated live time, assuming the momentum is not too low. This is part of the reason a low-momentum
cut is used on inclusive data. The drift chamber is 98+% efficient (assuming occupancies are not too high) [74] , and
scintillator devices (like the EC and SC) are generally nearly 100% efficient to high-energy electrons [8].
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4.4.1 Determination of Inefficient CC Regions

To implement the fiducial cuts, a criterion for determining the expected number of photoelectrons

in each region of the Cherenkov Counter was established. A thorough study of the behavior of the

CC, using 1.6 GeV data taken before the the EG1b data,39 has already been done by A. Vlassov

[120].

This study entailed measuring the average number of photoelectrons generated by hits from

elastically scattered electrons as a function of θ and φ (measured at the EC/CC). Preliminary cuts

were made in W , the fraction of particle energy deposited in the EC, and the vertex reconstruction

point in order to enforce a rudimentary exclusion of inelastic hits and pions. A limit on the deviation

from the matching point between the EC and CC was also made to exclude poorly matched tracks.

The average number of photoelectrons produced for these events was then recorded over the full

area of the detector, as a function of θ and φ, measured at the SC/EC plane. Once the geometric

dependence of the expected number of photoelectrons was empirically determined, an applicable

function was developed to determine the expected number of photoelectrons in the CC as a function

of particle track coordinates.

To calculate the actual efficiency as a function of θ and φ in each sector, it was assumed that

the number of photoelectrons generated by a hit in the detector region obeys a Poisson distribution.

40 For purposes of cutting down pion contamination, a lower limit of 2.0 photoelectrons was used

for electron definition. The efficiency at any particular point in the CC can then be determined by

finding the percentage of events in the Poisson distribution (with a mean value determined by A.

Vlassov’s function) that remain after all the events with less than 2.0 photoelectrons are removed

from the distribution. Thus, the efficiency of a detector location can be expressed in terms of the

expected photoelectrons (µ) and minimum photoelectron cutoff (c) as

efficiency =
∑

n>c

µne−µ

n!
(4.45)

39The E1b experiment, completed in 1999, was used.
40See Footnote 15 in Chapter 3.
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Figure 4.19: Plots of detected electrons in θ vs. φ for a quarter million 2.3 GeV EG1b events,
contrasting the measurement of φ as reconstructed at the vertex (left) against actual Region 1
DC coordinates (right). The inner drift chamber φ measurement (right) shows less distortion with
respect to θ, and is the value used for both determining and applying fiducial cuts.

An efficiency of 80% was a used as a cutoff for exclusion of inefficient CC detector regions,41

which corresponds to an approximate value of 4.3 expected photoelectrons in a Poisson distribution.

Plots in θ vs. φ were made for each sector, showing only events that registered above the

calculated photoelectron threshold. Geometric cuts were then made on these plots to exclude

regions that did not contain a significant density of events meeting this minimum requirement. The

polar angle θ was measured as arctan(pz/pr) (reconstructed from the DC and SC tracking), but,

due to the axial target polarization field, the azimuthal angle φ was measured at a point independent

of the vertex. The innermost layer drift chamber provided a more geometrically stable determination

of the φ-coordinate (see Figure 4.19). 42

41This is a somewhat arbitrary number. However, it was noted from the fiducial cut histograms that the dropoff in expected
photoelectron rate occurs at such a steep slope with respect to location that even large variations in this value do not change
the location of the cut boundary in any significant way.

42The sector-by-sector φDC coordinates translate to the equivalent reconstructed φe as φe(◦) = φDC + 60 × (sector −
1) − 30, minus 360 if φe > 180◦.
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4.4.2 Determining the Fiducial Cut Boundaries

Different cuts were used for inbending and outbending electrons, due to the differing trajectories

through the Cherenkov Counters corresponding to a given scattering angle. In both cases, a func-

tion symmetrical in φ that suitably evolved with the electron momentum was used. Inbending elec-

trons were the simpler case, as only one cut curve was required, and each sector has a similar

enough geometry that the same cut could be used for all six sectors. Outbending electrons showed

greater variation in photoelectron efficiency from sector to sector, and required a more complex cut.

Inbending Cuts

For inbending electrons, the fiducial cut limits for φ and θ are given by

30◦ − ∆φ < φ < 30◦ + ∆φ (4.46)

and

θ > θcut (4.47)

where the cut limits ∆φ and θcut are defined by

∆φ = A · (sin(θ − θcut))
exp. (4.48)

with

exp. = B ·
(

pe ·
3375 amp.
Itorus

)C

(4.49)

and

θcut = D +
E

(pe + F )3375 amp.
Itorus

(4.50)

In these equations, pe represents the electron momentum, Itorus the torus current, and A, B,

C, D, E, and F are empirically determined constants. Roughly speaking, A, B and C control the

width and curvature of the cut, while D determines the minimum θ-value of the cut curve, and E
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and F control the rate of evolution of the curve with momentum. 43

To determine the values used for these empirical constants, a curve drawn using these equa-

tions was superimposed on sector-dependent φ vs. θ plots of particle events meeting the threshold

of required expected number of photoelectrons, as explained in the previous section. Bins in pe

of 0.15 GeV were used, ranging from 10% to 100% of the beam energy (in GeV). Previous deter-

minations of fiducial cuts in Hall B used fixed values of the empirical constants over large regions

of the entire beam energy range, with no more than two sets of constants used for any set [2].

In order to better circumscribe the efficiency region, with no sharp “edges” cutting into the data

between kinematic bins, values for the six empirical constants were slightly varied for each 0.15

GeV momentum bin, and the values were stored in an array. At pe > 4.0 GeV, variables were no

longer varied with momentum, as the pattern remained fairly stable. In addition, a parameter θmax

was added to determine the location of the “corner” of the cut (i.e. the maximum θ-value before

φ becomes constant). A maximum polar angle (θ) limit of 49.5◦ was also added to cut electrons

scattering from the target solenoid. Inbending fiducial cuts for a couple of different momentum bins

are shown in Figures 4.20 and 4.21.

The fiducial cuts are specifically dependent on the electron path geometry as a function of mo-

mentum. Thus, different fit coefficients must be assigned for each torus current value. The values of

the coefficients outlined above, for both +1500 A and +2250 A main torus current, are summarized

in Table B.3.

Outbending Cuts

Outbending electrons exhibited a more complex efficiency pattern than inbending electrons. Vari-

ation between sectors was too pronounced to use the same cut for every sector, so different cut

coefficients were determined for every sector.

A slightly different outer curve was used for outbending electrons:

30◦ − ∆φ < φ < 30◦ + ∆φ (4.51)

43In practice, A, B and D were adjusted, while the other three variables were left at nearly static values. Due to the narrow
momentum binning and eventual interpolation of the variables, adjustment of the other parameters was seldom necessary.
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Figure 4.20: Inbending fiducial cuts for one momentum bin and sector for a torus current of 2250
A. The first figure shows only electron events meeting the 80% efficiency criterion as defined in the
text. The second figure shows all potential electron events, demonstrating that these cuts remove a
significant number of particles from the data. The excluded “eyebrow” structures that wrap around
the first plot are direct particle impacts on the CC PMT.
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Figure 4.21: Same as Figure 4.20, except for a different (higher) momentum bin and different sector.
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and

θcut < θ < θhigh (4.52)

where

∆φ = A · (sin(θ − 6.5◦))exp. (4.53)

exp. = B ·
(1

4
pe

)C

(4.54)

θcut = D + E ·
(

1 − 1

4
pscale

)F

(4.55)

θhigh = min(40◦, θnom) (4.56)

θnom =
35◦

(GeV/c)1/3
·
[1

5

(

pe− · 3375amp.
| Itorus | + 2.5GeV/c

)] 1
3

(4.57)

pscale = pe ·
1500amp.
| Itorus | (4.58)

Here, A through F are empirically determined constants, just as in the case of inbending cuts.

Note that a maximum value in θ is used in order to exclude events that might miss the EC due to

a large outbending angle. Additionally, the maximum φ-dependent θ value of the cut boundary was

parametrized, just as in the inbending case. However, due to asymmetry in φ, different values of

this angle were used for the upper φ and lower φ “corners” (θupper and θlower).

In many cases, the center strip along φ in each CC sector (corresponding to the mirror joint at

the center “ridge” of the CC) showed regions of low efficiency. To remove this center strip from the

data, the following curve was used

30◦ + φcenter < φ < 30◦ − φcenter (4.59)

where

φcenter =
G

sin(θ +H)
(4.60)

Due to pervasive asymmetric efficiency patterns with respect to φ, separate parameters were de-

termined for the upper and lower bounds of the curve, resulting in 4 (instead of 2) extra parameters

(Gupper , Glower, Hupper , Hlower). In addition, two extra overall additive offsets in φ were included for
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both the inner and outer boundaries (inneroffset and outeroffset).

As in the case of inbending fiducial cuts, values of all these parameters were determined for

each 0.15 GeV momentum bin ranging between 10% and 100% of the beam energy (again varied

only up to 4.0 GeV), and their values were recorded in a variable array. Some examples of out-

bending fiducial cuts for various momentum bins are included in Figure 4.22. Unlike the inbending

cuts, outbending fiducial cuts differed for each sector. This resulted in a very large number of pa-

rameters. However, many of the parameters are similar in value, requiring only minor adjustments

from sector-to-sector and bin-to-bin. The outbending fiducial cut parameters, for torus currents of

both −1500 and −2250 A, are listed in Table B.5.

4.4.3 Interpolation of Cut Parameters Between Momentum Bin s

To avoid sharp “edges” that can appear between bins when cuts changed suddenly (potentially

with unpredictable effects on the measurement of count ratios near such an “edge”), the parame-

ters were smoothly interpolated between momentum bins, and the fiducial parameters were made

into a variable function of the particle momentum. The cut function was modified to make a uniquely

determined fiducial cut boundary on each electron based on its individual momentum by interpolat-

ing the values of each parameter with a curve from bin to bin. A third-degree polynomial was fit in

up to 4 (but usually only 2 or 3) momentum regions for each parameter to generate a variable cut

function in terms of θ and φ. All variable parameters were treated this way for inbending cuts (see

Figure 4.23 for two examples). For outbending cuts, only the outer cut boundary was treated in this

manner; the center strip was left determined by a discrete function in p. 44

The interpolated values45 were then referenced (along with the discrete center-strip outbending

parameters) in a C++ function which returned an acceptable hit value only for electron events with

θ and φ values within the designated cut boundaries.

44Evolution of the center strip cut parameters G and H varied too unpredictably between momentum bins to be reasonably
interpolated by a polynomial fit.

45These are A, B, C, D, E,F for both inbending and outbending cuts, plus θmax for inbending cuts or θupper , θlower and
outeroffset for outbending cuts.
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Figure 4.22: Outbending fiducial cuts, shown for two different sectors in the same momentum
bin. Notice the differences between the two cuts (especially in the center strip). The top image
shows electrons meeting the 80% efficiency requirement, and the bottom shows the same data
set, showing all events in both sectors. (The empty vertical “strip” on the right hand plots is due to
an inactive SC paddle.)
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Figure 4.23: Graphs of the interpolated values between momentum bins of fiducial cut constants.
Shown are the θmax values for torus current +1500 A and A in sector 1 for −1500 A, as two
examples. The polynomial fit parameters were then used in the fiducial cut function in place of the
discrete fit parameters.

4.4.4 Application and Effects of Fiducial Cuts

The fiducial cuts outlined in this section are necessary for removing regions of the Cherenkov de-

tectors where the response and acceptance are not well understood. This is crucial when direct

count rates are used in analysis, as in the case of dilution factor (Section 5.6) measurement. How-

ever, asymmetry measurements are not dependent on the detector efficiency or response.

Fiducial cuts are a very restrictive set of cuts, especially for high momentum inbending data (as

can be seen in Figure 4.21). It is desirable, therefore, to use the fiducial cuts only when needed.

Therefore, fiducial cuts are only used for measurements where clean count measurements are

needed (e.g. dilution factors, pion background calculation, etc.). The asymmetry A|| (Eq. 1.209) is

then measured without the fiducial cuts.

The case of inbending data, however, still presents a concern, due to the electrons directly im-

pacting the Cherenkov photomultiplier tubes in this configuration (depicted in Figure 4.20). The high

photoelectron counts in this region are not necessarily a Cherenkov response, and thus this data

cannot be relied upon for a good PID. Therefore, a second set of “loose” fiducial cuts was made for

the inbending data that only cuts out the region of direct PMT hits. 46 This cut, shown in Figure

4.24, uses only 2 sets of parameters (for p < 3 GeV and p > 3 GeV) and uses no parameter inter-

46The high angle limit is also left in place to prevent scattering from the target solenoid.
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Figure 4.24: “Loose” fiducial cut for one momentum bin and sector for inbending data. The bands
of direct PMT hits in the CC were specifically removed by these cuts.

polation. 47 This loose cut was applied to inbending A|| data, while no fiducial cuts were used on

the outbending A|| data. Table 4.6 summarizes the parameters used for these less restrictive cuts

for inbending data. Unlike the the other fiducial cuts, the parameter θmax is replaced with φlimit.

That is, the constant φ-edge of the cut is explicitly defined, instead of determined in terms of θ.

For convenient reference, a simple set of “starting parameters” are also included for the normal

(tighter) inbending and outbending fiducial cuts in Tables 4.7 and 4.8, respectively. These parame-

ters do not provide the smooth transition between bins like the refined cut parameters in the longer

parameter tables, but provide a reasonable starting point for the development of future fiducial cuts.

The decision to use different cuts for asymmetries and absolute count rates arose partially from

an investigation of the Q2 and W dependence of the measured rates of data with and without fidu-

cial cuts. Omitting fiducial cuts from asymmetries allows for an expansion of the measured range

of A|| slightly beyond the viable range of the measured dilution factor. The dilution factor can then

be applied to the asymmetry in all kinematic regions by the extrapolation of a smooth model (see

47This less intricate method resulted in limited accidental regions where the “tighter” cuts actually kept data excluded by
the supposedly “looser” cuts. Thus, the cut subroutine was modified in the “loose” case to keep events that pass either cut,
so that the “tight” cuts always retained a subset of the “loose” cut events.
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Table 4.6: “Loose” inbending fiducial cut parameters. These cuts are intended for removal of direct
Cherenkov PMT hits only, and should not be applied to acceptance-dependent measurements.
These numbers correspond to p in GeV and all angles are in degrees.

Parameter p <3 GeV p >3 GeV
A 41 41
B 0.26 0.26
C 0.30 0.30
D 9 8
E 16.72 16.72
F 0.06 0.06

φlimit 21.5 21.5

Table 4.7: “Tight” inbending fiducial cut parameters. These parameters are not used in this
analysis , and are merely included as a reference for a starting point for future fiducial cuts. These
numbers correspond to p in GeV and all angles are in degrees.

Parameter p <3 GeV p >3 GeV
A 36 36
B 0.28 0.25
C 0.30 0.30
D 10 10
E 16.72 16.72
F 0.06 0.06

φlimit 20 20
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Table 4.8: “Tight” outbending fiducial cut parameters. These parameters are not used in this
analysis , and, like the previous table, they are merely included as a reference for a starting point
for future fiducial cuts. These numbers correspond to p in GeV and all angles are in degrees.

Parameter p <3 GeV(−2250 A) p >3 GeVc (−2250 A) −1500 A

A 34 45 34
B 0.28 0.54 0.33
C 0.22 0.21 0.22
D 5 9.5 6.2
E 3 -4 3
F 1.46 1.2 1.46

Gupper 0.15 0.3 0.15
Hupper -0.09 0.1 -0.09
Glower 0.15 0.3 0.15
Hlower -0.09 0.1 -0.09
φlimithi

21 21 21
φlimitlo

22 22 22
outeroffset 1.2 -0.6 1.2
inneroffset 0 0 0

Section 5.6.2 for details).

The effectiveness of fiducial cuts can be seen by viewing the number of pion events (charac-

terized by a low CC photoelectron peak) removed by the cuts, in the absence of the pion track

matching cuts (Section 4.1). Figure 4.25 shows the basic inclusive PID cuts of Chapter 3 applied

to data with and without fiducial cuts, for comparison.

4.5 Faraday Cup Corrections

4.5.1 Correction for multiple scattering divergence

The Faraday Cup lies about 29.5 m downstream from the CLAS target [30] and has a diameter of

15 cm. As mentioned in Section 4.2.5, multiple scattering effects within the target cause the exit

angle of electrons from solid materials to change (Figure 4.11). This creates an overall statistical

divergence, or “spread” in the beam as it leaves the target.

Given these dimensions, the entire beam will not enter the Faraday Cup unless the spread angle
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Figure 4.25: Basic electron PID cuts (black lines) for 2.3 GeV inbending data. Electrons are sep-
arated from pions (red “hot spot”) by application of these cuts. The top and bottom plots show the
same data and cuts, except that fiducial cuts (Section 4.4) are added in the bottom plot, greatly
reducing the pion peak in the upper left corner. Note that no pion track matching cuts have been
applied in either case.
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of the scattered beam is less than arctan(15/2/2950) = 0.146◦. The divergence caused by multiple

scattering is a given by a statistical (Mollière) distribution [5], for which the root mean square is

given by

θrms =
√

2
13.6MeV
βcp

√

x/X0[1 + 0.038 ln(x/X0)] (4.61)

To estimate the effects on the worst case (i.e. lowest energy) EG1b data, we use β ≈ 1 and p ≈

1600 MeV. The value of t/X0 (radiation length fraction of target material) for the 12C target48 is

given by

t

X0
=
ρC`C

X0C
+
ρAl`Al

X0Al
+
ρK`K

X0K
+
ρHe`He

X0He
(4.62)

=
0.498

42.7
+

0.045

24.01
+

0.0432

42.7
+

0.145(1.90− 0.23)

94.32
≈ 0.017

All numbers in the above can be found on Tables 2.1 and 2.3. This yields a value of θrms =

0.0017 rad = 0.097◦, which translates to a projected width on the Faraday Cup of (29.5 m)× tan θrms =

5.0 cm.

Clearly, this is approaching the Faraday Cup radius of 7.5 cm. Within the inner 98% of the

distribution, a Mollière and Gaussian distribution are similar [5]. This means the Faraday Cup can

only detect (approximately) 1.5 standard deviations, or 87% of the electron beam. 49 On the other

hand, if the same calculation is repeated for an empty (LHe only) target,50 t/X0 = 0.005 and the

corresponding θrms (projected spread) is given by 0.029◦ (1.4 cm), meaning almost no charge is

missed by the Faraday Cup, in this case.

In theory, these calculations could be used to calculate a target and beam energy-dependent

multiplicative number for the Faraday Cup charge, but the situation is complicated by the possibility

of “overfocussing” by the Helmholtz magnet [117], where the beam focal point falls short of the

Faraday Cup, causing an additional divergence. 51 Thus, empirical methods must be relied upon to

renormalize the Faraday Cup values to account for this issue.

48The 12C and NH3 targets have approximately the same radiation lengths, so we use the simpler case here.
49This assumes the Gaussian approximation translates to the projection, a valid assumption for angles as small as these.
50This is an identical calculation, except that `C = 0 and `He = 1.90.
51This “spread” is proportional to the inverse square of the beam energy, so it is also worse at lower beam energies.
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A study was made by R. Minehart et al. measuring the current at the upstream BPMs (Beam

Position Monitors) for different targets. The assumption was made that no correction was needed

at 5.7 GeV52 and this was established as a “baseline” for a 1:1 correspondence between the BPM

and Faraday Cup (i.e., an appropriate “weighting factor” for translation between the two was de-

termined). Then, the ratio of the (weighted) BPM value to the ungated Faraday Cup measurement

was recorded for each beam energy and each target. The average of the ratios for the 3 BPMs (see

Section 2.2) determined a “normalization factor” for the total charge delivered to a given target. No

corrections were used for 4.x and 5.x GeV data, since the scattering angle is too small to be no-

ticed at those energies. Corrective factors for the lower beam energies for each target are listed in

Table 4.9. Note that it is the ratios between differing targets that is important here, not the absolute

correction on any particular target. 53

Table 4.9: Faraday Cup normalization factors correcting for angular spread caused by multiple
scattering effects. The recorded Faraday Cup value must be divided by the appropriate number to
get the “true” weighting value. The 1.723 GeV values were determined by linear interpolation from
1.606 GeV values.

Beam Energy (GeV) NH3 ND3
12C empty(LHe)

1.606 0.846 0.828 0.850 0.965
1.723 0.856 0.840 0.860 0.967
2.286 0.951 0.951 0.962 1.000
2.561 0.986 0.986 0.986 1.000

4.5.2 Bit factor correction

Empty (LHe) target runs utilized a higher beam current than the other target, because of the much

shorter radiation length t/X0 of the empty target, meaning a much higher beam current could be

tolerated with the same dead time. To accomodate this change, one bit was removed from the

Faraday Cup count response rate. In other words, the FC recorded “clicks” at half the rate it did for

other runs. Thus, to get an accurate count rate for the empty target runs, the FC counts for these

runs had to be multiplied by 2.
52This is a valid assumption, as θrms is less than 1/3 that for 1.6 GeV, and thus the distribution is almost 100% contained

in the Faraday Cup opening.
53For 12C/15N analysis, the radiation lengths of the only two targets used were believed to be similar, so no corrective

factors for the FC were used, at least initially (see Section 5.4).
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There were also a few exceptions of other target runs erroneously missing an FC bit in the DST.

54 Runs 26055, 26491, 27294, 26683, and runs 27982-27986 all required a factor of 2 on the FC

charge to get the proper value. Conversely, one LHe run (28201) was not missing the FC bit as it

should have been; the FC charge for this run was doubled.

To ease the confusion caused by the Faraday Cup issues, the Faraday Cup charge for every run

read both the multiple scattering factor (Table 4.9) and a bit factor correction from a reference table

developed after quality checks were complete.

4.6 Generation of Skims

At this point, the DST files have been converted to an easily readable (ROOT tree) format, and all

essential preliminary cuts and corrections are in place. The next necessary step is to convert the

data into compact skims retaining only the essential information needed for physics analysis. Gated

Faraday cup charges, target and polarization information, beam energy and torus current were

written to short text files for each run. Remaining analysis steps were mainly completed in terms

of Q2 and W , so cumulative counts for each run, divided by helicity, were written to designated Q2

and W bins for various combinations of PID and sector cuts. This simplified checks and changes

in later analysis steps. Counts for both inclusive electrons and exclusive ep events in terms of Q2

and W were recorded to the skims.

300 × 40 arrays were used in W and Q2. W bins were constant in size, exactly 0.01 GeV

in width, ranging from a bin minimum of 0.0 to 2.99 GeV. A logarithmic scale was used for the

designation of Q2 bins,55 ranging from 0.01 to 10.0 GeV2. Labels for the standard Q2 bins are

listed in Table B.1.

Also, kinematic values, averaged over the number of events, were recorded in each Q2, W bin,

for extraction in future asymmetry calculations. Averaged values of W , Q2, s, x, ν, D, η, ε, γ, θ and

E′ (defined in Section 1.1.3) were also calculated for each bin and recorded in 300 × 40 arrays,

to avoid later difficulties of relative weighting within bins. The Q2 values, weighted by the elastic

54This is evidenced by exactly double an inclusive count rate, and target confirmation by W -spectrum analysis (see
Section 3.3).

55This is done to obtain finer resolution at lower Q2 values.
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double-spin asymmetry, were also recorded for inclusive and exclusive events (see Section 6.2 for

details).

Some other miscellaneous information was also kept in the skims, as required. Elastic ep events

in terms of φ (in 0.2◦ bins) were kept for future exclusive background subtraction (Section 6.2.2), for

example. 1-D histograms in terms of various kinematic parameters were kept for reference, as well

as 2-D raster pattern histograms, but these had little future use in analysis aside from diagnostics.

For analysis of this data, two complete passes were made through each run set (outlined in Table

3.1). In the first pass, only runs and files passing all quality checks (that is, the RATE/ files described

in Section 3.3.7) were analyzed. These runs were needed for the calculation of the target length,

12C→15N modeling, packing fraction, dilution factors, and other (unpolarized) background-related

calculations. The strict fiducial cuts (Section 4.4) were applied to all the inclusive data analyzed in

the first pass, and the resulting skims were stored in a permanent disk space.

In the second pass, only ammonia files were analyzed, specifically for the measurement of

asymmetries. These files were subject to less stringent cut criteria than those analyzed in the first

pass. Namely, no cuts were made on fluctuations in the count rate56 (that is, these files are those in

the ASYM/ directory described in Section 3.3.7). Strict fiducial cuts were not applied to these files.

No fiducial cuts were used at all for outbending (negative torus current) data, and only the “loose”

fiducial cuts were applied to inbending (positive torus current) data (see Section 4.4.4).

Data from these two passes are stored separately. The analysis steps in the following chapters

are then applied to the appropriate data set(s). As a general rule, any analysis step requiring

different target types requires the first pass (RATE/) files, while any involving only asymmetries

uses the the second pass (ASYM/) files.

Skim files for each run containing the crucial physics information were thus stored to disk and

used for the remaining analysis. The following chapters explain in detail how diluted double-spin

asymmetries were extracted from the essential physics data stored in the skims.

56As previously noted, asymmetry measurements are not dependent on detector acceptance, so this is acceptable for
asymmetries only.



Chapter 5

Dilution Factors: Removal of

Unpolarized Background

5.1 Calculation of Background-subtracted Asymmetries

At this point in the analysis, all kinematic corrections and PID cuts are in place, and counts (for each

beam helicity) and average kinematic values have been written in 300 × 40 arrays (representing

bins in W and Q2) to skim files for each run (see Section 4.6). All components are now in place for

the calculation of the double-spin asymmetry (Eq. 3.1).

The inclusive asymmetry is still heavily contaminated with background. Only a small percent-

age of the asymmetry represents the scattering of electrons from the free polarized protons in the

target NH3. To find the actual physics asymmetry A||, one must divide out the contributions from

unpolarized target materials (i.e. 15N, LHe, and target windows) in the form of an overall kinematics-

dependent dilution factor (FDF ). Also, since the polarizations of both the beam electrons are free

protons is incomplete, one must also divide out the total beam polarization (Pb) and target polariza-

tion (Pt) from the asymmetry. This yields an actual double-spin asymmetry of

A|| =
1

PbPtFDF

n− − n+

n− + n+
(5.1)

248
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Here, n+ and n− are counts for each helicity normalized by the (livetime-gated) cumulative Faraday

Cup charge for the given helicity bucket. Here, and in the rest of this thesis, lowercase n is used to

denote Faraday charge-normalized counts, while capital N represents actual (unormalized) num-

bers of detected events. The procedure for removing unpolarized background is demonstrated in

this chapter.

5.2 Combining Data from Different Runs

The next analysis steps require the combination of run data by target type, separated into subsets

containing runs with similar characteristics (specifically beam energy, torus current, target polariza-

tion sign and half-wave plate status). For NH3, 12C and LHe runs, cumulative counts in each bin

were summed for each Q2 and W bin in each of the 12 data “brackets” listed in Table 5.1. In addi-

tion, combined count skims were also written for 12C and 15N target runs in each of the 7 special

frozen nitrogen-carbon “brackets” listed in Table 5.2.

Table 5.1: “Brackets” of EG1 ammonia/carbon/empty target data, ordered in the sequence in which
runs were taken. The combinations of HWP/target polarization sign for NH3 data present for each
bracket are listed. See Table 3.1 for run, beam energy and torus current information on these sets.

Set Label Bracket HWP/target pol. present

1.6+ 1 ++,+−,−+,−−
1.6− 2 ++
5.76− 3 ++,+−,−+,−−
5.73− 4 ++,+−,−+,−−
5.7+ 5 ++,+−,−+,−−
2.3+ 6 ++,+−,−−
5.6+ 7 ++,−+,−−
1.7− 8 ++,+−,−−
2.5− 9 ++,+−,−+,−−
2.5+ 10 none (ND3, 12C, LHe only)
4.2+ 11 ++,+−,−+,−−
4.2− 12 ++,+−,−+,−−

For NH3 runs only, separate counts, as well as cumulative raw asymmetries and their errors

(in each bin), were written for each individual half-wave-plate (HWP) and target polarization sign
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Table 5.2: “Brackets” of EG1 carbon/frozen nitrogen target data, ordered in the sequence in which
runs were taken. See Table 3.1 for run, beam energy and torus current information on these sets.
These brackets are marked with an apostrophe (’) to avoid confusion with the main data brackets.

Set Label Bracket

2.3+ 1’
5.6+ 2’
5.6− 3’
4.2− 4’
4.2+ 5’
1.7+ 6’
1.7− 7’

combination (++, +−, −+, −−). Raw asymmetries were calculated as

Araw(W,Q2) =

(
N−(W,Q2)

FC−

)

−
(

N+(W,Q2)
FC+

)

(
N−(W,Q2)

FC−

)

+
(

N+(W,Q2)
FC+

) (5.2)

where N± represents the total count of each helicity per bin and FC± represents the total helicity

and livetime-gated Faraday Cup charge for the run. The statistical error bar can be calculated using

quadrature [103] as

σA(W,Q2) =

√
(
∂A

∂N−

)2

σ2
N− +

(
∂A

∂N+

)2

σ2
N+ +

(
∂A

∂FC−

)2

σ2
FC− +

(
∂A

∂FC+

)2

σ2
FC+ (5.3)

The error on the Faraday Cup counts is small compared to that of the total (Poisson distributed) de-

tector counts1, so the last two terms can be neglected. The positive and negative helicity cumulative

charges are approximately equal, so we can assume FC+ ≈ FC−, yielding

∂Araw

∂N+
=

1

2N−
;
∂Araw

∂N−
=

1

2N+
(5.4)

1The Faraday Cup, once normalized for multiple scattering spread (Section 4.5), is nearly 100% efficient.
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If σN+ =
√
N+ (characteristic of a Poisson distribution), the error becomes

σA(W,Q2) =

√

1

4

N− +N+

N−N+
(5.5)

The raw asymmetries are typically on the order of 10−2, so generally we can assume, for the

purposes of error calculation, N(W,Q2) ≈ 2N+ ≈ 2N−,2 which yields

σA(W,Q2) =
1

√

N(W,Q2)
(5.6)

for the error bar on the asymmetry, calculated independently for each bin in the ammonia runs.

The cumulative asymmetry and error for several combined runs is added in the standard manner

of combining statistical errors:

Arawtotal(W,Q
2) =

∑

runsAraw(W,Q2)/σA(W,Q2)2
∑

runs 1/σA(W,Q2)2
(5.7)

σAtotal
(W,Q2) =

1
√∑

runs 1/σA(W,Q2)2
(5.8)

In addition to the total summed bin-by-bin counts and the cumulative asymmetries for each “bracket”,

the averaged kinematic values of Q2, W , x, s, ν, D, E′, θ, ε, η, and γ are tracked for each run set,

weighted by the total counts in each bin. (See Section 1.1.3 for definitions of these variables.) That

is,

val =

∑

runs val ×N(W,Q2)
∑

runsN(W,Q2)
(5.9)

is simply recorded in each bin for each of these 11 kinematic quantities val. Tracking of the aver-

ages allows for easier calculations later, without having to worry about the relative weighting within

the bin.

For the purposes of accurate evaluation of the elastic asymmetry for beam × target polariza-

tion determination (Section 6.2), the average Q2, weighted by the calculated elastic asymmetry

2For bins with very small cumulative counts, this approximation breaks down. However, the net effect, summing over
many runs, is for these statistical effects in these bins to average out and cancel. To make sure this was the case, analysis
was done with both cumulative asymmetries and cumulative counts, with no significant discrepancies found between the
two methods.
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Ael(Q
2, E) given by equation 6.22, is averaged over the runs, for both inclusive and exclusive ep

events:

Q2
weightedtotal

=

∑

runs Q
2
weightedAel(Q

2, E)N(W,Q2)
∑

runsAel(Q2, E)N(W,Q2)
(5.10)

where Q2
weighted is the similarly weighted Q2 from each individual run.

For ammonia and carbon runs, the summed counts in ∆φ particular to each target are also

recorded for elastic ep events only3 for exclusive event background subtraction (see Section 6.2.2).

Finally, the cumulative Faraday Cup counts were recorded for each target label (in the case of

ammonia targets, for each HWP and target polarization combination). The checking of Faraday-

Cup normalized count rates is a valuable diagnostic tool. Comparative count rates for each target,

sampled at each beam energy, are shown in Figure 5.1.

5.2.1 Corrections to empty (LHe) target counts

Empty (LHe) target runs presented a special case, due to both the significant difference in mass

thickness compared to the other targets (and thus the need for differing external radiative correc-

tions), and the raster-related problems present in empty targets in Brackets 9-12 of the EG1 run

set (see also Section 3.3.4). Because of these factors, data in the empty (LHe only) target runs

presented additional complications when summing over the runs for use in statistical models.

Before explaining the corrections made to the LHe runs, it is useful to consider the purpose of

collecting the empty target data. Subsequent sections of this chapter explain two methods for the

calculation of the target length (L), ammonia packing fraction (`A), and dilution factors (FDF ). One

involves bin-by-bin statistical averaging of the actual data, and the other uses a radiated cross-

section model to provide a definition of these quantities free from domination by statistical devia-

tions. (The latter, of course, is the favored method, where its applicability is valid. See subsequent

sections for a more complete explanation.)

3These were divided into 0.2◦ bins for all bins within 30◦ of ∆φ =0.
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Figure 5.1: Inclusive count rates in W shown for NH3 (red), 12C (blue) and empty LHe (green)
targets, for inbending data. The top two plots show the same Q2 bin for 1.6 and 2.3 GeV data,
while the bottom plots show a higher Q2 bin at 4.2 and 5.7 GeV beam energy, respectively. NH3

counts are actual counts, while the other two targets are Faraday charge-normalized relative to
the ammonia target. Note the presence of the elastic peak (more prominent at lower energies) for
NH3 counts, while empty (MT) target counts are much lower, corresponding to the much smaller
radiation length fraction t/X0 of this target. Error bars, calculated as

√
N/FC (Poisson statistics

normalized by the Faraday Cup charge), are generally too small to see.
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Radiative corrections for empty target counts

The empty target is of considerably smaller thickness in terms of radiation length (t/X0) [8] than

the carbon or ammonia targets, which were both designed with approximately the same mass

thickness [65]. The quantities mentioned in the preceding paragraph are dependent on count ratios

between the three targets (NH3, 12C, LHe). Because t/X0 is similar for the first two of these, no

correction need be considered for any ratio between these two targets. However, empty target

counts require a count rate correction to account for external radiative effects. The corrections thus

generated should be applied to any model using the bin-by-bin averaging of statistical data (but

should not be applied to models using radiated cross-sections, as such models already have the

radiative differences inherently built-in). Therefore, for the empty target, two 300 × 40 arrays of

summed counts were produced for each bracket, one representing uncorrected counts, and the

second incorporating (unpolarized) radiative corrections.

The model outlined in Section 2.8 was used to generate a 300 × 40 array of multiplicative

factors for each Q2 and W bin used at each beam energy in the experiment. 4 To calculate the

ratio, first, the total target length L is calculated as according to the radiated cross-section model

(see Section 5.3.2 for details on this procedure). Then, a length Lsim is calculated, representing

what the total length of the empty target would be if it had the same radiation length X0 as the 12C

target. This length is calculated by subtracting the length of the carbon material (`C) and adding

back in a length of liquid helium with the same radiation length as the carbon. In other words, we

replace the fraction of a radiation length of carbon with the same fraction of a radiation length of

helium, using the relation
ρHe`He

X0(He)
=
ρC`C
X0(C)

(5.11)

This results in

Lsim = L− `C +
X0(He)

X0(C)

ρC

ρHe
`C (5.12)

Then, the total radiated cross-section (accounting for all contributions from LHe, Kapton, and alu-

minum listed in Table 2.1) is calculated for each material in the empty target configuration, the first

4This is indeed the exact same model used to calculate the target lengths and dilution factors in the inelastic regions
explained in later sections.
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time using L for the total target length, and the second time using Lsim for the target length. In both

cases, the total target radiated cross-section

σMT = ρAl`AlσAl + ρK`KσK + ρHe`HeσHe (5.13)

is calculated. 5 The ratio σMT (sim)/σMT (true) (using values of `He equal to Lsim and L, minus the

foil thickness, in the numerator and denominator, respectively) was then written to an array for each

bin, to be multiplied by the raw empty target counts. This gives the corrected count appropriate for

unradiated model comparisons to carbon and ammonia targets. 6

Raster pattern cuts for contaminated empty target runs

The second correction to empty target runs applly only to the last three data brackets. All the empty

runs in these brackets required a raster pattern cut to remove a bad part of the target (see Section

3.3.4). To evaluate the effect of the contamination in the lower half of the target, L was measured,

by both methods detailed in Section 5.3.1, for each of the last 4 data sets, using different cuts on

the raster pattern (shown in Figure 5.2). The results of the study are organized in Table 5.2.1. As

the table shows, the problem is more extensive than the whole pattern plot suggests. As pieces

of the raster are removed, the count ratio (and hence L) decreases, but it does not stabilize until

events correlating to the bottom half of the pattern are removed all together. Thus, for all empty

target runs from 27899 onward, we cut events scattered from the bottom target half, and double

the remaining (upper half) event count rate. Precise determination of the ratio between whole- and

half-targets resulted in a factor slightly different than 2.00, however.

To calculate the appropriate multiplicative factor for the empty target runs after the raster cut,

the same raster cut was employed on the (perfectly good) NH3, ND3 and 12C targets in these run

sets, and the remaining total counts were divided into the total (uncut) inclusive counts. The derived

carbon target factor was the corrective factor actually used, since the 12C target was closest on the

target stick to the empty target, minimizing the effects of any difference in position due to motion of

5The cross-section of Kapton is considered to be equal to that of carbon for the purpose of this analysis.
6The correction was typically small, ranging from ∼0.97 below the elastic region to ∼1.07 at high W , rising more quickly

in W for lower beam energies.
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Figure 5.2: Raster pattern for an empty (LHe) target run in the latter part of the EG1b run set
(shown also in Figure 3.10). A half-pattern (second figure) was decided as a final, stable cut on the
raster pattern to remove the anomaly in the bottom half. The 5 cut configurations analyzed in the
study of the counts are shown in the bottom figure.



257

Table 5.3: Measured values of total target length L using the two different methods outlined in
Sections 5.3.1 and 5.3.2, labeled Lrate and Lmodel, respectively. Different raster pattern cuts (shown
in Figure 5.2) were used. Measurements from the last 4 data sets, plus “good” 2.5− runs prior
to Run 27899 (for control purposes) are shown. Note the columns labeled “good only” remain
constant, while the others fluctuate, only stabilizing when half or less of the target remains. All
lengths are given in cm.

Raster Fraction Lrate(2.5−,good only) Lmodel(2.5−,good only) Lrate(2.5−,all) Lmodel(2.5−,all)

whole 1.95 1.86 2.61 2.49
3/4 1.95 1.86 2.51 2.39

top half 1.94 1.85 2.50 2.37
1/4 1.95 1.85 2.47 2.35

bad crescent 1.93 1.81 3.35 3.13

Raster Fraction Lrate(2.5+) Lmodel(2.5+) Lrate(4.2+) Lmodel(4.2+) Lrate(4.2−) Lmodel(4.2−)

whole 2.24 2.17 2.22 2.16 2.34 2.28
3/4 2.06 1.98 2.07 2.00 2.17 2.11

top half 1.99 1.92 2.04 1.97 2.17 2.11
1/4 1.99 1.90 2.02 1.92 2.09 2.02

bad crescent 3.45 3.20 3.44 3.05 4.08 3.86

the target stick. The NH3 values were used for a determination of the systematic errors due to this

problem (Section 7.2). These factors, which are close to the estimate of 2, are recorded in Table

5.4.

Table 5.4: Ratio for total vs. half-raster cut counts for three different targets in the last 3 brackets
of the EG1 data. The 12C ratio was used as the multiplicative factor for (raster-cut) empty target
counts in each given bracket. Note that some empty runs in Bracket 9 (2.5−) were unaffected by
the anomaly, so bad runs in this set were simply removed, and no corrective factor was required.

Set Label/Bracket NH3 ratio ND3 ratio 12C ratio
2.5+/10 – 1.989 1.957
4.2+/11 1.904 1.896 1.866
4.2−/12 1.90 1.904 1.871

5.3 Calculation of Target Length L

The total length of the target (i.e. the length of the whole LHe mini-cup, including all LHe and

aluminum, as well as the Kapton and target material in the target cell itself) was nominally 1.90
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cm (see Table 2.1). However, this cannot be taken as an exact measurement, due to variations in

target length due to unobservable factors that occur during the experiment. These factors include

• Concavity of the aluminum target ends due to the negative pressure within the cryotarget

• Possible overflow of LHe from the target minicup (increasing the total length by up tp 0.2 cm)

• Slight variation vs. beam position due to curvature of the entrance and exit windows.

Accurate knowledge of the target length L is essential for the accurate calculation of dilution factors

(Section 5.6) for unpolarized background subtraction. It is desirable to have a method for measuring

L that accounts for minute variations in the total target length.

Two separate methods were developed for calculation of L, both of which require use of inclusive

empty (LHe) and 12C target counts. The first (Section 5.3.1) utilizes only real EG1 data and a bin-by-

bin model in the high resonance and deep-inelastic regions to calculate L. The radiative correction

factor outlined in the previous section must be used for the empty target data in this method. The

second method (Section 5.3.2) uses a radiated cross-section model to calculate L, and thus can

use raw carbon and empty inclusive counts across both resonance and DIS regions. In practice,

both methods were compared for validity, and the radiated cross-section model method was used

for the actual measurement of L.

Because of possible variations over time, the value of L used for dilution factor calculations was

specific to each data bracket. For the purposes of 12C/15N data analysis, which used a completely

different target insert, similar measurements of L were not possible for each individual set, because

there were no empty target runs during the carbon/nitrogen analysis phases. Instead, the error-

weighted average

Lavg =

∑

brackets L/σ
2
L

∑

brackets 1/σ2
L

(5.14)

was used as an estimate for the total target length in the carbon/nitrogen target runs, with an

appropriate systematic error included on any results from this target insert.
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5.3.1 Calculation of L from data

The normalized count rates for the empty and carbon targets can be expressed in terms of σC

(12C scattering cross-section), σHe (4He scattering cross-section) and σF (the averaged scattering

cross-section of the foil Kapton and aluminum) as

nC ∝ ρC`CσC + ρF `FσF + ρHe(L − `C)σHe (5.15)

nMT ∝ ρF `FσF + ρHeLσHe (5.16)

where the constant of proportionality is directly dependent on the acceptance and is assumed to

be the same for both targets. If we assume σF /σC = ρF `F /ρC`C ≡ f , then7 these reduce to

nC ∝ (1 + f)ρC`CσC + ρHe(L− `C)σHe (5.17)

nMT ∝ fρC`CσC + ρHeLσHe (5.18)

Dividing the first relation into the second and assuming σC = 3σHe,8 we get

r ≡ nMT

nC
=

3(1 + f)ρC`C + ρHe(L− `C)

3fρC`C + ρHeL
(5.19)

Solving for L then yields

L =
(3ρCellC[(1 + f)r − f ]

ρHe
− r`C

)

/(1 − r) (5.20)

L was calculated each bin, with statistical error bars calculated for only one variable (r) [103] as

σL =
∂L

∂r
σr =

[
N(1 + f) − `C

1 − r
+
N [(1 + f)r − f ] − r`C

(1 − r)2

]

σr (5.21)

7This is not strictly true, of course, but foil contributions are generally small compared to that of the carbon target, Kapton
approximates carbon in its cross-section, and the per nucleon cross-section difference between aluminum and carbon (i.e.
the nuclear EMC effect) is small. The cross-sectional model does not have the drawback of this assumption, but the
differences are minor, as the final plots of L, `A and FDF show.

8This is also not strictly true, due to the nuclear EMC effect, etc.; see previous footnote.
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where N ≡ 3ρC`C/ρHe. The error on r, σr, is given in quadrature by

σr =

√
(
∂r

∂nC

)2

nC +

(
∂r

∂nMT

)2

nMT (5.22)

which yields
σr

r
=

√

n−1
C + n−1

MT (5.23)

Plots of L as a function of both W and Q2, with the error-weighted average taken over the opposing

variable, are shown in Figure 5.3.

The determination of L for each run set was then determined by the error-weighted average

over the bins,

L =

∑

Q2

∑

W L/σ2
L

∑

Q2

∑

W 1/σ2
L

(5.24)

with error9

σL =
1

√
∑

Q2

∑

W 1/σ2
L

(5.25)

Only ranges of W and Q2 were used where the model was valid. Because of the nuclear EMC

effect (i.e. the breakdown of assumptions like N ≡ 3ρC`C/ρHe), the ∆(1232) region did not present

a completely “flat” measurement of L, so a lower cut of W=1.40 GeV was used. The higher cut on

W and selection of Q2 bins was beam energy dependent; the same boundaries used for dilution

factor modeling (Table 5.10) were employed here. Results for this method of determination of L are

listed in Table 5.5 under the “Method 1” heading.

5.3.2 Calculation of L from radiated cross-sections

L was also calculated using the radiated cross-sections contributed by each material in the 12C and

LHe targets. The model described in Section 2.8 was used. Because this model calculates radiated

cross-sections, which are dependent on the amount of material in each target, the cross-sections

for like materials must be calculated independently for each target. To resolve the ambiguity, a

9It is important to note that this error is just the statistical error on L assuming statistical compatibility of the data, so that
it does not account for systematic variations of L(W, Q2), and therefore grossly underestimates the actual error on L. Its
only use in this analysis is as a weighting factor for calculating Lavg in 12C/15N analysis.
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Figure 5.3: Total target length, L, calculated using EG1 data, shown as a function of Q2 (top
two figures) and W (bottom figure). Note that below W ∼1.4 GeV, the ∆-resonance affects the
measurement (bottom), so W values below this threshold are not used in calculating the average.
High-W values are avoided, as well, due to the extreme sensitivity of radiative corrections between
the two targets, as can be seen in a comparison of the top two plots. Shown are the 5.76 GeV
outbending data.
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Figure 5.4: The count ratio nMT /nC , shown as a function of W , including the correction for differing
radiation lengths, for all 12 data brackets in sequence. Points of constant W across varying Q2

were superimposed. The ratio measured ∼0.44 throughout data collection. This value was used to
determine L. Points with an error bar larger than 0.1 were excluded for clarity.
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subscript in brackets [ ] is used to label which target configuration was used to calculate the given

cross-section.

Beginning with Eqs. 5.15-5.16, with the foil terms expanded into Kapton and aluminum cross-

sections:

nC ∝ ρAl`AlσAl[C] + ρK`KσC[C] + ρC`CσC[C] + ρHe(L− `C)σHe[C] (5.26)

nMT ∝ ρAl`AlσAl[MT ] + ρK`KσC[MT ] + ρHeLσHe[MT ] (5.27)

(where it is approximated σC ≈ σK , and the constants of proportionality are equal for both targets),

defining W ≡ ρAl`AlσAl + ρK`KσC and r ≡ nMT /nC , and dividing, we find

r =
W[MT ] + ρHeLσHe[MT ]

W[C] + ρC`CσC[C] + ρHe(L− `C)σHe[C]
(5.28)

Solving for L yields

L =
rW[C] − W[MT ] + r`C(ρCσC[C] − ρHeσHe[C])

ρHe(σHe[MT ] − rσHe[C])
(5.29)

To calculate a statistical error bar, it was assumed that the foil contributions were small (so that W

could be neglected) and that σHe[MT ] ≈ σHe[C], so that

σL

σr
=
∂L

∂r
=
`C(ρCσC[C] − ρHeσHe[C])

ρHeσHe[C](1 − r)2
(5.30)

where the error σr is calculated using equation 5.23.

An apparent catch in the use of this method is that the amounts of all materials must be known

in order to calculate the radiated cross-sections (see Section 2.8), which means L must be known

to calculate the cross-sections! Fortunately, the radiative corrections are generally small compared

to the Born (unradiated) cross-section, so that only a very rough approximation of L is needed for

the radiative correction. In practice, an initial value of L = 1.90 cm is used, and when L is calculated

(and averaged over all valid bins), the new value of L is used to calculate the cross-sections again,

which are inserted back into the model. This process is repeated until L stabilizes. In practice, this

never required more than 3 iterations. Using different initial values of L ranging from 1.60 to 2.40

cm showed no change in the final measurement when the iterative method was used.
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Values of L were then combined for each bin just as in the first method (see Footnote 9),

but because phenemona like the nuclear EMC effect were included in the model, the ∆(1232)

resonance could be included, so a lower limit of W = 1.10 GeV was used instead, in this case.

Unfortunately, the heavy dependence on the model caused a large dip in the measurement of L

when higher W values were approached (see Figure 5.5), causing a systematic lowering in the

averaged value of L. For this reason, a more stringent cut on the high value of W was used.

Specifically,

W < 1.10 GeV +
2

3
(Wlimit − 1.10 GeV) (5.31)

was used, that is, 2/3 of the inelastic region used for dilution factor calculation. The value of Wlimit

is defined as the appropriate value listed in Table 5.10.

The two methods yield approximately the same values for L, as can be seen in Table 5.5.

Table 5.5: Measured target length L using both methods outlined in the text. Errors shown are
statistical (i.e. for weighting purposes) only, and do not reflect systematical variations in terms of
W and Q2. Method 2 was used for the value of L in actual analysis. Lavg is used only for 12C/15N
analysis. Lengths are in cm.

Set Label/Bracket L (Method 1) L (Method 2)

1.6+/1 1.93 ± 0.0056 1.90 ± 0.0038
1.6−/2 1.82 ± 0.0109 1.85 ± 0.0054
5.76−/3 1.79 ± 0.0036 1.83 ± 0.0045
5.73−/4 1.82 ± 0.0023 1.87 ± 0.0029
5.7+/5 1.93 ± 0.0044 1.95 ± 0.0065
2.3+/6 1.76 ± 0.0038 1.77 ± 0.0035
5.6+/7 1.77 ± 0.0044 1.78 ± 0.0063
1.7−/8 1.87 ± 0.0036 1.87 ± 0.0019
2.5−/9 1.84 ± 0.0028 1.86 ± 0.0022
2.5+/10 1.93 ± 0.0072 1.92 ± 0.0070
4.2+/11 2.01 ± 0.0060 2.00 ± 0.0076
4.2−/12 2.04 ± 0.0021 2.05 ± 0.0022

Lavg 1.89 ± 0.0010 1.90 ± 0.00095
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Figure 5.5: Total target length, L, calculated using a radiated cross-section model, as a function of
W , averaged over 4 Q2 bins. The top figure clearly demonstrates the inadequacy of the model in
the elastic region, as well as its failure, likely due to e+e− pair production, at high W . The bottom
figure is the same data, showing only the region used to make the actual calculation of L. Data
shown are for the last bracket, the 4.2− data.
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Figure 5.6: L shown as function of W bin for all 12 data brackets, in chronological sequence. As in
Figure 5.4, points of different Q2 are superimposed. Only points with an error of less than 0.2 cm
are included for clarity.
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5.4 Modeling 12C to 15N Data

Solid 12C was used in EG1 as an approximation to the 15N in 15NH3, scaled to the proper nuclear

mass per scattering center (see below), for purposes of non-polarized background removal. This

works well as a first-order approximation, but due to the likelihood of additional effects arising from

the unpaired neutron in the 15N nucleus, it is desirable to have a model relating the cross-section

ratios of these two elements.

Fortunately, a limited number of solid 15N runs, using a separate target insert (Section 2.4), were

interspersed with 12C runs for comparison. The original method of comparison of these data, seen

in Refs. [2] and [46], assumed that the frozen target length `N was well-known, and that the cross-

sections could be scaled as a function of the neutron-deuteron cross-section ratio (σn/σd) and

two constant coefficients (labeled a and b). Unfortunately, this method does not accord precision

measurements to the relationship, as the frozen nitrogen length `N is not known to better than ∼0.1

cm, leading to large uncertainties in the relation coefficients. The development of a physical model

to relate the ratio of cross-sections of 15N and 12C was needed in this experiment.

5.4.1 Development of the model

An in-depth analysis of the carbon-nitrogen subsets (contained in 7 beam energy/torus current

brackets, see Table 5.2), was performed during the most recent EG1 analysis. Of these 7 data

sets, only the first (2.3 GeV inbending) contained enough data to be used to develop a precision

model of 15N cross-sections relative to 12C. The model outlined in Section 2.8 was used for the

cross-sectional data of 12C, LHe and Al (with Kapton approximated as 12C, as usual). A best fit of

the model parameters to the 15N data generated a model that could reproduce the observed ratio

of nitrogen/carbon counts as a function of W and Q2. The other 6 brackets could then be used as

a test of the model. Ref. [95] contains a thorough description of the process used to develop the

model; only the basics are outlined in this section. To generate the model, the ratio of nitrogen-

carbon target inclusive electron counts was recorded as a function of Q2 and W in the standard

manner. 10 Because a different target insert was used for these runs, it was not possible to directly

10PID cuts were somewhat different than those specifically outlined in the previous chapter, but comparison between the
ratios using varying PIDs showed no substantial discrepancies. See Ref. [95] for more details.
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Figure 5.7: An enlargement of a quality check plot of the 5.6 GeV outbending carbon-nitrogen run
set, showing FC-normalized count rate as a function of DST file number. (Normal 12C run files are
highlighted in green.) Note the decrease in count rate near the end of the set. Closer scrutiny of
the rate counts and log book entries showed that the LHe began draining during a frozen 15N run
(Run 27379) and had nearly completed draining by the beginning of the short (carbon) Run 27380.
This run was useful for comparison to find out the total contribution to the cross-section from LHe
scattering, and hence an approximation of the total target length L.

measure L. However, it was known from physical measurement of the assembled target that the

total path length through the LHe in the target was ∼1.80 cm, with the possibility of overflow of LHe

in the target minicup, which could potentially increase the effective target length to up to 2.10 cm.

To detect the presence of overflow, we analyzed a single data run containing carbon, throughout

which the LHe was draining (Run 27380). Observation of the file-by-file count rate of this run shows

that the target was (nearly) drained by the end of the run (see Figure 5.7). Comparing a “full” carbon

target run to the files near the end of Run 27380, and using a method very similar to that outlined

in Section 5.3.2,11 an estimate of the total LHe length could be derived. It was indicated that the

minicup had not overflowed, so L = 1.80 cm was used in the analysis. 12 The possibility of H2O

contamination was also investigated by a careful inspection of the elastic peak region of the count

ratio [95]. No tangible evidence of an elastic peak resulting from free hydrogen was found, so we

concluded that water vapor contamination was not an issue.

11The only difference is that the term ρHe(L− `C)σHe for the “empty” target is replaced by ρC`CσC before solving for L.
12The value of 2.10 cm was used to estimate the systematic error. The remaining analysis in this thesis uses Lavg ≈1.88

cm, well within the systematic error.
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The count ratio could then be modeled as13

rNC ≡ nN

nC
=
ρAl`AlσAl[N ] + ρK`KσC[N ] + ρN `NσN [N ] + ρHe(L− `N )ρHe[N ]

ρAl`AlσAl[C] + ρK`KσC[C] + ρC`CσC[C] + ρHe(L− `C)ρHe[C]
(5.32)

with `N determined by a minimization of

χ2 =
∑

W,Q2

(rNC − rNC(model))
2/σ2

rNC
(5.33)

As in the case of using a model to determine L in the previous section, this must be done iteratively,

as initial knowledge of the nitrogen/carbon model is not precise. For that reason, only values of

W >1.2 GeV were used in the fit, to avoid sensitivity to the peak structure in the inelastic range.

The model parameters (described in Section 2.8) used to determine the unknown σN were then

optimized with MINUIT to generate the new model.

Though there was not enough data to fit the model at the 1.7, 4.2 and 5.6 GeV beam energies,

the model could be extrapolated to these data sets to test the viability of the fit. Ratios of counts

between frozen nitrogen and carbon using the finished model and Eq. 5.32 are shown in Figure 5.8.

The model fits the data well, except for the quasielastic region when Q2 becomes too low (bottom

figures).

The most obvious major systematic errors in this mini-analysis are the target material lengths

L and `N . However, there were a couple more significant discrepancies in the data which required

correction before an accurate model could be derived.

Scaling of 12C runs from different target inserts

This correction applies only to the 4.2 GeV outbending data. Most nitrogen-carbon data sets con-

tained an equal quantity of 12C and 15N data. The 4.2− data (bracket 4’), however, contained only

one (very brief) carbon run (Run 28500), which suffered a DC HV trip in Sector 3, making overall

count comparisons involving the (already meager amount of) data exceedingly difficult.

13All cross-sections and count rates here are implicitly assumed to be functions of W and Q2.
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Figure 5.8: The count ratio rNC = nN

nC
compared to the finished model calculation of the same

quantity, showing only the 2.3 GeV data used in construction of the model. Extended W and Q2

ranges are shown. More information on the model can be found in Ref. [95].



271

It was thus desirable to take advantage of the large number of 12C runs taken during the main

(ammonia) data collection of 4.2− runs (Bracket 11), taken not too long before the runs in bracket

4’. These carbon runs, however, used a different insert stick, and thus could not be trusted for

comparison unless some sort of normalization was made. For this purpose, the inclusive (charge

normalized) count rate in all 5 good sectors of Run 28500 was divided by the inclusive count rate

in the same 5 sectors for the Bracket 11 carbon runs.

An average of the ratio between the bracket 11/bracket 4’ counts yielded a value of 1.047. The

carbon insert used in the nitrogen-15 target stick was measured as 4.5% thicker than that used in

the regular target stick [65], so this is an expected result.

Thus, for the purposes of testing the fit, and further carbon-nitrogen analysis, the bracket 11

carbon runs were used for bracket 4’ analysis in place of Run 28500, and inclusive counts in every

bin were multiplied by 1.047.

Adjustment of Faraday Cup charges due to X0 discrepancies

Initial plots of the ratios of 15N/12C target counts showed overall offsets of indeterminate physical

origin. Though knowledge of the intracacies of the resonance structures in the two targets are not

obvious (and is, in fact, the goal of creating this model), we know the ratio in the deep inelastic (DIS)

region should be 1.00, assuming equal density×length/X0 for both targets, as the internal 3-quark

point structure is the same for all matter.

This was definitely not the case, however, for raw normalized count ratios between the two tar-

gets. In fact, there was an energy-dependent offset in the DIS ratio, highest at low (1.7 GeV) beam

energy, diminishing to nil at the high (5.6 GeV) beam energy. This phenomenon is consistent with

the failure to account for multiple scattering spread at the Faraday Cup aperture between targets of

differing radiation length (see Section 4.5). The ratio offsets (20.8%, 6.5%, 2.6%, and 0% for 1.7,

2.3, 4.2, and 5.6 GeV, respectively) are indicative of a larger frozen nitrogen target mass thickness

t/X0 than for the carbon target. 14

The source of the extra radiation length is unknown; visual investigation of the target found

14The ratios were determined by the error-weighted average over the DIS region.
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no discernable difference between the nitrogen and carbon target cells. To account for the ex-

tra radiation length, normalization factors were multiplied by the overall 12C target counts. These

normalization factors are listed in Table 5.6.

Table 5.6: Required normalization factors for nitrogen-carbon data to account for the differing ra-
diation lengths of the 12C and 15N targets. The factor was applied to the carbon inclusive electron
counts.

Set Label/Bracket Normalization factor

2.3+/1’ 1.065
5.6+/2’ 1.000
5.6−/3’ 1.000
4.2−/4’ 1.026 × 1.047 = 1.074
4.2+/5’ 1.026
1.7+/6’ 1.208
1.7−/7’ 1.208

This may appear to be (and indeed is, to an extent) a “messy cleanup” of the target data. How-

ever, application of the normalized count rates to calculation of the target length `N (as described

in the remainder of this section) reveals a consistent value. This consistency is not present without

the proper normalization factors on the data. Without the normalizations, an obviously improper

correlation between between `N and the beam energy appears. Therefore, the normalization fac-

tors are testable for internal consistency, and are, in fact, a viable method for salvaging the validity

of the data as a tool to test the model. Sample plots of the W -dependence of the model compared

to real data are shown for the other 6 data sets in Figure 5.9.

5.4.2 Comparison to the older fit method

To check the internal consistency of the model, it is useful to check it against the older fit method

cited in the introduction to this section. We begin by defining n′
C ∝ ρC`CσC and n′

He ∝ ρHeσHe,

where the proportionality constant is the same as in Eqs. 5.17 and 5.18,15 and insert these values

into these equations, to get

nC = (1 + f)n′
C + (L− `C)n′

He (5.34)

15This gives the interpretation of n′
C as the charge normalized counts scattered from the 12C slab only, and n′

He as the
normalized count rate scattered per 1 cm of LHe.
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Figure 5.9: Extrapolations of the 15N/12C model from the 2.3 GeV data set to data sets at other
beam energies. The six plots correspond to brackets 2’-7’, in sequence. The three rows represent
5.6 GeV, 4.2 GeV and 1.7 GeV data, in descending order. Extension of the fit to the elastic region
at lower beam energies proved troublesome, due to the rapid change as a function of W and the
presence of the resolution-dependent elastic radiative tail.
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nMT = fn′
C + Ln′

He (5.35)

Solving for n′
C and n′

He yields

n′
C = AnC +BnMT (5.36)

and

n′
He = CnMT +DnC (5.37)

where

A =
L

L+ f`C
B = − L− `C

L+ f`C
(5.38)

C =
1 + f

L+ f`C
D = − f

L+ f`C

The inclusive count rate from a 15N target (using the notation of Eqs. 5.15 and 5.16) is given by

nN ∝ ρF `FσF + ρHe(L − `C)σHe + ρN `NσN (5.39)

Using the definition of f , this becomes

nN ∝ fρC`CσC + ρHe(L− `C)σHe + ρN `NσN (5.40)

Using the above, we find

nN = fn′
C + (L − `C)n′

He + n′
N (5.41)

where

n′
N ∝ ρN `NσN (5.42)

(same proportionality constant again assumed) is the only remaining term with unknowns, namely

`N and σN . The value `N is just a number, but σN is a modeled function that varies with kinematics.

The simple model assumed here is

σN =

(

a+ b
σn

σd

)

σC (5.43)
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where σn/σd is the cross-section ratio of the neutron to the deuteron. Naively, a=7/6 and b=1/6,

with only very slight deviations. However, in reality, other inaccuracies in the model are “soaked up”

into the constants, as we will see. Inserting this into Eq. 5.41 and using the definition of n′
C yields

nN = fn′
C + (L − `C)n′

He +
ρN `N
ρC`C

(

a+ b
σn

σd

)

n′
C (5.44)

or, using Eq. 5.35,

nN = nMT − `Cn
′
He +

ρN `N
ρC`C

(

a+ b
σn

σd

)

n′
C (5.45)

In principle, then, using empty target, carbon and frozen nitrogen runs, one can make a best fit of

`N , a and b to the data. Because empty target runs were actually taken in separate sets from the

carbon/nitrogen data, the count ratios to carbon were actually used:16

nN

nC
=
nMT

nC
− `Cn

′′
He +

ρN `N
ρC`C

(

a+ b
σn

σd

)

n′′
C (5.46)

with

n′′
C = A+B

nMT

nC
(5.47)

and

n′′
He = C

nMT

nC
+D (5.48)

This way, carbon runs from the same bracket could be used in comparison to the other tar-

get,17ensuring proper normalization between run sets separated across time.

In practice, MINUIT had difficulty fitting all 3 unknown parameters `N , a and b at once; it was

just not possible to find a stable equilibrium in the fit without some more constraints on the data. In

practice, the model outlined in Section 5.4.1 was used, so that

a+ b
σn

σd
→ σN

σC
(5.49)

16Because of the 0.1 mm difference in thicknesses of the 2 carbon targets used, a multiplicative factor of 1.047 was used
on the nMT /nC count ratio. See Section 5.4 and Table 5.6.

17Pairings between carbon-nitrogen brackets to normal data brackets (for empty target data) were as follows: 1′ ↔ 6;
2′, 3′ ↔ 3; 4′, 5′ ↔ 12; 6′, 7′ ↔ 8. Outbending data sets were preferrable to inbending due to wider overall kinematic
coverage.
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in Eq. 5.46, then MINUIT was used to find a fit for `N . In other words, the histogram of LHe/12C

counts (in terms of W and Q2) was fit to the histogram of 15N/12C counts, using the function in Eq.

5.46. The parameter `N was varied (with σN/σC read from an array determined by the model), until

the best fit, which minimized the value of

χ2 =
∑

W,Q2

((
nN

nC

)true

−
(
nN

nC

)th
)2

(5.50)

was found, where
(

nN

nC

)th

is the result of Eq. 5.46. Values of `N determined for each set (after the

charge normalization process described in the previous section) can be found in Table 5.8, under

the heading “Method 1”.

To test the consistency of the old model, the same fit was repeated, except this time using the

`N just derived in the (unmodified) Eq. 5.46, to find a and b. Final values of a and b are printed,

along with their statistically weighted average, in Table 5.7. The precision of the fit can be seen in

Figure 5.10, in which the scaled 12C counts are compared to the (unmodified) 15N counts. Average

values of a and b approximate 7/6 and 1/6, respectively, and the fit is good, showing a good degree

of internal consistency between the old fit model and the new.

Table 5.7: Values of the fit coefficients a and b relating the cross-sections of 12C to 15N. The
weighted averages are also shown. These data are used for comparative purposes, and have
no direct bearing on the final derived value of A|| in this analysis.

Set Label/Bracket a b

2.3+/1’ 1.18 ± 0.0015 0.12 ± 0.0036
5.6+/2’ 1.04 ± 0.0186 0.47 ± 0.0461
5.6−/3’ 1.24 ± 0.0070 -0.01 ± 0.0155
4.2−/4’ 1.20 ± 0.0014 0.07 ± 0.0031
4.2+/5’ 1.12 ± 0.0187 0.28 ± 0.0452
1.7+/6’ 1.12 ± 0.0030 0.27 ± 0.0073
1.7−/7’ 1.08 ± 0.0019 0.37 ± 0.0047
average 1.16 ± 0.0008 0.15 ± 0.0019
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Figure 5.10: Fit of modeled 12C counts (i.e. , Eq. 5.45) to 15N inclusive counts. The raw nitrogen
data are shown in red, the raw carbon data are shown in black, and the fit of the carbon to nitrogen is
shown in blue. The improvement of the fit over raw data is only seen when closer detail is revealed
(bottom). 1.7 GeV outbending data (Bracket 7’) is shown here.
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5.4.3 Direct determination of `N with the model

The previous subsection outlined the methodology of determining `N in terms of a best fit to the

cross-sectional model given by Eq. 5.46. As a test of internal consistency, it is useful to apply the

new 15N cross-section model directly to derive `N . We start with Eq. 5.15 for the carbon target and

the equivalent expression for the frozen nitrogen target:

nN ∝ ρAl`AlσAl[N ] + ρK`KσC[N ] + ρN `NσN [N ] + ρHe(L− `N )σHe[N ] (5.51)

Again, the proportionality constant is assumed to be the same for both equations, so that we can

divide them to get

rNC ≡ nN

nC
=

W[N ] + ρN`NσN [N ] + ρHe(L− `N)σHe[N ]

W[C] + ρC`CσC[C] + ρHe(L− `C)σHe[C]
(5.52)

with W ≡ ρAl`AlσAl + ρK`KσC as before. Solving for `N then yields

`N =
rW[C] − W[N ] + rρC`CσC[C] − ρHeLσHe[N ] + rρHe(L− `C)σHe[C]

ρNσN [N ] − ρHeσHe[N ]
(5.53)

As was done for L, we calculate the error bar (for relative weighting only - see Footnote 9) by

assuming the foil contributions are small (W →0) and σHe[N ] ≈ σHe[C], yielding

σ`N
=
∂`N
∂r

σrNC
=
ρC`CσC[C] + ρHe(L − `C)σHe[C]

ρNσN [N ] − ρHeσHe[N ]
σrNC

(5.54)

with
σrNC

rNC
=
√

n−1
C + n−1

N (5.55)

analogous to Eq. 5.23. These calculations were made, using the model for the cross-sections, for

all W and Q2 bins containing data. The error weighted mean and error

`N avg =

∑

Q2

∑

W `N/σ
2
`N

∑

Q2

∑

W 1/σ2
`N

(5.56)
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Figure 5.11: Solid 15N target length, averaged over Q2, shown as a function of W , calculated
using the radiated cross-section model and 15N/12C inclusive count ratios. The average remains
fairly constant so long as the elastic region (W <1.10) is avoided. The two plots show 2.3 GeV
inbending (Bracket 1’) and 4.2 GeV outbending (Bracket 4’) data, respectively.

σ`N avg =
1

√
∑

Q2

∑

W 1/σ2
`N

(5.57)

were calculated, using all inelastic (W > 1.10) bins, with an upper W bound again used from Table

5.10. Plots of `N as function of W are shown in Figure 5.11. Values calculated using the model

matched well with those made in the fit, and are listed for comparison in Table 5.8.

5.5 Calculation of Ammonia Target Length `A

Before calculating dilution factors, one more critical piece of information is required - the effective

length of the frozen ammonia target material `A. As detailed in Section 2.4, the actual target
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Table 5.8: Values of the nitrogen target length (`N ), using the best fit of the radiated model to
different count ratios (Method 1) and a direct fit to cross-sections generated from the (Method 2).
All lengths are given in cm.

Set Label/Bracket `N (Method 1) `N (Method 2)

2.3+/1’ 0.45 ± 0.00015 0.46 ± 0.00023
5.6+/2’ 0.43 ± 0.00066 0.44 ± 0.00119
5.6−/3’ 0.45 ± 0.00028 0.46 ± 0.00043
4.2−/4’ 0.47 ± 0.00008 0.47 ± 0.00022
4.2+/5’ 0.47 ± 0.00086 0.48 ± 0.00103
1.7+/6’ 0.44 ± 0.00039 0.45 ± 0.00057
1.7−/7’ 0.45 ± 0.00033 0.45 ± 0.00056

average 0.46 ± 0.00007 0.46 ± 0.00014

material consists of frozen NH3 granules immersed in a LHe bath. Only a particular fraction (known

as the packing fraction) of the cell length actually consists of frozen target material at any given

time. The consistency of frozen material may even vary between locations in the cell (see Figure

3.8). We are interested in the effective overall target length, averaged over all the data. To first

order, the approximation `A = 0.6 cm can be used for some calculations (see, for example, Section

4.2.4). However, for accurate background removal, a more precise figure is desired. Again, two

methods are accorded for deriving this quantity, one utilizing actual statistical data, and another (the

preferred method) using radiated cross-section data and the count ratio nNH3
/nC . Both methods

are outlined in this section.

5.5.1 Calculation of `A from data

The same logic used to derive `N (the frozen nitrogen target length) can be applied to find `A (the

frozen ammonia target length), since both targets are constucted similarly. Thus, we start with

Eq. 5.45, using the simplification of Eq. 5.49 and changing the target label from N (nitrogen) to A

(ammonia):

nA = nMT − `Cn
′
He +

ρA`A
ρC`C

σA

σC
n′

C (5.58)
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Figure 5.12: NH3 target length, shown as both a function of W and Q2, as calculated using the
method in Section 5.5.1. The top row shows 1.6 GeV inbending (Bracket 1) data. Low energies
were the worst-case scenario for this method, due to the narrow coverage in W . The center row
shows 5.6 GeV inbending (Bracket 7), showing the broad, flat region characteristic of higher beam
energies. The bottom figure shows the sector-by-sector dependence of `A for 4.2 GeV inbending
(Bracket 11) data. When correct, the dependence should only show statistical fluctuations from
sector to sector, as shown.
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with all other notation the same as in Section 5.4.2. Assuming σA = σN + 3σp,18 this yields

nA = nMT − `Cn
′
He +

ρA`A
ρC`C

(
σN

σC
+ 3

σp

σC

)

n′
C (5.59)

Now, making the assumption that the carbon nucleus is merely an assembly of 6 deuterons19

3σp

σC
=

3(σd − σn)

σC
=

3

6
− 3σn

6σd
=

1

2

(

1 − σn

σd

)

(5.60)

we get

nA = nMT − `Cn
′
He +

ρA`A
ρC`C

[
σN

σC
+

1

2

(

1 − σn

σd

)]

n′
C (5.61)

where σn/σd and σN/σC are functions of beam energy, Q2 and W determined by the models in this

chapter and Section 2.8. 20

Solving for `A then yields

`A = (nA − nMT )
/( ρA

ρC`C

[

a+ b
σn

σd
+ 0.5

(

1 − σn

σd

)]

n′
C − n′

He

)

(5.62)

This quantity can thus be calculated in all bins where the assumptions hold (i.e. higher W , away

from the realm of the EMC effect), just as L and `N were in previous sections of this chapter.

The error can be calculated in quadrature [103] (assuming σn =
√
n) as

σ`A
=

√
(
∂`A
∂nA

)2

nA +

(
∂`A
∂nC

)2

nC +

(
∂`A
∂nMT

)2

nMT (5.63)

Calculation of the partial derivatives yields

∂`A
∂nA

= 1/D (5.64)

∂`C
∂nC

= −
(nA − nMT )(σA

σC
A−D)

D2
(5.65)

18This is a good assumption, considering the negligibly low energy bonding the free protons to the nitrogen atom in NH3.
19This is a more tenuous assumption, neglecting the nuclear EMC effect, avoided by the alternate (model) method.
20For a deuteron target, the calculation only differs in that the factor of 1

2

“

1 − σn
σd

”

is instead simply 1
2

, as substituting

σp → σd in Eq.5.60 shows.
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∂`MT

∂nMT
= −

(D + (nA − nMT )(σA

σC
B + C))

D2
(5.66)

where

D ≡ ρA

ρC`C

σA

σC
n′

C − n′
He (5.67)

and σA/σC is defined by the quantity in square brackets in Eq. 5.61.

The fit region ranged from W =1.4 (safely above the ∆(1232) resonance) up to the maximum

value listed in Table 5.10, to avoid the high W -region where systematic errors (i.e. pion contamina-

tion, radiative corrections) dominate. 21 The weighted average and error

`Aavg =

∑

Q2

∑

W `A/σ
2
`A

∑

Q2

∑

W 1/σ2
`A

(5.68)

σ`Aavg =
1

√∑

Q2

∑

W 1/σ2
`A

(5.69)

were again used over this region to calculate the average `A for each data set. Plots of `A derived

with this method as a function of W are shown in Figure 5.12.

5.5.2 Calculation of `A from radiated cross-sections

The exact same formalism used to extract `N in Section 5.4.3 using radiated cross-section models

can be used to determine `A. The only difference is that N → A in every equation in this section,

and we use

σA =
15

18
σN +

3

18
σp (5.70)

to account for the molar masses of the constituents of NH3. 22 This substitution yields

`A =
rACW[C] − W[A] + rACρC`CσC[C] − ρHeLσHe[A] + rACρHe(L− `C)σHe[C]

ρA(15
18σN [A] + 3

18σp[A]) − ρHeσHe[A]

(5.71)

σ`A
=

∂`A
∂rAC

σrAC
=

ρC`CσC[C] + ρHe(L− `C)σHe[C]

ρA(15
18σN [A] + 3

18σp[A]) − ρHeσHe[A]

√

n−1
C + n−1

A rAC (5.72)

21Unfortunately, this leaves a narrow region for measurement at beam energies below 2 GeV. The second (radiated
cross-section) method is clearly superior in this case, as it allows inclusion of lower W bins.

22For ND3, the respective fractions are 15
21

and 6
21

, of course.
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Figure 5.13: NH3 target length, shown as both a funcition of W and Q2, calculated using radiated
cross-section models. The two data sets shown are the same as those shown in the top two rows
of Figure 5.12. Note the significant improvement in stability for the 1.6 GeV data.

with rAC ≡ nA/nC . Combination of data points proceeds as in the preceding method for `A, except

that the lower limit in W is lowered to W=1.10 GeV. Because the model accounts for the nuclear

EMC effect, there are no assumptions relating the consistency of cross-section ratios going into

this calculation, making for a much smoother average over the resonance region (see Figure 5.13).

Calculations of the average value of `A for each data set, using both the previous method (Method

1) and the radiated cross-section method (Method 2) are listed in Table 5.9.

5.6 Dilution Factors

With adequate knowledge of the total target length L, ammonia packing fraction `A, and with a

functional model for the scaling of the 12C cross-sections to 15N in place, we can proceed to cal-

culate the dilution factor, FDF (W,Q2). As usual, both the statistical, data-derived methodology (S.

Kuhn) and the radiated cross-section model (P. Bosted) were used to determine dilution factors. In

the end, it was determined that both methods have a kinematic region of applicability in the EG1b
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Table 5.9: Values of the ammonia target length (`A), using the best fit of the radiated model to
different count ratios (Method 1) and a direct fit to cross-sections generated from the model (Method
2). Once again, the error bar reflects only the error on the statistical fit, not the true uncertainty on
the value. Target refills occured before Brackets 3 and 6 and during Brac ket 9 [63], explaining
the sudden changes in `A at these points. All lengths are given in cm.

Set Label/Bracket `A(Method 1) `A(Method 2)

1.6+/1 0.62 ± 0.00054 0.63 ± 0.00019
1.6−/2 0.64 ± 0.0019 0.65 ± 0.00044
5.76−/3 0.60 ± 0.00055 0.61 ± 0.00026
5.73−/4 0.57 ± 0.00047 0.57 ± 0.00024
5.7+/5 0.55 ± 0.00012 0.56 ± 0.00056
2.3+/6 0.62 ± 0.00060 0.63 ± 0.00026
5.6+/7 0.55 ± 0.0010 0.56 ± 0.00048
1.7−/8 0.54 ± 0.00072 0.55 ± 0.00019
2.5−/9 0.56 ± 0.00033 0.57 ± 0.00017
4.2+/11 0.59 ± 0.00093 0.59 ± 0.00042
4.2−/12 0.59 ± 0.00026 0.60 ± 0.00014

analysis. To ensure internal consistency, the methods used to calculate L and `A for a given FDF

were always kept the same. That is, if the former (latter) method was used to calculate FDF , then

the former (latter) method was used to derive L and `A.

To derive the dilution factor FDF , one begins with the regular formula for A||:

A|| =
n− − n+

n− + n+
(5.73)

where it is assumed the counts n± are FC normalized. We then assume that each count n±

contains a background 1
2nback

23 which must be subtracted to get the true asymmetry:

A|| =
(n− − 1

2nback) − (n+ − 1
2nback)

(n− − 1
2nback) + (n+ − 1

2nback)
=

n− − n+

n− + n+ − nback
(5.74)

If FDF is defined as the ratio of the target proton scattered events to total events

FDF ≡ ntotal − nback

ntotal
(5.75)

23That is, we assume that the asymmetry is relatively small, so that the contribution from each polarization state to the
background is approximately equal.
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(where of course, ntotal = n− + n+), then

nback = (1 − FDF )(n− + n+) (5.76)

Thus,

A|| =
n− − n+

n− + n+ − (1 − FDF )(n− + n+)
=

n− − n+

n− + n+ − n− − n+ + FDFn− + FDFn+
(5.77)

which reduces to

A|| =
1

FDF

n− − n+

n− + n+
(5.78)

Aside from the factor PbPt, this is the necessary equation for background removal from the double-

spin asymmetry. FDF is a function of Q2 and W , as it is a description of the relative count rates for

the free protons and background. The effective response of the background varies as a function of

these parameters, particularly near the elastic peak, and to a lesser (but significant) degree, near

the resonances, as well.

5.6.1 Calculation of FDF from data

To find nback, one simply reworks Eqs. 5.58 to 5.61, but this time omitting the contribution from the

free protons. That is, we omit the 3σp term, as we are interested only the background cross-section.

The resulting replacement for Eq. 5.58 is

nback = nMT − `An
′
He +

ρA`A
ρC`C

σN

σC
n′

C (5.79)

The dilution factor is thus given by Eq. 5.75:

FDF = 1 − 1

nA

(

nMT − `An
′
He +

ρA`A
ρC`C

σN

σC
n′

C

)

(5.80)
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Table 5.10: Upper W limits (in GeV) on the data used for dilution factors (as calculated from data),
also used for limits on measurements of L, `A, and `N . Dilution factors generated from the cross-
sectional model (Section 5.6.2) do not need an upper limit, since they can be smoothly extrapolated
to higher W . Bins not listed do not contain enough data to be included.

Q2 bin Q2 1.x GeV 2.x GeV 4.x GeV 5.x GeV

10 0.050 1.55 − − −
11 0.059 1.55 − − −
12 0.071 1.50 − − −
13 0.084 1.50 − − −
14 0.10 1.50 − − −
15 0.12 1.50 1.90 − −
16 0.14 1.50 1.90 − −
17 0.17 1.70 1.90 − −
18 0.20 1.70 2.00 2.40 −
19 0.24 1.70 2.10 2.40 −
20 0.29 1.70 2.10 2.40 −
21 0.35 1.65 2.10 2.40 −
22 0.42 1.60 2.05 2.50 −
23 0.50 1.55 2.00 2.55 3.00
24 0.59 1.45 1.90 2.55 2.95
25 0.71 1.35 1.80 2.55 2.85
26 0.84 1.20 1.65 2.55 2.85
27 1.0 1.00 1.50 2.40 2.85
28 1.2 − 1.30 2.30 2.85
29 1.4 − 1.00 2.20 2.80
30 1.7 − − 2.05 2.75
31 2.0 − − 1.90 2.60
32 2.4 − − 1.60 2.50
33 2.9 − − 1.00 2.40
34 3.5 − − − 2.20
35 4.2 − − − 2.00
36 5.0 − − − 1.50
37 5.9 − − − 1.00
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The error on FDF is again calculated by quadrature:

σFDF
=

√
(
∂FDF

∂nA

)2

nA +

(
∂FDF

∂nC

)2

nC +

(
∂FDF

∂nMT

)2

nMT (5.81)

The partial derivatives can be calculated as

∂FDF

∂nA
= nback/n

2
A (5.82)

∂FDF

∂nC
= − 1

nA
`A(BA −D) (5.83)

∂FDF

∂nMT
=

1

nA
[1 − `A(BB − C)] (5.84)

with

B ≡ ρA

ρC`C

σN

σC
(5.85)

Inclusive scattering dilution factors derived using this method, and the effects of background re-

moval, are shown in Figures 5.14, 5.15, 5.16, and 5.17. It is important to notice the dependence

as a function of W . This distribution makes sense, considering that the scattering response in the

elastic region (W ∼0.938 GeV) is predominantly from the free protons, while in the the DIS region,

the effective response of all unpolarized matter is equivalent.

Dilution factors for elastic ep events

For use in PbPt derivation (Section 6.2), it is desirable to have dilution factors for both inclusive

electron scattering and elastic ep exclusive events, as both of these are used in calculation of beam

× target polarization. A much lower background is expected for ep events, as kinematic cuts are

relied upon for the separation of these events from background (see Section 3.5).

The principle for generating dilution factors FDF for exclusive events is exactly the same as

that outlined for inclusive events, except that the inclusive counts nA, nC and nMT are replaced

by exclusive ep counts in the same W and Q2 bins. The target length `A derived from inclusive

scattering is used. For a model of σC → σN , Eq. 5.43 was used24, but with b=0, as only elastic

24No exclusive model of the cross-section ratios for 15N to 12C was developed.
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Figure 5.14: Dilution factors as a function of W , shown at 4 different beam energies. These FDF

values were generated bin-by-bin using data. Note the prominence of the elastic peak, followed
by fluctuations corresponding to the resonances, before a general flattening occurs in the W >2.0
GeV DIS region. Shown are the data from 4 outbending data sets (1.7− (top left), 2.5− (top right),
4.2− (bottom left) and 5.73− (bottom right)).
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Figure 5.15: Dilution factors as a function of W for 4.2+ data (Bracket 11), calculated individually
by sector (top) and by HWP/target polarization (bottom). Separating the dilution factors by sectors
helped to identify problematic detector regions, while separating by polarizations helped isolate
acceptance changes over time.
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5.7+ (Bracket 5) data (bottom).
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Figure 5.17: FDF as a function of Q2, shown for several different W bins, for the 5.76− set (Bracket
3). There is a slight but significant Q2 dependence of the dilution factor which can easily be seen
here.
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scattering events from free protons were in present in the data.

Elastic ep events compared to their subtracted background are shown later, in Figure 6.6. In

the course of this analysis, it was seen that the background was low enough that a simpler model

using carbon-background subtracted events in φ was sufficient for removal of unwanted ep events

(Section 6.2.2), so this method was, in the end, employed only as a method of comparison for the

derivation of PbPt.

5.6.2 Calculation of FDF from radiated cross-sections

Calculation of the dilution factors from radiated cross-sections is simple once all the target material

lengths and densities are known. According to Eq. 5.75, one simply divides the sum of total counts

from the protons only by the sum of all counts in the target:

FDF =
np

nA
=

3
18ρA`Aσp

W + ρA`A( 3
18σp + 15

18σN ) + ρHe(L− `A)σHe

(5.86)

where, as usual, W represents the foil (Al and Kapton) contributions. All cross-sections here pertain

to the ammonia target, so no disambiguation is needed. Because this is a smooth-fitting model, no

statistical errors are calculated, though systematic errors need to be handled properly (see Section

7.2).

Using a model for the dilution factor has two advantages over the statistical method:

1. It exploits the continuity in the dilution factor from bin to bin, so that artificially large statistical

fluctuations do not dominate the calculated asymmetry. 25

2. Extrapolation of the model can be made into kinematic regions where adequate data inside

fiducial regions is not available.

A comparison of the modeled dilution factors to the dilution factors calculated from the first method

are shown in Figure 5.18.

25In other words, there are correlations between bins that the statistical errors in the first method do not use advanta-
geously, thus having the net effect of underrepresenting our precision
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Figure 5.18: Dilution factors (statistical and modeled) as a function of W (left) and Q2 (right) for
selected bins of the 1.6− (Bracket 2) and 5.6+ (Bracket 7) data. It is important to note that this is
not a direct fit to the data, but rather an independent model of cross-section data employing only
information about the target material quantities. Note that the elastic peak is not very well fit for the
lower beam energy, a point of concern addressed in the text.
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5.6.3 Application of dilution factors

Two methods have been demonstrated for calculating the inclusive dilution factors for the EG1 data.

As already explained, the model method is preferrable to use, assuming that its accuracy is verified,

because it is not governed by the statistical error of the data. 26 However, as seen in Figure 5.18,

and explained in Section 2.8, the model does not provide a very good fit to the data for the elastic

region, due to the dependency on detector resolution, which must be externally determined and

inserted into the model.

The model appears to fit quite well for the inelastic region, where the analysis of A1 and A2 is

of interest. In the elastic region, where the model is less accurate, there is plenty of data available,

with less statistical fluctuation than in the DIS region, even for high-energy data. Also, the only

use in this analysis for the elastic region dilution factors is for the determination of PbPt, where all

elastic data are averaged into a single bin, so statistical fluctuations are not a considerable problem

therein.

Therefore, the modeled dilution factors were used at W ≥1.08 GeV, above the inelastic thresh-

old, while the older (statistical) method was used at W <1.08 GeV. There was no guarantee of

perfect continuity of FDF across this boundary, so values on the opposing sides of the boundary

were never used in the same integration or average. Finished dilution factor arrays were determined

for each data bracket and every bin for the removal of non-polarized background.

26In previous analyses ([2] and [46]), a statistical averaging technique was used to “smooth over” the sparsely populated
bins at higher energies. Since the model is now used, this is no longer necessary.



Chapter 6

Removal of Polarized and Other

Target Background Events

6.1 e+e− Background Correction

Analysis so far has assumed that detected electrons, after π− removal, are indeed exclusively

scattered electrons e′. However, it is possible that the detected electron originated from other

processes.

Inclusive ep scattering can produce π0 mesons at the event vertex. These mesons subsequently

decay, must commonly through Dalitz decay [118]:

π0 → e+e−γ (6.1)

where the pair-symmetric decay of the neutral pion has a branching ratio of 1.2% [5]. Because the

π0 decays electromagnetically and thus has an extremely short lifespan, the e+e− pair is effectively

produced at the event vertex. If the electron from the decay is accidentally detected as the event

trigger particle instead of the inclusive (e′) electron, the inclusive cross-section will be contaminated

with invalid data.

While Eq. 6.1 is the most common decay mode that produces superfluous electrons, other

296
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decays are also possible, including the Bethe-Heitler process [119]

γN → e+e−N (6.2)

which is more prominent at forward angles [118], and

π0 → γγ → e+e−e+e− (6.3)

though contribution from the latter is minimal. Similar decays of of the (pseudoscalar) η mesons

also contribute to the pair symmetric background. Very small e+e− contributions from ρ, ω and φ

(vector) meson decays are also made [118]. 1

To correct for contamination from these events, we take advantage of the fact that a positron is

always produced with every electron (as required by charge and lepton number conservation) and

make the following assumptions:

1. The event reconstruction for positrons in outbending runs is identical to that of electrons for

inbending runs, and vice versa.

2. The detection efficiency of positrons is similar to that of electrons.

3. The overall contamination is small, so that slight differences in beam energy or acceptance

have little effect on the first two assumptions.

With this in mind, we realize that the rate of e− contamination for an inbending run should be

identical to the rate of e+ triggers for an outbending run of the same beam energy (and vice versa,

of course). Using subsequently calculated e+/e− ratios and e+ double-spin asymmetries, the effect

on the asymmetry can be calculated.

We look for a coefficient Cback that can be multiplied by the uncorrected asymmetry A||, to yield

the e+e− background-corrected asymmetry. This changes Eq. 5.1 to

A|| =
Cback

PbPtFDF

n− − n+

n− + n+
(6.4)

1Non-pair-symmetric production can also occur from the decay of K−
L → π0e−νe. These electrons much more difficult

to account for, since there is no e+ produced in the reaction. Fortunately, the K lifetime is long enough (and the K/π0 ratio
is small enough) that the vertex contamination is negligible [118].
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We assume that the dilution factors are approximately equal for each data set (a valid assumption

for small contaminations. One can see from Figure 5.14 that these numbers are approximately

equal in the inelastic range). We also neglect PbPt, for now, as this factor is of the same magnitude

between data sets, and this is a small correction. We can thus apply the correction directly to the

raw asymmetry:

Acorr = Cback
n− − n+

n− + n+
(6.5)

where n+ and n− are the raw FC-normalized count rates for each helicity state. To find Cback, we

consider that the uncontaminated asymmetry can be found from the raw asymmetry by subtracting

the (as of now, unknown) pair production electron rates (n+
p and n−

p ) from the sample:

Acorr =
(n− − n−

p ) − (n+ − n+
p )

(n− − n−
p ) + (n+ − n+

p )
(6.6)

If we take n ≡ n+ + n− and np ≡ n+
p + n−

p , and divide both the numerator and denominator by n,

we find

Acorr =
n−−n+

n − n−
p −n+

p

n

1 − np/n
(6.7)

If R ≡ np/n, this can be written

Acorr =
Araw − n−

p −n+
p

np/R

1 −R
(6.8)

Defining Ap ≡ (n−
p − n+

p )/np yields

Acorr =
Araw −RAp

1 −R
(6.9)

so that

Cback =
1 −RAp/Araw

1 −R
(6.10)

Therefore, the asymmetry can be corrected if the contamination rate (R) and the pair-production

electron asymmetry (Ap) are known. The following sections provide information on the evaluation

of these quantities.
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6.1.1 Measurement of pair-production rates and asymmetrie s

The rate of contamination of pair-produced electrons in the inclusive electron data should be ap-

proximately equal to the rate of positrons detected at the same beam energy and opposite main

torus current. Events triggered by positrons, instead of electrons, were written to separate DST

files. To calculate the number of positrons, these files were analyzed in exactly the same manner

as the regular (electron-triggered) files. Similarly to the oppositely charged electrons, π+ contam-

ination was a possible issue. Therefore, the respective pion contamination and fiducial cuts were

applied, except that the parameters for the opposing torus current were used (see Sections 4.1 and

4.4), due to the reflected geometry of the positively charged particle tracks.

In a given bracket, charge-normalized counts were recorded for total inclusive (e′) counts, along

with positron (e+) counts for an equal-energy bracket with opposing torus current. The counts were

rebinned in terms of θ and momentum p. This binning scheme is outlined in Table B.2. Plots were

generated of the resulting e+/e− ratio in terms of θ and p. 2 Ratios were observed to diverge at both

low p and high θ, because a more homogeneous spread of the (randomly directed) pair symmetric

decays is expected than of the forward-scattered inclusive electrons.

In terms of p, the background ratio R ≡ e+/e− could be smoothly fit with

R(p) = eA+Bp (6.11)

while, in terms of θ, the fit

R(θ) = eC+Dθ (6.12)

was employed.

Some examples of isometric fits in terms of both p and θ are shown in Figures 6.1 and 6.2, re-

spectively. Ultimately, a fit of R to both p and θ simultaneously, for each beam energy, was required,

so that the contamination could be calculated for any kinematic value, including values extrapolated

outside the range of accurate ratio data. Because of the success of the above exponential forms in

2Error bars, generally too small to be noticed, but important for fit purposes, can be calculated by the suitable analog to
Eq. 5.23.
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parametrizing the contamination, a fit of the equation

R(θ, p) = ea+bθ+cp+dθp (6.13)

was used for each beam energy. Given a value of θavg and pavg in each W and Q2 bin, the value of

R, to be applied to Eq. 6.10, can be calculated to appropriately modify the raw asymmetry.

The only piece of information still needed for this correction is the value of Ap/Araw. This

quantity, given simply by

Ap/Araw =
(n−

p − n+
p )(n− + n+)

(n−
p + n+

p )(n− − n+)
(6.14)

can be calculated by separately summing over electron and positron events in the DST . The

double-spin asymmetry for the contaminating electrons is, by definition, identical to that for the

positrons (for the opposite torus current). Plots of Ap as a function of momentum are shown in

Figure 6.3. As one can see from these plots,the pair-production asymmetry is very small, so that

its effects on A|| are negligible. Thus, the approximation

Ap/Araw ≈ 0 (6.15)

is used in this analysis.

6.1.2 Application of pair symmetric correction

The pair symmetric correction is applied to raw asymmetries for each data set in the analysis. The

raw asymmetry is multiplied times a factor Cback determined using the smooth paramatrization of R

given by Eq. 6.13, with Ap/Araw = 0.

Fit values for a, b, c and d, as well as the fit errors on each of these parameters, are listed in

Table 6.1. Note that this correction to the asymmetry is applied before the calculation of PbPt, so

that more accurate values of the raw elasitc asymmetry can be determined before evaluating the

polarization product.
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Figure 6.1: Ratios of e+/e− as a function of p, shown for various θ values, fit with the exponential
curve of Eq. 6.11. 2.5 GeV outbending positrons were used for the top plot, while 5.7 GeV inbend-
ing positrons were used for the bottom plot. The normalized counts were divided by the inclusive
electron counts. Note that the contamination is highest at low p and high θ. The “bump” in the
bottom plot near 3 GeV is pion contamination, above the Cherenkov detection threshold of p ≈ 2.7
GeV.
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Figure 6.2: Ratios of e+/e− as a function of θ, this time shown for various p values. The lowest
p-bin, where pair-production contamination dominates, is fit with the exponential curve of Eq. 6.12.
Note that the contamination rapidly diminishes at higher momenta.
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Table 6.1: Values for the parametrization of R ≡ e+/e−, as given by Eq. 6.13, shown for each data
bracket. These units apply to θ in degrees and p in GeV.

Set/Bracket a b

1.6+/1 -5.96 ± 0.067 0.131 ± 0.0021
1.6−/2 -1.54 ± 0.016 0.0141 ± 0.00071
5.76−/3 -2.29 ± 0.018 0.129 ± 0.00087
5.73−/4 -2.31 ± 0.017 0.123 ± 0.00084
5.7+/5 -1.07 ± 0.039 0.0799 ± 0.0015
2.3+/6 -2.13 ± 0.030 0.0442 ± 0.00099
5.6+/7 -1.23 ± 0.040 0.0877 ± 0.0016
1.7−/8 0.0798 ± 0.015 -0.0151 ± 0.00068
2.5−/9 -1.98 ± 0.0097 0.0442 ± 0.00044
4.2+/11 -1.64 ± 0.058 0.0868 ± 0.0022
4.2−/12 -2.45 ± 0.024 0.118 ± 0.0012

Set/Bracket c d

1.6+/1 -4.22 ± 0.10 -0.0469 ± 0.0033
1.6−/2 -6.40 ± 0.028 0.00492 ± 0.0012
5.76−/3 -0.438 ± 0.015 -0.0932 ± 0.00070
5.73−/4 -0.434 ± 0.014 -0.0896 ± 0.00067
5.7+/5 -1.10 ± 0.029 -0.0635 ± 0.0011
2.3+/6 -3.95 ± 0.042 -0.00336 ± 0.0014
5.6+/7 -1.02 ± 0.030 -0.0681 ± 0.0012
1.7−/8 -6.56 ± 0.028 0.0216 ± 0.0012
2.5−/9 -3.91 ± 0.016 -0.0137 ± 0.00068
4.2+/11 -1.88 ± 0.046 -0.0538 ± 0.0017
4.2−/12 -1.21 ± 0.021 -0.0837 ± 0.00098
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Figure 6.3: Total integrated positron asymmetries for 5.7+ (Bracket 5) data, shown as both a func-
tion of p (left) and θ (right). Magnitudes are very small compared compared to the raw inclusive
electron asymmetries, showing that pair-production makes only a very tiny contribution to the mea-
sured asymmetry.

6.2 Beam × Target Polarizations

Dilution factors quantify non-polarizable target background, leaving only events scattered from the

free protons in the NH3. However, since we are interested only in measuring the double-spin asym-

metry, it remains to remove scattering data for which either the incoming beam electron or target

proton was not polarized. While the CEBAF electron beam maintains a fairly constant polarization

of approximately 70%, the polarization of the target protons can vary considerably. While the tar-

get NMR (see Section 2.4) makes a measurement of the polarization of the target, it is not well

understood how the polarization varies throughout the volume (both in thickness and radius) of the

target, nor is a precise manner of determining the error on the target NMR reading readily known.

To further complicate metters, there are large stretches of target runs (particularly in the 1.6+ and

2.3+ data sets) with no NMR measurements.

To provide this polarization, we instead take advantage of the fact that the double-spin asym-

metry A|| can be easily calculated from the electric and magnetic form factors GE and GM , and is

well-understood for the proton in the elastic region, lower in W (i.e. higher in x) than the region of

interest of the measurement of A1 and A2. Elastic scattering is a purely spin- 1
2 phenomenon, so

A1 = 1 and A2 is purely transverse [6], so that

A1 = 1 (elastic) (6.16)
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and

A2 =
√

R(el) =
GE√
τGM

(elastic) (6.17)

where R(el) is the value analogous to the structure function R in the elastic region (Eq. 1.66). 3

Substitution of these into Eq. 1.223, after applying Eqs. 1.19 and 1.66 yields

A|| =
(1 − E′ε/E)(1 + η/(rG

√
τ ))

1 + ε/(τr2G)
(6.18)

The number rG is the ratio of electric and magnetic form factors rG ≡ GM/GE for the proton. With

some algebra, this can be written

A|| =
τ(1/ε− E′/E)(r2G + rGη/

√
τ)

1 + r2Gτ/ε
(6.19)

The numerator now contains terms proportional to r2G and rG. Eqs. 1.7, 1.15 and 1.44 can be used

to show

Q2 = 2M(E − E′) = 2Mν (elastic) (6.20)

τ =
Q2

4M2
(elastic) (6.21)

Using these relations, application of Eq. 1.16 to the r2G terms, and application of Eq. 1.17 (with the

numerator and denominator divided by εE) to the rG terms yields a more mundane equation for A||

in the elastic region [46]:

A|| =
2τrG

[
M
E + rG(τ M

E + (1 + τ) tan2( θ
2 ))
]

1 + r2Gτ/ε
(6.22)

The form factors GM and GE can be parametrized from world data [13] as

GE(Q2) =
1

1 + 0.62Q+ 0.68Q2 + 2.80Q3 + 0.83Q4
(6.23)

GM (Q2) =
µp

1 + 0.35Q+ 2.44Q2 + 0.50Q3 + 1.04Q4 + 0.34Q5
(6.24)

3Refer back to Sections 1.2.2 and 1.4 for more information.
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where the proton magnetic moment is µp = 2.79.

A more recent parametrization of the form factors for the proton is given in Ref. [14]:

GE(Q2) =
[
1 + p2Q

2 + p4Q
4 + ...+ p12Q

12
]−1

(6.25)

GM (Q2) = µp

[
1 + p2Q

2 + p4Q
4 + ...+ p12Q

12
]−1

(6.26)

where the coefficients p2-p12 are replicated in Table 6.2. Later in analysis, this parametrization was

used in place of the parametrization of Eqs. 6.23 and 6.24. The change in the resulting asymme-

tries was small, showing that knowledge of these form factors is not a limiting factor in the accuracy

of our measurement. 4

Table 6.2: Fit parameters for the Rosenbluth form factors GE and GM by J. Arrington. From Ref.
[14].

Parameter GE GM

p2 3.226 3.19
p4 1.508 1.355
p6 -0.3773 0.151
p8 0.611 -0.0114
p10 -0.1853 5.33×10−4

p12 0.01596 -9.00×10−6

Knowing the proper value of the elastic asymmetry, one can then measure the actual background-

subtracted asymmetry of the real data, integrated over the elastic region. This asymmetry always

turns out smaller than the pure double-spin asymmetry calculated in Eq. 6.22, because, though

the non-proton background is already removed, not all the target protons and beam electrons are

polarized. Using Eq. 5.1, the product PbPt (beam × target polarizations) is

PbPt =
Ameasured

A||
(6.27)

where, in this case, A|| is defined by the above equations and Ameasured is the diluted experimental

asymmetry.

4This is considered in determination of the systematic errors. See Section 7.2.3.
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Knowledge of both detector behavior and the accuracy of the (dilution factor) is dubious at low

values of Q2. Therefore, a lower limit of Q2 = 0.2 GeV2 was used in all measurements of PbPt.

Both background subtracted inclusive data and exclusive ep events were used for the measurement

of Ameasured. These two methods are explained individually in this section.

It is important to note that measurement of PbPt (on average) incurs the largest systematic

errors of any of the individual contributions to the asymmetry (see Section 7.2.3), as the number of

elastic ep events is statistically limited. Also, as the final answer is a single number for each data

set (unlike the contnuous spectrum of dilution factors), great care was taken to cross-check the final

values using variations on the methodology, detailed in the following subsections.

6.2.1 Inclusive method

The first method of determining PbPt uses a cut on W to isolate events from the inclusive electron

scattering spectrum in the elastic region, and then uses their background-subtracted asymmetry to

evaluate Eq. 6.27 for each Q2 bin. The error-weighted average is then used for the final value of

PbPt. Using inclusive events is advantageous because it offers the most possible statistics (i.e. it

includes elastic events even when the recoil proton was not detected), but it has the disadvantage

of requiring a very large removal of background (see Figure 6.4), potentially leading to large sys-

tematic errors.

Isolation of true elastic events

First, the width of the elastic peak must be defined. Including the entire elastic peak is desirable

to minimize the statistical error. However, widening the cut by too much risks the inclusion of non-

elastic electrons. This can happen both at the high W end (if W → M +mπ, allowing for radiative

inelastic tails) and at the low W end (where coherent nuclear scattering creates a tail at low W ). For

lower beam energies, where elastic scattering events dominate over the inelastic scattering events,

the elastic peak is clearly discernable from the background. As beam energy increases, though, it

becomes more challenging to isolate the less visible elastic peak (see Figure 5.1, for example).
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The simplest way to determine the width of the elastic peak was to subtract away the back-

ground. Removal of the non-proton scattering events excises multiple-nucleon correlated events,

and the width of the elastic peak can then be more easily distinguished. The background removal

can be done one of two ways. The more exact method5 is to use the dilution factors FDF and Eq.

5.76. The other, simpler method, takes advantage of the fact that, in the low W tail, scattering

events involving “long-distance” (x > 1) correlations between nucleons dominate the event spec-

trum. At the relatively high beam energies of EG1, these event cross-sections are roughly equal

for 12C and 15N, so long as W is not too low (where x → Z, and unequal effects for nitrogen and

carbon are expected).

Given that the spectra of 12C and NH3 should have the same shape in the low W region, apart

from an overall multiplicative “scaling factor” S accounting for slight differences in mass thickness,6

the total background can be found by scaling the counts in the low-W tail of the carbon target events

to the same magnitude as the NH3 events. That is, one finds the factor S such that

∑

0.40GeV<W<Wlimit

(nNH3
− SnC) ≈ 0 (6.28)

by looping over small increments in S until the above quantity is minimized. Wlimit was set low

enough to be safely far away enough from the elastic peak, as including the peak risks ’under-

scaling’ of the carbon events. The quantity nNH3
− SnC then yields the approximate background-

subtracted spectrum, when extended into the elastic region.

Accuracy can be improved if the subtracted spectrum of 12C is related to the predicted 15N spec-

trum by a model. Once again, the model of Section 2.8 was used, specifically the newly-modeled

15N/12C data, to predict the count ratio between the carbon target and the ammonia target, minus

the free proton contribution. The model is used with Eq. 5.32, with `N → `A ≈ 0.60 cm and

ρN → 15
18ρA, to account for the length and density of 15N in the ammonia target, respectively. 7

The array of numbers rNC(W,Q2) was then used as multiplicative factor on the carbon counts. The

resulting numbers (∼ 0.87 in the elastic region) are very close to the scaling factors required when

5This assumes models for σn/σd and σN /σC are precise, which was not the case during the early phase of the analysis,
hence previously necessitating another method.

6This factor should be fairly constant, with no more variations than those inherent in the ammonia target length `A.
7Naturally, 15

18
→ 15

21
for ND3.
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no model is used. 8 This lends further credence to the utility of the model. A summary of the

scaling integration limits and derived scaling factors S is recorded in Table 6.3.

Plots of background-subtracted spectra in the elastic region for inclusive events are shown in

Figure 6.4. Using these plots, one can easily find the boundaries of the elastic peak. However, in

no case was an upper limit of W = 1.00 GeV in the elastic peak range exceeded, in order to avoid

inelastic tail contamination (plainly visible in the lower energy background-subtracted W spectra).

Boundaries for inclusive elastic peaks (along with the upper limits used for the case of carbon

background subtraction) are listed in Table 6.4.

Table 6.3: Upper limit of integration for 12C scaling, as well as the weighted average of the scaling
factor S for carbon counts, with and without the use of the nitrogen/carbon scaling model. Two
examples of the model, one using a fixed ammonia target length `A, and another using the precise
value of `A for each set (from Table 5.9), are shown. See the text for more details.

Set/Bracket Wlimit S (no model) S (N/C model,`A = 0.6) S (N/C model, exact `A)

1.6+/1 0.86 0.86 1.06 1.04
1.6−/2 0.86 0.88 1.09 1.05
5.76−/3 0.70 0.87 1.01 1.01
5.73−/4 0.70 0.85 0.98 1.01
5.7+/5 0.74 0.82 0.94 0.98
2.3+/6 0.82 0.90 1.07 1.04
5.6+/7 0.74 0.83 0.96 1.00
1.7−/8 0.86 0.82 1.01 1.06
2.5−/9 0.82 0.83 1.01 1.04
4.2+/11 0.80 0.84 0.97 0.98
4.2−/12 0.78 0.86 1.00 1.00

Table 6.4: Lower and upper limits of elastic W -bounds used for measurement of PbPt, for the
inclusive method. All values are in GeV.

Beam Energy (GeV) Elastic Bound (lo) Elastic Bound (hi)
1.x 0.90 0.96
2.x 0.89 0.97
4.x 0.88 0.98
5.x 0.86 1.00

8This means that when the model is incorporated, the resultant scaling factor becomes 1.00±0.06.
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Figure 6.4: Background subtracted inclusive spectra, near the elastic region in W , for 1.6 GeV (top)
and 5.7 GeV (bottom) data. The left and right plots show the same data, and are only separated
for clarity. Shown are the total NH3 counts (blue), the 12C counts scaled to the ammonia spectrum
(green), the remaining difference of these two (i.e. the elastic events)(black). The same subtracted
spectrum using the dilution factor FDF to determine background is also shown (red).
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Integration over the elastic peak

The background subtraction must not be improperly weighted by the relative counts in each bin.

There are two approaches one can take to handle this issue. The simplest method is to derive the

number of background counts bin-by-bin and integrate the remaining counts directly. The value of

nback is calculated using either Eq. 5.76 (for proper dilution factors) or nNH3
− SnC (for the carbon

scaling method). For the case of dilution factors, the error on nback is given by

σnback
=

√
(
∂nback

∂nNH3

)2

σ2
nNH3

+

(
∂nback

∂FDF

)2

σ2
FDF

(6.29)

This calculation yields

σnback
=
√

(1 − FDF )2nNH3
+ n2

NH3
σ2

FDF
(6.30)

For the carbon-subtraction method, the error is simply given by

σnback
=
√

SnC(adj.) (6.31)

where nC(adj.) is the carbon count with the minor carbon/nitrogen-model adjustment mentioned

above.

To apply these equations, the sums of the +/− helicity NH3 counts between the elastic W limits

were calculated for each Q2 bin. This integrated sum was then treated as a single bin. An overall

dilution factor, weighted by the error on the raw asymmetry in each W-bin, is calculated as

FDFtotal
=

∑

W NFDF
∑

W N
(6.32)

σFDFtotal
=

1
√∑

W N
(6.33)

This dilution factor is then applied to the sum of all the counts over the elastic region in Eq. 5.76 to

get nback and Eq. 6.30 to get σnback
.

After nback and its error are calculated (using either dilution factors or scaled carbon counts), the

background-subtracted asymmetry for the given Q2 bin is then given by Eq. 5.74, with the change
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nback → 2nback. 9 Thus we have (with the n’s this time representing the summed counts over W ):

A|| =
n− − n+

n− + n+ − 2nback
(6.34)

Using the usual method for statistical errors, one gets

σA||
=

√
(

∂A||

∂nback

)2

σ2
nback

+

(
∂A||

∂n−

)2

n− +

(
∂A||

∂n+

)2

n+ (6.35)

where (approximately)
∂A||

∂nback
=

2(n− − n+)

R2
(6.36)

∂A||

∂n−
=

2(n+ − nback)

R2
(6.37)

∂A||

∂n+
=

2(n− − nback)

R2
(6.38)

with

R ≡ n− + n+ − 2nback (6.39)

With the background-subtracted asymmetry and its error now calculated for every populated Q2

bin, Eq. 6.27 can then be applied in each bin. The weighted average over these bins is then the

actual PbPt value.

As a check on this method, a second method of background subtraction was applied, in which

the integrated dilution factor (Eq. 6.32) was applied to the averaged asymmetry, summed over the

elastic W bins, as according to Eqs. 5.7 and 5.8 (but summed only over elastic W and not Q2).

The diluted asymmetry was then found in the standard manner, that is

A||diluted
=

1

FDFtotal

A||raw
(6.40)

9This is done because the Faraday Cup charge sum of both the plus and minus helicities is used to define the count rate
nback in this section, whereas the Faraday Cup of either +/− helicity was used in Section 5.6. This is a subtle and often
confusing point that must be remembered when doing charge-weighted background subtraction. Generally, appropriate
Faraday Cup charge weights are not explicitly stated in this text, due to the heaviness of notation required to do so. Care
must be taken to include them when working out exact calculations for use in coding.



313

Calculating the standard error yields

σA||
=

√

F 2
DF

N
+

A2
||raw

F 4
DFtotal

σ2
FDFtotal

(6.41)

This method can also be used if carbon scaling is used for the background subtracting, by defining

the dilution factor according to Eq. 5.76, using the calculated scaled background. In this case, the

error on FDFtotal
is

σFDFtotal
=

√

nback

(n− + n+)2
+

n3
back

(n− + n+)4
(6.42)

with the remaining calculation of A|| going just as for regular dilution factors. In summary, there are

4 (non-independent) methods for subtracting the background presented here:

1. Using an averaged dilution factor to subtract backgrounds from the summed counts over W ,

then calculating the total asymmetry

2. Using scaled carbon to subtract the summed background, then calculating the total asymme-

try

3. Using an error-weighted dilution factor, averaged over the peak, to dilute the average asym-

metry

4. Calculating a primitive dilution factor from the scaled carbon counts, then error-weighting and

averaging it to dilute the average asymmetry.

In the end, all 4 methods were found to produce asymmetries with approximately equal error bars

for all data sets, with resulting PbPt values generally compatible within the resulting statistical error

bar. In the end, it was Method 3. that was used to do background subtraction for the inclusive case,

because dilution factors were developed to make the most accurate subtraction of background

possible.
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Averaging PbPt over Q2

The asymmetry calculated in Eq. 6.22 varies as a function ofQ2. The asymmetry-weighted average

of Q2 in each of the 40 Q2 bins over all elastic events was calculated as

〈Q2〉 =

∑

events Q
2A||(Q

2)
∑

events A||(Q2)
(6.43)

with A|| calculated in Eq. 6.22. Then, Eq. 6.27 was applied in each Q2 bin, yielding a separate

measurement of PbPt in each Q2 bin, with statistical error given simply by

σPbPt
= σAmeasured/A|| (6.44)

This value should be constant for all Q2 (within a statistical error).

The inclusive method of calculating PbPt works well at low energies, where elastic peak statistics

are plentiful and background is (relatively) low, but it leaves much to be desired at higher energies.

For this reason, a second method was devised.

6.2.2 Exclusive ep method

Beam × target polarizations can also be calculated from exclusive elastic ep events (Eq. 3.6). Due

to the strict kinematic cuts used to identify these events, very little background remains to be sub-

tracted. The kinematic cuts on missing energy, θ and φ used to identify these events are described

in detail in Section 3.5, while the PID cuts used to identify potential ep events are explained and

summarized in Section 3.4. Only a final cut on W remains to be defined in this section. The basic

strategy for finding a good W -cut is essentially the same as for inclusive electrons; only the method

of background subtraction differs.

Removal of remaining background

With only a slight difference in method as used for inclusive electrons (see Section 5.6.1), dilution

factors can also be calculated for elastic ep events. Scaling of 12C events can also be used, but

since (practically) all coherent scattering events in the low-W tail are already removed from the
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spectrum by the kinematic cuts, a different strategy must be employed here.

A spectrum of counts in φ (in 0.1◦ bins) is produced for elastic ep events, with all the cuts in

Section 3.5 in place, except for the ∆φ cut. This is done for both NH3 and 12C runs. Using the

method of minimizing Eq. 6.28, except over bins in φ, a carbon scaling factor S can be found, using

the same reasoning as in the preceding section. A cut of

2◦ < |∆φ| < 6◦ (6.45)

(with ∆φ defined in Eq. 3.14) was used for the scaling region, so that

∑

2◦<|∆φ|<6◦

(nNH3
− SnC) (6.46)

was minimized. Figure 6.5 shows the scaled carbon counts in φ, showing just how small the

remaining background actually is. Scaling factors for exclusive carbon events are listed in Table

6.5. Using the carbon scaling factor S and the exclusive ep dilution factors, plots analogous to

those in Figure 6.4, showing the background subtraction using each method, can be drawn (Figure

6.6). W -cut boundaries for elastic ep events are considerably wider than for inclusive events, as

listed in Table 6.6.

Table 6.5: Carbon scaling factors required for elastic ep events for each data set in the region of
2◦ < |∆φ| < 6◦. Details are given in the text.

Set/Bracket S

1.6+/1 1.16
1.6−/2 1.52
5.76−/3 1.25
5.73−/4 1.11
5.7+/5 0.99
2.3+/6 1.06
5.6+/7 1.31
1.7−/8 1.53
2.5−/9 1.13
4.2+/11 1.23
4.2−/12 1.34
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Figure 6.5: Elastic ep events in terms of φp − φe (blue) showing scaled carbon background (red).
Remaining background from exclusive events is very low if good kinematic cuts are used. Data
from Brackets 6 (2.3+) and 3 (5.76−) are shown.

Table 6.6: Lower and upper limits of elastic W -bounds used for measurement of PbPt, for the
exclusive method. All values are in GeV.

Beam Energy (GeV) Elastic Bound (lo) Elastic Bound (hi)
1.x 0.88 0.98
2.x 0.87 0.99
4.x 0.86 1.00
5.x 0.84 1.02
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Figure 6.6: Background subtracted exclusive ep spectra, near the elastic region in W , prior to a
W -cut. The left and right plots show the same data, and are only separated for clarity. Shown
are the total elastic NH3 counts (blue), the 12C counts scaled to the ammonia spectrum (green),
and the remaining difference of these two (i.e. the elastic events) (black). The same subtracted
spectrum using an elastic dilution factor FDF to determine background is also shown (red, barely
visible behind the black on the right-hand plots). Brackets 6 and 3 are again shown.
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Applying the exclusive method

Application of the exclusive ep procedure of deriving PbPt can also proceed as according to the

four methods listed in the description of the inclusive method. In each case, the mathematical for-

malism, including error bars, is exactly the same as for the inclusive method, only the exclusive ep

counts, backgrounds and dilution factors are used.

Just as in the inclusive case, the four methods of deriving the exclusive PbPt yielded consistent

results. However, in this case, the carbon scaling method was applied to cumulative asymmetries

(Method 4) to generate PbPt. For exclusive events, the background subtraction was very small, so

there was little to gain in using a dilution factor in place of background subtraction, and the carbon-

scaling method provided greater overall kinematic coverage. 10

Again, PbPt was evaluated in every Q2 bin. These can be shown compared to the inclusive val-

ues in the figures on the following pages. Just as in the inclusive method, the A||-weighted Q2 was

used to calculate the theoretical asymmetry. 11 Because of the small background subtraction, the

exclusive method gave slightly smaller error bars than the inclusive at the highest beam energies,

but was less successful at lower beam energies, where the less energetic proton recoil was not as

often detected.

However, even though the statistical error bar was larger in the exclusive case for low energies,

there are far fewer sources of systematic errors in the exclusive evaluation than in the inclusive

case, due to very small background subtraction in the former. Therefore, the exclusive PbPt values

were employed as the “official” measurements for the proton analysis.

6.2.3 Final determination of PbPt values

By this point, inclusive and exclusive PbPt values were calculated for each Q2 bin. Values were

checked for constancy for each HWP and target polarization sign combination (Figure 6.7), for sep-

arate target polarizations only (Figure 6.8) and whole sets (Figure 6.9), for diagnostic purposes. In

every case, Q2 bins where the asymmetry error was larger than 1.5 was excluded, to prevent the

10Calculation of dilution factors in the elastic region relied upon empty LHe count data being present in every bin. Popu-
lated bins sometimes were sparse for the limited ep events in the limited numbers of these runs.

11This is actually more crucial in the exclusive case, where weaker statistics are more likely to result in an average Q2

away from the bin center.
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Table 6.7: PbPt values, inclusive and exclusive, for each half-wave-plate state and target polariza-
tion combination. Error bars on high-energy values are quite large. For this reason, asymmetry
data for separate HWP states and target polarizations are combined before finally evaluating PbPt,
and these values are for diagnostics and reference only. The signs represent HWP/targetpol; e.g.
“++” is HWP out, positive target polarization.

Set/Bracket ++ (inclusive) ++ (exclusive) −+ (inclusive) −+ (exclusive)

1.6+/1 0.551 ± 0.0041 0.550 ± 0.0063 0.634 ± 0.0063 0.645 ± 0.010
1.6−/2 0.561 ± 0.012 0.567 ± 0.041 – –

5.76−/3 0.443 ± 0.023 0.449 ± 0.023 0.415 ± 0.027 0.502 ± 0.028
5.73−/4 0.500 ± 0.029 0.572 ± 0.031 0.459 ± 0.032 0.502 ± 0.035
5.7+/5 0.582 ± 0.056 0.473 ± 0.030 0.468 ± 0.070 0.489 ± 0.038
2.3+/6 0.531 ± 0.0056 0.556 ± 0.0079 – –
5.6+/7 0.534 ± 0.062 0.612 ± 0.036 0.520 ± 0.066 0.584 ± 0.039
1.7−/8 0.586 ± 0.0082 0.656 ± 0.019 – –
2.5−/9 0.511 ± 0.088 0.611 ± 0.157 0.606 ± 0.0080 0.630± 0.014
4.2+/11 0.584 ± 0.027 0.609 ± 0.019 0.562 ± 0.026 0.538 ± 0.018
4.2−/12 0.538 ± 0.034 0.600 ± 0.042 0.563 ± 0.015 0.606 ± 0.019

Set/Bracket +− (inclusive) +− (exclusive) −− (inclusive) −− (exclusive)
1.6+/1 0.530 ± 0.0035 0.545 ± 0.0054 0.515 ±0.0054 0.518 ± 0.0086
1.6−/2 – – – –
5.76−/3 0.462 ± 0.031 0.506 ± 0.032 0.392 ± 0.028 0.439 ± 0.029
5.73−/4 0.470 ± 0.030 0.571 ± 0.032 0.465 ±0.033 0.505 ± 0.036
5.7+/5 0.25 ± 0.12 0.465 ± 0.062 0.472 ±0.036 0.488 ± 0.020
2.3+/6 0.460 ± 0.0078 0.476 ± 0.010 0.421 ± 0.0051 0.451 ± 0.0069
5.6+/7 – – 0.452 ± 0.046 0.519 ± 0.027
1.7−/8 0.564 ± 0.043 0.423 ± 0.096 0.489 ± 0.0088 0.526± 0.019
2.5−/9 0.559 ± 0.0089 0.605 ± 0.016 0.543 ± 0.041 0.680±0.069
4.2+/11 0.459 ± 0.025 0.498 ± 0.019 0.572 ±0.027 0.541 ± 0.019
4.2−/12 0.556 ± 0.016 0.560 ± 0.021 0.492 ± 0.019 0.511 ± 0.023
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incorporation of non-Gaussian measurements. Final PbPt were calculated using exclusive asym-

metries for whole run sets, after asymmetries for opposing target polarizations were combined with

the appropriate weights (see Section 7.1). These final PbPt calculations cut out all Q2 bins contain-

ing less than 10 events. 12

Table 6.8: PbPt values, inclusive and exclusive, for each target polarization combination.

Set/Bracket + (inclusive) + (exclusive)

1.6+/1 0.574 ± 0.0034 0.577 ± 0.0053
1.6−/2 0.559 ± 0.012 0.592 ± 0.043
5.76−/3 0.431 ± 0.017 0.471 ± 0.018
5.73−/4 0.481 ± 0.021 0.542 ± 0.023
5.7+/5 0.539 ± 0.044 0.480 ± 0.023
2.3+/6 0.530 ± 0.0056 0.556 ± 0.0079
5.6+/7 0.528 ± 0.045 0.600 ± 0.026
1.7−/8 0.582 ± 0.0082 0.661 ± 0.019
2.5−/9 0.603 ± 0.0080 0.633± 0.015
4.2+/11 0.572 ± 0.019 0.573 ± 0.013
4.2−/12 0.556 ± 0.014 0.606 ± 0.017

Set/Bracket − (inclusive) − (exclusive)
1.6+/1 0.524 ± 0.0029 0.536 ± 0.0046
1.6−/2 – –
5.76−/3 0.424 ± 0.021 0.470 ± 0.022
5.73−/4 0.467 ± 0.022 0.542 ± 0.024
5.7+/5 0.452 ± 0.034 0.486 ± 0.019
2.3+/6 0.432 ± 0.0042 0.458 ± 0.0058
5.6+/7 0.452 ± 0.046 0.520 ± 0.027
1.7−/8 0.489 ± 0.0086 0.526 ± 0.020
2.5−/9 0.557 ± 0.0087 0.612 ± 0.016
4.2+/11 0.531 ± 0.013 0.531 ± 0.013
4.2−/12 0.528 ± 0.012 0.555 ± 0.015

Final PbPt values as a function of Q2 bin for each data bracket are shown in Figure 6.9. A

tabulation of the weighted averages, for each combination of HWP and target polarization, are

listed in Tables 6.7 - 6.9.
12Specifically, any Q2 bins with σ/(PbPt) < 1/(3A||) were cut, where A|| was modeled. This approximately corresponds

to 9 events or less. (Gaussian error combination is spurious for distributions containing less than ∼10 events.) The differing
error bar cuts explains the difference in error bar sizes between the diagnostic and final exclusive PbPt values in Table 6.9.
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Figure 6.7: PbPt values as a function of the asymmetry-weighted average Q2, shown for the first
data bracket (1.6+). Both inclusive (blue) and exclusive (black) data points are shown. Data are
divided into 4 sets according the HWP status and target polarization direction. The red bar is the
average for the given HWP and target polarization.

Table 6.9: PbPt values for each whole data set, calculated using the properly weighted asymme-
tries (see Section 7.1). The final value is the exclusive value, recalculated with the asymmetries
weighted for target polarization (see Section 6.2.5).

Set/Bracket inclusive exclusive final
1.6+/1 0.547 ± 0.0022 0.554 ± 0.0035 0.556± 0.0025
1.6−/2 0.561 ± 0.012 0.567 ± 0.041 0.567 ± 0.029
5.76−/3 0.428 ± 0.013 0.471 ± 0.014 0.471 ± 0.0098
5.73−/4 0.475 ± 0.015 0.541 ± 0.017 0.543 ± 0.012
5.7+/5 0.487 ± 0.027 0.483 ± 0.015 0.484 ± 0.010
2.3+/6 0.468 ± 0.0034 0.493 ± 0.0047 0.504 ± 0.0034
5.6+/7 0.493 ± 0.032 0.560 ± 0.019 0.569 ± 0.014
1.7−/8 0.541 ± 0.0051 0.593 ± 0.013 0.604 ± 0.0097
2.5−/9 0.584 ± 0.0059 0.620 ± 0.011 0.621 ± 0.0076
4.2+/11 0.543 ± 0.013 0.552 ± 0.0093 0.553 ± 0.0065
4.2−/12 0.542 ± 0.0090 0.577 ± 0.011 0.579 ± 0.0080
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Figure 6.8: PbPt values for two data sets (2.3+ (top two plots) and 4.2+ (bottom two plots)), split up
by target polarization direction. Opposing HWP data are combined, here. Note that statistics for
the elastic peak worsen as energy increases, but that the exclusive data (black) begins to span a
wider range in Q2 with increasing energy.
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Figure 6.9: Tiles showing the final PbPt values for the first 6 NH3 data brackets as a function of Q2

(numbered left to right, starting in the top row). The red line shows the final weighted average of
the data.
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Figure 6.10: Tiles showing the final PbPt values for the last 6 NH3 data brackets as a function of Q2

(continued from the previous figure. Bracket 10 is skipped because it contains no NH3 data).
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6.2.4 Comparison to target NMR

Having evaluated the values of PbPt for each set and target polarization, it is useful to make at least

a qualitative check on the accuracy of this measurement by comparing it to another, more external

measurement. The continuous wave NMR (see Section 2.4) provides an approximate reading of

the target polarization. This measurement cannot, however, be relied upon for an accurate deter-

mination of Pt because the error is unknown, as is the consistency of the measurement throughout

the target volume. The beam polarization measurement Pb is consistently around 70%, and can

be accurately determined by Møller runs (see Section 2.3.1). It is the target polarization that is the

limiting factor on the accuracy of PbPt measurement.

Both the Møller beam polarization and NMR target polarization readout were recorded for each

run in the DST files. While these are not employable for a primary measurement of PbPt, it is

informative to compare the elastic peak ratio method with the product of these two values in the

database. Unfortunately, there were large sections of runs where the NMR was definitely not work-

ing. Many early (1.6+) runs, for example, did not properly record the value at all, while the logbook

noted that the NMR transducer broke down later, during part of the 2.3+ data set. Runs without

good NMR and Møller information were excluded from this study.

Figure 6.11 shows the elastic peak ratio method of PbPt determination for each run set (ex-

plained in the previous sections), separated according to target polarization direction, compared to

the DST Møller × NMR product for the entire EG1 data set. There is a definite correlation with the

database values and ratio-determined PbPt products. The accuracy of the comparison appears to

break down when the target polarization becomes too low, as the case with the third (5.76−) data

bracket, not all together an unexpected result (see Section 2.4). However, this quick study (and

a similar study completed for ND3 data, not shown) lends more confidence to the PbPt measure-

ments, and is useful as a general overall quality check.

6.2.5 PbPt for weighting purposes

Eventually, the point is reached where the asymmetries from various data sets must be combined

(Section 7.1). When the target polarization reverses directions (as it does over the course of several
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Figure 6.11: PbPt values, calculated as described in the text (shown by the lines with errors for
each bracket) compared to the product of the NMR and Møller values in the database. Values are
separated by positive (top) and negative (bottom) target polarization. Though a precise evaluation
using the target NMR was not completed, a general correlation between the two measurements
can be seen.
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runs), the polarization magnitude changes ’suddenly’ to a new value, with minimal correlation to the

previous value. Raw asymmetries vary directly in magnitude with target polarization. For this rea-

son, asymmetries of opposite target polarizations were evaluated separately, and when combined,

required weighting by the target polarization value. An accurate target polarization is not needed

for this purpose; what is important is that the relative measurements (i.e. P+
t /P

−
t ) have as much

precision as possible.

For this purpose, yet another PbPt measurement was made. This measurement uses the same

principle as the inclusive elastic peak ratio method, but instead of using the elastic data, a model

for the whole range of data in W , including the DIS region, was used to compare Ameasured and A||.

Models values (see Section 2.7) in the inelastic region (W >1.07 GeV) for A1 and A2, along with

the tracked average for D and η in each bin, were used in Eq. 1.223 to calculate A||, and the ratio

was taken to generate a PbPt value in each bin:

PbPt inel(W,Q
2) =

Araw/FDF

A||
(6.47)

σinel(W,Q
2) =

σAraw
/FDF

A||
(6.48)

The error-weighted average of all these was then taken to find the total PbPt:

〈PbPt inel〉 =

∑

Q2

∑

W PbPt inel/σ
2

∑

Q2

∑

W 1/σ2
(6.49)

with

σinel =
1

√∑

Q2

∑

W 1/σ2
(6.50)

The values of PbPt inel were then statistically combined with the true (elastic) value of PbPt for each

target polarization, to yield a PbPt value for weighting purposes only:

PbPt wgt =
PbPt inel/σ

2
inel + PbPt/σ

2

1/σ2
inel + 1/σ2

(6.51)

σwgt = 1/
√

1/σ2
inel + 1/σ2 (6.52)



328

Plots of PbPt inel as a function of Q2 are shown in Figure 6.12. Note that PbPt generated in this

manner is not nearly as constant inQ2 as that generated only from the elastic peak, mainly because

of our ignorance regarding the accuracy of the model, specifically at low Q2. The statistical error

(for larger energies) is small, due to the larger amount of data incorporated into the calculation, but

the systematic errors imposed are very large. Simply put, it is a precise model, but not an accurate

model of PbPt. However, it is good for comparing the relative weights accorded to data of the same

beam energy/torus current but opposing target polarizations. The application of these PbPt values

to weighting of the data is described in Section 7.1. Values of PbPt inel and the final PbPt wgt for

each data set are listed in Table 6.10.

Table 6.10: Values of PbPt wgt used for the weighting of asymmetries from opposing target polar-
izations. The contribution from the inelastic region only (PbPt inel) is also shown.

Set/Bracket Target Pol. PbPt inel σinel PbPt wgt σwgt

1.6+/1 + 0.562 0.0078 0.574 0.0029
1.6+/1 − 0.516 0.0092 0.528 0.0025
1.6−/2 + not needed

5.76−/3 + 0.429 0.0074 0.435 0.0066
5.76−/3 − 0.470 0.0061 0.468 0.0058
5.73−/4 + 0.509 0.0081 0.509 0.0074
5.73−/4 − 0.473 0.0076 0.479 0.0070
5.7+/5 + 0.486 0.008 0.486 0.0073
5.7+/5 − 0.486 0.010 0.486 0.0086
2.3+/6 + 0.620 0.007 0.568 0.0042
2.3+/6 − 0.489 0.0095 0.451 0.0035
5.6+/7 + 0.562 0.011 0.567 0.010
5.6+/7 − 0.438 0.011 0.449 0.010
1.7−/8 + 0.570 0.028 0.595 0.0075
1.7−/8 − 0.535 0.027 0.502 0.0078
2.5−/9 + 0.666 0.015 0.620 0.0066
2.5−/9 − 0.602 0.013 0.578 0.0068
4.2+/11 + 0.575 0.0076 0.574 0.0065
4.2+/11 − 0.538 0.0076 0.536 0.0066
4.2−/12 + 0.652 0.0076 0.634 0.0064
4.2−/12 − 0.597 0.0086 0.574 0.0067
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Figure 6.12: PbPt inel values for use in relative weighting of opposing target polarizations, shown for
4.2 GeV inbending (top two plots) and 5.7 GeV inbending (bottom two plots) data. Overall statistics
are much better here than for the standard elastic peak ratio method, but systematic errors (not
shown) are much larger.
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6.3 Polarized Nitrogen Correction

At this point, most significant backgrounds (remaining after PID cuts) have been removed from

the asymmetry. Non-polarized background with A > 1 is removed13 by dilution factors (FDF );

unpolarized protons and electrons are removed by dividing out beam and target polarization (PbPt);

and pair-production electrons are accounted for by calculating their contamination rates (Cback).

The calculations so far, however, neglect the nonzero polarizations of A > 1 backgrounds. In

particular, 15N also becomes partially polarized by DNP. While this particular isotope was chosen

for its minimal polarization relative to the free protons, the effects of this factor on the double-spin

asymmetry must be considered for an accurate calculation.

An in-depth treatment of the problem of the spin-polarization of nuclei is beyond the scope of

this thesis. We instead take advantage of the fact that this is a small correction, and use a simple

(nuclear shell) model application, along with empirical information regarding the relative polarization

(P15N/Pp) of the target elements.

According to EST (Equal Spin Temperature) theory [121], when the target polarization is low

enough, the relative polarizations of two spin-interacting atoms in the same medium is given (to

lowest order) simply by the ratio of their magnetic moments:

P15N

Pp
=
µ15N

µp
=

−0.264µn

2.793µn
= −0.0945 (6.53)

As the polarization grows larger, however, dipole interactions of the electron spins become a non-

negligible factor in the polarization ratio, and the simple model shows deviations from the experi-

mental ratio [121]. To account for this, rather than using the complex formalism of higher-order EST

theory, we use an empirical relation based on a fit of NMR polarization values of the free protons

and 15N for 15NH3 in the E143 experiment at SLAC [4]:

P15N = 0.136Pp − 0.183P 2
p + 0.335P 3

p (6.54)

A comparison of these parametrizations is shown in Figure 6.13.

13A represents atomic mass, here.
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Figure 6.13: The E143 parametrization of nitrogen vs. proton polarizations in frozen 15NH3 (Eq.
6.54) compared to the simple ratio of magnetic dipole moments (Eq. 6.53).

According to the nuclear shell model,14 the 8 neutrons in 15N pair in the s1/2 and p3/2 shells with

opposing spins, as do 3 pairs among the 7 protons, leaving a single unpaired proton the p1/2 shell

to carry the spin of the nucleus [70].

To obtain the polarization contribution of this free proton, we must calculate the polarization

on the “free” nuclear proton relative to the (known) 15N polarization. This can be done through

a separation of the p1/2 “free” nuclear proton state15 into substates of the intrinsic fermion spin

(ms = ±1/2) and the remaining orbital angular momentum (ml = ±1) using the standard method

of decomposition with Clebsch-Gordan coefficients:

∣
∣
∣
∣
1,±1

2

〉

=

√

2

3

∣
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± 1,∓1

2
;±1

2

〉

+

√

1

3

∣
∣
∣
∣
0,±1

2
;±1

2

〉

(6.55)

We see here that the second term is antialigned with the (spin-1) orbital spin. Squaring the ampli-

tude yields a 1
3 probability of the “free” proton being antialigned with the net nuclear spin.

Thus, for an equal number of protons and 15N nuclei, the expected correction is approximately

− 1
3P15N/Pp. Of course, there are 3 free protons for every nitrogen nucleus, so another factor of 1

3

14The nuclear shell model requires that s, p, d, etc. orbitals are filled by nucleons as per the Pauli Exclusion Principle,
with protons and neutrons capable of pairing in the same orbitals (as they have opposite isospin).

15This is the j=1, jz=1/2 state.
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is needed. Putting all this together, the effective nitrogen polarization correction is given by

P ∗
15N = −1

3
· 1

3
(0.136Pt − 0.183P 2

t + 0.335P 3
t ) (6.56)

where Pt = Pp is the target polarization. 16 This factor should be added to the target polarization

when calculating A||. (That is, to be specific, adding the negative value of P ∗
15N lowers the effective

target polarization). That is,

PbPt → Pb(Pt + P ∗
15N ) (6.57)

in the final asymmetry measurement. All measured asymmetries that include nitrogen background

should have this correction - this includes inclusive elastic asymmetries used to measure PbPt. In

this case, since the asymmetry is used to scale PbPt, it is assumed Pb = Pt = 1 so that the raw

asymmetry is simply divided by (1 + P ∗
15N ) (see Section 6.2.3). Exclusive ep events do not require

this correction, as nearly all nitrogen background is removed by the kinematic cuts.

This is only an approximate correction. However, a typical Pt value of 0.75 yields a correction

of P ∗
15N ≈ −0.016, making it a very small correction, for which the minor details of our approxima-

tions have little bearing on the final asymmetry. To implement this correction, we use Eq. 6.56 and

assume Pt = PbPt/Pb, where PbPt values are derived using the elastic peak method in Section 6.2

and Pt is the average Møller polarization given for each run, weighted by the gated FC charge for

each run:

Pb ≈
∑

run FC × |Pb(Møller)|
∑

run FC
(6.58)

Resultant Pb values for each bracket, along with the final target polarization corrections P ∗
15N , are

listed in Table 6.11.
16To be precise, this equation should be multiplied by an x-dependent factor to account for the nuclear EMC effect [97].

However, the effect for 15N would result in a coefficient within several percent of 1.00 for the kinematic regions of concern in
this analysis. Because the nitrogen polarization has such a small total effect, we neglect the EMC factor in this analysis.
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Table 6.11: Pb estimates for each data set, using the Møller polarization weighted by the NH3

Faraday cup counts. Also shown are the resulting target polarizations (Pt) using the peak ratio
method (Section 6.2). The resulting polarized nitrogen correction P ∗

15N is also shown.

Set/Bracket Pb Pt P ∗
15N

1.6+/1 0.72 0.78 -0.017
1.6−/2 0.69 0.82 -0.019
5.76−/3 0.64 0.73 -0.015
5.73−/4 0.71 0.76 -0.016
5.7+/5 0.69 0.70 -0.013
2.3+/6 0.72 0.70 -0.013
5.6+/7 0.72 0.79 -0.017
1.7−/8 0.70 0.86 -0.022
2.5−/9 0.75 0.82 -0.019
4.2+/11 0.73 0.76 -0.016
4.2−/12 0.78 0.74 -0.015

6.4 Radiative corrections

The basic goal of this analysis is the extraction of A1 and A2, which can be expressed in terms of

the spin- 1
2 and spin- 3

2 final state virtual photon cross-sections σ1/2 and σ3/2, and the longitudinal

single-photon interference term σLT (see Section 1.4). These quantities result from the cross-

section calculations of the simplest possible Feynman diagram, involving a single-photon exchange

between the proton and electron. 17 The sum of all the constituent cross-sections should then be

given by

σTOT ∝

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(6.59)

17In reality, the outgoing bold arrow represents the variety of scattering products X, not just a single proton, except in the
special case of elastic scattering.
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At high values of Q2, the studied reaction ep → eX approximates this expression. However, as Q2

lowers, the validity of this approximation breaks down, and higher-order Feynman diagrams con-

tribute to the measured experimental cross-section:

σEXP ∝
∣
∣
∣
∣
∣

+ +

+ + + + · · ·
∣
∣
∣
∣
∣

2

(6.60)

These second-order corrections occur at the interaction vertex and are known as internal radiative

effects. Basically, given the measured asymmetries in terms of the experimental cross-sections

σEXP ,18 the contributions from the second-order terms must be removed as a function of W and

Q2 to extract σTOT . For example, the last shown term, which involves a 2-photon exchange, can

result in the production of spin- 5
2 resonances, which must be removed from the inclusive spectrum

if A1 (which is dependent only on spin- 1
2 and spin- 3

2 states) is to be derived from the data. 19

In addition to the internal radiative effects from the addition of higher-order Feynman diagrams,

electrons accelerating through the target and main torus fields, as well as those interacting with tar-

get and detector materials, can undergo Bremsstrahlung production of photons, which can slightly

alter the measured kinematics of the detected electron. Range straggling, the statistical effect of

a spread in the possible range of the target [8], is also an effect not yet accounted for, which must

be incorporated into the radiative corrections. 20 These effects, which occur after the measured

18See the definitions of A1 and A2, in Section 1.4 to see the asymmetries written explicitly in terms of cross-sections.
19The 2-photon exchange term, in reality, makes only a very small contribution, because of the overwhelming likelihood, in

such a case, of one of the two photons transferring most of the energy (see Ref. [122], page 4, for example). This example
is used here just to make a discernible point about the need for radiative corrections.

20The multiple scattering of electrons in matter is also a concern, but this issue (with the exception of the range straggling)
is handled separately in the kinematics correction package (see Sections 4.2.4 and 4.2.5). Range-straggling effects are
most efficiently handled at the same time as radiative corrections, because the probability of external Brehmsstrahlung is
directly accorded to the penetration range in matter.
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reaction, and are dependent on the experimental configuration, are known as external radiative

effects, and must be accounted for as well.

This is clearly a complicated scenario. Fortunately, we can take advantage of the fact that both

internal and external radiative effects on A|| are small compared to the measured asymmetry. In

the case of internal corrections, this can be assumed due the small size of the QED coupling con-

stant α, because higher-order diagrams are proportional to higher powers of this small constant.

In the case of external corrections, a thin target and a large-scale homogeneous magnetic field

ensure that these radiative effects are small. 21 Thus, we can use older (less accurate) models of

A|| to calculate the higher order and external radiative terms, and subtract their contribution from

the overall asymmetry. In kinematic regions where the proportion of the radiative corrections to the

actual asymmetry is too high (that is, near the elastic peak and at high W ), we can assume the

EG1 experiment provides little to no new information about the asymmetry; these points are then

excluded from the analysis. 22

6.4.1 Basic methodology of radiative corrections

The complete, detailed treatment of radiative corrections in ep scattering is a problem clearly beyond

the scope of this thesis. In this and the following subsections, a description of the iterative nature

of the radiative corrections is supplied, followed by a summary of internal and external radiative

corrections and references to the appropriate source materials.

To calculate the radiative corrections, the RCSLACPOL code developed by L. Stuart et al. [4] is

applied iteratively to calculate the radiative contribution to the polarized and unpolarized Born cross-

sections as a function W , Q2, and beam energy E. The total experimentally measured asymmetry

can be written

A||exp
=
n− − n+

n− + n+
=
σP

σa
(6.61)

where σP and σa are the (radiated) polarization-dependent and polarization-independent cross-

sections, respectively. The goal is to calculate the corrective terms necessary to find the α2 (lowest)

21Still, the effects of external Bremstrahlung at momenta of several hundred MeV or higher are several times stronger
than the dE/dx correction for nuclear collisions [5], making this an important correction.

22This is done by according a reasonable systematic error proportional to the correction. This error then “blows up” for
large corrections, defining a de facto boundary on the data (see Section 7.2.5).
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order Born asymmetry, that is, the solutions ARC and fRC of

A||Born
=

1

fRC

σP

σa
+ARC (6.62)

The variable fRC(E,W,Q2) includes all the unpolarized corrections and can be interpreted as a

“radiative dilution factor”, while ARC(E,W,Q2) accounts for (polarization-dependent) terms that

cannot be easily accounted for in fRC . Corrections could, technically, be absorbed in a single coef-

ficient ARC . However, using a second correction fRC allows for simple rescaling of the asymmetry

error bars

σABorn
=
σAexp

fRC
(6.63)

to the bulk of the correction.

The RCSLACPOL code works by an iterative procedure. The elastic Born cross-section is de-

scribed by a Dirac δ-function at W = M . The entire contribution of the long radiative elastic tail,

which contaminates the entire resonance region to some extent [91][122], must first be removed

from the cross-sectional spectra σP and σa. Radiative corrections to the inelastic resonances are

more complex, since, unlike the elastic peak, the resonances are characterized by a distinct struc-

ture across W , with peaks at 1232, 1525, and 1700 MeV dominated by many different resonances.

Fortunately, the radiative tails of the resonances are much smaller than the elastic tail, so that only

their effects on nearby resonances in W need be considered [122]. The peaking approximation,

that is, the assumption that the radiative tail is proportional to the non-radiative cross-section, is

used to iteratively derive the contributions of these peaks.

After the elastic tail, the next-largest resonance23 is isolated from its radiative tail via calculations

of its internal and external radiative corrections (summarized in the following subsections). Then, a

neighboring resonance24 is given the same treatment, and so on, until all known resonance contri-

butions are analyzed. Then, the results are iterated over again. The contributions of the largest (∆)

resonance are adjusted, again using the peaking approximation to calculate internal and external

radiative contributions, to account for the subtraction of the radiative tails of its nearby (i.e. P11, et

23Obviously, this is the ∆(1232).
24P11(1440) is the closest resonance in the inclusive spectrum.
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al.) resonances. This iterative procedure is repeated for all excited states up to the threshold of the

DIS region, until stable values for the magnitudes of the radiative contributions to σP and σa are

reached.

After the contributions of radiative tails for the elastic and resonance regions are “untangled”,

the radiative contributions from the continuum (DIS) region can be calculated. Using the peaking

approximation, it can be shown (Ref. [122], Appendix C) that the radiative contribution in the region

of a continuum of states can be calculated by an integration over the region bounded in W ,25 if

only the Born cross-sections at the boundaries are known. Therefore, the calculation of radiative

cross-sections in the DIS (high-W ) region is much less complicated than in the resonance region.

Once all the calculations are completed, the various contributions from the elastic and inelastic

radiative tails are absorbed into the corrective terms fRC and ARC . The bulk of the contribution

comes from the elastic radiative tail, so we must ensure the error on A|| is properly scaled by this

contribution, as well. Therefore, we are motivated to include this contribution in fRC . However, the

polarization-dependent contribution to this term cannot be included in an overall “radiative dilution

factor”, so this (small) part of the correction is absorbed into ARC . Thus, we have

fRC ≡ σtotal − (σa
el − σa

0el)

σtotal
(6.64)

where σa
el − σa

0el is the polarization-independent contribution of the elastic radiative tail and σtotal

is the radiated (i.e. experimentally measured) cross-section. (Compare to Eq. 5.75 to see the

analogy to the dilution factor.) The remaining term ARC is then defined as the correction term for

the polarized elastic tail contribution, as well as all inelastic contributions to the total asymmetry.

6.4.2 Internal radiative corrections

Internal radiative corrections, that is, corrections based on the addition of higher-order Feynman

diagrams (as shown in Eq. 6.60), are based on the formalism of Kuchto and Schumeiko as outlined

in Ref. [123]. Of the various higher-order terms that must be calculated, the most important are

25Ref. [122] uses the kinematic values E and E′ instead of E and W , but at a given Q2, the kinematics of inclusive
scattering can be expressed completely using any two kinematic variables, so the descriptions are equivalent.
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internal Brehmsstrahlung26

(6.65)

and the vertex correction term

(6.66)

applied to the electron vertex. 27 The Bremsstrahlung contribution σR is calculated as the sum

of polarization-dependent and independent cross-sections:

σR(E,W,Q2) = σa
R(E,W,Q2) + σP

R(E,W,Q2) (6.67)

These cross-sections are solved explicitly in terms of the kinematics in Ref. [123]. For the inclusive

scattering case, the whole phase space of the radiated photon is integrated over. This requires the

separation of the respective cross-sections into the sum of a finite and a (renormalizable) infrared-

divergent term. The contribution of these terms, relative to the Born cross-section, can be used

together with the aforementioned peaking approximation to specify the magnitude of this specific

radiative effect.

The vertex correction contribution is calculated in terms of a vertex correction factor δV to the

26Here the radiated photon can be emitted from either the incoming or outgoing electron line, though the latter is shown.
27The much larger mass M of the proton makes the same effect, reflected to the hadronic line, negligibly small compared

to the like diagrams on the lepton line.
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Born cross-section σ0 and the anomalous magnetic moment contribution σAMM :

σV (E,W,Q2) = σ0(E,W,Q
2)
α

π
δV + σAMM (E,W,Q2) (6.68)

Again, these are calculated explicitly and are detailed in Ref. [123]. Polarization-dependent terms

are all contained in σ0. The correction term δV includes a contribution from leptonic vacuum polar-

ization in the photon line.

The radiative tail from the elastic peak due to internal contributions σN
R is also explicitly calcu-

lated as

σN
R (E,W,Q2) =

2α2

√
s2 − 4m2M2

α

π

∫ T N
max

T N
min

dT

T 2
R(T ) (6.69)

where s is the Mandelstam variable (Eq. 1.10) and T ≡ q2 = −Q2; R(T ) and the integration limits

are functions of the leptonic response functions, explicitly calculated in Ref. [123].

Other contributions due to internal corrections are also considered. Vacuum polarization of the

virtual photon, for example

(6.70)

as well as emission of Bremsstrahlung photons by the hadron line, emission of multiple Bremsstrahlung

photons, and multiple-photon exchange

(6.71)
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have only very small effects on the asymmetry A||, except at x → 0 and y → 1 [123]. Values

of systematic errors attributable to radiative corrections become prohibitively large for evaluation

near these limits.

The internally corrected cross-section can now be expressed in terms of the Born cross-section

and correction terms as

σint = σ0 · (1 + δV R) + σF
R + σN

R (6.72)

where σF
R is the finite contribution of the Brehmsstrahlung cross-section and δV R is defined to

absorb the vertex correction and aforementioned infrared divergence terms (denoted by σIR
R ):28

σ0δV R ≈ σIR
R + σV (6.73)

These corrections are done separately for the polarization-dependent and independent cross-

sections. The internally-corrected asymmetry can then be written

Aint
|| =

σP
int

σa
int

=
σP

0 · (1 + δV R) + σFP
R + σNP

R

σa
0 · (1 + δV R) + σFa

R + σNa
R

(6.74)

with the P and a superscripts noting the polarization-dependent and independent contributions, as

before.

6.4.3 External radiative corrections

External radiative corrections depend specifically on the experimental configuration, and manifest

themselves in the form of external Bremsstrahlung radiation and range straggling due to ionization.

Both effects are results of the interaction of the scattered electrons with matter in the target material

and shielding. The methods pioneered by Mo, Tsai et al. [91][122] are used. The corrected

28This is little more than a manner of convenient notation involved in adoption of the peaking approximation, and contains
no polarization-dependent terms. See Ref. [123] for more details.
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polarization-independent cross-section can be expressed, if the probability of an electron having

final energy Ef after passing through t radiation lengths of material (written Ib(E,Ef , t)) is known,

by integration over the electron momenta:

σa
total(E,E

′, θ) =

∫ E

E′
min

∫ E′
max

E′
F

Ib(E,Ef , t)σ
a
int(E,E

′, θ)Ib(E
′, E′

f , t
′)dEfdE

′ (6.75)

Here, E′
min and E′

max are limits on E′ for elastic scattering, σa
int is the cross-section after internal

radiative corrections, and t (t′) is the fraction of the radiation length X0 passed through by the

incoming (outgoing) electron.

The calculation for the polarization-dependent cross-section is nearly identical, except that a

contribution due to the depolarization of the electron from Bremsstrahlung D(E,E′, Z) [124] must

be factored into the equation:

σP
total(E,E

′, θ) =

∫ E

E′
min

∫ E′
max

E′
F

Ib(E,Ef , t)σ
P
int(E,E

′, θ)Ib(E
′, E′

f , t
′)[1 −D(E,E′, Z)]dEfdE

′

(6.76)

The calculation of the energy loss probability function Ib(E,Ef , t) is complicated, due to the statisti-

cal nature of external Brehmsstrahlung radiation. Range straggling effects due to both Brehmsstrahlung

and ionization of matter must be taken into account. The statistical nature of energy loss phenom-

ena results not in a fixed range for the electron, but rather a variable range with an upper tail

described by a Landau distribution [5].

A full treatment of this problem requires solving integral equations of Ib(E,Ef , t) with boundary

conditions and is not treated here; the reader is hereby referred to Appendix B of Ref. [122] for an

in-depth look at the problem. Basically, straggling due to ionization affects the shape of discrete

peaks in the resonance distribution, while Brehmsstrahlung affects the subtraction of wider tails

from nearby resonances.

The result (from Ref. [122]) is29

Ib(E,Ef , t) =
bt

(E − EF )Γ(1 + bt)

(
E − Ef

E

)bt

φ

(
E − Ef

E

)

(6.77)

29Equations B.3 and B.43 are combined from Ref. [122] to get this result. Here Γ(x) is the mathematical Gamma function.
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where

b =
4

3

[

1 +
1

9

(
Z + 1

Z + η

)(
1

ln(183Z−1/3)

)]

(6.78)

η =
ln(1440Z−2/3)

ln(183Z−1/3)
(6.79)

and φ(v) is the normalized distribution of the Brehmsstrahlung function. For a small energy loss, as

is the case in this experiment,

φ(v) ≈ 1 − v +
3

4
v2 (6.80)

These results are known to be good within 0.5% of the total cross-section, assuming a target of

thickness less than 0.1X0 (definitely the case in EG1b).

Combining all the above, the external radiative corrections can then be calculated, with the only

necessary remaining input being the thickness, in radiation lengths, traversed by the incoming and

outgoing electrons. 30 The variable t is just a number (the incoming electron travels straight along

the beam line), while t′ ≡ t′(θ,φ) is a function of the scattering angle. The radiation length fractions

of target materials, including the solid angle distributions of the radiation thickness, are detailed in

the target description of Section 2.4 and in the unpolarized model description in Section 2.8. These

thicknesses are used for a given scattering angle in the above equations, filling in the last needed

parameters for the external corrections.

6.4.4 Application of radiative corrections

In practice, the external radiative corrections must be done first. The aforementioned iterative

procedure is used to numerically solve for σint in Eqs. 6.75 and 6.76 from the experimental cross-

section. Then, these results are substituted into Eq. 6.74 to get the Born cross-sections σP
0 and

σa
0 , the ratio of which yields the Born asymmetry A||.

As already explained, all correction coefficients are absorbed into a radiative dilution factor (fRC)

and additive constant (ARC ) to correct the asymmetry. These corrections are written to a 300 × 40

array for the mean Q2 and W values for each bin, at each of the 4 major beam energies. 31 After the
30It is important to note that dE/dx due to ionization energy loss is not included in these radiative corrections. See Section

4.2.4.
31At one point, it was considered whether it was necessary to generate asymmetry corrections for specific beam energies.

That is, for example, whether different corrections were required for 1.606 GeV and 1.723 GeV energies. Because the
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asymmetry is calculated at each individual beam energy, and before division by the depolarization

factor D, Eq. 6.62 is applied to each A||(W,Q
2) to derive the proper Born asymmetry from the data.

Plots of the final A|| for each beam energy are shown in the next chapter in Figure 7.5, with the

contribution specifically from radiative corrections shown shaded. As noted, in the inelastic region,

as long as W is not too large, or too close to the elastic region, the contribution from the corrections

is small compared to the total asymmetry.

corrections are so small, the difference turned out to be less the incurred systematic error due to the corrections themselves,
so only the nominal energies 1.6, 2.5, 4.2 and 5.7 GeV were used for correcting A||. This was desirable because of the long
amount of computing time required to run the code for polarization-dependent cross-section corrections.



Chapter 7

Combination of Data Sets and

Calculation of Systematic Errors

7.1 Evaluation and Combination of A|| Values

We are now the position to accurately calculate the total proton double-spin asymmetry A||. Using

Eq. 5.1, and explicitly writing factors for e+e− pair production, polarized nitrogen corrections, and

radiative corrections we have

A|| =
Cback

FDFPb(Pt + P ∗
15N )fRC

n− − n+

n− + n+
+ARC (7.1)

The statistical error is given by the properly scaled version of Eq. 5.6:

σA =
Cback

FDFPb(Pt + P ∗
15N )fRC

1√
N

(7.2)

The errors on all the correction factors are accounted for in the systematic error analysis of this

chapter (Section 7.2).

The raw asymmetry (Eq. 3.1) is first measured individually for every run, and then combined

together for a total raw asymmetry, for each combination of target polarization sign and HWP sign

344



345

W (GeV)
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.04

-0.02

0

0.02

0.04

0.06

0.08   ++

  + -

  - +

  - -

 < 0.4522), 0.379 < Q
3

Raw asymmetries: electron(NH

W (GeV)
0.5 1 1.5 2 2.5

-0.04

-0.02

0

0.02

0.04

0.06

0.08   ++

  + -

  - +

  - -

 < 1.8702), 1.560 < Q
3

Raw asymmetries: electron(NH

Figure 7.1: Raw asymmetries superimposed for each combination of HWP status/target polariza-
tion as a function of W , shown in a selected Q2 bin in two different data brackets. The 1.6 GeV
inbending (Bracket 1,top) and 4.2 GeV inbending (Bracket 11, bottom) data are shown, with 20
MeV and 40 MeV W -bins, respectively.

(see Section 3.3). Raw asymmetries for each HWP and target polarization state are shown for two

sets in Figure 7.1.

The goal of this section is to find a total value of A|| for each one of the 4 main beam energies, so

that A1 and A2 can be extracted (Section 1.4). Proper weighting of data and statistical compatibility

are important issues to consider when combining subsets of data. These issues are addressed at

each stage of data combination, later in this section.

Beginning with a total of 38 raw asymmetries for the present HWP/target polarization states

(explicated in Table 5.1), the data were combined in the following sequence:

• Raw asymmetries from run sets of differing HWP status (but same bracket and target polar-
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ization) were combined, reducing the number of independent asymmetries from 38 to 21.

• Raw asymmetries of opposite target polarization sign were combined, weighted by relative

beam and target polarizations (Section 6.2.5), resulting in 11 raw asymmetries (one per

bracket).

• A|| and its error was calculated using Eqs. 7.1 and 7.2 (excluding radiative terms ARC and

fRC) for each bracket.

• A|| values were combined for brackets with exactly the same beam energy, but opposite torus

polarity, resulting in 8 sets of A|| values.

• Radiative corrective terms ARC and fRC were factored in, and A||/D was calculated. 1

• A||/D values for similar beam energies were combined, resulting in 4 arrays in Q2 and W for

each of the 4 main beam energies, the desired result.

Each of these stages is described in some detail in the first part of this section. Then, the develop-

ment of systematic error estimates is presented in detail.

7.1.1 Combining asymmetries from opposite HWP status

Combination of cumulative asymmetries from different half-wave-plate status proceeds first. No

relative weighting is needed, since the beam polarization magnitude does not change upon inser-

tion/removal of the HWP. So, raw asymmetries from each HWP state (AIN andAOUT ) are combined

by the standard method of weighting by their statistical errors [103]:

A =
AIN/σ

2
AIN

+AOUT /σ
2
AOUT

1/σ2
AIN

+ 1/σ2
AOUT

(7.3)

σA =
1

√

1/σ2
AIN

+ 1/σ2
AOUT

(7.4)

1The quantity D is the depolarization factor, which is required for the calculation of A1 and A2. It is defined in Section
1.1.3.
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The various average kinematic values that are tracked for each bin (Q2, W , x, s, D, E′, θ, ε, η, γ

and ν) are also combined as weighted averages

val =
valIN/σ

2
AIN

+ valOUT /σ
2
AOUT

1/σ2
AIN

+ 1/σ2
AOUT

(7.5)

In order to test that our assumption of statistical compatibility is correct, a mathematical Student’s

t-test is run on the data [125][126]. To run the compatibility test, we calculate

t(W,Q2) =
AOUT −AIN
√

σ2
AOUT

+ σ2
AIN

(7.6)

for each populated bin. We then find the mean and standard deviation of t:

t̄ =
∑

N

t/N σt =

√
∑

N

t2/N (7.7)

where N is the number of populated bins in the sample. Good statistical compatibility is indicated

by t̄ ≈ 0 and σt ≈ 1.00.

After the combination of opposing HWP states, two sets of data remain for each bracket, one

per target polarization sign. 2 Results of the t-test for each target polarization and data bracket are

listed in Table 7.1. Statistical compatibility was not an issue for opposing HWP states. (A similar

combination of data was made for exclusive ep asymmetries, for use in evaluating the PbPt values

for each total bracket.) An example of raw asymmetries combined between opposing HWP states

is shown in Figure 7.2.

7.1.2 Combining asymmetries from opposite target polariza tions

Combining data from subsets with opposing target polarizations is similar to the case of HWP

set combination. However, now we must consider that the magnitudes of the target polarizations

of opposite signs can differ considerably. The relative weighting of the raw asymmetries is an

important procedure, in such a case.

2The exception is 1.6 GeV outbending, for which there is only data for + target polarization and HWP status.
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Figure 7.2: Raw asymmetries superimposed for each target polarization sign, after combination of
asymmetries from opposing HWP sets. The 2.5 GeV outbending data (Bracket 9) are shown, for a
chosen Q2 bin as a function of W (top), and averaged over a small range in W as a function of Q2

(bottom).
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Table 7.1: Students t-test results for the combination of opposing HWP states over each target
polarization. Sets with only one HWP state available are listed as “n/a”.

Set/Bracket Target Pol. t̄ σt

1.6+/1 + 0.15 1.10
1.6+/1 − -0.03 1.01
1.6−/2 + n/a n/a
5.76−/3 + 0.00 1.00
5.76−/3 − -0.05 1.01
5.73−/4 + -0.05 1.00
5.73−/4 − -0.01 1.01
5.7+/5 + 0.03 1.00
5.7+/5 − 0.03 1.01
2.3+/6 + n/a n/a
2.3+/6 − -0.02 1.00
5.6+/7 + 0.00 0.99
5.6+/7 − n/a n/a
1.7−/8 + n/a n/a
1.7−/8 − 0.03 1.00
2.5−/9 + 0.02 1.00
2.5−/9 − -0.02 1.00
4.2+/11 + -0.04 1.02
4.2+/11 − 0.08 1.02
4.2−/12 + 0.00 1.01
4.2−/12 − -0.04 1.02
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The calculated values of PbPt are used to weight the results. However, the PbPt values for some

of the (higher energy) data sets have particularly large statistical errors (see Table 6.8), and thus

run the risk of improperly scaling the relative weights. Therefore, we use a second, more precise

calculation of the beam and target polarizations, using a model of A|| in the inelastic W -region. The

process for deriving this factor (PbPt wgt) was detailed explicitly in Section 6.2.5. Values of PbPt wgt

for each target polarization are listed in Table 6.10.

To combine the data from opposite target polarizations, the PbPt-weighted average is taken:

A =
(PbPt wgt+)2A+/σ

2
A+ + (PbPt wgt−)2A−/σ

2
A−

(PbPt wgt+)2/σ2
A+ + (PbPt wgt−)2/σ2

A−

(7.8)

and the error is

σA =

√

(PbPt wgt+)2 + (PbPt wgt−)2

(PbPt wgt+)2/σ2
A+ + (PbPt wgt−)2/σ2

A−

(7.9)

where the + and − subscripts denote the values from the respective target polarizations. Average

values of kinematics quantities are also combined as

val =
(PbPt wgt+)2val+/σ

2
A+ + (PbPt wgt−)2val−/σ

2
A−

(PbPt wgt+)2/σ2
A+ + (PbPt wgt−)2/σ2

A−

(7.10)

Just as in the case with opposing half-wave-plate status (previous subsection), a students t-test

is again run on the data to ensure statistical compatibility, where t is given by

t(W,Q2) =
A+/PbPt wgt+ −A−PbPt wgt−

√

σ2
A+
/(PbPt wgt+)2 + σ2

A−
/(PbPt wgt−)2

(7.11)

and t̄ and σt are again given by Eq. 7.7. Again, if there is no systematic bias between the two

data sets, we expect t̄ ≈ 0 and σt ≈ 1. A list of these values for raw asymmetries can be found in

Table 7.2. (Again, a similar combination of data was made for exclusive ep asymmetries, for use in

evaluating the PbPt values for each total bracket.) Data combined using this method for a sample

bracket are shown in Figure 7.3.
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Figure 7.3: Raw asymmetry as a function of W (using 40 MeV bins) for a chosen Q2 range (two
standard bins combined), for the 5.7 GeV inbending data set (Bracket 5). The method of weighting
between opposing target polarizations, as described in the text, was used to generate the data.

Table 7.2: Students t-test results for the combination of opposing target polarization states. The set
with only one polarization state available is listed as “n/a”.

Set/Bracket t̄ σt

1.6+/1 0.05 1.02
1.6−/2 n/a n/a
5.76−/3 -0.01 1.01
5.73−/4 0.02 1.00
5.7+/5 0.01 1.01
2.3+/6 0.00 0.99
5.6+/7 0.00 1.00
1.7−/8 -0.02 1.00
2.5−/9 -0.02 0.98
4.2+/11 0.00 0.98
4.2−/12 0.01 1.01
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Figure 7.4: Values of A|| calculated from the background-corrected double spin asymmetry, as a
function of W , in a Q2 bin for the 1.7 GeV outbending (Bracket 8, top) and 4.2 GeV outbending
(Bracket 12, bottom) data. Radiative corrections have not yet been added.

7.1.3 Combining asymmetries from opposite torus currents

At this point, the 11 raw asymmetries (from each data bracket) are converted to A|| values using

Eq. 7.1 (without radiative corrections, so that ARC = 0 and fRC = 1 at this point). The backgrounds

PbPt, FDF , Cback and P ∗
15N for the whole bracket are used. Sample results of the value A|| for two

brackets are shown in Figure 7.4.

Once the values are weighted by the backgrounds, there is no reason to expect that the magni-

tude of the physics quantity A||(W,Q
2) should have any dependence on torus current. 3 Therefore,

we can now combine values of A|| (and the average kinematics per bin) between inbending and

3The size of the error bar in a given bin, of course, will vary between opposite torus currents, as inbending and outbending
torus currents alter the range of kinematic acceptance. This is why all combinations are weighted by their statistical errors.
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outbending torus currents, where the energies remain unchanged. Specifically, we combine Brack-

ets 1 and 2 (1.606 GeV), Brackets 4 and 5 (5.725 GeV), and Brackets 11 and 12 (4.238 GeV).

The equations for combining the data are exactly the same as in Section 7.1.1, except that the

subscripts IN and OUT denote inbending and outbending torus currents instead of HWP status.

Again, a student’s t-test is run for statistical compatibility; the results are listed in Table 7.3.

Once all data from identical beam energies are combined, radiative correction terms (ARC and

fRC ; see Eq. 6.62) are factored in. Radiative corrections are explained in detail in Section 6.4.

Combined data by energy, showing the effects of radiative corrections, can be seen in Figure 7.5.

Table 7.3: Students t-test results for the combination of A|| values between opposing torus currents.

Beam Energy (GeV) t̄ σt

1.606 -0.02 1.06
4.238 0.06 1.00
5.725 0.12 1.07

7.1.4 Combining asymmetries from slightly differing beam e nergies

To calculate the desired asymmetries (A1 and A2), we need values of A||/D for each of the 4 main

beam energies (see Section 1.4), where D is the depolarization factor, defined in Section 1.1.3.

The average running value of D in each W , Q2 bin has been tracked up to this point. The radiative

corrected value of A|| (see previous subsection) is simply divided by the tracked average of D in

each W,Q2 bin.

A||/D, its error (σA||
/D), and the averages of all the kinematics values are then combined using

the exact same method used in the previous section. It is important to divide by D before combining

similar beam energies, because its value is dependent on E. In the particular case (5.x GeV) where

3 beam energies were combined, the two 5.7x GeV sets were combined first, and the resulting set

was combined with the 5.6 GeV data.

Again, to make sure that the imparted difference due to the beam energy discrepancy does not

cause a weighting issue, a student’s t-test is again used on the data. The resultant compatibility
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Figure 7.5: Values of A|| shown at 1.606 GeV, 2.286 GeV, 4.238 GeV, and 5.725 GeV respectively,
in selected Q2 bins, opposite torus current data combined. Radiative corrections have been added.
The radiative contribution (that is, A||uncorrected −A||corrected) is shown in the cyan shading. Note that
radiative contributions blow up near the elastic region. The red line is the models comparison of
A|| = D(A1 + ηA2).
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test results are shown in Table 7.4.

Table 7.4: Students t-test results for the combination of A||/D values for slightly differing beam
energies. After this combination process, only 4 asymmetries for each (W,Q2) bin remain, one
for each major beam energy. The 5.73 GeV set is a temporary combination that is immediately
afterward combined with the 5.6 GeV data.

Approx. Combined Beam Energy set A (GeV) set B (GeV) t̄ σt

1.6 GeV 1.606 1.723 0.16 0.96
2.5 GeV 2.286 2.561 0.05 0.97
4.2 GeV 4.238 – n/a n/a

5.73 GeV (temporary) 5.725 5.743 0.00 1.01
5.7 GeV 5.615 5.73 0.00 0.98

After this combination of data, up to 4 values of A||/D (and their statistical errors) remain per

W,Q2 bin. These values can be used to derive values of A1, and in some cases, A2, as explained

in Section 1.4. Values of A||/D, for all 4 beam energies, are shown in Figure 7.6.

7.2 Systematic error calculation

In addition to the statistical errors in the analysis, which are rigorously calculated as according to

the formalism in the preceding chapters and sections, there are systematic errors resulting from

uncertainties in measured quantities. These must be determined in order make an appropriate

assessment of the accuracy of the measured asymmetries.

The basic strategy used to calculate systematic errors required identifying potential sources of

uncertainty (in physical quantities, models, etc.). We then altered the numerical value of the given

error source to the extent of the uncertainty, and reran the entire analysis from the start, keeping

all other parameters the same. The systematic error due to the particular cause could then be

estimated as the measured difference between the two analyses. The systematic errors on any

given quantity due to a particular source of uncertainty (models, kinematics, backgrounds, etc.) on

any quantity (A||/D, A1, g1, etc.) can be calculated in this manner.

Systematic errors were divided into 8 total categories:

1. Target model errors (i.e. material thicknesses and densities)
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Figure 7.6: Combined values of A||/D over the full range of Q2, showing the full kinematic expanse
of the EG1 data. Data for each beam energy are represented by different colors (yellow = 1.6 GeV,
green = 2.5 GeV, red = 4.2 GeV, blue = 5.7 GeV). Points with the largest error bars are removed
for clarity. Regions where points overlap can be used to determine A2 by linear regression (see
Section 1.4).
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2. Dilution factor model errors (i.e. unpolarized cross-section error)

3. Beam × target polarization errors (systematic)

4. Miscellaneous background errors

5. Kinematics errors

6. Charge normalization and false asymmetry errors (i.e. Faraday cup issues)

7. Errors on modeled asymmetries and structure functions

8. Beam × target polarization errors (statistical)

The total effects of these errors (for selected Q2 ranges at 2 different beam energies) on the mea-

surement of A1 + ηA2 are shown in Figure 7.7.

The sources and magnitudes of these individual errors are individually described in detail in the

following subsections. The analysis was rerun for each source of error (listed in Table 7.5), and

the various errors were combined in quadrature, as described in Section 7.2.10. Throughout this

section, parenthesized ( ) numbers are periodically inserted to correlate the described errors with

their error index label in Table 7.5.

7.2.1 Target model errors (1-9)

Accurate modeling of the lengths and densities of the materials in the target is essential for the

subtraction of unpolarized backgrounds (i.e. the dilution factors). There were, of course, physical

uncertainties in the measurement of the dimensions of the various materials in the target. Lengths

of the carbon, Kapton and aluminum, in particular, were used to derive the total target length L

and the frozen ammonia target length `A. Precise knowledge of the densities of all target materials

were needed to derive these quantities, and hence, the dilution factors FDF .

Densities and lengths used in calculations

Reasonable uncertainties were included on each of these lengths and densities (1-8), recorded in

Table 2.1, and the analysis was rerun for each possible error source, to determine the systematic
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Figure 7.7: Systematic errors on A1 +ηA2 for the 7 categories of error described in the beginning of
Section 7.2, shown for 2.5 GeV (top) and 4.2 GeV (bottom) data. Errors are multiplied by a factor
of 5 for visibility. Shown are the total errors for all 8 sources listed in the text, specifically, from top
to bottom, errors due to the target model (red), dilution factor models (light green), systematic er-
rors on PbPt (blue), miscellaneous backgrounds (yellow), kinematics (magenta), false asymmetries
(cyan), model errors (dark green), and PbPt statistical errors (purple).



359

Table 7.5: Index key used for systematic error determination, with a brief summary of what param-
eters were varied in order to determine each error. Boldfaced numbers note major (average >2%)
contributions to the total asymmetry error. Italicized numbers did not (and were not expected to)
contribute to the error on A|| at all, and were used only in 15N analysis or development versions of
analysis software.

Error Index Alteration Quantities Affected

1 LHe multiplicative factor (12C factor → NH3 factor), brackets 10-12 FDF

2 ρC`C (12C density (+0.01 cm) × thickness (+2%)) FDF

3 `K (Kapton thickness (+10%), 12C target only) FDF

4 ρA (NH3 density (+1%)) FDF

5 ρHe (LHe density (−4%)) FDF

6 `K (Kapton thickness (+10%)) FDF

7 `Al (Al foil thickness (+10%)) FDF

8 L averaging range in W (increased to `A range) FDF

9 `A averaging range in W (decreased to L range) FDF

10 σN /σC (15N cross-section model; changed to simple function of σn/σD) PbPt, `N , a, b
11 normalization offset for 15N target (−10%) `N , a, b
12 15N density (−15%) `N , a, b
13 σn/σD cross-section ratio model (used σn/σp = 1 − 0.8x) PbPt, `N , a, b
14 L (total target length) used in 15N/12C analysis (+0.3 cm) `N , a, b

15 `N averaging range in W ( 1
3

of inelastic range removed) `N , a, b

16 a + bσn/σD → σN /σC modeling accuracy (combine 10, 13 for 15N/12C) `N , a, b
17 Q2

min for PbPt avg. (decreased by 0.1 GeV2) PbPt

18 exclusive ep 12C scaling region in ∆φ (shifted by 2◦) PbPt

19 elastic peak width in W (10 MeV cut on each side) PbPt

20 PbPt statistical error (not used; replaced by 41-52) PbPt

21 A||th elastic asymmetry value (older GM , GE fits used) PbPt

22 π− contamination (modeled - see Section 4.1) Cbckgd

23 e+e− contamination (one std. dev. added to fit) Cbckgd

24 radiative corrections (5% variation assumed) ARC , fRC

25 15N polarization (leading order EST theory used) PN∗

26 14N contamination (2% contamination assumed) PN∗

27 deuteron contamination (0.5% contamination assumed) A||

28 FDF models accuracy (determined by polynomial fit) FDF

29 beam energy (E) (+2 MeV) all
30 radial momentum (pr) (+1 MeV) all
31 longitudinal momentum (pz)(+1 MeV) all
32 bin smearing effects (momenta pr/pz randomly varied ±17/20 MeV) all
33 accounting of possible false asymmetries (∆A = 10−4 added) A||

34 NOT USED (reserved for single-spin asymmetry tests) –
35 dead time error in count ratios (10−7n added to counts) all
36 DIS fit of A1 model (1 std. dev. added) A||

37 A2 model (increased to Soffer limit (Eq. 2.35)) A||, A1, g1

38 resonance region fit of A1 model (alternate fit used) A||

39 F2 model (1 std. dev. added) A||, g1

40 R model (1 std. dev. added) A||, g1

41-52 PbPt statistical error; evaluated PbPt

independently for each bracket 1-12 (stat. err. added to PbPt)
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error as a result from variations in these measurements. Alternate measurements of the 12C target

thickness `C yielded 0.225 cm and 0.24 cm [72], so the original value of 0.23 cm was increased by

0.01 cm to calculate the error. The carbon density ρC was checked against a SLAC measurement

of 2.2 g/cm3 [72]. The value of ρC was thus increased by roughly 2% to determine the error. The

quantities ρC and `C always appear multiplied together as ρC`C in dilution factor analysis, so this

systematic error was analyzed in a single pass of the data by increasing this quantity (2).

The total Kapton material length (`K) had an approximate uncertainty of 10%, due to perfora-

tion in the surface of the material [72], so the thickness was increased accordingly in reanalysis.

Perforations in the foil could affect either a single target (3) or all targets (6); both cases were con-

sidered. Varying the thicknesses `K for the radiated cross-section method of analysis was simple.

However, for the older (statistical) method of dilution factor analysis, the values of f and A, B, C

and D (defined in Sections 5.3.1 and 5.4.2) required appropriate alteration. Changing all foil thick-

nesses simultaneously was simple, and required only changing the overall value of f ≡ ρF `F/ρC`C

accordingly. To change the foil thickness exclusively on the carbon target required reworking the

equations for A through D in Sections 5.4.2, 5.3.1 and 5.5.1, using a separately calculated value

fC for the carbon target. This results in the substitutions

1 + f → 1 + fC (7.12)

in all equations for L, `A and FDF , and the substitution

L+ f`C → L+ f`C + L(fC − f) (7.13)

in all the denominators of Eq. 5.38. While varying the thickness of the foils simultaneously (6) had

little effect on the count ratios (and hence the dilution factor), the possibility of a perforation in a

single foil (3) only was the largest single systematic error contribution resulting from target model

uncertainties.

The aluminum shielding thickness was also assumed to have an equivalent uncertainty (7) in

the (separate) determination of its related systematic error. This contributed very little to the overall
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error. 4

Due to possible expansion as a function of temperature, the LHe density was given a wider

margin of error. The density of LHe at 1.0 K is 0.145 g/cm3, and at its boiling point of 4.2 K, it rises

to 0.125 g/cm3. To approximate the density error for LHe, a linear relation between density and

temperature was assumed, along with a maximum temperature under 2.0 K, giving approximately

a 4% variance in the LHe density (5); this decrease was used in the error analysis. A similar rough

calculation of the density of solid NH3 yields a density change of slightly less than 1%. The density

ρA was thus given a variation of 1% to reflect the uncertainty (4).

Derivation of L and `A

The lengths of the NH3 and LHe are derived quantities. Their systematic errors are directly corre-

lated functions of the other lengths and densities, so they are not varied independently to produce

systematic errors. Rather, they are recalculated with each iteration of the analysis. However, any

other factors of uncertainty that may affect the evaluation of L and `A must also be considered.

The values of L and `A are evaluated by averaging the results determined by the ratios of LHe/12C

and NH3/12C target counts, respectively, and the input from a radiated cross-section model (see

Sections 5.3.1 and 5.5.1), averaged over the inelastic kinematic region. The extent of the kinematic

region is chosen, somewhat arbitrarily, as the part of the inelastic region where the measured value

appears constant. Thus, we consider variations of the W -ranges over which L and `A are mea-

sured.

The range given for the evaluation of L in the main analysis is 2
3 of the inelastic range between

W = 1.08 GeV and the upper limit chosen for the statistical evaluation of FDF . For the evaluation of

systematic errors, the whole inelastic region, up to the FDF upper limit, was used instead (8). For

the regular evaluation of `A, the entire inelastic range (from W=1.08 to the upper limit) was used in

the average. This was shortened to 2
3 of this range for systematic error determination (9).

4The densities of solid Kapton and aluminum are very precisely known, so their uncertainty is not considered here.
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LHe correction error for Brackets 10-12

The last 3 brackets of data (2.5+, 4.2+ and 4.2−) required a raster-based correction to empty (LHe

only) runs due to the presence of unknown material contaminating the lower half of the target (see

Section 5.2.1). Accuracy in measurement of L critically depends on the ratio of LHe to 12C target

counts, so it is important to consider the error on the multiplicative factor used to correct the empty

target counts. To estimate this error, the multiplicative factor based on the 12C target cell raster was

replaced with the factor based on the ammonia (NH3 and ND3) targets listed in Table 5.4 (1). Note

that this systematic error applies only to these last 3 brackets.

The systematic errors outlined above affect dilution factors. Both the modeled dilution factor

quantity (used for unpolarized background subtraction in A||) and the statistical model used in the

elastic region (for inclusive method PbPt calculation) are affected. The various errors affect the two

regions differently, but the total ratio of the target model effects is approximately equal (∼2.5%) for

both methods of dilution factor calculation (see Figure 7.8).

7.2.2 Errors in dilution factor model (28)

The dilution factor used for subtraction of unpolarized background material was generated using

a world data model of unpolarized cross-sections (see Section 2.8). Unfortunately, the systematic

errors on this model, as a function of Q2 and W , are not well-defined, so an external method is

required to estimate the veracity of this model.

Contrasting dilution factor models

Fortunately, a statistical construction of the dilution factors, using the actual data from the empty,

carbon and ammonia targets (with the more spurious assumption that σC = 3σHe), was made us-

ing an older method (see Section 5.6). A comparison between two viable models is a good way

to estimate the magnitude of their systematic error. However, the older method of calculating FDF

resulted in large statistical fluctuations from bin to bin. A mere subtraction of results using either

dilution factor model would result in an error dominated by these fluctuations. This behavior is not

characteristic of a proper systematic error. Also, since the modeled dilution factor was extrapolated
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Figure 7.8: Dilution factor for a selected Q2 range for 4.2 GeV outbending data, showing the relative
size of systematic errors related specifically to the target model. All shown error values bars are
multiplied by a factor of 25 for visibility. Different methods for calculating the dilution factor were
used below and above W=1.08 GeV; the sizes of the errors change accordingly at this boundary.
From top to bottom are errors due to the empty target correction factor (red), carbon length/density
(light green), 12C target Kapton foil thickness (blue), NH3 density (yellow), LHe density (magenta),
average Kapton foil thickness (cyan), Al foil thickness (dark green), L averaging range (purple) and
`A averaging range (gray).
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to bins outside the fiducial region of the statistical dilution factor, another means of estimating the

error in these extended kinematic regions was required.

To remedy these issues, the “smooth” cross-section derived FDF model used in analysis was

adjusted to the average levels of the older, statistically derived dilution factor by means of a fit

by a multiplicative factor. Fitting all inelastic regions simultaneously proved difficult, especially

as the fit function approached the elastic region. Through trial and error, a polynomial (non-

phenomenological) fit was found that realized the differences between the two models, but re-

mained “well-behaved” in the extrapolated regions. The difference between the fit function and the

modeled dilution factor defined the systematic error.

First, for each of the 11 data brackets, an overall multiplicative constant r was used to fit the

modeled FDF to the statistically derived FDF , from the range W=1.15 GeV to the end of the DIS

region. Data for Q2 < 0.077 GeV2 were excluded from the whole fit, due to unpredictable (and

obviously non-physical) behavior of the statistical dilution factor.

With this overall factor (r) held constant, a second fit of the form

FDFsys ≡ (r + sW + tW 2 + uW 3)FDF (7.14)

was used in the region 1.15 GeV< W < 1.80 GeV, where r-u were determined by a χ2 minimization

fit of FDFsys to the statistically derived dilution factor for each data bracket. Then, the extrapolated

fit function

FDFsys ≡ (r + sW + tW 2 + uW 3)FDF (W < 1.80GeV) (7.15)

FDFsys ≡ rFDF (W ≥ 1.80GeV)

was used in place of FDF for the remainder of the analysis iteration to determine the systematic

error (28). Values of χ2 and fit coefficients for each bracket are shown in Table 7.6. Figure 7.9

shows sample bins comparing the (regular) systematic error to the (systematic error) fit dilution

factors for two different data sets.

Values of the error varied with the beam energy, with the highest errors in the resonance re-

gion at the lowest beam energies, as one would expect from knowledge of the unpolarized cross-
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Figure 7.9: Dilution factors fit to the data for 2.5 GeV outbending (top) and 4.2 GeV outbending
(bottom) data. The modeled dilution factor (blue line) is compared to the parametrized dilution
factor (black line), which is fit to the statistically-determined dilution factor (red) for an approximate
determination of the magnitude of the systematic error.



366

sections. Typically, the total error amounted to ∼3-4% of the dilution factor, and hence the measured

asymmetry. The magnitude of this error (×5) can be seen as the light green error bar in Figure 7.7.

Table 7.6: Fit parameters and χ2 values (per degree of freedom) for each data bracket for deter-
mining the (approximate) dilution factor cross-section model errors. See the text for more details.
To leading order, the value of r gives the ratio of agreement between the two models.

Bracket Set r s t u χ2/ndf
1 1.6+ 0.948 -0.060 0.091 -0.034 1704/435
2 1.6− 0.957 0.318 -0.240 0.001 678/445
3 5.76− 0.970 -0.926 1.168 -0.368 826/761
4 5.73− 0.986 -0.992 1.380 -0.460 1370/765
5 5.7+ 0.984 -0.711 0.861 -0.262 494/529
6 2.3+ 0.973 -0.516 0.784 -0.284 692/571
7 5.6+ 0.983 -0.693 0.858 -0.263 552/542
8 1.7− 0.971 0.224 -0.056 -0.082 2338/508
9 2.5− 0.962 0.362 -0.342 0.070 1986/822
11 4.2+ 0.957 -0.594 0.781 -0.253 643/527
12 4.2− 0.955 -0.109 0.167 -0.059 2510/890

Correlation with other systematic errors

The most major drawback to this method of determining the systematic error is the possibility of

correlations to other systematic errors (specifically, those errors resulting from the target model,

outlined in the previous subsection). Should an error or shift in one of the target modeling param-

eters cause unequal shifts between the values of the dilution factors in the statistical and modeled

methods, then inclusion of this model error can cause a significant overcalculation of the systematic

error.

To rectify this issue, the fit factor r, which, to leading order, represents the overall ratio of the two

methods of finding the dilution factor, was recalculated for each of the first 9 error indices relating to

the target model (i.e. 1-9 in Table 7.5). In most cases, absolutely no significant shift could be seen

in the fit value of r when the parameters would change, indicating little to no correlation to these

errors. However, varying the W -range of the averaging of the ammonia target length `A (9) had

a very significant effect on the difference between the two models. This occurs mostly due to the

W -range sensitivity of the `A measurement in the older (statistical) model, a problem not seen in
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the smoother radiated cross-section model. In fact, varying the fit range for `A between the decided

systematic error range could change the value of r by a few percent, in the most extreme cases.

Clearly, a large portion of the model error was correlated with the uncertainty in ammonia target

length, meaning that this significant source of error was propagated into the total error twice.

To remedy the situation, it was assumed that the variation of the overall differential multiplicative

factor r can be attributed to this uncertainty in `A.This error is already accounted for (9), so the

averaging range of `A in W (for the statistical method only) was varied between 33% and 100% of

the inelastic region5, and optimized for each set so that r = 1.00 (or as close to possible to 1.00)

when the fit is made. (This is done for systematic error index (28) only - the normal range for `A is

still used in the main analysis and in determination of other errors.)

Adding this constraint into the fit reduced the systematic error by an approximate factor of 2,

presumably by removing any correlation between this error calculation and that caused by errors in

the calculation of `A. The highest remaining errors are in the resonances at lower beam energies,

an observation consistent with the expected errors on the cross-sectional models.

7.2.3 Uncertainties in determination of beam × target polarization (10,13,17-

21)

The systematic errors due to uncertainties in the beam and target polarization products must also

be included in the final error estimate. By far, the largest contribution to the uncertainty of PbPt is

the statistical error on this quantity. To account for the statistical uncertainty, the final statistical error

is merely added to the value of PbPt for each data bracket, and the asymmetries are reevaluated

with the adjusted PbPt (20). This error is considered in more detail later. Though the statistical

uncertainty is the dominant contribution to the error on PbPt, other sources of systematic error

were also considered.

For inclusive data, the background subtraction in the elastic peak used the older (statistical) FDF

model, which relied upon the 15N/12C cross-section model ratio for its calculation. To estimate the

systematic error due to the model used in background subtraction for the elastic peak, cross-section

5Recall that the range used for `A calculation in this model was 66% of the inelastic region, with 100% of the range used
for systematic error estimation. An additional 33% allows for a variation (roughly) consistent with the assumed systematic
error range.
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ratio substitution
σN

σC
→ 7

6
+

1

6

σn

σD
(7.16)

was used to give a rough estimate on the background error (10). Apart from this, the σn/σD cross-

section made a minimal contribution of in determination the ammonia target length `A used to

generate the elastic region dilution factor (see Eq. 5.62). As an estimate of the systematic error on

this modeled quantity, measured in the inelastic region only, the substitution

σn/σp → 1 − 0.8x (7.17)

(with x = Q2/2Mν) served as a viable substitution for the neutron/proton cross-section ratio [127].

Assuming that the deuteron is just an n + p combination, this gives the approximation (13)6

σn/σD → (1 + 1/(1 − 0.8x))−1 (7.18)

Both cross-section ratio models, which affect the background removal of inclusive events through

the elastic region dilution factor, made only a small contribution to the systematic errors (10, 13).

For exclusive data, the background subtraction was calculated by the scaling of exclusive ep

carbon to ammonia data in a ∆φ region safely away from the elastic peak (18). For systematic error

calculation, this region was shifted 2◦ to the outside of the peak, so that Eq. 6.45 was changed to

4◦ < |∆φ| < 8◦ (7.19)

This was shown to have small effects on PbPt, due to the already small background for exclusively

selected ep events.

Other variations to parameters used to determine PbPt were tried, as well. Narrowing the width

of the W -cut on the elastic peak by 10 MeV on each side resulted in a measurable error at larger

beam energies (19). Other adjustments were considered, as well. Lowering of the minimum Q2 bin

used in evaluating the elastic asymmetry (from 0.2 to 0.1 GeV2) (17), and changing the theoretical

6This approximation serves well for inelastic events only. Elastic events, (which, for the `A calculation, are inconsequential
to the final results) do not fit this approximation, due to Fermi smearing in the elastic peak.
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asymmetry within the (very narrow) uncertainty given by our knowledge of GM and GE and the

kinematic accuracy of Q2 (21)7 produced negligible errors.

The comparative effects of the PbPt systematic errors (except for the statistical uncertainty) on

the measurement of A|| are shown in Figure 7.10. Because only exclusive PbPt values were used

in this analysis, only the φ-scaling factor change (18) and W -peak width change (19) have any

significant effects in these plots.

7.2.4 Statistical uncertainty on PbPt (41-52)

Simply adding the statistical error to each PbPt product (20) produced only a rough estimate of

the effects of this uncertainty. This method was later replaced with a more thorough method of

evaluating this error. Because this error is purely statistical in nature, simply adding the upper bound

to all the PbPt values simultaneously creates a false additive correlation between these errors, likely

overestimating the error measurement on A1 + ηA2. On the contrary, errors on measurements

between the data, such as linear regression for the determination of A2, can be underestimated. 8

Therefore, this crude estimate was replaced with a lengthier but more cautious evaluation.

Twelve new additional error indices (41-52) were defined, representing perturbations of PbPt by

a standard deviation for each individual bracket prior to combination. The analysis was then run 12

more times. Errors were added in quadrature to find the total systematic error due to this statistical

effect. Figure 7.11 shows the addition of statistical errors for 5.7 GeV data, and a comparison

between this and the more crude method (20) of evaluating the error. It is important to note that a

more exact evaluation of this particular error is possible because it the only source of systematic

uncertainty in this analysis than can be evaluated precisely, because of its purely statistical origin.

7.2.5 Miscellaneous background subtraction errors (22-27 )

Effects due to the presence of other backgrounds also required consideration, including errors due

to the effects of π− and e+e− contamination, radiative corrections, and errors due to polarized

7Specifically, an older empirical fit of GM and GE [13] was used, and the bin median value of Q2 was substituted for the
asymmetry-weighted average of Q2.

8The latter underestimation can occur because the assumed correlation perturbs all asymmetries in the same direction
for the error evaluation, whereas the statistical PbPt errors can move the true values in different directions.
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Figure 7.10: A1 + ηA2 showing the effects of systematic errors on PbPt measurements, for 1.6
GeV (top) and 4.2 GeV (bottom) data. Systematic errors are multiplied by a factor of 25 for
visibility. Shown, from the top down, are the errors due to the 15N/12C cross-section model (red),
the n/D cross-section model (light green), low Q2 limit (blue), ∆φ exclusive background subtraction
range (yellow), elastic peak width (magenta), and the elastic asymmetry model (cyan). The PbPt

statistical errors, the largest individual systematic effect, are not shown here; see Figure 7.11 for
these.
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Figure 7.11: A1 + ηA2 showing the effects of systematic errors due to statistical errors in PbPt for
the 5.7 GeV data. Systematic errors are multiplied by a factor of 25 for easy vi sibility. The
top plot shows, from top to bottom, the individual effects of the 5.76− (red), 5.73− (green), 5.7+
(blue) and 5.6+ (yellow) set PbPt errors, with the quadrature-added sum shown (at the bottom) in
magenta. The bottom plot shows a comparison bewteen the crude (red, top) and proper (magenta,
bottom) methods of error evaluation, demonstrating that the crude method (index 20) substantially
overestimates the systematic error.
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background and isotopic contaminations. The relative effects of these errors on the measurement

of A1 + ηA2 can be seen in Figure 7.12.

π− and e+e− correction errors

The majority of π− contamination was removed through the use of SC/CC track matching cuts (see

Section 4.1). The approximate remaining background was calculated in bins of θ and p as according

to Section 4.1.5, and a curve of the exact same form used for e+e− background removal (Eq. 6.13)

was fit to the remaining background to determine Rπ. The variation in the the asymmetry due to

this approximate background could then then be calculated as

Acorr =
Araw −RπAπ

1 −Rπ
(7.20)

just as for the e+e− correction, with Aπ ≈ 0. This asymmetry, now including a (very approximate)

“correction” for π− contamination, was subtracted from the normally-determined asymmetry to yield

the pion contamination error (22). 9

To calculate the error for the pair-symmetric correction, the same correction described in Section

6.1 was applied, except that one standard deviation of a flat (slope = 0) linear fit to the contamination

across θ (Figure 6.2), determined individually in each p bin, was added to the overall contamination

at all θ. The resulting difference in the final asymmetries determined the systematic error (23).

Systematic error contributions from both of these sources were generally small. The total error

from both these sources was generally less than 1% of the total asymmetry. 10

Radiative correction errors

Radiative corrections (Section 6.4) on the asymmetry A|| remove higher-order radiative terms from

the desired Born asymmetry. A rigorous treatment of the systematic errors due to radiative correc-

9This correction is applied only as as a systematic error because there is no secure method of parametrizing the exact
number of remaining pions. This equation serves only as a rough approximation.

10Values for pion contamination error are somewhat higher in the resonance region at high Q2 - see Figure 7.12.
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tions requires rerunning of the RCSLACPOL software using differing target model dimensions and

alternate parametrizations of structure function models, just as is described in this section for the

main analysis. The resulting differences to the terms ARC and fRC can then be added in quadra-

ture to determine the relative systematic errors on these corrective quantities.

At the time of the writing of this thesis, calculation of the systematic errors in the latest version

of the RCSLACPOL code was not yet complete, due to ongoing modernization of the models. Past

analyses ([2] and [46], for example) realized no more than about a 5% error in the total radiative

corrections. So, as a temporary solution, a factor of 1.05 was multiplied by ARC and (1 − fRC) to

approximate the systematic error (24), until such time that upgraded models with more thorough

corrections can be included. It can be seen, with this estimate, that radiative corrections present

the largest error due to miscellaneous backgrounds, and, in fact, become the limiting factor in mea-

surement of the asymmetries near the inelastic threshold (W = 1.077 GeV).

Contamination and background polarization errors

A polarization correction to A|| accounts for polarized 15N in the background material (Section

6.3). To estimate the magnitude of the error on this small correction, it was considered that the

SLAC parametrization might not accurately describe the polarization response in this experimental

configuration. The SLAC parametrization of the 15N polarization (Eq. 6.54) was replaced by the

simpler model of leading order EST theory (Eq. 6.53) (25). The resultant change in the correction

was small, but significant enough to warrant inclusion (∼1% of the asymmetry).

The effects of impurities in the 15NH3 material (specifically 14N and deuterium) were also taken

into account. The target material contamination was limited to <2% 14N/15N [65]. The residual

polarization of 14N cannot be measured as accurately as that of 15N. Its polarization response is

roughly 2%, give or take about a 10% error [70]. To account for this, we calculate

PN∗sys ≡ PN∗(1.00 − ι) + ι(P14N + σ14N ) (7.21)
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where ι=0.02 is the contamination, P14N=0.02 is the 14N polarization, and σ14N=0.10×0.02 is the

uncertainty in the 14N polarization. This value of PN∗sys is substituted in place of PN∗ to evaluate

the systematic error, which turns out to be a negligible contribution to the asymmetry.

The isotopic contamination of deuterium in the NH3 was known to be considerably less than 1%

of the hydrogen content. To estimate the maximal effects of polarized deuterium, a contamination

of 0.5% p→d was assumed. The final value of A|| was then adjusted for this by assuming the

deuteron double-spin asymmetry was given by

A||D ≈ A1(D)D (7.22)

where D is the depolarization (Section 1.1.3) and A1 for the deuteron is modeled. The neces-

sary adjustment is then easily calculated by diluting the proper asymmetry by the contamination

contribution and subtracting a term representing the contribution of the polarized deuterium: 11

A||sys =
A||

1 − λ
− λ

(1 − λ)

PD

Pt
A||D (7.23)

where the deuteron polarization PD ≈ 0.35, λ=0.005 is the contamination, and Pt is the target

polarization, calculated in Section 6.3. Again, the total error contribution is quite small (less than

1%).

7.2.6 Kinematics resolution errors (29-32)

Another source of error not yet considered is the error on the kinematics of identified particles. This

includes both errors on the accuracy of the electron energy and momenta, as well as “bin smearing”

effects, resulting from statistical uncertainties in measurement. To measure the approximate effects

of these errors (29-32), the entire analysis was rerun from the start for each of these error index op-

tions, with the specified inaccuracies/uncertainties added to the quantity in question. The resulting

asymmetry differences naturally showed statistical variations, requiring averaging over bins (see

11The ratio of polarizations in the latter arises due to the fact that the proton and deuteron have a differing polarization
response.
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Figure 7.12: A1+ηA2 showing the effects of miscellaneous background errors for 2.5 GeV (top) and
5.7 GeV (bottom) data. Systematic errors are multiplied by a factor of 25 for visibi lity. Shown,
from top to bottom, are the errors due to π− contamination (red), e+e− contamination (green),
radiative corrections (blue), 15N polarization (yellow), 14N contamination (magenta) and deuteron
contamination (cyan). Radiative correction uncertainties tend to dominate at lower beam energies,
while remaining pion contamination dominates at higher energies.
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Section 7.2.10) to obtain average systematic errors. 12

Errors on momenta and beam energy

As mentioned in Section 4.2.4, Hall A beam energy measurements provide an accuracy ∆E/E of

about 2×10−4 at 5.x GeV energies, implying an uncertainty of less than 2 MeV. 13 Thus, to deter-

mine the maximal uncertainty due to this factor, 2 MeV was added to the incident energy of the

electrons (29) (after all kinematic corrections).

The momenta px, py and pz were corrected with the kinematic corrections package (see Section

4.2.8) to, in most cases, an accuracy of ∼1 MeV. To estimate the error caused by the remaining

(very small) inacurracy, 1.0 MeV was added to the momenta. Because of the symmetry in φ for

inclusive scattering, the x and y components of p could be tested together by adding 1.0 MeV to

pr =
√

p2
x + p2

y (30), while the 1.0 MeV inaccuracy was added to pz in a separate run of the analysis

(31). These tests attribute a small collective error due to inaccuracies in the measurement of the

electron kinematics.

Bin smearing error

With the approximate inaccuracies in kinematic measurement propagated through analysis to de-

termine systematic errors, it remains to determine the effects of inprecision in the momentum de-

termination, or bin smearing effects, caused by the fact that the measured momentum of a particle,

in actuality, forms a finite uncertainty distribution about the true momentum (32).

Proper analysis of bin smearing effects is a complicated process. For this analysis, where the

expected uncertainty from the effect is small compared to the sum of other errors, it suffices to

make an approximation resulting in an effect of similar magnitude. To start with, the standard devi-

ations on (corrected) measurements of px, py and pz were determined, by a standard Gaussian fit

12Only events used to construct asymmetries (those in the ASYM/ file list) were tested for errors. Events used to determine
FDF (those in the RATE/ file list) were either fit or averaged over large numbers of bins, thus minimizing the effects of shifted
kinematics and/or bin smearing. The miniscule error on FDF due to kinematic effects was not considered here.

13This factor becomes even smaller for lower beam energies.
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to elastic ep events, to be ∆px
≈ ∆py

≈ 17 MeV and ∆pz
≈ 30 MeV. 14

To estimate the effects of the error, the data were reanalyzed, but this time, for each event, dif-

ferent randomly generated values ranging between −17 MeV and +17 MeV were added to each px

and py, while a value between −20 MeV and +20 MeV was added to pz. This effectively “smears”

the data a second time by an uncertainty similar to the natural smearing of the CLAS detector. The

asymmetry A|| is then recalculated, with the difference producing the approximate error due to bin

smearing.

Note that this is, of course, not technically a proper way to calculate the exact magnitude of the

effect, but if one makes the first-order assumption that the magnitude of the bin smearing effects

is linear with respect to the magnitude of the uncertainty, it provides a reasonable approximation of

this effect.

Because of the statistical nature of the binning process in W and Q2, these systematic errors

(29-32), more than any other, require “smoothing” over local bins (see Section 7.2.10), so that the

systematic effects of these errors can be separated from the statistical “forest” that results from

rebinning. The total effects of the kinematic uncertainty errors were small, but worth consider-

ing, amounting 2-3% of the measured asymmetry. Errors due to these effects, with and without

“smoothing” over the bins, are shown in Figure 7.13.

7.2.7 False asymmetry and Faraday cup errors (33,35)

A careful study of Faraday cup asymmetries (by S. Kuhn and N. Guler) ensured that there were no

correlations between the spin charge asymmetry (Eq. 3.2) and the measured double-spin asym-

metry (Eq. 3.1). Such would imply a false single-spin asymmetry due to the Faraday charge

measurement. Final results of the study showed no correlation to a certainty |δA/A| < 10−4 [64].

There are other possible sources of false asymmetries, such as the parity-violating electroweak

asymmetry in ep-scattering, though its magnitude (∼10−5) [31] is considerably smaller than the

asymmetry uncertainty attributable to Faraday charge measurement. To estimate the maximum

possible error resulting from false (single-spin) asymmetries, we assume a raw asymmetry of 10−4,

14These results are from an analysis of 4.2 GeV EG1 data by N. Guler. Optimal results cited in Ref. [115] are only slightly
smaller in magnitude (14 MeV and 20 MeV, specifically).
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Figure 7.13: A1 + ηA2 showing the magnitudes of kinematic errors for 4.2 GeV data, before (top)
and after (bottom) bin “smoothing” by iteratively averaging over adjacent bins. Systematic errors
are shown actual size. Removing statistical fluctuations is essential before averaging errors of
this type. Shown, from top to bottom, are the errors due to beam energy determination (red), pr

determination (green), pz determination (blue), and bin smearing (yellow). Note the error is largest
where the asymmetry slope is steepest, as would be expected from a shifting of bin contents.
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divided by the dilution factor FDF and PbPt (estimated as 0.4), and add it to the measured asym-

metry A||, yielding what would initially appear to be a 1-2% error on A||.

However, this is not the end of the story, as this is a single-spin asymmetry, meaning that states

of opposing HWP and target polarization will act to cancel the asymmetry. Thus, to estimate the

false asymmetry contamination, we rerun the analysis, but assume all target polarizations to be

positive, and the half-wave-plate to be permanently removed (33). 15 This reduces resulting asym-

metry to considerably less than 1% of A||, due to the cancellation of opposing polarizations.

Another considered error source is the mathematical error that results from assuming the sum

of the ratios is equal to the ratio of the sums, when calculating helicity-independent count rates. In

other words, the analysis, particularly the calculation of backgrounds (see Eq. 5.74) has assumed

that

n = 2
N+

b +N−
b

2FC− + ∆

.
=

N+
b

FC− + ∆
+

N−
b

FC−
(7.24)

where Nb symbolizes background counts (of each helicity) and ∆ is the difference between the

positive and negative helicity-gated Faraday cup counts. This tentative relation ( .=) is an equality so

long as no asymmetry exists in the background counts. If there is an asymmetry in the background,

then

N+
b = N−

b + δNb (7.25)

Thus we have

n =
2(2N−

b + δNb)

2FC− + ∆

.
=
N−

b + δNb

FC− + ∆
+

N−
b

FC−
(7.26)

This difference ∆ is small, so by working out a binomial expansion of the denominators of both

sides, one can easily calculate a difference

δn ≈ −1

2

δNb

FC−

(
∆

FC−

)

(7.27)

15In other words, the sign of the asymmetry for runs with +− or −+ HWP/targetpol status is reversed.
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Defining δnb ≡ δNb/FC
− and realizing our false asymmetry is given by Afalse ≈ δnb/nb, and

approximating FCtotal = 2FC−, the difference in the tentative relation can be written

−nbAfalse

(
∆

FCtotal

)

(7.28)

A study of the Faraday counts between helicities of the various run sets yields a maximal value of

∆/FCtotal ≤ 0.001. 16 Given our maximal false asymmetry of 10−4 and Eq. 5.74, accounting for

the background effects of the false asymmetry requires multiplying the raw asymmetry by a factor

of 1/(1 − nbAfalse

(
∆

FCtotal

)
) ≈ 1 + 10−7nb, making this source of error (35) completely negligible.

The effects of false asymmetries, in the end, account for a very small (<1%) fraction of the

asymmetry, as can be seen from the cyan error in Figure 7.7.

7.2.8 Models errors (36-40)

Finally, we consider errors due to the use of modeled asymmetries and structure functions. A

description of the fits used to determine the models for F1, F2, R, A1 and A2 is described in Section

2.7. Most of the errors on these quantities are determined by varying the fit parameters to the world

data by a standard deviation. The relative error effects due to uncertainties on these models is

shown in Figure 7.14.

In the derivation of A||/D = A1 + ηA2, the most significant model errors appear due to the R

structure function ratio, which propagate into the depolarization D via Eq. 1.19. To find the error

due to the model of R, one standard deviation is added to the fit parameters for R (40) and the data

are reanalyzed.

The F1 unpolarized structure function is required for calculation of the spin structure functions

(Eqs. 1.235 and 1.236). The value of F1 can be expressed in terms of R and F2 by Eq. 1.79. To

calculate the systematic error on F1, then, a standard deviation is added to the fits of F2 (39) and

R (40) in separate systematic error tests. We then recalculate F1 in terms of the modified model of

F2 or R.

The models of A1 and A2 also make a very minor contribution to the derivation of A||/D, in that

16This figure represents the early (1.6 GeV) data, where the beam charge asymmetry was at its worst.
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Figure 7.14: A1 + ηA2 showing the effects of models errors for 5.7 GeV data. Systematic errors
are multiplied by a factor of 10 for visibility. From top to bottom are shown the errors due to
the A1 DIS fit (red), A2 (green), A1 resonance region fit (blue), F2 (yellow) and R (magenta). Only
the last error has any noticeable effects on the measurement of A1 + ηA2. Other errors, negligible
in this plot, become important later, in the evaluation of virtual photon asymmetries and polarized
structure functions.

they are used to model A|| for the derivation of PbPt wgt used only for the relative weighting of data

between target polarizations (see Section 7.1.2). It is important to show that our choice of models

for A1 and A2 has no significant effect on the final outcome of our measured A||/D values, so these

quantities are varied, as well, in separate error analyses. Specifically, the DIS fit to A1 is varied by

one standard deviation (36), and an alternate fit of A1 in the resonance region is also separately

applied (38). A2, the most poorly known modeled quantity in this analysis, is varied by increasing

its value to the Soffer limit (Eq. 2.35) (37). It can be seen that varying the asymmetry models has

a negligible effect on the outcome of the A|| measurement.

It is essential to note, though, that while the asymmetry models (as expected) have negligible

effects on the value of A||/D = A1 + ηA2, that the A2 model, will, of course, have a huge effect on

the extraction of A1 from A||/D, and that our knowledge of this asymmetry is the limiting factor in

the accuracy of the measurement of A1. This topic is addressed in more detail in Section 8.1.1.
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7.2.9 Uncertainties with no effects on asymmetry analysis ( 11-12,14-16,20,34)

Several of the (italicized) indices in Table 7.5 have no effect at all on the derivation of the double-

spin asymmetry. Most of these were used specifically for systematic error determination in 15N/12C

analysis. These error tests included altering the density of frozen 15N (12), varying the target length

L for the (separate) 15N target (14), changing the W -range used to determine `N (15), varying the

cross-section model used to fit the target length (16), and altering the overall radiative multiplicative

offset on the 15N target counts (11). The effects of systematic errors in this mini-analysis are sum-

marized in Ref. [95], and are not expounded in detail here.

It was useful to keep these error indices as a debugging check, to confirm null results for vari-

ation of parameters unrelated to the double-spin asymmetry analysis. In all the aforementioned

cases, an error of exactly zero was measured on A||/D, demonstrating that the analysis code

produced consistent measurements, eliminating many possible sources of technical errors.

7.2.10 Combination of systematic errors

All these errors must be combined to produce a total estimate of the systematic error. In doing so,

it is assumed that, on average, the various systematic errors do not correlate with one another. 17

Therefore, we add the errors in quadrature:

σSYS(W,Q2) =
√

σ1(W,Q2)2 + σ2(W,Q2)2 + .... (7.29)

Before combination, however, statistical fluctuations must be eliminated, lest statistical errors

propagate into the systematic errors. Systematic errors, unlike statistical errors, do not decrease

in magnitude when bins are combined and averaged. Thus, “freezing” statistical errors in place

in a systematic error can produce a huge overestimation in the total error. This is an especially

important concern in the case of kinematic error evalution (29-32).

This problem can be solved by averaging over neigboring bins, in effect “smoothing” over the

17This is not, of course, a guaranteed assumption, given the complexities of systematic error effects. For a large number of
error sources, however, our only viable option is to assume that the correlations, constructive and destructive, approximately
cancel when all is done.
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Figure 7.15: Diagram showing local bins used for the smoothing process. All bins containing data
located within 2 perpendicular “steps” of the current bins are statistically averaged using Eq. 7.30,
and the current bin value is replaced with the new average.

error distribution until statistical fluctuations diminish. We are then left with the relatively flat, under-

lying average of the error. This is done for each W and Q2 bin by averaging the systematic errors in

all bins located within two “steps” (see Figure 7.15) of the current bin, weighted by the asymmetry

statistical errors:

σnew(W,Q2) =

∑

bins σsys/σ
2
stat

∑

bins 1/σ2
stat

(7.30)

This procedure is iterated for all data a total of 6 times, to ensure removal of the most egregious

statistical fluctuations. After the smoothing process is completed for each individual error, Eq. 7.29

is applied to calculate the total systematic error.

Typically, in the resonance region (away from the elastic peak) and DIS region, a total systematic

error in the range of 6-8% was found for A1 + ηA2. To provide reasonable statistical error bars, the

standard bins were combined into larger bins using the standard method of combining values with

statistical errors [103]:

A||/Davg(W,Q
2) =

∑

bins(A||/D)/σ2
stat

∑

bins 1/σ2
stat

(7.31)
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σavg(W,Q
2) =

1
√∑

bins 1/σ2
stat

(7.32)

The systematic errors must also be combined into larger bins, using Eq. 7.31, with the systematic

error in place of A||/D. After bins are combined, the statistical and systematic errors can be

combined to find the total error on the measurement at a given kinematic value:

σTOTAL(W,Q
2) =

√

σSYS(W,Q2)2 + σSTAT(W,Q2)2 (7.33)

Final values (and errors) for the asymmetry A||/D = A1 + ηA2 at each of the four nominal beam

energies can be found in Appendix Section B.4. Also shown are the average values of all tracked

kinematic values over events in each bin. In order that the tables could be reasonably contained

in a document of this size, the standard Q2 bins were quadrupled in size, and the W -bins size

was increased by a factor of 6 (to 60 MeV/bin). Bins with statistical errors of greater than 1.0 were

excluded from the tables. Values of A||/D = A1 +ηA2 for all 4 beam energies are plotted in Figures

7.16 and 7.17.

At this point, extraction of double-spin asymmetries and kinematic values is complete. Final

values of physical importance can now be extracted from the data: the asymmetries A1 and A2,

structure functions g1 and g2, and various moments of these structure functions. The final chapter

continues the propagation of errors, as described in this section, to final measured results for these

physical quantities.
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Figure 7.16: A1 + ηA2 showing total systematic errors for all 4 beam energies. Systematic errors
are multiplied by 5 for visibility . Note that since larger Q2 bins are used here, the average Q2

in a given plot can vary between beam energies, causing wider apparent variations between two
energies than really exist at a given Q2 value. (This is especially apparent in the bottom middle plot
at high W .) The yellow, green, red and blue represent 1.6, 2.5, 4.2 and 5.7 GeV, respectively.
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Figure 7.17: Same plot shown in Figure 7.16, but with systematic errors shown at their actual size.



Chapter 8

Final Results

In the final chapter of this thesis, the physical results (that is, the asymmetries A1 and A2, as well as

the structure functions g1 and g2) are extracted and presented in detail, along with their moments

and several applications of the data. Extensive numerical data are printed in the tables in the Ap-

pendix Sections B.4-B.7. All data listed in the tables will also be listed in the CLAS Collaboration

Database [128]. In the case of structure functions and asymmetries, where bins have been com-

bined in the printed tables, the original, uncombined data will be provided in the online database.

Where possible, world data from Jefferson Lab, SLAC, DESY and CERN for the structure func-

tions and asymmetries (described in Section 1.5) are included in the plots of the final results. Unless

explicitly stated otherwise, symbols used to represent data from differing experiments correspond

to the key shown in Figure 8.1, for easy reference. In some cases where data points from the same

experiment were too crowded together in the same plot, the statistical average of the local point

was plotted instead, for clarity. Note that world data points include only statistical errors. A table of

specific references for the world data is given in Table 8.1.

Note that, by the completion of this thesis, there are a few unresolved issues with the data anal-

ysis requiring future attention. These are explained in detail near the end of this thesis, in Section

8.5.1.
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Figure 8.1: Key to the world data plots spread throughout this chapter. Details regarding specific
experiments can be found in Section 1.5.
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Table 8.1: Quick reference table of sources of world data for the proton double-spin asymmetries
and structure functions presented in this chapter, as given in the Bibliography. In the case of RSS
data, at the time of this thesis, only plots, not numeric data, are publicly available. The plotted RSS
values in this chapter are close estimates graphically interpreted from these plots, not exact data.
(The exception is the d2 integral value (Section 8.3.3), which is published in Ref. [51].)

Experiment Source
E80 [36]
E130 [129]
EMC [40]
SMC [130]
E143 [131]

HERMES [132]
E155/E155x [133]

RSS [51]
EG1a [134]

8.1 Virtual Photon Asymmetry Results

8.1.1 Extraction of A1

At this point, the quantity A||/D = A1 + ηA2 has been carefully extracted from the data, subtracting

contributions from all backgrounds, for the 4 different beam energies in the EG1 experiment. Now,

we extract the physics quantities defined in Chapter 1, namely, the virtual photon asymmetries A1

and A2 defined in Section 1.4. The most precise way to measure A1 from A||/D is to use Eq.

1.224, with a reasonable model (Section 2.7.2) employed for the relatively small contribution from

A2. As Section 1.4 points out, measurements of A2 can be extracted from these data, but the

measurements are of poor precision. Though they can be used to constrain future versions of the

model, a smooth-fitting (i.e. analytical, not statistical) curve is required for this subtraction to obtain

accurate results. The subtraction of A2 imparts a substantial systematic error, due to its inaccuracy.

(see Figure 8.2).

To solve for A1, Eq. 1.224 was applied in each W and Q2 bin, for the final 4 sets of A||/D

corresponding to each (1.6, 2.5, 4.2 and 5.7 GeV) beam energy. The statistically averaged values

of η in each bin were used to prevent weighting errors. Systematic errors were calculated as

described in in the previous chapter, and combined in quadrature, as usual. Values and errors
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Figure 8.2: Results for A1 in terms of W for two neighboring Q2 bins, comparing the size of the
estimated systematic error from A2 (red, top) to the effects of all other systematic errors (blue,
bottom). Error magnitudes are multiplied by 5 for visibility. Obviously, the error on A2 is the
largest uncertainty in the extraction of A1.

were then combined for each beam energy as

A1 =

∑

energies A1/σ
2

∑

energies 1/σ2
(8.1)

σ =
1

√∑

energies 1/σ2
(8.2)

A student’s t-test was again run on the combined data, though this time, with more spurious results

(see Table 8.2). This most likely results from systematic errors between data sets, including inaccu-

rate modeling of the poorly known A2 value. The discrepancy should improve with newer models,

constrained by experimental knowledge of A2 from this and future data sets.

Plots of the virtual photon asymmetry A1 as a function of W , across the Q2 range for EG1b, are

shown in Figures 8.3 and 8.4. Comparing these plots to Figure 1.8, one sees the negative (spin- 3
2 )

∆ resonance at W = 1.23 GeV, with a transition to a positive value in the higher resonance region,

which is dominated by the (spin- 1
2 ) N∗ transitions (Eq. 1.238). The same quantity in terms of Q2, for

different W bins, is shown in Figure 8.4. It can be seen here that A1 nearly uniformly increases with

Q2. This can be understood in terms of Figure 1.1, where we expect the virtual photon asymmetry

A1 to be zero for DIS scattering at Q2 → 0 (where scattering from the whole proton occurs), and

increasing at higher Q2, where the model of Figure 1.5 becomes valid.
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Numeric data for these values are listed in Table B.10. 1 Results for A1 were also plotted in

terms of Bjorken x (Figure 8.5). When compared to a large Q2 (10 GeV2) model of A1 DIS re-

sults, one notices that the resonances (with the exception of the large, negative ∆ resonance at the

higher x end) “oscillate” around the DIS curve, approximately conserving the area under the curve,

when compared to the (blue) DIS model. This phenomenon, shown qualitatively in this figure, is

known as quark-hadron duality, and is explained in greater detail in Section 8.4.3.

Table 8.2: Students t-test results for combinations of the A1 data between beam energies. Results
are more suspect than in previous t-tests in this thesis, most likely due to varying systematic errors
between data sets, which are not included in the t-test error bar. The 4.2 GeV data show the worst
result.

Set A Set B t σt

1.6 GeV 2.5 GeV -0.004 1.01
1.6 GeV 4.2 GeV -0.135 1.39
1.6 GeV 5.7 GeV 0.126 1.04
2.5 GeV 4.2 GeV -0.090 1.31
2.5 GeV 5.7 GeV 0.138 1.02
4.2 GeV 5.7 GeV 0.039 1.18

8.1.2 Extraction of A2

A rudimentary measurement of A2 can be made by using the linear regression method described

in detail in Section 1.4.2, explicitly defined for each bin by Eqs. 1.226 and 1.227. Using MINUIT

to fit a straight line to the plot of A||/D vs. η in each bin, the value of A2(W,Q
2) is given by the

resultant slope.

Since two or more data points at differing beam energies are required to make the linear fit,

kinematic coverage of this measurement is limited to the space where data from different beam

energies overlap (refer to Figure 2.52). Figure 8.6 shows the approximate kinematic coverage of

the linear fit between energies, in terms of W and Q2, showing sample linear fits of A||/D vs. η in

the bins.

Before trusting the resulting values of A2 in each bin, a consistency check was made of the
1 Again, these tables combine W (×6) and Q2(×4) bins, so that results can fit into printed tables. More finely binned

results will be compiled in Ref. [128].
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Figure 8.3: Final results for A1 vs. W across the whole Q2 range covered by the EG1b data. Data
from other experiments, summarized in Figure 8.1, are also shown. Gray background represents
total systematic errors, shown actual size .
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Figure 8.4: Final results for A1 vs. Q2 across part of the inelastic W range covered by the EG1b
data, compared to other experimental data. Gray background represents total systematic errors.
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Figure 8.5: EG1b results for A1 vs. x for selected Q2 bins. The blue line is a superimposed DIS
Q2 = 10 GeV2 model of A1. Note the oscillations of the resonances about the DIS model; this is a
manifestation of quark-hadron duality (Section 8.4.3).
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show the linear fit in terms of η for the highlighted (yellow) bins in the top figure, in order of increasing
W . Note that even though they are marked as valid bins, here, DIS (W > 2.0 GeV) values were
ultimately excluded from the regression analysis.
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Figure 8.7: A1 vs. W , derived without using an A2 model, as the y-intercept of A||/D vs. η.
Because the analytic structure of A2 is not assumed in creating this plot, statistical error bars are
considerably larger than in Figure 8.3.
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resultant values of A1, determined by the y-intercept, that they match the expected values of A1

when a model is used for A2. Figure 8.7 shows some sample plots of A1(W,Q
2), derived by the

linear regression method. The error bars are considerably larger than those in the plots shown

for the standard method of using the A2 model (Figure 8.3), because the linear regression method

makes no assumptions regarding the nature of A2, not even its analyticity (i.e. “smoothness” across

bins). Therefore, statistical fluctuations in this plot are substantially larger than those in Figure 8.3.

However, the plotted values are statistically compatible, at least partially validating the method.

Corresponding values of the slope (A2) are shown in Figures 8.8 and 8.9. Bins have been

combined to improve the statistical resolution. The results show slightly higher values than those

predicted by the existing model in the resonance region, a result compatible with that found by the

Jefferson Lab Hall-C RSS experiment at Q2=1.3 GeV2 [51].

Caution must be used in deriving A1 and A2 using this method. The results are very sensitive

to statistical differences in normalization factors between data sets of differing beam energy, par-

ticularly PbPt statistical errors. At values of W >2.0 GeV, in the DIS region, derived values of A1

were definitely not compatible with those in Figure 8.3, and derived values of A2 exceeded the Sof-

fer bound (Eq. 2.35), a physical impossibility. Values derived from linear regression in this region

(correlated to large angle scattering, where results become more tenuous) are unreliable. Thus, a

cut of W < 2.0 GeV was placed on the A2 data, and results were limited to the resonance region.

Current measurements of A2 from the EG1b data can be found in Table B.5.

8.1.3 Refining Accuracy of A1 and A2 Measurements

The accuracy of theA1 measurement is limited by our knowledge of the asymmetryA2. What little is

known about A2, namely the Soffer bound, Burkhardt-Cottingham Sum Rule, and the more tentative

Wandzura-Wilczek relation, along with DIS constraints supplied by the SLAC E155x data,2 is used

as the basis for the existing A2 model. Optimally, a new model must be developed, extending the

fit into the resonance region using both the EG1 data for A2 and the precise data at Q2 =1.3 GeV2

from RSS [51]. Then, the new A2 model can be used to more accurately calculate A1, as per

Section 8.1.1.
2Chapter 1 and Section 2.7 explain these constraints in more detail.
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Figure 8.8: A2 vs. W , extracted from the EG1b data. While not as precise as RSS data (small blue
squares), EG1b extends the measurement to a wider Q2 range.

The present limit in accuracy arises from the fact that, while the statistical information regarding

A2 is as good as it can get using the present data, the analytic information, that is, the continuity

of A2 from bin to bin, is a necessary physical constraint unrevealed by the statistically independent

measurements in each bin. Fitting a new model to the A2 data can help improve our picture of A2,

as well as provide a more accurate measurement of its contribution to A||/D (and thus decrease

the large systematic error illustrated in Figure 8.2). At the time of completion of this thesis, a new fit

of the EG1 A2 model is not yet completed, and attempts to exploit the analyticity of the model while

factoring in the new A2 data yielded inconclusive results. 3 A rigorous extension of the model fit

into the resonance region is necessary to improve the measurement in this way, a task that remains

outstanding (see Section 8.5.1).

8.2 Spin Structure Function Results

8.2.1 Results for g1

it is useful to point out that, due to the model uncertainty imparted by our lack of knowledge re-

garding A2, the structure function ratio g1/F1 is more precisely measured by A|| data than A1 itself

3Tried methods included feeding A1 with the modeled A2 contribution back into the linear fit at η = 0, as well as averaging
A1 + ηA2 with the A||/D results before the fit, and reweighting errors. Any increases in resolution thereby gained were
coupled to equivalently ambiguous systematic offsets.
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Figure 8.9: A2 vs. x, extracted from the EG1b data. The EG1b model, terminating at W = 3.0 GeV,
is shown for comparison (solid line).
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Figure 8.10: The spin-structure function g1 vs. Bjorken x, in low Q2 bins, extracted from the EG1b
data.
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Figure 8.11: The spin-structure function g1 vs. Bjorken x, in low-intermediate Q2 bins, extracted
from the EG1b data.
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Figure 8.12: The spin-structure function g1 vs. Bjorken x, in high-intermediate Q2 bins, extracted
from the EG1b data.
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Figure 8.13: The spin-structure function g1 vs. Bjorken x, in the highest Q2 bins, extracted from the
EG1b data.
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Figure 8.14: The quantity xg1 vs. Bjorken x, in low Q2 bins, extracted from the EG1b data.
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Figure 8.15: The quantity xg1 vs. Bjorken x, in low-intermediate Q2 bins, extracted from the EG1b
data.
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Figure 8.16: The quantity xg1 vs. Bjorken x, in high-intermediate Q2 bins, extracted from the EG1b
data.
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Figure 8.17: The quantity xg1 vs. Bjorken x, in the highest Q2 bins, extracted from the EG1b data.
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[155]. Using Eqs. 1.223 and 1.235, one can easily derive

g1(x,Q
2) =

1

γ2 + 1

(
A||

D
+ (γ − η)A2

)

F1(x,Q
2) (8.3)

Combining Eqs. 1.8, 1.17 and 1.14 yields

η =
εγ(E − E′)

E − E′ε
(8.4)

At small scattering angles, Eq. 1.16 implies ε → 1 and thus η → γ. Even at the widest scattering

angles (i.e. high W ) in EG1, ε is around 0.3; so that η ∼ γ. 4 Therefore,

|γ − η| � |η| (EG1 data) (8.5)

so that the systematic error caused by A2 is much smaller for an extraction of g1/F1 than for A1.

The statistical error on A||/D is propagated so that

σg1
=

1

γ2 + 1
σA||

D

F1 (8.6)

with the error from the A2 contribution assumed as a systematic error, as usual. Values are calcu-

lated for each beam energy and statistically averaged. Final results for g1 in terms of x, for various

Q2 bins, are shown in Figures 8.10 through 8.13. Also shown are plots of xg1 vs. x (Figures 8.14

through 8.17), which more prominently feature the high x data measured in this experiment. Nu-

merical results in terms of Q2 and W are listed in Table B.6.

Because the actual experimental measurement must be multiplied by a model of F1 to derive

g1, it is customary to plot/publish results of the structure function ratio g1/F1 in terms of x and Q2.

Plots of g1/F1 are good for showing the relative contribution of polarization-dependent components

to the overall scattering cross-section. A combined plot of g1/F1, statistically averaged over all Q2,

also provides a great visual medium for resolving the fine structure of the resonances provided by

the EG1 experiment, minimizing the effect of energy-dependent A2 model effects. A plot of this

4That is, they are positive numbers of the same order of magnitude.
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Figure 8.18: g1/F1 ∼ A1 vs. W , averaged over all Q2. Detailed resonance structure can be seen
when all data are combined. The solid line is the average of the model weighted by the statistical
error on the bins.

type, of g1/F1 vs. W , is shown in Figure 8.18.

Plots of g1/F1 vs. Q2 in various x bins are shown in Figure 8.19. These plots serve as an

illustrative example of the level of experimental precision now available in spin-physics experiments

(compare to Figure 1.11). As another consistency check, measurements of g1/F1 for each beam

energy were compared for compatibility in similar plots (Figure 8.20). A plot of xg1 vs. x, emphasiz-

ing high Q2 results, is shown in Figure 8.21, as an update to the HERMES data comparison shown

in Figure 1.12. Tables of g1/F1 for the EG1b data are listed in Table B.6.

8.2.2 Results for g2

Unlike g1, the g2 structure function contains a very large contribution from the A2 virtual photon

asymmetry, a quantity poorly measured by the current experiment. However, because there is also

a sizeable A1 contribution (Eq. 1.236), a reasonable reconstruction of g2 in the resonance region

can be made from the EG1 data. As with the measurement of the g1 structure function (Eq. 8.3),
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Figure 8.19: Plots of g1/F1 for different x values for combined EG1b data, also showing SLAC E143
and E155 data. The dotted line represents the EG1 model comparison. Compare to Figure 1.11.
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Figure 8.20: Plots of g1/F1 for different x values by nominal beam energy. Shown are 1.6 GeV data
(yellow circles), 2.5 GeV data (green triangles), 4.2 GeV data (red inverted triangles) and 5.7 GeV
data (blue asterisks) compared to an older analysis of 1.6 GeV and 5.7 GeV data by Yelena Prok
(black open circles) [46]. These plots were useful for demonstrating compatibility between differing
analyses and beam energies.
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Figure 8.21: Measurements of xg1 for Q2 > 1 GeV2, extracted from the EG1b data, as compared
to other world data. Compare to Figure 1.12.

g2 can be written directly in terms of A||/D and A2:

g2(x,Q
2) =

1

γ2 + 1

[(
1

γ
+ η

)

A2 −
A||

D

]

F1(x,Q
2) (8.7)

as easily calculated from Eqs.1.223 and 1.236. It is assumed that the statistical error from A2

dominates over the much smaller error from A||/D, so that

σg2
=

1

γ2 + 1

(
1

γ
+ η

)

σA2
F1 (8.8)

The structure function g2 and its error were measured for each beam energy, and statistically com-

bined in the usual manner. Numeric results for g2 in combined bins are listed in Table B.6. Plots of

g2 vs. x averaged over 4 different Q2 ranges are shown in Figure 8.22. Similar plots of xg2 vs. x are

shown in Figure 8.14. While precision is poor compared to the g1 data, it does provide information

for the constraint of future models of g2, particularly near Q2 ∼ 0.5 GeV2 in the middle resonance

region, where the EG1 data are most plentiful. Averaging the data together over x reveals a definite
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trend. Figure 8.24 shows gp
2 averaged over all available x in the resonance region (RR), as well as

a plot of xgp
2 vs. Q2. While these plots do not preserve the resonance shape, graphs of this style

are useful for viewing overall changes in g2 with respect to virtual photon coupling strength, and

comparison to extrapolated DIS functions (a basic concept behind quark-hadron duality, Section

8.4.3). The same plot, split into different W -bins, thus showing localized regions of resonances, is

shown in Figure 8.25.

8.3 Spin Structure Function Moments

Now that the spin structure functions are evaluated, the moments of g1 and g2 in the Operator

Product Expansion can be calculated. We recall from Section 1.3.1 that the nth moment of a

structure function S (x,Q2) is defined as

[nth moment of S ](Q2) =

∫ 1

0

xn−1
S (x,Q2)dx (8.9)

Recall also that the even moments in the OPE are not physically significant, due to symmetry con-

siderations; they are thus not considered in these results (see Section 1.3.3).

Naturally, the finite detector acceptance and beam energy range in EG1b does not allow for

complete integration of physical data for x=0 to 1. Therefore, where physical data from this experi-

ment are not available, contributions from the g1 and g2 models are used instead. Confidence in the

world data model behavior below x=0.001 is not good, so all moments are truncated on the lower

end at this value. This truncation is expected to cause little to no change in the total integral value

(see Section 1.3.3).

8.3.1 Procedure for calculating moments

In practice, of course, completely smooth integrals over data are not possible. Instead, a sum over

bins is taken. Basically,

[nth moment of S ](Q2) = Imodel(xlow)(Q
2) + Idata(Q2) + Imodel(xhigh)(Q

2) (8.10)
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Figure 8.22: g2 vs. Bjorken x for the proton, extracted from the EG1b data. A g2 model (blue line),
based on the A1 and A2 models described in this thesis, is shown for comparison. (The “spike” in
the model at low x in the low Q2 plots is an erroneous relic of fitting the resonance→DIS transition,
and is not physical.)
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Figure 8.23: Similar plots as shown in Figure 8.22, showing xg2 vs. Bjorken x for the proton,
extracted from the EG1b data.
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Figure 8.24: Plots of gp
2 vs. Q2 (top) and xgp

2 vs Q2 (bottom) averaged over all available x in the
EG1b experiment. Note that only results in the resonance region (RR) are plotted.
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The contribution from the experimental data is given by

Idata(Q2) =
∑

(W,Q2)

xn−1
avg S (W,Q2)[xa − xb] (8.11)

Here, xavg is the average value of x in each W and Q2 bin (tracked throughout the experiment) and

xa and xb are the x-values corresponding to the W -bin boundaries. Statistical errors are combined

in quadrature as

σI =

√
∑

(W,Q2)

(xn−1
avg )2σ2

S
[xa − xb]2 (8.12)

Thus, bins with the largest statistical error bars were excluded, so as not to incur too large of a

statistical error on the final result (avoiding the possibility of a single bin with a huge statistical error

from dominating the uncertainty). Generally, only bins where the error on A|| was less than 0.6

(corresponding to a minimum of 400-500 events) were used in the integration.

After the calculation of Idata, the lowest and highest bin edges used in the summation for each

Q2 bin were recorded, so that the remaining contributions, given by the models, could be added.

Reference tables were printed containing the modeled g1, g2 and median x values for every stan-

dard Q2 bin (from Q2=0.01 GeV2 to 10 GeV2). The standard W -bin size (10 MeV) was used. All

bins with a median x of 0.001 or greater were printed to the reference table, from just below the

inelastic threshold (W =1.07 GeV) up to

W =
√

M2 +Q2/x−Q2 =
√

0.9382 + 10/0.001− 10 = 99.5 GeV ≈ 100 GeV (8.13)

The low and high end x-contributions were then summed over all bins not used in the experimental

sum in the same way:

Imodel(Q
2) =

∑

(W,Q2;x>0.001)

xn−1
avg S (W,Q2)[xa − xb] (8.14)

All plots of integrals in this thesis chapter show two results - the experimental integral Idata (shown

in red with its systematic error, connected with a black line showing the expectations from the

model) and the total integral (Eq. 8.10, shown in cyan, with its systematic error, connected with a
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blue line showing the model expectation). Systematic errors were calculated as usual; that is, each

of the systematic error indices defined in the previous chapter were enforced, and the experiment

was rerun from start to conclusion. The resulting differences were added in quadrature.

As a final note before moving on to the results, it should be clarified that conventions regarding

inclusion of elastic peak contributions in the moments vary in the literature. To avoid confusion, all

plots and tables of moments in this thesis include inelastic contributions only . Elastic values

are often plotted for comparison, but are not included in the plotted moments. Where necessary, it

is simple to calculate the elastic contribution. As noted in Figure 1.8, the (unradiated) asymmetry

contribution from the elastic peak is represented by a δ-function. Therefore, integrating over this

point requires simply adding the contribution(s) from g1 and/or g2 defined by Eqs. 1.235 and 1.236,

where A1 = 1 and A2 = GE/(
√
τGM ) for elastic scattering (see Section 6.2). The results for the

elastic contribution (where x=1) are

∫ 1

1

xn−1g1dx = g1el =
Q4

4M(4M2 +Q2)

[

1 +
Q2

4M2

GE

GM

]

G2
M (8.15)

and
∫ 1

1

xn−1g2dx = g2el =
Q4

4M(4M2 +Q2)

[
GE

GM
− 1

]

G2
M (8.16)

where F1el = MG2
M/γ2 (from Eqs. 1.62 and 1.72) and γ = 2M/

√

Q2 (for elastic scattering kine-

matics) are also employed. These terms, with GM and GE parametrized as functions of Q2 in

Section 6.2,5 can be added as necessary to the total integral when needed. Cases requiring the

elastic contribution6 are treated as they individually arise.

8.3.2 Moments of g1

The nth moment of g1 is denoted by the shorthand Γn. The first several moments of g1 were

calculated for the EG1b data. Because x < 1, successive moments are progressively smaller in

magnitude (see Eq. 8.9), so that one eventually reaches a point at high enough n where the sys-

tematic error magnitude grows large compared to the moment. The first three physically significant

5The Bosted parametrization [13] is used in the plots in this thesis.
6Testing of the Burkhardt-Cottingham Sum Rule requires the elastic term.
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(i.e. odd) moments of g1 (Γp
1, Γp

3, and Γp
5, in Figures 8.26, 8.27, and 8.28) can be calculated with

some degree of accuracy from this data. Data for these moments are listed in Tables B.16, B.17

and B.18. As noted in Section 1.3.3, the analytic structure of the g1 structure function can be recon-

structed through an inverse Mellin transform, at the cost of the resonance information, in terms of x.

The reconstructed structure function serves as a baseline for the generation of parton distribution

functions (PDFs) and the testing of quark-hadron duality (Section 8.4.3).

The first moment Γp
1, in particular, provides a mechanism for the testing of various sum rules. At

the Q2 → 0 and Q2 → ∞ limits, physical consequences of real photon QED and isospin conserva-

tion, respectively, can be tested, by virtue of the GDH and Bjorken Sum Rules (see Section 1.3.2).

The Γp
1 vs. Q2 results, over two different Q2 ranges, are shown in Figure 8.26. The larger scale plot

shows the expected Bjorken limit Γn
1 + 1

6gA = 0.143, for testing comparison. 7 It can be seen that

the integral approaches this limit at large Q2, a partial vindication of the data + model results. In the

low Q2 limit (lower plot), the GDH sum rule line8 is plotted against the data. This is the line that Γp
1

is expected to follow as Q2 → 0. However, both the value and the slope of the moment change very

rapidly in this region. EG1b data do not extend to low enough values of Q2 to serve as a concrete

test of the fundamental GDH sum rule. We can qualitatively see that the values of Γp
1 fall within the

valid physical limit constrained by the GDH sum rule. It remains for analysis of future spin-physics

data at lower Q2 to better confront the Q2 → 0 limit with data. 9

Testing of the simplest forms of the Bjorken and GDH sum rules is not possible in the inter-

mediate Q2 range. However, the data analyzed in this experiment provide a rich environment for

the testing of the generalized GDH integral (incorporating χPT corrective terms, Eq. 1.179) and

the modified Bjorken Sum Rule (incorporating pQCD corrective terms, Eq. 1.189). Application of

these extended sum rules is an involved process, requiring the analytic solution of dispersion inte-

grals [23] and knowledge of the Q2 evolution of the strong coupling constant αs [20], respectively.

This subject is not investigated any further in this thesis, but data are provided in the applicable Q2

ranges10 for future application of these theories.

7The value of Γn
1 ≈ −0.064 comes from SMC results [22].

8This line is defined by a slope of -0.456/GeV2 intersecting zero at Q2 = 0
9The newer EG4 experiment in Hall-B serves exactly this purpose. See Section 8.5.2.

10These ranges cover up to ∼0.1 GeV2 for the generalized GDH integral [23], and greater than ∼1.0 GeV2 for the modified
Bjorken sum rule [12].
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Figure 8.26: Γ1 vs. Q2 for EG1b data. The high Q2 limit (top plot) can be used (along with neutron
data) to test the modified Bjorken sum rule (Eq. 1.189). The low Q2 limit (bottom plot) can be used
to test generalized GDH integrals (Eq. 1.179). See the text for details.
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Figure 8.27: The third moment of g1 in the Operator Product Expansion, extracted from EG1b data.
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Figure 8.28: The fifth moment of g1 in the Operator Product Expansion, extracted from EG1b data.
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8.3.3 Moments of g2

Moments of the g2 structure function can also be measured for the EG1 experiment, albeit to much

less precision than those for g1. The first and third moments of g2 (that is,
∫
g2dx and

∫
x2g2dx)

were calculated for the EG1b data. Results are shown for these integrals in Figures 8.29 and 8.30;

data are given in Tables B.19 and B.20. A2 errors were not included in the systematic error estimate

for the model, and were truncated at x=0.1 for estimation of the overall systematic error, due to a

non-physical divergence of the error at low x. 11 Measurement of the first moment of g2, in theory,

allows for an approximate test of the Burkhardt-Cottingham sum rule (Eq. 1.204). To test this sum

rule, the elastic contribution (Eq. 8.16) must be added to the total integral. This term is also shown

in Figure 8.29. Though error bars are large, it can be seen that the net contribution due to the

inelastic integral is slightly positive, and that the elastic contribution is slightly negative. Within the

limited accuracy of the data, this gives a net result compatible with zero at lower Q2. The data are

not good enough for a conclusive test of the Burkardt-Cottingham sum rule, though we can say

these results raise no immediate contradictions with its validity. 12

Though its application will not be explored in-depth in this thesis, the dn matrix element integrals

(Eq. 1.203) serve as a useful probe of higher-twist13 effects, particularly the second order term

d3(Q
2) = 2

∫ 1

0

x[g1(x,Q
2) +

3

2
g2(x,Q

2)]dx = 3

∫ 1

0

x2ḡ2(x,Q
2) (8.17)

At this time, we pause to take note of a conflict between common notation in the source literature.

The d3 term, as defined by Eq. 1.203, and used in much of the literature [22], is now more commonly

referred to as the d2 term. In other words, there is a difference of 1 in the counting of the index n in

Eq. 1.203 and more recent references [136], so caution must be used:

d2 
 d3 (notation ambiguity!) (8.18)

11This further necessitates work on a better A2 model and a more accurate estimate of its error.
12 The two higher Q2 points present more of a quandary, but systematic errors are large here, and may not all be properly

accounted for (especially the error on the g2 model, which is not added in, and known to be problematic at low x) and the
bins are very wide here, so we cannot to put too much stock into the net negative result at these values. Better experiments
in the future, such as SANE (see Section 8.5.2), will provide more precise results.

13Specifically, they quantify twist-3 contributions [22].
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Figure 8.29: The first moment of g2 for the proton in the Operator Product Expansion, extracted
from EG1b data. Addition of the elastic (green) curve to the inelastic integral should total zero if the
Burkhardt-Cottingham sum rule is correct.

The remainder of this thesis uses the (now more common) d2 definition for this quantity. Inelastic

values for this integral are listed in Table B.21; a plot is shown in Figure 8.31. 14 The elastic

contribution, which needs to be added to get the total integral, is also shown.

It is useful to note that [136]
∫ 1

0

x2ḡ2(x,Q
2) =

1

3
d2(Q

2) (8.19)

so that the d2/3 gives the higher twist contribution to the integral plotted in Figure 8.30.

8.4 Applications

At this point, the measurements made from the EG1b data have been described in detail. Before

concluding the thesis, we explore some of the applications of g1 and g2 and their moments.

Keeping in mind that ep scattering probes the electromagnetic structure of the proton, we can

14Note the concern in Footnote 12.
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Figure 8.30: The third moment of g2 for the proton in the Operator Product Expansion, extracted
from EG1b data. Very limited information is available for higher g2 moments in the EG1b data set.

use this structure information to calculate the characteristic response of the proton to external

electromagnetic fields at different distance scales by measuring polarizabilities. We also look at

a totally different kind of application of the moment data in the realm of atomic physics, in the

calculation of the energy of hydrogen hyperfine splitting. Then, finally, we investigate the analytic

behavior of the resonances with respect to the extrapolated DIS structure through the study of

quark-hadron duality.

8.4.1 Forward Spin Polarizability ( γ0)

To introduce the concept of forward spin polarizability, we first refer back to Eqs. 1.168 and 1.169.

Here, f(ν) and g(ν) represent the spin-independent and spin-flip forward Compton scattering am-

plitudes as Q2 →0. We recall that the optical theorem allows expression of the ep scattering cross-

section in terms of these amplitudes, and consider the terms αE , βM and γ0 in these equations.

These variables are called polarizabilities.
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Figure 8.31: The matrix element d2 (excluding elastic contributions) for the EG1b data, showing
two different Q2 ranges. The function d2(Q

2), a matrix component in the OPE, is a useful probe of
higher-twist effects. (Note the notational ambiguity d2 
 d3 explained in the text.) The elastic value
of d2 (not included in the plotted sum of the data) is shown for comparison (green line).
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In Eq. 1.168, in f(ν), the leading term −e2/(4πM) is just a Thomson scattering term, which

appears in non-relativistic scattering [137]. Thus, the ν2 term contains all the internal information

(i.e. excitation spectrum) for unpolarized scattering, in the form of electric (αE) and magnetic (βM )

dipole polarizabilities. These variables characterize the “response” of the proton to an externally

applied electric or magnetic field. Note that this picture specifically applies to the Q2 →0 limit. Anal-

ogous views of these quantities can be extended to shorter distance scales within the nucleon at

higher Q2.

Likewise, in Eq. 1.169, the terms in g(ν) can be viewed in a similar manner. The first term

−e2κ2
P /(8πM

2)ν is the leading-order term for polarized scattering; it is, in fact, exploited in the

derivation of the GDH Sum Rule. The next term, which contains γ0 (the quantity of interest here),

can be interpreted (at Q2 = 0) as the “forward spin-dependent electromagnetic response” of the

proton, or more conventionally, the forward spin polarizability. The GDH Sum Rule was derived by

applying Cauchy’s Theorem to the O(ν) term in g(ν). By applying the same process to the O(ν3)

term containing γ0, one obtains a similar sum rule [12] for the forward spin polarizability:15

γ0 =
1

4π2

∫ ∞

νth

σ3/2(ν
′) − σ1/2(ν

′)

ν3
dν′ (8.20)

(compare to Eq. 1.172). We now refer to Eq. 1.230, which contains the equivalent photon energy,

ν∗. The definition of this value normalizes the total virtual photon cross-section to the lab frame

kinematics. The value of ν∗ depends on convention. Most commonly, we see Hand’s Definition

ν∗ ≡ ν − Q2

2M
= ν(1 − x) (8.21)

or the simpler Gilman’s Definition

ν∗ ≡ ν (8.22)

15Once again, a confusion in conventions arises, here. Some sources include a factor of -1 in this equation, and define
the polarizability (sometimes written γ, sometimes γ0) as positive (e.g. Ref. [137]), while others leave the polarizability as a
negative number (e.g. Refs. [12] and [135]). The latter approach is adopted here.
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The latter is used in this section. Converting the integration variable in Eq. 8.20 from ν to x (by

using Eq. 1.11 and calculating dν = −Q2/(2Mx2)dx), one finds

γ0 =
16M2α

Q6

∫ xth

0

x2(g1(x,Q
2) − γ2g2(x,Q

2))dx (8.23)

Using Eq. 1.233, this can be more conveniently written

γ0 =
16M2α

Q6

∫ xth

0

x2A1(x,Q
2)F1(x,Q

2)dx (8.24)

Results for the integral only of this equation (that is, without the factor of 16M2α/Q6) are shown

in Figure 8.32. Like the other integrals in this chapter, both the experimental contribution (red)

and total integral (cyan) are shown, though, in this case, both are nearly equal for Q2 . 1 GeV2,

showing that this result is very accurately measured almost completely by the experimental data,

with little magnitude contributed by unmeasured regions (models). We can see that γ0 is an ideal

quantity for measurement in the CLAS EG1b experiment.

Using a conversion factor of 1 fm−1 = 5.07 GeV−1 [3], γ0 itself was found by multiplying the

integral by 16M2α/Q6 (all units in factors of GeV) and multiplying the final value by

1fm−4

1GeV−4 × 10−4 =
10−4

5.07−4
[fm/10 GeV]4 =

1

0.06607
[fm/10 GeV]4 = 15.134 [fm/10 GeV]4 (8.25)

to convert to units of 10−4 fm. This value of γ0 is plotted in Figure 8.33. Due to the factor of

Q−6, this quantity, unlike the other moments and integrals in this chapter, does not diminish to zero

at small Q2. This means the forward spin polarizability integral is an excellent testing ground for

χPT theories, which are only valid at Q2 values around 0.1 GeV2 and lower. So far, heavy baryon

and relativistic χPT theories have had little success at fitting the available data for the forward spin

polarizability at low Q2 [135][138].

Results for γ0 at Q2 → 0 have been measured in the MAMI GDH experiment as [137]

γp
0 = [−1.01± 0.08 ± 0.10] · 10−4 fm4 (8.26)
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Figure 8.32: The forward spin polarizability integral, extracted from EG1b data. EG1b provides an
ideal measurement of this quantity, as very little contribution from models terms is required.

EG1b data are unreliable for this integral below Q2 ∼0.08 GeV2, though no substantial incompati-

bility with this Q2 →0 result is seen, within the bounds of statistical and systematic errors. (Extrap-

olation of the experimental curve intersects the axis at this point, within the limits of our errors).

Prior to this point, analysis of global ep scattering data has provided ample opportunity for

measurement of the unpolarized dipole polarizabilities αE and βM , but not before the advent of

adequate spin structure function data in the resonance region arose in the form of EG1b, were

measurements of γ0 possible for virtual photons [135]. Tables of both the forward spin polarization

integral
∫
x2A1F1dx and γ0 are listed in Tables B.22 and B.23.

8.4.2 1H Atomic Hyperfine Splitting

Traditionally, the realms of nuclear physics and atomic physics are dealt with in completely sepa-

rate experimental and theoretical applications, as the characteristic excitation spectra of nuclei and

atomic electron orbitals are separated by several orders of magnitude (MeV vs. eV, typically). How-
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Figure 8.33: Forward spin polarizability γ0, calculated from the polarizability integral. New data
analysis in intermediate Q2 regions (provided by 2.5 and 4.2 GeV analyses) yields new information
in the sensitive region around Q2 ∼ 0.1 − 0.2 GeV2.
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ever, this treatment is not exactly correct, of course. If one makes sensitive enough measurements

in either realm, the excited states within nuclei and electron orbitals are found to couple to one

another, albeit only very weakly. One can picture the 1H atom as the world’s smallest electron ac-

celerator,16 operating at an energy of 13.6 eV. Like any electron in an accelerator, the orbital energy

is determined by the electromagnetic field acting on the particle. This coupling is primarily electrical

in nature; the assumption of an electric field from a point-like proton results in the base 13.6 eV en-

ergy of the ground-state orbital. However, the proton and electron have spin, of course, too (a point

central to this thesis!) - and thus act as tiny magnets, which also couple to one another through

their magnetic fields. Depending on whether the resultant dipoles are aligned or antialigned, this

coupling strength will perturb the total energy. Thus, the observed spectrum exhibits hyperfine split-

ting of the 13.6 eV ground state between these two spin-induced states, with an energy difference

∆Ehf given by [7]

∆Ehf =
8

3
α4me

M
me(1 + κP ) (8.27)

where 1 + κP =µp=2.79 is the proton magnetic moment. This simple calculation is just an approxi-

mation which assumes me �M . Removing this assumption, this expands to

∆Ehf =
8

3
α4 M2m2

e

(M +me)3
(1 + κP ) (8.28)

Evaluation of the magnitude of this hyperfine splitting difference is one of the great achievements

of modern experimental precision measurement techniques. Its value is known to 13 significant

figures, more precision than any other measured quantity [139]:

∆Ehf = 1420.4057517667(9) MHz (8.29)

This level of precision necessitates a better model than that used to derive Eq. 8.28, which treats

the proton as a point particle, and does not account for the structure of the proton, higher order

radiative effects, vacuum polarization, proton recoil, or the effects of the weak interaction (i.e. Z0

16This analogy should not be taken too far - the electron in an atom is in a quantum stationary state (and does not emit
synchrotron radiation, for example), so it isn’t really “accelerated”, per se, unless an external perturbation is applied.
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boson exchange). All these must be taken into account at this level of precision. A more exact

relation is given by [139][140]

∆Ehf =
8α4M2m2

e

3(M +me)3
(1 + κP )(1 + ∆QED + ∆R + ∆hvp + ∆µvp + ∆weak + ∆S) (8.30)

where the various corrective terms are related to the following respective physical phenomena:







∆QED QED radiative corrections

∆R recoil corrections

∆hvp hadronic vacuum polarization

∆µvp muonic vacuum polarization

∆weak weak Z0 virtual boson coupling

∆S proton structure corrections

(8.31)

The last of these terms has relevance to the quantities measured in this thesis. Subtracting out the

other terms, calculated theoretically, from the experimental value (Eq. 8.29) yields [140]

∆S = ∆Z + ∆pol = −38.58(16) ppm (8.32)

where the uncertainty is split into a term calculated by A.C. Zemach [141] in 1956, and a much

smaller polarization-dependent term. The Zemach term is given in terms of the proton form factors

as

∆Z = −8αme

π
(1 + δrad

Z )

∫ ∞

0

dQ

Q2

[

GE(Q2)
GM (Q2)

1 + κP
− 1

]

(8.33)

where δrad
Z = 0.015(0) is an anomalous calculated higher-order contribution to the form factors

[140].

It is the other term in ∆S that is of interest in this thesis; it is given by [140]

∆pol =
α3/2

√
πme

2M2µp
(∆1 + ∆2) (8.34)
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where

∆1 =
9

4

∫ ∞

0

dQ2

Q2

{

F
2
2 (Q2) +

8M2

Q2
B1(Q

2)

}

(8.35)

and

∆2 = −24M2

∫ ∞

0

dQ2

Q2
B2(Q

2) (8.36)

Here, F2 is the Pauli form factor (defined in Section 1.2.2) andB1 andB2 are spin-structure function

integrals, specifically

B1(Q
2) =

4

9

∫ xth

0

(

−3τ + 2τ2 + 2(2 − τ)
√

τ(τ + 1)
)

g1(x,Q
2)dx (8.37)

B2(Q
2) =

∫ xth

0

(

1 + 2τ − 2
√

τ(τ + 1)
)

g2(x,Q
2)dx (8.38)

where xth is the threshold corresponding to inelastic pion production (W = 1.077 GeV) and τ is the

kinematic factor defined in Eq. 1.15.

With these calculations, one can see the immediate application of the g1 and g2 structure func-

tion results to a physically measurable quantity in atomic physics. Low Q2 kinematics contribute the

bulk of the above integrals [140]. Evaluation of these structure functions in the resonance region at

low Q2 thus greatly increases the known accuracy of ∆pol. The EG1b analysis supplies an excellent

resource for the g1 structure function. The g2 contribution presents a more difficult case, and is the

limiting factor in our knowledge of ∆Ehf [142]. Plots of these integrals are shown in Figures 8.34

and 8.35.

More accuracy can be obtained if we neglect the effect of HT corrections to g2. That is, we

assume g2 = gWW
2 , as defined in Eq. 1.202. Thus, B2 is decomposed into a leading order (BWW

2 )

and higher-twist (B̄2) term:

B2 = BWW
2 + B̄2 (8.39)
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Making the change g2 → gWW
2 in Eq. 8.38, it is possible to apply Eq. 1.202, and with some

manipulation [142], derive

BWW
2 (Q2) =

∫ xth

0

[

4
√

τ(τ + 1) − 4τ − 2
√
τ ln

(√

τ(τ + 1) +
√
τ

τ

)]

g1(x,Q
2)dx (8.40)

Information regarding HT effects, given by B̄2, would complete this picture. As explained in Section

8.3.3, the integral d2(Q
2) (Eq. 8.17; note Eq. 8.18) quantifies the magnitude of higher twist effects

on g2 (see Eq. 8.19). Assuming only that d2 is small at low Q2 and high Q2,17 it is possible to place

a limit on the magnitude of the higher twist effects [142]:

B̄2 <
M2

Q2

d2(Q
2)

3
(8.41)

A plot of BWW
2 is shown in Figure 8.36. Values for all 3 of these integrals (B1, B2 and BWW

2 ) are

given in Tables B.24-B.26. Insertion of EG1 analysis values into the above sequence of equations

has yielded a value of [142]

∆pol = 1.8 ± 0.7 ppm (8.42)

A recent computation [143] gives

∆Z = −41.01(49) ppm (8.43)

Adding these numbers yields a value obviously compatible with the experimental value of ∆S in Eq.

8.32, within the statistical precision of the data and calculation. The largest remaining uncertainty

is the constraint given by the value of d2, offering an immediate future application for more accurate

g2 structure function data in upcoming experiments (see Section 8.5.2).

As a concluding remark to this section, we note that the forward spin polarizability of the pre-

ceding section can be directly related to the required corrections for HF splitting at low Q2. In fact,

to generate the value of Eq. 8.42, the contribution of the lowest Q2 value (where EG1b data were

17There is every indication that this is true, assuming only very basic constraints on the model for A2. See Section 2.7.2
for information on these constraints.
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unavailable) used the value of γ0 in Eq. 8.26 and

∆1[0, Q
2
1] =

[

−3

4
r2Pκ

2
P + 18M2c1 −

5M2

4α
γ0

]

Q2
1 (8.44)

and

∆2[0, Q
2
1] =

3M2Q2
1(γ0 − δLT )

2α
(8.45)

where c1 = 2.95 GeV−4, δLT = 1.35×10−4fm−4, r2P ∼ 0.81 fm is the Pauli proton radius squared [3]

and Q1 is the cutoff value of integration at low Q2. Use of this estimate, which exploits necessary

physical constraints as Q2 → 0, is necessary to bridge the gap in available data at the lowest Q2

values.

8.4.3 Bloom-Gilman Duality

As noted in Chapter 1, theoretical descriptions of particle interactions differ at low and high Q2,

with quark-gluon degrees of freedom (e.g. the DGLAP equations and pQCD) used at high Q2, and

hadronic/mesonic degrees of freedom (e.g. χPT and multipole expansions) used at low Q2. The

question ensues, then, as to whether these two approaches are equivalent. Bloom-Gilman duality,

a phenomenon first observed in 1970 in the unpolarized F2 structure function, provides an experi-

mental test of this question [144]. The theoretical concerns that underpin duality are very involved,

and clearly beyond the scope of this thesis. Instead, a qualitative picture with some important defi-

nitions is presented here to convey the overall concept.

If duality between the quark-hadron pictures holds true, then there must be an equivalence be-

tween the resonance region structure functions, and an extrapolation of the structure functions from

the DIS region into the resonance region, described by functions generated solely by QCD (quark-

gluon) degrees of freedom. In this picture, the resonances can be viewed as parity-dependent

excitations superimposed on the basic (extrapolated) scaling function. The average of the structure

function over the resonances, then, should match up with the extrapolated function. The areas

under both the true (resonant) structure function and extrapolated DIS function should be equal.

Figure 8.5 shows a simple (and very qualitative) manifestation of duality in the asymmetry A1.
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Figure 8.34: The integral B1, shown at high (top) and low (bottom) Q2. This integral is a required
calculation in the determination of higher order correction in 1H hyperfine splitting, and is directly
dependent on the g1 structure function.
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Figure 8.35: The integral B2, derived from the EG1b data. Though the EG1b experiment provides
little information on this quantity, it may help constrain the largest uncertainty in 1H hyperfine splitting
measurement.
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higher twist effects can be derived from the d2 integral (Eq. 8.17), making it a useful estimate in the
total value of B2 = BWW

2 + B̄2.
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18 Note that in the two higher Q2 bins, if one ignores the large, negative ∆-resonance at high-x,

that A1 appears to “oscillate” around the blue line (which represents the high-Q2 extrapolation of A1

into the plotted region). The area under the Q2 = 10 GeV2 line and the resonant structure function

are approximately equal, until one approaches the neighborhood of the ∆-resonance. In addition

to not holding in the ∆ region, the phenomenon begins to break down below Q2 < 1 GeV2 (i.e. the

top plot), as well. Keep in mind that the compared function is not a “properly” extrapolated QCD

function, as will be momentarily described, though it does, in this case, approximate an extrapo-

lated function enough to visually introduce the basic concept of duality.

Duality has, in fact, been shown to break down for the unpolarized structure functions at Q2 < 1

GeV2 [145]. Above this value, resonances are dominated by magnetic multipole transitions. Below

this value, a more complex combination of electric and magnetic transitions complicates the corre-

lations of resonant states to quark-gluon parton degrees of freedom, and duality is not expected to

hold [146]. Duality is related to the cancelation of higher-twist effects in the summation of moments

in the OPE [146]. The constancy observed at higher Q2 in leading order moments (such as Γ1(Q
2)

at high Q2), which are primarily composed of lower-twist terms, implies a cancellation of the higher-

twist effects in summing over the resonances. Recent theoretical QCD studies predict that duality

should hold for the structure function gp
1 , though not as precisely as for the unpolarized structure

functions, due to sizeable negative contributions in the polarized structure functions. 19

Before the analysis of EG1b data, no comprehensive test of quark-hadron duality for polarized

structure functions existed, as their resolution in the resonance region was too poor to discern their

structure in functions of both W and Q2, a necessary precursor to any tests of duality. The detailed

EG1b resonance-region data on g1 fulfill the first requirement for the testing of duality. The other

requirement is a properly scaled and extrapolated DIS QCD function in the resonance region. An

exact extrapolation for the comparison of polarized structure functions is considerably more com-

plex than the qualitative introduction given by Figure 8.5.

To show that duality is indeed a test of internal nucleon physics, and not kinematic phenemena,

we must account for the “recoil” of the target proton in the lab frame, which varies with x and Q2.

18This is not a structure function, but recall that A1 can be expressed in terms of several structure functions, and is
dominated by the behavior of g1 and F1, so it manifests aspects of duality.

19Spin- 3
2

suppression is related to the cancellation of higher-twist effects [146]; this suppression is definitely violated for
the ∆-resonance.
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Recall (see Footnote 13 in Chapter 1) that the conventional definition of the structure functions

does not account for the target recoil. This correction is given by a simple factor of E′/E for elastic

scattering cross-sections (see Eq. 1.34). However, for inelastic scattering, the corrections are con-

siderably more complicated. Detailed target mass corrections (TMC) are required to eliminate the

functional dependence on reference frames.

These effects can be approximated by replacing the Bjorken scaling variable x with a variable

that approximates the purely kinematic corrections in higher twist terms [147], known as the Nacht-

mann scaling variable:

ξ =
2x

1 +
√

1 + 4M2x2/Q2
(8.46)

A more exact TMC can be made using the prescription of Blümlein and Tkabladze [145][148]:

gTMC
1 (x,Q2) =

x

ξ(1 + γ)3/2
gQCD
1 (ξ,Q2) +

(x+ ξ)γ

ξ(1 + γ)2

∫ 1

ξ

du

u
gQCD
1 (u,Q2)

− γ(2 − γ)

2(1 + γ)5/2

∫ 1

ξ

du

u

∫ 1

u

dv

v
gQCD
1 (v,Q2) (8.47)

The extrapolated structure function gQCD
1 is fit to next-to-leading order (NLO) QCD fits of parton

distribution functions (PDFs) above the resonance region. 20 Correcting for divergences in per-

turbative expansions at high x (where soft gluon production introduces complications) presents a

more complex challenge [149]. This resummation at high x is most easily estimated instead of

calculated, with a suitable systematic error included in the PDF extension.

Using the NLO PDFs and the EG1b resonance data, the validity of duality can be tested. Fig-

ure 8.37 shows xg1 vs. x against the extrapolated PDFs. Note that, with the exception of the

∆-resonance, the g1 data “oscillate” around the the extended DIS function. To make a final, com-

prehensive test of duality, both the extrapolated PDF and the data need to be averaged over the

evaluated range in x:

〈g1(Q2)〉 =

∫ xhi

xlo
g1(x,Q

2)dx

xhi − xlo
(8.48)

20That is, one determines ∆u, ∆d and ∆s based on the available world data (see Section 8.5.2). The functional form of
g1 can then interpreted in the form of Eq. 1.101.
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Figure 8.37: Values of xg1 vs. x for gp
1 , plotted against the extrapolated NLO PDFs, as described

in the text. The structure function data oscillate about the mean, except near the ∆ resonance, an
effect of quark-hadron duality. This plot represents a full EG1b analysis extension of the similar plot
published in Ref. [145] (which included only 1.6 and 5.7 GeV data), courtesy of P. Bosted.

This average can be taken over the full range of resonance region data, or over a smaller range

in W for local tests of duality. If duality holds, both the averaged extrapolated function and data

should be equal. Figure 8.38 shows a test of global duality over the whole resonance region,21

showing the averaged g1 structure function data plotted against the NLO PDF extension. Note that

the elastic peak contribution (given by Eq. 8.15) must be added in for duality to be observed at the

low Q2 values, showing that this state must be added in to counteract the effects of the negative ∆

resonance for duality to be complete. With the exception of the ∆ region (at W <1.38 GeV), local

duality, where a sum is taken over only a limited range in W , appears to hold as well [145], showing

that higher twist effects and parity separation of resonances cancel locally in the g1 spectrum.

Testing of quark-hadron duality is, unfortunately, not possible for g2 from EG1b, due to the poor

resolution of this data. Whether or not this structure function exhibits similar behavior remains an

open question. 22

21The term global does not truly imply “global” in the sense that it includes a complete set of basis states, but “global” in
the sense that it covers the whole resonance region (1.08 < W < 2 GeV).

22It is also a pertinent question, due to the presumed dominance of HT effects in the g2 structure function.
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Figure 8.38: Statistically averaged values ofQ2g1 (dark circles) vs. Q2 for the proton, plotted against
the extrapolated NLO PDF. When elastic contributions are added in (hollow circles), duality appears
to hold. Again, these plots are an extension of those in Ref. [145] for the newer, full analysis of
EG1b. The duality plots (and NLO PDFs) were generated by P. Bosted.
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8.5 Future Directions

8.5.1 Outstanding Details

As pointed out throughout this chapter, inclusive proton analysis for EG1b data is not yet 100%

complete. There are a few remaining issues with the polarization-dependent models that must be

resolved before “final” values of g1 and g2 for the proton are obtained.

Radiative corrections to A|| (Section 6.4) require updating and genuine error calculation. The

corrective terms ARC and fRC used to determine the Born asymmetry do not include corrections

fit to the most recently available data, and while large changes are not expected, they should be

updated. Also, recalling Section 7.2.5, systematic errors due to radiative corrections were not

rigorously calculated (and were instead merely estimated). A more technical approach toward

determining these errors must be completed.

Also, as mentioned in Section 8.1.3, the A2 model should be updated to include the final EG1b

and RSS results, so that A1 (and g1) can be more accurately determined. This could reduce

the effects of the single largest systematic error in the extraction of the spin-structure functions,

and provide a means to incorporate both the statistical A2 values derived from EG1b data and the

physical/analytic constraints of the A2 virtual photon asymmetry into the extraction of A1. Note that,

while these details require attention before the analysis can be declared “finished”, that even in the

state presented in this thesis, this analysis presents the most precise measurements available of

spin structure functions of the proton in and above the resonance region.

8.5.2 Upcoming Experiments and Data

The EG1b data provide a comprehensive set of polarized structure function measurements in and

near the resonance region at 0.05 < Q2 < 5 GeV2. However, in conclusion, we note that there are

still voids of physical interest for spin structure function measurements. Though EG1b data extend

to lower Q2 and x than any other (analyzed) wide acceptance spin experiment to date, the Q2 val-

ues are still not low enough to accurately test the GDH sum rule and other leading order Q2 → 0

dispersion relations. Also, measurements of A2 and g2 are meager compared to those of A1 and g1.
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Clearly, an experiment using a perpendicularly polarized target (to measure A⊥) would be desirable

(though a practical impossibility for the current configuration of CLAS). In this light, brief attention is

given to two other experiments, one already complete (and in early analysis phase), and the other

upcoming: the CLAS EG4 experiment [150] and the JLab Hall-C SANE experiment [136].

The EG4 experiment, which also utilized the CLAS detector, completed in 2006, used a po-

larized beam (from 1.0 to 3.0 GeV) and a longitudinally polarized target (nearly identical to that

used for EG1), collecting approximately 27 billion trigger events for NH3 and ND3 targets [151].

Experimental objectives were similar to EG1. However, the Q2 range was considerably lower, rang-

ing from 0.015 < Q2 < 1 GeV2 in a lower x region than that covered by EG1b resonance region

data (see the empty space in the lower left corner of Figure 1.13). To facilitate better efficiency for

measuring the outbending data required to make these low Q2 measurements, a new Cherenkov

Counter [150] was constructed in one sector. One of the main objectives of the EG4 experimental

analysis is the extension of inclusive A|| measurements made in EG1 to this new low Q2 kinematic

range. Combined together, EG1b and EG4 will provide a more global data set for the reconstruction

of structure function moments like Γp
1, and allow for a true test of the GDH sum rule, better mea-

surements of forward spin polarizability γ0, and 1H hyperfine splitting. (All these measurements

are heavily weighted by low Q2 data.) EG4 will also provide a more comprehensive data set for

the testing of generalized dispersion relations based on χPT, and detailed resonance information

near the Q2 → 0 limit that is not currently available. Figure 8.39 shows a projection of expected

kinematic coverage for Γp
1, based on preliminary simulations and recent structure function models.

While EG4 provides valuable information regarding the g1 structure function, it does little to

elucidate the poor data available for the g2 structure function, which requires A⊥ data to precisely

measure. As stated, the RSS experiment [51] completed this measurement for a very small Q2

range. Widening the kinematic acceptance is necessary to provide more detailed information over

a wide range of Q2 and W . Unfortunately, the magnetic field configuration in CLAS impedes the

use of a perpendicularly polarized target, so one must look elsewhere for opportunities to make this

set of measurements.

Hall-C at Jefferson Lab, unlike Hall-B, supports a target configuration versatile enough to allow

A⊥ measurements. In late 2008, the SANE (Spin Asymmetries on the Nucleon Experiment) will run
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Figure 8.39: Projected experimental results for EG4 analysis (solid circles) of the first moment of
gp
1 , Γp

1, plotted at low Q2 values. (Here, “This experiment” refers to EG4, not EG1.) The hollow
circles show (approximate) limits of EG1b analysis for relative comparison. From Ref. [150].
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Figure 8.40: Region of kinematic coverage for the approved SANE experiment at Jefferson Lab,
compared to coverage of world data. Regions to be covered by SANE are pointed out by the
arrows. From Ref. [153]

in Hall-C, utilizing the University of Virginia polarized ammonia target system [152]23 and the BETA

(Big Electron Telescope Array) detector [153], consisting of the BigCal lead glass calorimeter, a gas

Cherenkov detector and lucite hodoscopes. Operating at the higher end of CEBAF beam energies

(∼4.6 and ∼5.7 GeV), this experiment will measure both A|| and A⊥ for 2.5 < Q2 < 6.5 GeV2 and

0.3 < x < 0.8 [136], providing the most precise measurements of both these quantities available

in the specified kinematic region (see Figure 8.40). Not only will SANE provide higher precision

measurements of g1 in the intermediate Q2 range, it will perform the first precision measurements

of g2 over an extended acceptance, allowing for much better measurements of the d2 integral and

probes of higher twist effects (see Figure 8.41).

8.5.3 Testing Quark Models

Future measurements of double-spin asymmetries stand to greatly improve our understanding of

QCD models and generalized parton distributions. Data from this experiment are merely a small

part of the larger set of world data that can be used in a global fit of parton distributions [154].

A global fit of the quark distribution functions ∆u, ∆d and ∆s (see Eq. 1.99) requires not only

measurements of g1 for the proton, but neutron measurements (so that isospin conservation can

be exploited) and SIDIS (semi-inclusive DIS) data. Also, NN collision data from RHIC (Relativistic

23This target was also used in the RSS experiment.
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Figure 8.41: Projected SANE results for the d2 integral. Compare to Figure 8.31 for this experiment.
The RSS result is also shown. From Ref. [136].

Heavy Ion Collider at Brookhaven)24 and µN scattering experiments from COMPASS (at CERN)

are needed to provide a means of extracting the gluon contribution ∆g. The integral

∆f1(Q2) ≡
∫ 1

0

∆f(x,Q2)dx (8.49)

measures the spin contribution any given parton f to the proton, making parton distributions and

their moments of high physical importance in QCD spin physics. The most up-to-date information

available (at the time of this thesis) on global analysis of these parton distributions can be found in

Ref. [154].

Even within Jefferson Lab, there are great strides to be made in the study of QCD models.

DIS measurements at high x provide valuable ground for the testing of pQCD models. The virtual

photon asymmetry A1 must equal 1 at x = 1, as this is the elastic scattering limit. The pure SU(6)

(non-relativistic) constituent quark model gives a prediction of A1 = 5
9 (Eq. 1.245). Resonance data

involves complexities that cannot be fit by pure pQCD models, but the smooth DIS data can be used

24This is measured in both the STAR and PHENIX detectors, collecting jet and π0 data, respectively.
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to test the limit as x →1, where the asymmetry must smoothly transition from the (average) SU(6)

neighborhood to A1 = 1, as dictated by symmetry-breaking processes. These processes include

one-gluon exchange hyperfine interactions between quarks, spin- 3
2 suppression due to helicity con-

servation, and/or connections to duality-based models [155]. These different symmetry-breaking

scenarios lead to differing predictions of the value of DIS A1 values in the high x limit.

Using DIS (W > 2.0 GeV) data, from EG1b runs and world experimental measurements, a plot

of A1 vs. x can be generated (Figure 8.42). 25 At energies lower than 6 GeV, the current limit at

JLab, maximum values of x ∼ 0.55 can be reached. Previously published EG1b data for A1 at 5.7

GeV have already helped provide precise physical constraints on QCD models at this kinematic

limit [155]. Clearly, better constraints could be yielded if precise higher x data were available. This

thesis concludes with a brief look of what the future of JLab Hall-B has to offer in this uncharted

realm of inclusive double-spin asymmetry measurement.

Currently, upgrades are being planned to double the maximum beam energy at CEBAF to 12

GeV by c. 2014, with corresponding upgrades to the Hall-B detector, concentrating on the for-

ward (i.e. small-θ) angle detection required in a large acceptance spectrometer at these higher

beam energies [156]. The new CLAS12 detector (which, incidentally, will also accomodate mea-

surements of A⊥) is designed, in part, with the very purpose of obtaining high-x data for polarized

structure functions. A plot of expected Ap
1 measurements, after 40 simulated days of beam time

at 11 GeV beam energy in CLAS12, is shown in Figure 8.43. Comparing to Figure 8.42, one can

see that future data collection at higher energies will allow for higher-x extension of A1 DIS mea-

surements. Combining this information with large acceptance measurements of A⊥ at the same

energy will provide further versatility and precision in future asymmetry measurements in CLAS12.

Future expansions of JLab facilities will clearly enable more precise and expansive measurements

of nucleon spin phenomena, and lead to fuller descriptions of QCD physics through medium energy

accelerator experiments.

25EG1b numerical data in this plot are listed in Table B.12.



449

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2
 model2 = 10 GeV2Q

pQCD prediction

SU(6) quark model

EG1b Systematic Error

EG1b (2001)

EG1a (1998)

E155 (1997)

HERMES (1996)

E143 (1994)

SMC (1992)

EMC (1989)

E130 (1983)

E80 (1976)

, W > 2 GeV)2 > 1 GeV2 for the proton (Q
1

DIS asymmetry A

Figure 8.42: World data of A1p, showing W >2 GeV and Q2 >1 GeV2 values only. DIS measure-
ments of A1 at high Bjorken x provide an ideal test of pQCD models, which constrain the behavior
as x→ 1.
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Figure 8.43: Projected precision of averaged A1 DIS measurements for the proton at 11 GeV beam
energy, using CLAS12 simulation software. Operation at higher beam energies will enable the
collection of precision DIS asymmetry data at higher x values than currently possible below 6 GeV.
From Ref. [156].



Appendix A

Glossary of Acronyms

˙

ADC Amplitude→Digital Converter

BCDMS Bologna-CERN-Dubna-Münich-Saclay (experiment)

BCS Bardeen-Cooper-Schieffer (superconductivity theory)

BETA Big Electron Telescope Array

BPM Beam Position Monitor

CalDB (CLAS) Calibration Database

CC Cherenkov Counters

CEBAF Continuous Electron Beam Accelerator Facility

CERN Conseil Européen pour la Recherche Nucléaire (European Council for Nuclear Re-

search)

χPT Chiral Perturbation Theory

CLAS CEBAF Large Acceptance Spectrometer

CLAS12 CLAS at 12 GeV

CM Center-of-mass

CODA CEBAF Online Data Acquisition

COMPASS COmmon Muon and Proton Apparatus for Structure and Spectroscopy

DAΦNE An eē collider in Frascati, Italy
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DAQ Data Acquisition (System)

DC Drift Chambers

DESY Deutsches Elektronen Synchrotron (German Electron Synchrotron)

DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (pQCD evolution equations)

DIS Deep Inelastic Scattering

DNP Dynamic Nuclear Polarization

DOCA Distance of Closest Approach

DST Data Summary Tape

E80 Early polarized SLAC experiment

E130 Another early polarized SLAC experiment (after E80)

E143 Later, more comprehensive polarized SLAC experiment

E155 Yet another polarized SLAC experiment

E155x Subdivision of E155 experiment with perpendicularly polarized target

E665 Unpolarized scattering experiment at CERN

EB Event Builder

EC Electromagnetic Calorimeters

EG1 JLab Hall-B Experiment using electron (E) and photon (G) beam data. (Photon runs are

not studied in this thesis.)

EG1a First (preliminary) part of EG1 experiment; test run of the experiment

EG1b Second (main) part of EG1 experiment; electron beam/proton target data is the subject

of this thesis

EG4 Experiment similar to the previous EG1, but at lower Q2 values

EIO Extended Interaction Oscillator

EMC European Muon Collaboration

EPR Electron Paramagnetic Resonance

ER Event Recorder

ESR Electron Spin Resonance

EST Equal Spin Temperature

ET Event Transport
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FASTBUS A standard electronics for particle physics applications (successor to CAMAC and

NIM electronics)

FC Faraday Cup

FEL Free Electron Laser

FORTRAN Formula Translating System (progamming language)

FPACK FORTRAN package for input/output

GEANT Geometry and Tracking (Detector Description and Simulation Tool; describes passage

of elementary particles through matter)

GDH Gerasimov-Drell-Hearn (usually in reference to the sum rule)

GSIM GEANT Simulation package for CLAS

H1 Particle detector in operation at HERA (at DESY)

HeLP Helicity Pairing

HERA Hadron Elektron Ring Anlange (Hadron-Electron Ring Accelerator) at DESY

HERMES A particle detector in use at HERA (at DESY)

HMS High Momentum Spectrometer

HWP Half Wave Plate

HF Hyperfine

HT Higher Twist

HV High Voltage

LAC Large Angle Calorimeter

MAMI Mainz Microtron

MCC Machine Control Center (accelerator)

MINUIT Program for function minimization and error analysis

MIP Minimum Ionizing Particle

MOPA Master-Oscillator-Power-Amplifier

MT empty (target cell)

MySQL Multi-user Structured Query Language (Swedish)

NIM Nuclear Instruments and Methods

NLO Next-to-leading Order
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NMC New Muon Collaboration

NMR Nuclear Magnetic Resonance

OPE Operator Product Expansion

PID Particle Identification

PDF Parton Distribution Function

PDIS Polarized Deep Inelastic Scattering

PERL Practical Extraction and Report Language (dynamic programming language)

PHENIX Pioneering High Energy Nuclear Interactions eXperiment (at RHIC)

PMT Photomultiplier Tube

pQCD Perturbative QCD (Quantum Chromodynamics)

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

RAID Redundant Arrays of Inexpensive Disks

RCSLACPOL SLAC Radiative Correction for Polarized Scattering

RECSIS Reconstruction and Analysis

RF Radiofrequency

RHIC Relativistic Heavy Ion Collider

RLC Resistor-Inductor-Capacitor

RMS Root Mean Square

ROC Readout Controller

ROOT An object-oriented data analysis framework

RR Resonance Region

RSS Resonance Spin Structure

SANE Spin Asymmetries on the Nucleon Experiment

SC Scintillation Counters

SEB Simple Event Builder

SIDIS Semi-inclusive Deep Inelastic Scattering

SLAC Stanford Linear Accelerator

SLM Synchrotron Light Monitor
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SMC Spin Muon Collaboration

SRF Superconducting Radiofrequency

STAR Solenoidal Tracker at RHIC

TOF Time-of-Flight

TDC Time→Digital Converter

TMC Target Mass Correction

TS Trigger Supervisor

VME Virtual Machine Environment

ZEUS A particle detector in use at HERA (at DESY)
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Additional Tables

B.1 Kinematic Bin Tables
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Table B.1: Standard Q2 bins for EG1b. Both the geometric (integrated by relative weight) and
arithmetic averages are shown.

Bin Q2
min Q2

max Q2(geometric ave.) Q2(arithmetic ave.)
0 0 0.00919 – –
1 0.00919 0.0110 0.0100 0.010
2 0.0110 0.0131 0.0120 0.012
3 0.0131 0.0156 0.0143 0.014
4 0.0156 0.0187 0.0171 0.017
5 0.0187 0.0223 0.0204 0.020
6 0.0223 0.0266 0.0243 0.024
7 0.0266 0.0317 0.0291 0.029
8 0.0317 0.0379 0.0347 0.035
9 0.0379 0.0452 0.0414 0.042

10 0.0452 0.0540 0.0494 0.050
11 0.0540 0.0645 0.0590 0.059
12 0.0645 0.0770 0.0704 0.071
13 0.0770 0.0919 0.0841 0.084
14 0.0919 0.110 0.100 0.10
15 0.110 0.131 0.120 0.12
16 0.131 0.156 0.143 0.14
17 0.156 0.187 0.171 0.17
18 0.187 0.223 0.204 0.20
19 0.223 0.266 0.243 0.24
20 0.266 0.317 0.291 0.29
21 0.317 0.379 0.347 0.35
22 0.379 0.452 0.414 0.42
23 0.452 0.540 0.494 0.50
24 0.540 0.645 0.590 0.59
25 0.645 0.770 0.704 0.71
26 0.770 0.919 0.841 0.84
27 0.919 1.10 1.00 1.0
28 1.10 1.31 1.20 1.2
29 1.31 1.56 1.43 1.4
30 1.56 1.87 1.71 1.7
31 1.87 2.23 2.04 2.0
32 2.23 2.66 2.43 2.4
33 2.66 3.17 2.91 2.9
34 3.17 3.79 3.47 3.5
35 3.79 4.52 4.14 4.2
36 4.52 5.40 4.94 5.0
37 5.40 6.45 5.90 5.9
38 6.45 7.70 7.04 7.1
39 7.70 9.19 8.41 8.4
40 9.19 10.97 10.0 10
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Table B.2: θ and momentum(p) bins for e+e− background removal.

Bin θmin θmax

1 2.0 5.0
2 5.0 10.0
3 10.0 15.0
4 15.0 20.0
5 20.0 25.0
6 25.0 30.0
7 30.0 35.0
8 35.0 40.0
9 40.0 45.0
10 45.0 49.0

Bin pmin pmax

1 0.03 0.30
2 0.30 0.60
3 0.60 0.90
4 0.90 1.20
5 1.20 1.50
6 1.50 1.80
7 1.80 2.20
8 2.20 2.60
9 2.60 3.00
10 3.00 3.40
11 3.40 3.90
12 3.90 4.40
13 4.40 4.90
14 4.90 5.40



459

B.2 Pion Background Cut Parameters
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Table B.3: Pion background cut parameters for use in Eq. 4.1 - 4.4, Each sector and CC segment
has its own parameters.

Sectors 1 and 2, inbending only

sector segment θcenter
p θoffset

p σp ∆tSC−CC

1 1 7.715 0 1.25 -10.06
1 2 9.435 1.61667 0.558811 -10.06
1 3 11.17 1.17703 0.710307 -11.42
1 4 12.925 1.25518 0.761159 -10.88
1 5 14.69 1.29892 0.83303 -11.15
1 6 16.47 1.47686 0.799495 -10.6
1 7 18.29 1.67202 0.889586 -11.42
1 8 20.15 1.8122 0.79602 -11.15
1 9 22.04 1.79007 0.765841 -11.42
1 10 24.01 1.75959 0.922235 -10.88
1 11 26.05 1.70721 1.12133 -10.88
1 12 28.17 2.19133 1.09796 -10.88
1 13 30.475 2.28175 1.36657 -28.53
1 14 32.935 2.97774 1.12487 -9.246
1 15 35.445 3.10636 1.02596 -6.531
1 16 37.97 3.03297 1.11458 -5.988
1 17 40.515 2.4122 0.836312 -8.67905
1 18 43.12 0 0 100
2 1 7.715 0 1.25 -9.518
2 2 9.435 1.57819 0.511605 -8.975
2 3 11.17 1.11335 0.679164 -10.06
2 4 12.925 0.978316 0.689107 -9.518
2 5 14.69 0.949305 0.827985 -9.789
2 6 16.47 1.13836 0.877119 -10.06
2 7 18.29 1.3449 0.742062 -10.6
2 8 20.15 1.54754 1.1438 -80
2 9 22.04 1.79137 0.758517 -11.96
2 10 24.01 1.73608 0.912447 -9.789
2 11 26.05 1.74283 1.11211 -10.88
2 12 28.17 2.11168 1.03115 -11.69
2 13 30.475 2.34247 1.34492 -10.6
2 14 32.935 2.89912 1.09128 -9.246
2 15 35.445 2.89664 1.08348 -7.617
2 16 37.97 2.83338 1.08412 -4.358
2 17 40.515 2.19907 0.880703 -5.72487
2 18 43.12 0 0 100
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Sectors 3 and 4, inbending only

sector segment θcenter
p θoffset

p σp ∆tSC−CC

3 1 7.715 0 1.25 -10.06
3 2 9.435 1.59668 0.531775 -10.88
3 3 11.17 1.09262 0.685662 -11.96
3 4 12.925 1.12444 0.740032 -15.49
3 5 14.69 1.10406 0.765128 -16.31
3 6 16.47 1.1937 0.770151 -15.49
3 7 18.29 1.40898 0.791015 -11.96
3 8 20.15 1.63203 0.88898 -11.96
3 9 22.04 1.68464 0.688376 -7.346
3 10 24.01 2.04233 1.05516 -80
3 11 26.05 1.8272 1.05423 -23.91
3 12 28.17 2.04524 1.08444 -20.92
3 13 30.475 2.3309 1.41215 -20.65
3 14 32.935 3.09273 1.0571 -9.789
3 15 35.445 3.19737 1.01388 -7.889
3 16 37.97 2.97263 1.04351 -3.815
3 17 40.515 2.24073 0.841379 -5.52649
3 18 43.12 0 0 100
4 1 7.715 0 1.25 -8.432
4 2 9.435 1.68515 0.571923 -8.703
4 3 11.17 1.27287 0.702654 -9.518
4 4 12.925 1.25499 0.725934 -13.32
4 5 14.69 1.21428 0.780379 -10.6
4 6 16.47 1.39868 0.847354 -11.15
4 7 18.29 1.60879 0.880012 -10.33
4 8 20.15 1.83014 0.798267 -12.23
4 9 22.04 1.80748 0.827193 -12.78
4 10 24.01 1.76519 0.887549 -11.15
4 11 26.05 1.63676 1.04132 -11.96
4 12 28.17 2.0624 1.16812 -10.88
4 13 30.475 2.04637 1.42806 -12.23
4 14 32.935 2.8001 1.09894 -9.246
4 15 35.445 3.00113 1.1128 -6.802
4 16 37.97 3.05102 1.08308 -5.173
4 17 40.515 2.37987 0.866787 -7.08273
4 18 43.12 0 0 100
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Sectors 5 and 6, inbending only

sector segment θcenter
p θoffset

p σp ∆tSC−CC

5 1 7.715 0 1.25 -7.074
5 2 9.435 1.77528 0.531322 -8.703
5 3 11.17 1.65381 0.889448 -13.86
5 4 12.925 1.52975 0.829391 -16.03
5 5 14.69 1.36857 0.795689 -10.33
5 6 16.47 1.46561 0.80882 -10.6
5 7 18.29 1.65247 0.89631 -9.518
5 8 20.15 1.90336 0.861988 -11.42
5 9 22.04 2.25316 0.968319 -11.96
5 10 24.01 2.30237 1.01662 -10.6
5 11 26.05 2.73447 1.00332 -10.6
5 12 28.17 2.95056 1.14894 -13.86
5 13 30.475 3.05246 1.00229 -11.15
5 14 32.935 3.06401 1.03006 -8.703
5 15 35.445 3.12805 1.12716 -8.16
5 16 37.97 3.1899 1.08879 -5.445
5 17 40.515 2.53884 0.838787 -8.62813
5 18 43.12 0 0 100
6 1 7.715 0 1.25 -7.346
6 2 9.435 1.64922 0.531754 -10.6
6 3 11.17 1.18211 0.715696 -10.33
6 4 12.925 1.22371 0.749207 -9.789
6 5 14.69 1.17344 0.738545 -13.59
6 6 16.47 1.28719 0.743982 -11.15
6 7 18.29 1.30081 0.898898 -11.96
6 8 20.15 1.6235 0.778548 -14.95
6 9 22.04 1.65107 0.788323 -11.42
6 10 24.01 1.78634 0.95529 -10.6
6 11 26.05 1.74261 1.11471 -10.6
6 12 28.17 2.13715 1.06596 -11.15
6 13 30.475 2.41261 1.33136 -10.88
6 14 32.935 2.94335 1.18341 -8.16
6 15 35.445 3.31166 1.15398 -7.074
6 16 37.97 3.37013 1.0801 -3.272
6 17 40.515 2.74791 0.744176 -7.22474
6 18 43.12 0 0 100
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Sectors 1 and 2, outbending only

sector segment θcenter
p θoffset

p σp ∆tSC−CC

1 1 7.715 9.44136 0.882966 -18.3827
1 2 9.435 9.78426 2.2021 -18.3168
1 3 11.17 5.11882 1.12383 -16.3986
1 4 12.925 2.38628 0.587813 -10.88
1 5 14.69 1.01974 0.419864 -11.15
1 6 16.47 0.928088 0.718078 -10.6
1 7 18.29 0.897623 0.728103 -11.42
1 8 20.15 0.85664 0.803771 -11.15
1 9 22.04 0.81016 0.814512 -18.957
1 10 24.01 0.534905 0.808717 -16.8534
1 11 26.05 -0.0567701 0.830669 -12.0472
1 12 28.17 -0.0894648 1.20216 -10.88
1 13 30.475 -0.476507 1.43163 -28.53
1 14 32.935 -0.512086 1.79071 -9.246
1 15 35.445 -0.564243 1.88346 -7.64864
1 16 37.97 -1.52835 2.55906 -8.26228
1 17 40.515 0.930158 1.11536 -6.32124
1 18 43.12 0.0818546 0.856084 -3.74568
2 1 7.715 9.70018 0.725683 -21.08
2 2 9.435 9.30676 1.61795 -22.6378
2 3 11.17 5.62216 0.945182 -19.3352
2 4 12.925 3.8231 1.32925 -9.518
2 5 14.69 1.75844 0.358314 -9.789
2 6 16.47 0.727494 0.753471 -10.06
2 7 18.29 0.73484 0.71621 -10.6
2 8 20.15 0.591899 0.684617 -12.23
2 9 22.04 0.81292 1.04731 -80
2 10 24.01 0.565134 0.672787 -9.789
2 11 26.05 -0.0962878 0.849402 -10.88
2 12 28.17 -0.314749 1.21073 -11.69
2 13 30.475 -0.411599 1.41265 -10.6
2 14 32.935 -0.73257 1.7549 -9.246
2 15 35.445 -0.728269 1.917 -7.617
2 16 37.97 -1.90306 2.58271 -6.31366
2 17 40.515 0.873927 1.13948 -3.92716
2 18 43.12 -0.112584 0.947823 -1.94926
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Sectors 3 and 4, outbending only

sector segment θcenter
p θoffset

p σp ∆tSC−CC

3 1 7.715 9.34863 1.25515 -19.3524
3 2 9.435 9.34325 2.17895 -21.1789
3 3 11.17 4.72228 0.797899 -14.7606
3 4 12.925 1.41506 0.875569 -15.49
3 5 14.69 0.85164 0.687879 -16.31
3 6 16.47 0.807327 0.698243 -15.49
3 7 18.29 0.765179 0.726155 -11.96
3 8 20.15 0.662392 0.704451 -20.9295
3 9 22.04 0.771579 0.80965 -8.80298
3 10 24.01 0.235635 0.765732 -25.54
3 11 26.05 -0.605803 0.755947 -80
3 12 28.17 0.0507434 1.14428 -80
3 13 30.475 -0.0564292 1.41699 -20.65
3 14 32.935 -0.490215 1.78919 -9.789
3 15 35.445 -0.454119 2.15891 -21.4961
3 16 37.97 -2.02456 3.03551 -9.94321
3 17 40.515 1.12373 1.03818 -4.15478
3 18 43.12 0.116346 0.842354 -2.4432
4 1 7.715 9.44417 1.71035 -16.8448
4 2 9.435 9.50459 2.76454 -17.4693
4 3 11.17 4.61428 0.780718 -9.518
4 4 12.925 1.53946 1.02494 -13.32
4 5 14.69 0.974502 0.794278 -10.6
4 6 16.47 0.817862 0.724484 -11.15
4 7 18.29 0.89449 0.762863 -10.33
4 8 20.15 0.835993 0.8058 -12.23
4 9 22.04 0.877967 0.785631 -12.78
4 10 24.01 0.534746 0.846716 -11.15
4 11 26.05 -0.0503515 0.805624 -11.96
4 12 28.17 -0.17271 1.20144 -10.88
4 13 30.475 -0.598793 1.39201 -12.23
4 14 32.935 -0.732761 1.87927 -9.246
4 15 35.445 -0.596728 1.89874 -12.319
4 16 37.97 -1.98561 2.74207 -9.8736
4 17 40.515 0.897553 1.0876 -22.7609
4 18 43.12 -0.0168865 0.884155 -32.4434
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Sectors 5 and 6, outbending only

sector segment θcenter
p θoffset

p σp ∆tSC−CC

5 1 7.715 9.43056 0.902969 -16.5621
5 2 9.435 9.66316 2.46374 -19.5467
5 3 11.17 4.48558 1.06914 -15.9008
5 4 12.925 2.35348 0.574084 -16.03
5 5 14.69 1.06895 0.463329 -10.33
5 6 16.47 0.957842 0.682332 -10.6
5 7 18.29 0.873888 0.707929 -9.518
5 8 20.15 0.843671 0.842153 -11.42
5 9 22.04 0.898008 0.864229 -11.96
5 10 24.01 0.758749 0.94682 -10.6
5 11 26.05 0.46833 1.14142 -10.6
5 12 28.17 0.359037 1.24246 -13.86
5 13 30.475 0.114843 1.513 -18.7278
5 14 32.935 0.248881 1.52748 -20.6778
5 15 35.445 -0.461898 1.7839 -8.16
5 16 37.97 -0.556424 2.38824 -5.87629
5 17 40.515 1.21186 1.12693 -5.06078
5 18 43.12 0.236514 0.871704 -4.01868
6 1 7.715 9.55355 0.810562 -17.9514
6 2 9.435 9.72445 1.98536 -18.7144
6 3 11.17 5.3406 1.07633 -20.7031
6 4 12.925 2.52474 0.511665 -9.789
6 5 14.69 1.48256 0.154967 -13.59
6 6 16.47 0.842704 0.694377 -11.15
6 7 18.29 0.823057 0.718335 -11.96
6 8 20.15 0.764655 0.748196 -14.95
6 9 22.04 0.749473 0.815529 -11.42
6 10 24.01 0.509091 0.739087 -13.8422
6 11 26.05 -0.0659918 0.846994 -10.6
6 12 28.17 -0.105601 1.19791 -11.15
6 13 30.475 -0.354063 1.45182 -10.88
6 14 32.935 -0.283529 1.80117 -8.16
6 15 35.445 -0.48233 2.08146 -7.59534
6 16 37.97 -1.04792 2.74191 -6.12133
6 17 40.515 1.12619 1.15726 -4.37422
6 18 43.12 -0.0166473 0.95124 -2.87116



466

B.3 Fiducial Cut Parameters

Table B.4: Inbending fiducial cut parameters, designated by the lower value on each momentum bin.
At all momenta higher than 4.2 GeV/c, the highest bin values are used, as there is little evolution of
the event geometry after this point.

Torus Current = +1500 A

Bin pmin A B C D E F θmax

0.15 36 0.28 0.30 5 16.72 0.06 37
0.30 32 0.28 0.30 8.5 16.72 0.06 37
0.45 32.5 0.28 0.30 10 16.72 0.06 35
0.60 33 0.28 0.30 10.5 16.72 0.06 33
0.75 33 0.28 0.30 10.5 16.72 0.06 32
0.90 33 0.28 0.30 10.5 16.72 0.06 32
1.05 33 0.28 0.30 10.5 16.72 0.06 31
1.20 34 0.28 0.30 10.5 16.72 0.06 30
1.35 35 0.28 0.30 10.5 16.72 0.06 29
1.50 35 0.28 0.30 10.5 16.72 0.06 28
1.65 35 0.28 0.30 10.5 16.72 0.06 28
1.80 35.5 0.28 0.30 10.5 16.72 0.06 28
1.95 36.5 0.28 0.30 10.5 16.72 0.06 28
2.10 36.5 0.28 0.30 10.5 16.72 0.06 28
2.25 36 0.28 0.30 10.5 16.72 0.06 28
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Torus Current = +2250 A

Bin pmin A B C D E F θmax

0.15 36 0.28 0.30 0 16.72 0.06 41
0.30 36 0.28 0.30 6 16.72 0.06 40
0.45 32 0.28 0.30 8 16.72 0.06 39
0.60 32 0.28 0.30 9.5 16.72 0.06 34
0.75 32 0.28 0.30 10.5 16.72 0.06 32
0.90 32 0.28 0.30 10.5 16.72 0.06 32
1.05 32 0.28 0.30 10.5 16.72 0.06 32
1.20 32 0.28 0.30 10.5 16.72 0.06 32
1.35 32 0.28 0.30 10.5 16.72 0.06 32
1.50 32 0.28 0.30 10.5 16.72 0.06 32
1.65 32 0.28 0.30 10.5 16.72 0.06 32
1.80 32.5 0.28 0.30 10.5 16.72 0.06 32
1.95 32.5 0.28 0.30 10.5 16.72 0.06 32
2.10 33 0.28 0.30 10.5 16.72 0.06 32
2.25 33.5 0.28 0.30 10.5 16.72 0.06 32
2.40 34 0.28 0.30 10.5 16.72 0.06 32
2.55 34 0.28 0.30 10.5 16.72 0.06 32
2.70 34 0.28 0.30 10.5 16.72 0.06 32
2.85 34 0.28 0.30 10.5 16.72 0.06 32
3.00 34 0.28 0.30 10.5 16.72 0.06 32
3.15 34 0.28 0.30 10.5 16.72 0.06 32
3.30 34 0.28 0.30 10.5 16.72 0.06 32
3.45 34 0.28 0.30 10.5 16.72 0.06 32
3.60 34 0.28 0.30 10.5 16.72 0.06 32
3.75 34 0.28 0.30 10.5 16.72 0.06 32
3.90 34 0.28 0.30 10.5 16.72 0.06 32
4.05 34 0.28 0.30 10.5 16.72 0.06 32
4.20 34 0.28 0.30 10.5 16.72 0.06 32
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Table B.5: Outbending fiducial cut parameters, designated by the lower value on each momentum
bin.As for inbending cuts, all momenta greater than 4.2 GeV/c use the highest bin values.

Torus Current =−1500 A, Sector 1

Bin pmin A B C D E F Gupper Hupper

0.15 44 0.77 0.17 12 3 1.46 1 1
0.30 38 0.55 0.27 5 3 1.46 0 0
0.45 36.5 0.44 0.22 5.5 3 1.46 0.1 -0.11
0.60 31 0.33 0.22 5.5 3 1.46 0.1 0.1
0.75 29.5 0.28 0.22 5.5 3 1.46 0.2 0.5
0.90 29 0.28 0.22 5.8 3 1.46 0.1 -.12
1.05 29 0.28 0.22 5.8 3 1.46 0.3 0
1.20 30 0.28 0.22 6.2 3 1.46 0.2 0
1.35 31 0.28 0.22 6.3 3 1.46 0.06 -0.12
1.50 31 0.28 0.22 6.5 3 1.46 0.3 -0.02
1.65 31 0.28 0.22 7.2 3 1.46 0.2 -0.04
1.80 30 0.28 0.22 7.2 3 1.46 0.22 -0.06
1.95 28 0.28 0.22 7.2 3 1.46 0.22 -0.06
2.10 32 0.37 0.22 7.5 3 1.46 0.18 -0.06
2.25 34 0.43 0.22 8 3 1.46 0.18 -0.06
2.40 34 0.43 0.22 8.3 3 1.46 0.18 -0.06
2.55 34 0.43 0.22 8.6 3 1.46 0.18 -0.06

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 1. 1 23 23 2 0
0.30 0.15 -0.1 13 18 2.0 1.5
0.45 0.1 -0.11 13 19 1.7 0.4
0.60 1. 0.5 14 19 1.5 1
0.75 0.6 0.5 15 20 1.4 0.8
0.90 0.1 -.12 15 19 1.2 0
1.05 0.3 0. 14 18 1.2 0
1.20 0.2 0 13.5 17 1.2 0
1.35 0.12 -0.09 13 16 1.2 0
1.50 0.1 -0.01 12.5 15 1.3 0
1.65 0.2 -0.04 12 14 1.2 0
1.80 0.22 -0.04 14 13 0. 0
1.95 0.22 -0.04 17 13 -0.4 0
2.10 0.18 -0.04 18 14 -0.4 0
2.25 0.18 -0.04 19 15 -0.4 0
2.40 0.18 -0.04 19 15 -0.4 0
2.55 0.18 -0.04 19 15 -0.4 0
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Torus Current =−1500 A, Sector 2

Bin pmin A B C D E F Gupper Hupper

0.15 44 0.77 0.17 12 3 1.46 1 1
0.30 38 0.55 0.28 5 3 1.46 0.1 -0.07
0.45 38 0.44 0.22 5.5 3 1.46 0.025 -0.13
0.60 32 0.33 0.22 5.5 3 1.46 0.14 0
0.75 30 0.28 0.22 5.5 3 1.46 0.2 1
0.90 30 0.28 0.22 5.5 3 1.46 0.05 -0.11
1.05 30 0.28 0.22 5.8 3 1.46 0.6 2
1.20 30 0.28 0.22 5.8 3 1.46 0.6 1
1.35 30.5 0.28 0.22 5.8 3 1.46 0.4 1
1.50 32 0.28 0.22 6.3 3 1.46 0.2 0.1
1.65 32.5 0.28 0.22 6.7 3 1.46 0.2 0.1
1.80 32 0.28 0.22 7.3 3 1.46 0.2 0.1
1.95 30.5 0.28 0.22 8 3 1.46 0 0.1
2.10 28 0.28 0.22 8.8 3 1.46 0 0.1
2.25 30 0.34 0.22 9 3 1.46 0 0.1
2.40 30 0.34 0.22 9.5 3 1.46 0 0.1
2.55 30 0.34 0.22 9.5 3 1.46 0 0.1

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 1. 1 23 23 2 0
0.30 0.1 -0.07 12 17 1.5 0
0.45 0.04 -0.13 13 16 1.6 0
0.60 0.14 0 14 19 1.2 0
0.75 0.35 1 15 20 1.2 0
0.90 0.6 2 15 19 1 0
1.05 0.6 2 14 18 .8 0
1.20 0.6 1 13.5 17 .8 0
1.35 0.4 1 13 16 .8 0
1.50 0.2 0.1 12.5 15 .8 0
1.65 0.2 0.1 12 14 .8 0
1.80 0.2 0.1 12 12 0 0
1.95 1.2 1 13 13 -0.5 0
2.10 0 1 15 14 -0.5 0
2.25 0 1 15 14 -0.5 0
2.40 0 1 15 14 -0.5 0
2.55 0 1 15 14 -0.5 0
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Torus Current =−1500 A, Sector 3

Bin pmin A B C D E F Gupper Hupper

0.15 44 0.77 0.17 12 3 1.46 1 1
0.30 39 0.55 0.28 5 3 1.46 0 0
0.45 39 0.44 0.22 5 3 1.46 1 1
0.60 34 0.36 0.22 5 3 1.46 0.15 0.1
0.75 31 0.3 0.22 5.5 3 1.46 0 0.1
0.90 30 0.28 0.22 5.5 3 1.46 1 1
1.05 30.5 0.28 0.22 5.5 3 1.46 0 0.1
1.20 31 0.28 0.22 5.7 3 1.46 0 1
1.35 31.5 0.28 0.22 5.7 3 1.46 0 1
1.50 32 0.28 0.22 6 3 1.46 0 1
1.65 32 0.28 0.22 6 3 1.46 0. 1
1.80 31 0.28 0.22 6.3 3 1.46 0.5 1
1.95 29 0.28 0.22 6.6 3 1.46 0.5 1
2.10 31 0.35 0.22 7 3 1.46 0.2 1
2.25 32 0.35 0.22 7.4 3 1.46 0 1
2.40 32 0.4 0.22 7.8 3 1.46 0 1
2.55 32 0.4 0.22 8 3 1.46 0 1

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 1. 1 23 23 2 0
0.30 0.5 0.1 12 17 1.8 1
0.45 1.5 1. 12 17.5 1.8 1
0.60 0.15 0.1 12 18 1.4 0
0.75 0 1 13 20 1.2 0
0.90 1 1 13 19 1.2 -1
1.05 1 1 13 18 1.3 0
1.20 0 1 13.5 17 1 0
1.35 0. -0.10 12.5 16 0.7 -0.9
1.50 0. 1 12. 15 0.7 -0.9
1.65 0. 1 12 14 0.7 -0.9
1.80 0.5 1 13 13 -1 -0.9
1.95 0.5 1 14 13 -1.5 -0.9
2.10 0.2 1 15.5 13 -1.5 -0.9
2.25 0 1 17 14 -1.5 -0.9
2.40 0 1 18 15 -1.5 -0.9
2.55 0 1 18 15 -1.5 -0.9
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Torus Current =−1500 A, Sector 4

Bin pmin A B C D E F Gupper Hupper

0.15 44 0.77 0.17 12 3 1.46 1 1
0.30 40 0.55 0.29 4 3 1.46 0.5 1
0.45 35 0.44 0.28 4.5 3 1.46 0.2 -0.08
0.60 33.5 0.35 0.23 4.9 3 1.46 1.7 1
0.75 29 0.28 0.22 5.1 3 1.46 0.07 -0.11
0.90 31 0.28 0.22 5.1 3 1.46 2 1
1.05 31 0.28 0.22 5.3 3 1.46 0.5 1
1.20 32 0.28 0.22 6.2 3 1.46 0.4 1
1.35 32 0.28 0.22 6 3 1.46 0.25 0
1.50 32 0.28 0.22 5.8 3 1.46 0.2 -0.02
1.65 31 0.28 0.22 5.8 3 1.46 0.22 -0.04
1.80 31 0.28 0.22 6.3 3 1.46 0.22 -0.06
1.95 27.5 0.28 0.22 6.5 3 1.46 0.22 -0.06
2.10 29.5 0.34 0.22 7 3 1.46 0.22 -0.06
2.25 34 0.43 0.22 7.5 3 1.46 0.22 -0.06
2.40 38.5 0.5 0.22 7.9 3 1.46 0.22 -0.06
2.55 38.5 0.5 0.22 8.3 3 1.46 0.22 -0.06

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 1. 1 23 23 2 0
0.30 0.5 1 10.5 16.5 2.5 -0.5
0.45 0.08 -0.12 12 19 1.8 0
0.60 0.03 -0.11 11 17 1.8 -0.5
0.75 0.07 -0.11 15 20 1.2 0
0.90 0.2 -0.08 15 19 1.2 0
1.05 0.25 -0.06 14 18 1.2 -0.40
1.20 0.1 -0.11 13 16 1.0 -0.4
1.35 0.35 0 13 16 1.0 -0.4
1.50 0.25 -0.02 11.5 14.5 1.0 -0.6
1.65 0.1 0 12 14 1.0 -0.6
1.80 0.1 0 12 15 1.0 -0.6
1.95 0.1 0. 13 15 1.0 -0.4
2.10 0.1 0 14 16 0.6 -0.4
2.25 0.1 0 15 17 0.6 -0.4
2.40 0.1 0 15 17 0.6 -0.4
2.55 0.1 0 15 17 0.6 -0.4



472

Torus Current =−1500 A, Sector 5

Bin pmin A B C D E F Gupper Hupper

0.15 44 0.77 0.17 12 3 1.46 1 1
0.30 39 0.55 0.29 4 3 1.46 0 0
0.45 34 0.38 0.22 4.6 3 1.46 0 0
0.60 32 0.34 0.22 5 3 1.46 0 0
0.75 30 0.28 0.22 5 3 1.46 0 0
0.90 29.5 0.28 0.22 5.3 3 1.46 0.1 -0.1
1.05 29.5 0.28 0.22 5.5 3 1.46 0.1 -0.1
1.20 30.5 0.28 0.22 5.7 3 1.46 0.1 -0.1
1.35 31 0.28 0.22 5.7 3 1.46 0.09 -0.1
1.50 31 0.28 0.22 6. 3 1.46 0.09 -0.1
1.65 32 0.28 0.22 6. 3 1.46 0.1 -0.09
1.80 29 0.28 0.22 6.5 3 1.46 0.18 -0.08
1.95 27.5 0.28 0.22 6.9 3 1.46 0.19 -0.06
2.10 29.5 0.34 0.22 7.6 3 1.46 0.19 -0.06
2.25 34 0.43 0.22 7.8 3 1.46 0.19 -0.06
2.40 38.5 0.5 0.22 8.3 3 1.46 0.19 -0.06
2.55 38.5 0.5 0.22 8.7 3 1.46 0.19 -0.06

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 1. 1 23 23 2 0
0.30 0 0 11 18 2.7 1
0.45 0 0 13 19 2.5 2.5
0.60 0 0 14 19.5 2.1 0.8
0.75 0 0 14.5 19.5 1.8 0.8
0.90 0.05 -0.1 15 19 1.5 0
1.05 0.05 -0.1 14 18 1.2 0
1.20 0.15 -0.1 13.5 17 1.2 0
1.35 0.15 -0.09 13 16 1.2 0
1.50 0.15 -0.09 12.5 15 1.2 0
1.65 0.13 -0.09 13 16 1. 0
1.80 0.18 -0.08 15 13 -0.5 0
1.95 0.22 -0.04 18 14 -0.5 0
2.10 0.22 -0.04 20 18 -0.5 0
2.25 0.22 -0.04 20 18 -0.5 0
2.40 0.22 -0.04 20 18 -0.5 0
2.55 0.22 -0.04 20 18 -0.5 0
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Torus Current =−1500 A, Sector 6

Bin pmin A B C D E F Gupper Hupper

0.15 44 0.77 0.17 12 3 1.46 1 1
0.30 39.5 0.55 0.27 5 3 1.46 0. 0
0.45 36 0.40 0.22 5 3 1.46 0.17 0
0.60 32 0.33 0.22 5.3 3 1.46 0.2 0
0.75 30 0.28 0.22 5.7 3 1.46 0. 0
0.90 31.5 0.28 0.22 5.7 3 1.46 0 0
1.05 31.5 0.28 0.22 5.7 3 1.46 0.3 1
1.20 33 0.28 0.22 6.1 3 1.46 0.2 0.
1.35 33 0.28 0.22 6.1 3 1.46 0.2 -0.06
1.50 33 0.28 0.22 6.5 3 1.46 0.3 -0.06
1.65 33 0.28 0.22 6.5 3 1.46 0.3 -0.03
1.80 31. 0.28 0.22 6.9 3 1.46 0.22 -0.08
1.95 29 0.28 0.22 7.3 3 1.46 0.22 -0.06
2.10 32 0.36 0.22 7.9 3 1.46 0.22 -0.06
2.25 36 0.43 0.22 8.3 3 1.46 0.22 -0.06
2.40 38 0.47 0.22 8.6 3 1.46 0.22 -0.06
2.55 38 0.47 0.22 8.9 3 1.46 0.22 -0.06

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 1. 1 23 23 2 1.5
0.30 0. 0 13 20 3.8 2
0.45 0.17 0 13 20 3.4 0.5
0.60 0.1 0 14 21 2.8 0.2
0.75 0. 0 14 20 2.4 0.2
0.90 0 0 15 19 2.2 0
1.05 0.3 1 14 18 2.2 1.9
1.20 0.2 0 13.5 17 2.2 1.9
1.35 0.2 -0.06 13 16 2.2 1.
1.50 0.2 0 12.5 15 2.3 0.3
1.65 0.3 -0.03 12 14 1.2 0.6
1.80 0.20 -0.08 14 13 0.4 0.6
1.95 0.22 -0.07 18 14 0. 0.6
2.10 0.22 -0.04 19 15 0 0.6
2.25 0.22 -0.04 19 15 0 0.6
2.40 0.22 -0.04 19 15 0 0.6
2.55 0.22 -0.04 19 15 0 0.6
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Torus Current =−2250 A, Sector 1, p < 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

0.15 24 0.28 0.30 5 3 1.46 0 0
0.30 24 0.28 0.30 5 3 1.46 0 0
0.45 35 0.55 0.30 5 3 1.46 0 0
0.60 36.5 0.44 0.22 5.5 3 1.46 0 0
0.75 31 0.33 0.22 5.5 3 1.46 0.5 0.1
0.90 28 0.28 0.22 5.5 3 1.46 0.5 0.5
1.05 29 0.28 0.22 5.5 3 1.46 0.4 1
1.20 29 0.28 0.22 5.8 3 1.46 0.03 -0.135
1.35 29 0.28 0.22 6 3 1.46 0.08 -0.13
1.50 31 0.28 0.22 6 3 1.46 0.11 -0.12
1.65 31 0.28 0.22 6 3 1.46 0.33 -0.02
1.80 31 0.28 0.22 6.3 3 1.46 0.22 -0.04
1.95 31 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.10 31 0.28 0.22 6.5 3 1.46 0.22 -0.06
2.25 31 0.28 0.22 6.5 3 1.46 0.22 -0.06
2.40 31 0.28 0.22 6.7 3 1.46 0.22 -0.06

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 1.0 0.1 25 25 1.8 1
0.30 1.0 0.1 24 17 1.8 1
0.45 1.0 0.1 13 18 1.8 1
0.60 0.7 0. 13 19 2.5 2.5
0.75 1.3 0.5 14 19 1.2 0.8
0.90 0.6 0.5 15 20 1.2 0.8
1.05 0.4 1 15 19 1.2 0
1.20 0.025 -0.135 14 18 1.2 0
1.35 0.07 -0.13 13.5 17 1.2 0
1.50 0.15 -0.09 13 16 1.2 0
1.65 0.30 -0.01 12.5 15 1.3 0
1.80 0.22 -0.04 12 14 1.2 0
1.95 0.22 -0.04 12 13 1.2 0
2.10 0.22 -0.04 11.5 13 1.2 0
2.25 0.22 -0.04 11 13 1.2 0
2.40 0.22 -0.04 11.5 13 1.2 0
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Torus Current =−2250 A, Sector 1, p > 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

2.55 31 0.28 0.22 6.8 3 1.46 0.22 -0.06
2.70 29.5 0.28 0.22 6.9 3 1.46 0.22 -0.06
2.85 28 0.28 0.22 7 3 1.46 0.22 -0.04
3.00 53 0.6 0.22 7.3 3 1.46 0.22 -0.04
3.15 53 0.60 0.22 7.3 3 1.46 0.22 -0.04
3.30 53 0.65 0.22 7.7 3 1.46 0.18 -0.04
3.45 53 0.63 0.22 8 3 1.46 0.18 -0.04
3.60 53 0.66 0.22 8.3 3 1.46 0.3 0.1
3.75 53 0.66 0.22 8.5 3 1.46 0.3 0.1
3.90 53 0.69 0.22 8.8 3 1.46 0.25 0.1
4.05 53 0.73 0.22 9 3 1.46 0.25 0.1
4.20 53 0.73 0.22 9.2 3 1.46 0.25 0.1

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

2.55 0.22 -0.04 12 13 0.8 0
2.70 0.22 -0.04 13.5 13 -0.5 0
2.85 0.22 -0.04 14.5 13 -0.5 0
3.00 0.22 -0.04 13.5 13 -0.3 0
3.15 0.22 -0.04 13.5 13 -0.3 0
3.30 0.18 -0.04 14 14 -0.6 0
3.45 0.18 -0.04 14.5 14 -0.6 0
3.60 0.3 0.1 15 15 -0.6 0
3.75 0.3 0.1 15 15 -0.6 0
3.90 0.25 0.1 15 15 -0.6 -0.1
4.05 0.25 0.1 15 15 -0.6 -0.1
4.20 0.25 0.1 15 15 -0.6 0
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Torus Current =−2250 A, Sector 2, p < 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

0.15 25 0.28 0.30 5 3 1.46 0.05 -0.13
0.30 25 0.28 0.30 5 3 1.46 0.05 -0.13
0.45 37 0.55 0.30 5 3 1.46 0.05 -0.13
0.60 38 0.44 0.22 5.5 3 1.46 0.025 -0.13
0.75 30.5 0.33 0.22 5.5 3 1.46 0.08 -0.12
0.90 28.5 0.28 0.22 5.5 3 1.46 0.2 1
1.05 28.5 0.28 0.22 5.5 3 1.46 0.6 2
1.20 29.5 0.28 0.22 5.5 3 1.46 0.6 2
1.35 29.5 0.28 0.22 5.8 3 1.46 0.2 -0.05
1.50 29.5 0.28 0.22 5.8 3 1.46 0.2 -0.05
1.65 30.5 0.28 0.22 5.8 3 1.46 0.2 0.1
1.80 30.5 0.28 0.22 5.8 3 1.46 0.2 0.1
1.95 30.5 0.28 0.22 5.8 3 1.46 0.2 0.1
2.10 32.5 0.28 0.22 6 3 1.46 0 0.1
2.25 32.5 0.28 0.22 6.3 3 1.46 0 0.1
2.40 32.5 0.28 0.22 6.5 3 1.46 0 0.1

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 0.04 -0.13 25 25 0.5 0
0.30 0.04 -0.13 24 24 0.5 0
0.45 0.04 -0.13 12 17 1.5 0
0.60 0.04 -0.13 13 16 1.6 0
0.75 0.14 -0.11 14 19 1.2 0.8
0.90 0.35 0 15 20 1.2 0.8
1.05 0.6 2 15 19 1.2 0
1.20 0.6 2 14 18 0.5 0
1.35 0.2 -0.05 13.5 17 0.8 0
1.50 0.2 -0.05 13 16 1.1 0.6
1.65 0.2 0.1 12.5 15 1.1 0
1.80 0.2 0.1 12 14 1.1 0
1.95 0.2 0.1 12 13 1.1 0
2.10 1.2 1 11.5 13 1.1 0
2.25 0 1 11 13 1.1 0
2.40 0 1 11 13 1.1 0
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Torus Current =−2250 A, Sector 2, p > 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

2.55 33 0.28 0.22 7 3 1.46 0 0.1
2.70 31 0.28 0.22 7.3 3 1.46 0 0.1
2.85 31 0.28 0.22 7.8 3 1.46 0.005 -0.152
3.00 29 0.28 0.22 8.2 3 1.46 0.005 -0.152
3.15 27 0.28 0.22 8.6 3 1.46 0.005 -0.16
3.30 26 0.28 0.22 9 3 1.46 0 -0.16
3.45 45 0.53 0.22 9 3 1.46 0 -0.16
3.60 45 0.56 0.22 9.3 3 1.46 0.005 -0.16
3.75 45 0.56 0.22 9.7 3 1.46 0.005 -0.16
3.90 45 0.56 0.22 10.1 3 1.46 0 -0.16
4.05 45 0.58 0.22 10.1 3 1.46 0 -0.16
4.20 45 0.58 0.22 10.1 3 1.46 0 -0.16

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

2.55 0 1 11 12 0.6 0
2.70 0 1 13 12.5 0 0
2.85 0.005 -0.152 14 12.5 -0.5 0
3.00 0.005 -0.152 13.5 13 -0.5 0
3.15 0.005 -0.16 13.5 13 -0.5 0
3.30 0 -0.16 14 14 -0.5 0
3.45 0 -0.16 14.5 14 -0.5 0
3.60 0.005 -0.16 15 15 -0.5 0
3.75 0.005 -0.16 15 15 -0.5 0
3.90 0 -0.16 15 15 -0.5 0
4.05 0 -0.16 15 15 -0.5 0
4.20 0 -0.16 15 15 -0.5 0
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Torus Current =−2250 A, Sector 3, p < 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

.15 24 0.28 0.30 5 3 1.46 0 0
0.30 24 0.28 0.30 5 3 1.46 0 0
0.45 37 0.55 0.30 5 3 1.46 0 0
0.60 38 0.44 0.22 5 3 1.46 1 1
0.75 34 0.36 0.22 5.5 3 1.46 0.65 0.1
0.90 29 0.28 0.22 5.5 3 1.46 0 0.1
1.05 29 0.28 0.22 5.5 3 1.46 0 0.1
1.20 29 0.28 0.22 5.5 3 1.46 0 0.1
1.35 29.5 0.28 0.22 5.5 3 1.46 1 1
1.50 29.5 0.28 0.22 5.5 3 1.46 1 1
1.65 29.5 0.28 0.22 5.5 3 1.46 1 1
1.80 30.5 0.28 0.22 5.7 3 1.46 0.3 1
1.95 30.5 0.28 0.22 6 3 1.46 0 1
2.10 32 0.28 0.22 6 3 1.46 0 1
2.25 33 0.28 0.22 6.3 3 1.46 0 1
2.40 33.5 0.28 0.22 6.3 3 1.46 0 1

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 1.0 0.1 25 25 1.8 0
0.30 1.0 0.1 24 24 1.8 0
0.45 1.0 0.1 12 17 1.8 0
0.60 1 1. 11.5 17 1.8 1
0.75 0.65 0.1 11 17 1.8 0
0.90 2 1 15 20 1.2 0.8
1.05 1.5 1 15 19 1.2 0.8
1.20 1.5 1 14 18 1.3 0.8
1.35 0.08 -0.12 13.5 17 1.3 0
1.50 0.06 -0.10 13 16 1.3 -0.9
1.65 0.3 1 12.5 15 1.3 -0.9
1.80 0.3 1 12 14 1.3 -0.9
1.95 0 1 12 13 1 -0.9
2.10 0 1 11.5 13 1 -0.9
2.25 0 1 11 13 1 -0.9
2.40 0 1 11 13 1 -0.9
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Torus Current =−2250 A, Sector 3, p > 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

2.55 32.5 0.28 0.22 6.3 3 1.46 0 1
2.70 31.5 0.28 0.22 6.3 3 1.46 0 1
2.85 30 0.28 0.22 6.7 3 1.46 0 1
3.00 28 0.28 0.22 6.7 3 1.46 0 1
3.15 26 0.28 0.22 7 3 1.46 0 1
3.30 40 0.48 0.22 7.4 3 1.46 0 1
3.45 37 0.48 0.22 7.7 3 1.46 0 1
3.60 37 0.48 0.22 8 3 1.46 0 1
3.75 42 0.55 0.22 8 3 1.46 0 1
3.90 48 0.62 0.22 8.5 3 1.46 0 1
4.05 48 0.62 0.22 8.5 3 1.46 0 1
4.20 48 0.62 0.22 8.5 3 1.46 0 1

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

2.55 0 1 11 12 0.5 -0.9
2.70 0 1 13 12.5 -0.5 -0.9
2.85 0 1 14 12.5 -1.3 -0.9
3.00 0 1 13.5 13 -1.6 -0.9
3.15 0 1 13.5 13 -1.6 -0.9
3.30 0 1 14 14 -1.2 -0.9
3.45 0 1 14.5 14 -1.2 -0.9
3.60 0 1 15 15 -1.2 -0.9
3.75 0 1 15 15 -1.2 -0.9
3.90 0 1 15 15 -1.2 -0.9
4.05 0 1 15 15 -1.2 -0.9
4.20 0 1 15 15 -1.2 -0.9
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Torus Current =−2250 A, Sector 4, p < 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

0.15 24 0.28 0.30 5 3 1.46 0 0
0.30 24 0.28 0.30 5 3 1.46 0 0
0.45 30 0.40 0.30 5 3 1.46 0 0
0.60 33 0.44 0.30 5.3 3 1.46 0.2 -0.08
0.75 32 0.35 0.22 5.3 3 1.46 0.5 0
0.90 29 0.28 0.22 5.3 3 1.46 0.6 0.5
1.05 29 0.28 0.22 5.5 3 1.46 0.4 1
1.20 29 0.28 0.22 5.5 3 1.46 0.03 -0.13
1.35 29 0.28 0.22 5.5 3 1.46 0.12 -0.11
1.50 30 0.28 0.22 5.5 3 1.46 0.3 0
1.65 31 0.28 0.22 6 3 1.46 0.33 -0.02
1.80 31 0.28 0.22 6.3 3 1.46 0.22 -0.04
1.95 31 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.10 31 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.25 31 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.40 31 0.28 0.22 6.3 3 1.46 0.22 -0.06

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

.15 1.0 0.1 25 25 2.5 1
0.30 1.0 0.1 24 24 2.5 1
0.45 1.0 0.1 12.5 24 2.5 1
0.60 0.08 -0.12 12 18 1.8 0
0.75 0.5 0 13 21 1.8 0
0.90 0.6 0.4 15 20 1.2 0
1.05 0.4 1 15 19 1.2 0
1.20 0.025 -0.13 14 18 1.2 0
1.35 0.12 -0.11 13.5 17 1.0 -0.4
1.50 0.45 0 13 16 1.0 -0.4
1.65 0.33 -0.02 12.5 15 1.0 -0.6
1.80 0.22 -0.04 12 14 1.0 -0.6
1.95 0.22 -0.04 12 13 1.0 -0.6
2.10 0.22 -0.04 11.5 13 1.0 -0.6
2.25 0.22 -0.04 11 13 0.6 -0.6
2.40 0.22 -0.04 11 13 0.6 -0.6
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Torus Current =−2250 A, Sector 4, p > 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

2.55 31 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.70 29.5 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.85 28 0.28 0.22 6.3 3 1.46 0.22 -0.06
3.00 57 0.6 0.22 7 3 1.46 0.22 -0.04
3.15 57 0.60 0.22 7 3 1.46 0.22 -0.04
3.30 56 0.67 0.22 7.4 3 1.46 0.18 -0.04
3.45 54 0.63 0.22 7.8 3 1.46 0.18 -0.04
3.60 53 0.66 0.22 7.8 3 1.46 0.3 0.1
3.75 53 0.66 0.22 8. 3 1.46 0.3 0.1
3.90 53 0.69 0.22 8.3 3 1.46 0.25 0.1
4.05 53 0.73 0.22 8.5 3 1.46 0.25 0.1
4.20 53 0.73 0.22 8.7 3 1.46 0.25 0.1

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

2.55 0.22 1 11 12 0.6 -0.6
2.70 0.22 1 13 12.5 0.3 -0.6
2.85 0.22 1 14 12.5 0.3 -0.6
3.00 0.22 -0.04 13.5 13 -0.3 0.5
3.15 0.22 -0.04 13.5 13 -0.3 0.5
3.30 0.18 -0.04 14 14 -0.6 0.5
3.45 0.18 -0.04 14.5 14 -0.6 0.5
3.60 0.3 0.1 15 15 -0.6 0.5
3.75 0.3 0.1 15 15 -0.6 0.5
3.90 0.25 0.1 15 15 -0.6 0.5
4.05 0.25 0.1 15 15 -0.6 0.5
4.20 0.25 0.1 15 15 -0.6 0.5
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Torus Current =−2250 A, Sector 5, p < 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

0.15 24 0.28 0.30 5 3 1.46 0 0
0.30 24 0.28 0.30 5 3 1.46 0 0
0.45 25 0.28 0.30 5 3 1.46 0 0
0.60 34 0.38 0.22 5 3 1.46 0 0
0.75 30 0.34 0.22 5 3 1.46 0 0
0.90 28.5 0.28 0.22 5 3 1.46 0 0
1.05 28 0.28 0.22 5.3 3 1.46 0 0
1.20 29 0.28 0.22 5.5 3 1.46 0.02 -0.1
1.35 29 0.28 0.22 5.7 3 1.46 0.25 -0.06
1.50 31 0.28 0.22 5.7 3 1.46 0.09 -0.1
1.65 31 0.28 0.22 5.7 3 1.46 0.2 0
1.80 31 0.28 0.22 5.9 3 1.46 0.03 -0.13
1.95 31 0.28 0.22 6.0 3 1.46 0.22 -0.08
2.10 31 0.28 0.22 6.2 3 1.46 0.22 -0.06
2.25 31 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.40 31 0.28 0.22 6.3 3 1.46 0.22 -0.06

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 0 0 25 25 1.8 1
0.30 0 0 24 24 1.8 1
0.45 0 0 14 24 1.2 1
0.60 0 0 12 22 2 2.5
0.75 0 0 15 21 1.8 0.8
0.90 0 0 15 20 1.4 0.8
1.05 0 0 15 19 1.2 0
1.20 0.015 -0.1 14 18 1.2 0
1.35 0.15 0 13.5 17 1.2 0
1.50 0.08 -0.09 13 16 1.2 0
1.65 0.2 0 12.5 15 1.3 0
1.80 0.03 -0.13 12 14 1.2 0
1.95 0.20 -0.08 12 13 1.2 0
2.10 0.22 -0.04 11.5 13 1.2 0
2.25 0.22 -0.04 11 13 1.2 0
2.40 0.1 -0.12 11 13 1 0
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Torus Current =−2250 A, Sector 5, p > 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

2.55 31 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.70 29.5 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.85 28 0.28 0.22 6.8 3 1.46 0.22 -0.04
3.00 55 0.6 0.22 7.3 3 1.46 0.22 -0.04
3.15 54 0.60 0.22 7.3 3 1.46 0.22 -0.04
3.30 56 0.67 0.22 7.7 3 1.46 0.18 -0.04
3.45 52.5 0.63 0.22 8 3 1.46 0.18 -0.04
3.60 53 0.66 0.22 8.3 3 1.46 0.3 0.1
3.75 52 0.66 0.22 8.8 3 1.46 0.3 0.1
3.90 53 0.69 0.22 9 3 1.46 0.25 0.1
4.05 53 0.73 0.22 9 3 1.46 0.25 0.1
4.20 53 0.73 0.22 9 3 1.46 0.25 0.1

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

2.55 0.36 -0.04 11 12 0.5 0
2.70 0.32 -0.04 13 12.5 -0.5 0
2.85 0.22 -0.04 14 12.5 -0.8 0
3.00 0.22 -0.04 13.5 13 -0.8 0
3.15 0.26 -0.04 13.5 13 -0.3 0
3.30 0.18 -0.04 14 14 -0.6 0
3.45 0.18 -0.04 14.5 14 -0.6 0
3.60 0.39 0.1 15 15 -0.6 0
3.75 0.45 0.1 15 15 -0.6 0
3.90 0.45 0.1 15 15 -0.6 -0.1
4.05 0.45 0.1 15 15 -0.6 -0.1
4.20 0.45 0.1 15 15 -0.6 0
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Torus Current =−2250 A, Sector 6, p < 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

0.15 24 0.28 0.30 5 3 1.46 0 0
0.30 24 0.28 0.30 5 3 1.46 0 0
0.45 31 0.42 0.30 5 3 1.46 0.2 0
0.60 36.5 0.40 0.22 5 3 1.46 0.2 0
0.75 32 0.33 0.22 5.3 3 1.46 0.2 0
0.90 30 0.28 0.22 5.3 3 1.46 0.2 0
1.05 30 0.28 0.22 5.3 3 1.46 0 0
1.20 29 0.28 0.22 5.7 3 1.46 0 -0.1
1.35 32 0.28 0.22 5.7 3 1.46 0 -0.06
1.50 32 0.28 0.22 5.7 3 1.46 0.04 -0.13
1.65 32 0.28 0.22 5.7 3 1.46 0.15 0
1.80 32 0.28 0.22 5.9 3 1.46 0.02 -0.13
1.95 32 0.28 0.22 6.0 3 1.46 0.22 -0.08
2.10 33 0.28 0.22 6.2 3 1.46 0.22 -0.06
2.25 34 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.40 34 0.28 0.22 6.3 3 1.46 0.26 -0.06

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

0.15 0 0 25 25 2.8 2
0.30 0 0 24 24 2.8 2
0.45 0.2 0 13 24 2.8 2
0.60 0.2 0 14 18 2 0
0.75 0.1 0 14 21 2.8 0
0.90 0.1 0 14 20 2.4 0
1.05 0 0 15 19 2.2 1
1.20 0 -0.1 14 18 2.2 1
1.35 0 0 13.5 17 2.2 1
1.50 0.04 -0.11 13 16 2.2 1.5
1.65 0.15 0 12.5 15 2.3 1
1.80 0.02 -0.13 12 14 2.2 1
1.95 0.20 -0.08 12 13 2.2 1
2.10 0.22 -0.07 11.5 13 2.2 1
2.25 0.22 -0.04 11 13 2.2 0
2.40 0.1 -0.12 11 13 2 0
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Torus Current =−2250 A, Sector 6, p > 2.55 GeV

Bin pmin A B C D E F Gupper Hupper

2.55 34 0.28 0.22 6.3 3 1.46 0.22 -0.06
2.70 32 0.28 0.22 6.7 3 1.46 0.22 -0.06
2.85 29 0.28 0.22 7 3 1.46 0.22 -0.04
3.00 58 0.6 0.22 7.3 3 1.46 0.22 -0.04
3.15 56 0.60 0.22 7.7 3 1.46 0.22 -0.04
3.30 60 0.67 0.22 8 3 1.46 0.18 -0.04
3.45 55 0.63 0.22 8.2 3 1.46 0.18 -0.04
3.60 55 0.66 0.22 8.5 3 1.46 0.3 0.1
3.75 53 0.66 0.22 8.8 3 1.46 0.3 0.1
3.90 54 0.69 0.22 9 3 1.46 0.25 0.1
4.05 53 0.73 0.22 9 3 1.46 0.25 0.1
4.20 53 0.73 0.22 9 3 1.46 0.25 0.1

Bin pmin Glower Hlower θupper θlower inneroffset outeroffset

2.55 0.36 -0.04 11 12 .5 0
2.70 0.32 -0.04 13 12.5 0.5 1
2.85 0.32 -0.04 14 12.5 -0.3 1
3.00 0.36 -0.04 13.5 13 0.2 1
3.15 0.36 -0.04 13.5 13 0.3 1
3.30 0.36 -0.04 14 14 0 1
3.45 0.36 -0.04 14.5 14 0 1
3.60 0.45 0.1 15 15 0 1
3.75 0.45 0.1 15 15 0 1
3.90 0.45 0.1 15 15 0 0.9
4.05 0.45 0.1 15 15 0 0.9
4.20 0.45 0.1 15 15 0 0.9
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B.4 A1 + ηA2 Results

Table B.6: Values of A1 + ηA2 for E=1.6 GeV data, with statistical and systematic errors. Average
kinematic values in each bin are also shown.

Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

3 19 -0.346 0.223 0.06 0.14 0.06 1.13
3 20 -0.286 0.051 0.021 0.11 0.06 1.18
3 21 -0.333 0.027 0.018 0.09 0.06 1.23
3 22 -0.145 0.031 0.017 0.07 0.06 1.29
3 23 -0.016 0.035 0.007 0.06 0.06 1.35
3 24 -0.091 0.03 0.008 0.05 0.06 1.41
3 25 -0.089 0.023 0.006 0.04 0.06 1.47
3 26 -0.058 0.023 0.005 0.04 0.06 1.53

Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

3 19 4.04 0.16 0.9 0.98 1.06 1.44 0.9
3 20 4.04 0.21 0.69 0.97 0.82 1.38 0.69
3 21 4.04 0.25 0.56 0.96 0.68 1.31 0.56
3 22 4.04 0.3 0.45 0.94 0.55 1.24 0.45
3 23 4.05 0.37 0.36 0.92 0.46 1.15 0.36
3 24 4.05 0.43 0.29 0.89 0.39 1.06 0.29
3 25 4.05 0.49 0.24 0.85 0.34 0.97 0.24
3 26 4.05 0.55 0.2 0.81 0.29 0.89 0.2
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

4 19 -0.228 0.144 0.063 0.22 0.11 1.13
4 20 -0.334 0.033 0.023 0.18 0.11 1.18
4 21 -0.346 0.019 0.019 0.15 0.11 1.23
4 22 -0.148 0.023 0.013 0.13 0.11 1.29
4 23 0.019 0.027 0.007 0.11 0.11 1.35
4 24 0.033 0.023 0.008 0.09 0.11 1.41
4 25 0.024 0.017 0.007 0.08 0.12 1.47
4 26 0.015 0.037 0.007 0.08 0.12 1.5

Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

4 19 4.05 0.19 1 0.96 1.25 1.42 1
4 20 4.05 0.23 0.8 0.95 1 1.36 0.8
4 21 4.06 0.27 0.66 0.94 0.84 1.3 0.66
4 22 4.05 0.33 0.54 0.92 0.71 1.22 0.54
4 23 4.05 0.38 0.44 0.9 0.6 1.13 0.44
4 24 4.05 0.44 0.36 0.86 0.51 1.03 0.36
4 25 4.04 0.5 0.3 0.82 0.45 0.94 0.3
4 26 4.04 0.54 0.27 0.79 0.42 0.88 0.27
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

5 19 -0.319 0.084 0.058 0.38 0.24 1.13
5 20 -0.364 0.018 0.023 0.31 0.24 1.18
5 21 -0.353 0.01 0.019 0.27 0.24 1.23
5 22 -0.111 0.012 0.011 0.23 0.24 1.29
5 23 0.071 0.014 0.01 0.2 0.24 1.35
5 24 0.146 0.013 0.01 0.17 0.23 1.41
5 25 0.195 0.01 0.011 0.15 0.23 1.47
5 26 0.21 0.008 0.012 0.14 0.23 1.53
5 27 0.156 0.009 0.013 0.12 0.23 1.59
5 28 0.048 0.008 0.014 0.11 0.23 1.65
5 29 0.026 0.013 0.016 0.1 0.22 1.69

Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

5 19 3.95 0.26 1.03 0.92 1.45 1.3 1.03
5 20 3.95 0.31 0.85 0.91 1.21 1.23 0.85
5 21 3.94 0.35 0.73 0.89 1.04 1.17 0.73
5 22 3.94 0.4 0.61 0.87 0.89 1.09 0.61
5 23 3.93 0.45 0.5 0.83 0.77 1 0.5
5 24 3.93 0.51 0.42 0.79 0.67 0.91 0.42
5 25 3.93 0.56 0.34 0.74 0.59 0.81 0.34
5 26 3.93 0.62 0.29 0.68 0.53 0.72 0.29
5 27 3.93 0.69 0.23 0.61 0.48 0.62 0.23
5 28 3.92 0.75 0.18 0.52 0.43 0.52 0.18
5 29 3.92 0.8 0.15 0.45 0.4 0.45 0.15
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

6 19 -0.184 0.079 0.056 0.53 0.45 1.13
6 20 -0.359 0.016 0.023 0.46 0.45 1.18
6 21 -0.311 0.009 0.018 0.41 0.45 1.23
6 22 -0.085 0.012 0.01 0.36 0.45 1.29
6 23 0.203 0.014 0.012 0.32 0.44 1.35
6 24 0.255 0.014 0.011 0.28 0.44 1.41
6 25 0.378 0.012 0.013 0.24 0.41 1.47
6 26 0.397 0.01 0.014 0.22 0.41 1.53
6 27 0.277 0.015 0.015 0.18 0.37 1.59
6 28 0.173 0.026 0.015 0.16 0.35 1.64

Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

6 19 3.92 0.38 0.9 0.84 1.49 1.17 0.9
6 20 3.92 0.43 0.78 0.82 1.3 1.11 0.78
6 21 3.92 0.47 0.68 0.8 1.16 1.04 0.68
6 22 3.92 0.51 0.58 0.77 1.02 0.97 0.58
6 23 3.92 0.55 0.49 0.72 0.9 0.88 0.49
6 24 3.92 0.6 0.41 0.67 0.8 0.79 0.41
6 25 3.91 0.64 0.34 0.63 0.7 0.71 0.34
6 26 3.91 0.7 0.28 0.56 0.64 0.62 0.28
6 27 3.9 0.74 0.23 0.5 0.57 0.54 0.23
6 28 3.89 0.77 0.19 0.44 0.52 0.46 0.19
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

7 19 0.188 0.161 0.057 0.66 0.74 1.13
7 20 -0.203 0.037 0.023 0.59 0.73 1.18
7 21 -0.233 0.025 0.016 0.53 0.7 1.23
7 22 -0.032 0.032 0.01 0.47 0.7 1.29
7 23 0.339 0.054 0.01 0.43 0.69 1.34

Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

7 19 3.9 0.53 0.71 0.72 1.43 1.01 0.71
7 20 3.9 0.57 0.63 0.7 1.29 0.95 0.63
7 21 3.89 0.6 0.57 0.68 1.18 0.89 0.57
7 22 3.89 0.64 0.49 0.63 1.07 0.82 0.49
7 23 3.89 0.67 0.42 0.59 0.97 0.75 0.42
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Table B.7: Values of A1 + ηA2 for E=2.5 GeV data, with statistical and systematic errors. Average
kinematic values in each bin are also shown.

Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

4 19 -0.195 0.471 0.064 0.27 0.14 1.13
4 20 -0.389 0.098 0.027 0.21 0.14 1.18
4 21 -0.277 0.047 0.023 0.18 0.14 1.23
4 22 -0.162 0.05 0.017 0.15 0.14 1.29
4 23 -0.036 0.052 0.013 0.13 0.14 1.35
4 24 0.012 0.042 0.008 0.11 0.13 1.41
4 25 0.042 0.031 0.007 0.09 0.13 1.47
4 26 0.068 0.026 0.007 0.08 0.13 1.53
4 27 0.055 0.027 0.005 0.07 0.13 1.59
4 28 -0.046 0.024 0.004 0.07 0.13 1.65
4 29 -0.045 0.022 0.005 0.06 0.13 1.71
4 30 0.033 0.024 0.007 0.06 0.13 1.77
4 31 -0.036 0.024 0.006 0.05 0.13 1.83
4 32 -0.035 0.028 0.007 0.05 0.13 1.88
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

4 19 5.68 0.13 1.13 0.98 1.33 2.27 1.13
4 20 5.68 0.15 0.91 0.98 1.07 2.21 0.91
4 21 5.68 0.18 0.77 0.97 0.9 2.15 0.77
4 22 5.68 0.21 0.64 0.97 0.76 2.07 0.64
4 23 5.68 0.24 0.53 0.96 0.64 1.98 0.53
4 24 5.68 0.28 0.45 0.94 0.55 1.89 0.45
4 25 5.68 0.31 0.38 0.93 0.48 1.8 0.38
4 26 5.68 0.35 0.33 0.91 0.43 1.71 0.33
4 27 5.68 0.4 0.29 0.89 0.38 1.61 0.29
4 28 5.68 0.44 0.25 0.86 0.34 1.5 0.25
4 29 5.68 0.5 0.21 0.83 0.31 1.4 0.21
4 30 5.68 0.55 0.19 0.79 0.29 1.29 0.19
4 31 5.68 0.6 0.16 0.74 0.26 1.17 0.16
4 32 5.68 0.65 0.14 0.7 0.24 1.07 0.14
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

5 19 -0.412 0.192 0.066 0.37 0.24 1.13
5 20 -0.426 0.04 0.027 0.31 0.24 1.18
5 21 -0.385 0.022 0.022 0.27 0.24 1.23
5 22 -0.109 0.026 0.014 0.23 0.24 1.29
5 23 0.123 0.03 0.012 0.2 0.24 1.35
5 24 0.136 0.027 0.01 0.17 0.23 1.41
5 25 0.201 0.02 0.01 0.15 0.23 1.47
5 26 0.246 0.016 0.01 0.14 0.23 1.53
5 27 0.152 0.017 0.008 0.12 0.23 1.59
5 28 0.077 0.015 0.006 0.11 0.24 1.65
5 29 0.07 0.014 0.007 0.1 0.24 1.71
5 30 0.094 0.014 0.008 0.09 0.24 1.77
5 31 0.058 0.014 0.007 0.09 0.24 1.83
5 32 0.012 0.013 0.007 0.08 0.25 1.89
5 33 0.024 0.013 0.006 0.08 0.25 1.95
5 34 0.072 0.014 0.007 0.08 0.26 2.01
5 35 0.072 0.023 0.008 0.07 0.27 2.07
5 36 -0.046 0.075 0.009 0.06 0.24 2.11
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

5 19 5.62 0.16 1.17 0.97 1.45 2.19 1.17
5 20 5.61 0.19 0.97 0.96 1.21 2.12 0.97
5 21 5.61 0.21 0.84 0.96 1.04 2.06 0.84
5 22 5.6 0.24 0.71 0.95 0.89 1.98 0.71
5 23 5.58 0.27 0.6 0.94 0.77 1.88 0.6
5 24 5.59 0.31 0.51 0.92 0.67 1.79 0.51
5 25 5.58 0.34 0.44 0.9 0.59 1.69 0.44
5 26 5.57 0.38 0.39 0.88 0.53 1.6 0.39
5 27 5.56 0.42 0.34 0.85 0.48 1.49 0.34
5 28 5.55 0.46 0.29 0.82 0.43 1.38 0.29
5 29 5.54 0.51 0.25 0.78 0.4 1.27 0.25
5 30 5.52 0.57 0.22 0.73 0.36 1.15 0.22
5 31 5.49 0.63 0.18 0.67 0.34 1.01 0.18
5 32 5.44 0.69 0.15 0.6 0.32 0.87 0.15
5 33 5.39 0.76 0.12 0.5 0.3 0.71 0.12
5 34 5.37 0.82 0.1 0.42 0.28 0.58 0.1
5 35 5.55 0.84 0.09 0.38 0.27 0.53 0.09
5 36 5.68 0.85 0.08 0.38 0.24 0.54 0.08
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

6 19 -0.117 0.146 0.06 0.54 0.47 1.13
6 20 -0.3 0.03 0.024 0.47 0.46 1.18
6 21 -0.327 0.017 0.02 0.42 0.46 1.23
6 22 -0.099 0.02 0.011 0.37 0.47 1.29
6 23 0.265 0.024 0.012 0.33 0.47 1.35
6 24 0.323 0.022 0.014 0.29 0.47 1.41
6 25 0.433 0.017 0.017 0.26 0.47 1.47
6 26 0.432 0.014 0.017 0.24 0.47 1.53
6 27 0.346 0.015 0.013 0.22 0.47 1.59
6 28 0.234 0.013 0.01 0.2 0.46 1.65
6 29 0.257 0.011 0.011 0.18 0.47 1.71
6 30 0.24 0.011 0.011 0.17 0.46 1.77
6 31 0.151 0.011 0.008 0.16 0.46 1.83
6 32 0.091 0.011 0.008 0.14 0.45 1.89
6 33 0.099 0.011 0.007 0.12 0.42 1.95
6 34 0.11 0.017 0.007 0.11 0.38 2
6 35 0.087 0.03 0.008 0.09 0.35 2.06
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

6 19 5.37 0.24 1.07 0.93 1.49 1.93 1.07
6 20 5.36 0.27 0.94 0.92 1.3 1.87 0.94
6 21 5.37 0.3 0.83 0.91 1.16 1.81 0.83
6 22 5.37 0.33 0.73 0.9 1.02 1.73 0.73
6 23 5.37 0.36 0.63 0.88 0.9 1.64 0.63
6 24 5.36 0.39 0.55 0.86 0.81 1.55 0.55
6 25 5.35 0.42 0.48 0.83 0.72 1.45 0.48
6 26 5.35 0.46 0.42 0.8 0.66 1.35 0.42
6 27 5.34 0.5 0.36 0.76 0.6 1.25 0.36
6 28 5.33 0.53 0.31 0.72 0.55 1.14 0.31
6 29 5.33 0.58 0.27 0.67 0.51 1.03 0.27
6 30 5.33 0.64 0.23 0.61 0.47 0.92 0.23
6 31 5.33 0.69 0.19 0.55 0.43 0.81 0.19
6 32 5.32 0.74 0.16 0.48 0.4 0.69 0.16
6 33 5.33 0.79 0.13 0.41 0.36 0.59 0.13
6 34 5.35 0.83 0.1 0.37 0.33 0.52 0.1
6 35 5.62 0.83 0.1 0.38 0.3 0.55 0.1
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

7 19 0.136 0.145 0.057 0.69 0.9 1.13
7 20 -0.232 0.033 0.018 0.63 0.9 1.18
7 21 -0.221 0.019 0.017 0.58 0.9 1.23
7 22 0.063 0.022 0.011 0.53 0.9 1.29
7 23 0.366 0.027 0.014 0.47 0.84 1.35
7 24 0.443 0.026 0.018 0.43 0.84 1.41
7 25 0.556 0.02 0.021 0.39 0.84 1.47
7 26 0.564 0.019 0.02 0.35 0.78 1.53
7 27 0.476 0.022 0.015 0.32 0.77 1.59
7 28 0.378 0.022 0.012 0.29 0.74 1.65
7 29 0.382 0.024 0.013 0.26 0.7 1.71
7 30 0.384 0.024 0.012 0.24 0.7 1.77
7 31 0.336 0.06 0.011 0.23 0.7 1.8

Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

7 19 5.28 0.39 0.85 0.84 1.38 1.66 0.85
7 20 5.29 0.42 0.77 0.83 1.26 1.6 0.77
7 21 5.32 0.44 0.7 0.81 1.16 1.55 0.7
7 22 5.33 0.47 0.63 0.79 1.06 1.48 0.63
7 23 5.33 0.47 0.57 0.78 0.96 1.42 0.57
7 24 5.32 0.5 0.5 0.75 0.88 1.33 0.5
7 25 5.32 0.54 0.44 0.72 0.8 1.24 0.44
7 26 5.32 0.56 0.4 0.7 0.74 1.18 0.4
7 27 5.32 0.6 0.35 0.66 0.68 1.08 0.35
7 28 5.32 0.62 0.3 0.62 0.63 1 0.3
7 29 5.33 0.65 0.26 0.58 0.57 0.91 0.26
7 30 5.31 0.71 0.22 0.51 0.53 0.79 0.22
7 31 5.31 0.74 0.19 0.47 0.51 0.72 0.19
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Table B.8: Values of A1 + ηA2 for E=4.2 GeV data, with statistical and systematic errors. Average
kinematic values in each bin are also shown.

Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

5 24 -0.077 0.476 0.023 0.21 0.31 1.43
5 25 -0.207 0.172 0.027 0.19 0.31 1.48
5 26 0.256 0.105 0.024 0.17 0.31 1.54
5 27 0.29 0.074 0.019 0.16 0.3 1.59
5 28 0.166 0.054 0.014 0.14 0.3 1.65
5 29 0.155 0.039 0.016 0.13 0.3 1.71
5 30 0.066 0.034 0.011 0.11 0.29 1.77
5 31 0.08 0.029 0.007 0.1 0.29 1.83
5 32 0.012 0.023 0.006 0.09 0.28 1.89
5 33 0.054 0.02 0.006 0.09 0.28 1.95
5 34 0.073 0.018 0.006 0.08 0.27 2.01
5 35 0.058 0.016 0.005 0.07 0.26 2.07
5 36 0.066 0.014 0.005 0.07 0.26 2.13
5 37 0.077 0.013 0.005 0.06 0.25 2.19
5 38 0.048 0.012 0.006 0.06 0.25 2.25
5 39 0.11 0.012 0.006 0.05 0.25 2.31
5 40 0.069 0.011 0.005 0.05 0.25 2.37
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

5 24 8.83 0.18 0.61 0.97 0.72 3.45 0.61
5 25 8.83 0.2 0.55 0.96 0.65 3.38 0.55
5 26 8.83 0.22 0.49 0.96 0.58 3.28 0.49
5 27 8.83 0.23 0.44 0.95 0.53 3.19 0.44
5 28 8.83 0.25 0.39 0.94 0.48 3.09 0.39
5 29 8.83 0.28 0.35 0.93 0.44 2.98 0.35
5 30 8.83 0.31 0.31 0.92 0.4 2.88 0.31
5 31 8.83 0.33 0.28 0.9 0.36 2.76 0.28
5 32 8.83 0.36 0.25 0.89 0.33 2.65 0.25
5 33 8.83 0.39 0.22 0.87 0.31 2.53 0.22
5 34 8.83 0.43 0.2 0.85 0.28 2.41 0.2
5 35 8.83 0.47 0.18 0.82 0.26 2.28 0.18
5 36 8.83 0.5 0.16 0.8 0.24 2.15 0.16
5 37 8.83 0.54 0.14 0.76 0.23 2.01 0.14
5 38 8.83 0.58 0.13 0.73 0.21 1.87 0.13
5 39 8.83 0.62 0.11 0.69 0.2 1.73 0.11
5 40 8.83 0.66 0.1 0.64 0.19 1.58 0.1
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

6 19 -0.308 0.293 0.055 0.57 0.52 1.13
6 20 -0.459 0.055 0.032 0.5 0.52 1.18
6 21 -0.227 0.03 0.016 0.44 0.51 1.23
6 22 -0.075 0.035 0.014 0.39 0.5 1.29
6 23 0.245 0.039 0.018 0.34 0.49 1.35
6 24 0.37 0.034 0.022 0.3 0.48 1.41
6 25 0.479 0.024 0.027 0.27 0.48 1.47
6 26 0.502 0.02 0.026 0.24 0.47 1.53
6 27 0.38 0.021 0.021 0.22 0.47 1.59
6 28 0.255 0.018 0.015 0.2 0.46 1.65
6 29 0.303 0.015 0.017 0.18 0.46 1.71
6 30 0.255 0.016 0.012 0.17 0.46 1.77
6 31 0.125 0.015 0.008 0.16 0.46 1.83
6 32 0.099 0.014 0.008 0.14 0.46 1.89
6 33 0.123 0.013 0.007 0.13 0.45 1.95
6 34 0.161 0.013 0.007 0.12 0.45 2.01
6 35 0.138 0.012 0.006 0.12 0.44 2.07
6 36 0.13 0.011 0.006 0.11 0.45 2.13
6 37 0.144 0.011 0.006 0.1 0.45 2.19
6 38 0.159 0.011 0.007 0.1 0.46 2.25
6 39 0.141 0.011 0.006 0.09 0.45 2.31
6 40 0.101 0.01 0.006 0.09 0.45 2.37
6 41 0.149 0.012 0.006 0.09 0.5 2.43
6 42 0.13 0.012 0.007 0.09 0.5 2.49
6 43 0.139 0.019 0.008 0.09 0.55 2.54
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

6 19 8.83 0.13 1.22 0.98 1.48 3.75 1.22
6 20 8.83 0.15 1.08 0.97 1.3 3.68 1.08
6 21 8.83 0.16 0.97 0.97 1.17 3.63 0.97
6 22 8.83 0.17 0.86 0.97 1.03 3.56 0.86
6 23 8.83 0.19 0.76 0.96 0.91 3.47 0.76
6 24 8.83 0.2 0.67 0.96 0.81 3.38 0.67
6 25 8.83 0.22 0.59 0.95 0.73 3.29 0.59
6 26 8.83 0.23 0.54 0.95 0.66 3.21 0.54
6 27 8.83 0.25 0.48 0.94 0.6 3.11 0.48
6 28 8.83 0.26 0.43 0.93 0.55 3 0.43
6 29 8.83 0.29 0.39 0.92 0.5 2.9 0.39
6 30 8.83 0.32 0.35 0.9 0.47 2.79 0.35
6 31 8.83 0.34 0.32 0.89 0.43 2.67 0.32
6 32 8.83 0.37 0.29 0.87 0.4 2.55 0.29
6 33 8.83 0.4 0.26 0.85 0.37 2.44 0.26
6 34 8.83 0.44 0.23 0.82 0.35 2.31 0.23
6 35 8.83 0.48 0.21 0.8 0.32 2.18 0.21
6 36 8.83 0.51 0.19 0.77 0.3 2.05 0.19
6 37 8.83 0.55 0.17 0.73 0.29 1.91 0.17
6 38 8.83 0.59 0.15 0.69 0.27 1.76 0.15
6 39 8.83 0.63 0.14 0.65 0.26 1.62 0.14
6 40 8.83 0.67 0.12 0.6 0.24 1.47 0.12
6 41 8.83 0.72 0.11 0.54 0.24 1.29 0.11
6 42 8.83 0.76 0.09 0.48 0.23 1.14 0.09
6 43 8.83 0.8 0.08 0.42 0.23 0.98 0.08
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

7 19 -0.314 0.201 0.054 0.7 0.96 1.13
7 20 -0.281 0.044 0.027 0.64 0.93 1.18
7 21 -0.195 0.026 0.014 0.59 0.93 1.23
7 22 0.159 0.03 0.015 0.54 0.93 1.29
7 23 0.419 0.034 0.019 0.5 0.94 1.35
7 24 0.557 0.031 0.023 0.45 0.94 1.41
7 25 0.685 0.023 0.029 0.42 0.94 1.47
7 26 0.726 0.02 0.03 0.39 0.94 1.53
7 27 0.61 0.021 0.025 0.36 0.93 1.59
7 28 0.473 0.018 0.021 0.34 0.95 1.65
7 29 0.528 0.016 0.02 0.31 0.94 1.71
7 30 0.4 0.016 0.017 0.29 0.94 1.77
7 31 0.334 0.016 0.014 0.27 0.93 1.83
7 32 0.284 0.015 0.013 0.26 0.94 1.89
7 33 0.29 0.014 0.013 0.24 0.95 1.95
7 34 0.318 0.013 0.012 0.23 0.95 2.01
7 35 0.31 0.012 0.012 0.22 0.95 2.07
7 36 0.32 0.011 0.011 0.2 0.95 2.13
7 37 0.275 0.01 0.011 0.2 0.96 2.19
7 38 0.264 0.01 0.01 0.19 0.96 2.25
7 39 0.261 0.009 0.01 0.18 0.96 2.31
7 40 0.252 0.009 0.009 0.17 0.95 2.37
7 41 0.183 0.009 0.008 0.15 0.87 2.43
7 42 0.179 0.009 0.007 0.14 0.83 2.49
7 43 0.123 0.018 0.008 0.12 0.74 2.53
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

7 19 8.83 0.2 1.05 0.95 1.36 3.52 1.05
7 20 8.83 0.21 0.97 0.95 1.25 3.46 0.97
7 21 8.83 0.23 0.9 0.95 1.15 3.4 0.9
7 22 8.83 0.24 0.81 0.94 1.05 3.32 0.81
7 23 8.83 0.25 0.74 0.93 0.96 3.23 0.74
7 24 8.83 0.27 0.67 0.92 0.88 3.14 0.67
7 25 8.83 0.28 0.61 0.91 0.81 3.05 0.61
7 26 8.83 0.3 0.56 0.9 0.75 2.96 0.56
7 27 8.83 0.32 0.51 0.89 0.7 2.86 0.51
7 28 8.83 0.34 0.46 0.88 0.65 2.74 0.46
7 29 8.83 0.36 0.42 0.86 0.6 2.64 0.42
7 30 8.83 0.39 0.39 0.84 0.57 2.53 0.39
7 31 8.83 0.41 0.35 0.82 0.53 2.42 0.35
7 32 8.83 0.44 0.32 0.8 0.5 2.3 0.32
7 33 8.83 0.48 0.29 0.77 0.47 2.17 0.29
7 34 8.83 0.52 0.27 0.74 0.44 2.04 0.27
7 35 8.83 0.56 0.24 0.71 0.42 1.91 0.24
7 36 8.83 0.6 0.22 0.68 0.39 1.78 0.22
7 37 8.83 0.64 0.19 0.63 0.37 1.64 0.19
7 38 8.83 0.68 0.17 0.59 0.35 1.5 0.17
7 39 8.83 0.72 0.15 0.54 0.34 1.35 0.15
7 40 8.83 0.76 0.13 0.49 0.32 1.2 0.13
7 41 8.83 0.78 0.11 0.45 0.3 1.09 0.11
7 42 8.83 0.81 0.09 0.4 0.28 0.96 0.09
7 43 8.83 0.83 0.08 0.38 0.26 0.89 0.08



504

Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

8 19 -0.717 0.265 0.071 0.82 1.79 1.12
8 20 -0.382 0.063 0.029 0.77 1.77 1.18
8 21 -0.062 0.04 0.019 0.73 1.79 1.23
8 22 0.251 0.038 0.017 0.69 1.82 1.29
8 23 0.64 0.037 0.026 0.66 1.85 1.35
8 24 0.668 0.034 0.026 0.62 1.88 1.41
8 25 0.813 0.026 0.029 0.58 1.84 1.47
8 26 0.896 0.022 0.033 0.55 1.86 1.53
8 27 0.721 0.022 0.029 0.53 1.87 1.59
8 28 0.647 0.018 0.024 0.5 1.88 1.65
8 29 0.712 0.016 0.024 0.47 1.88 1.71
8 30 0.654 0.016 0.022 0.45 1.86 1.77
8 31 0.506 0.016 0.019 0.42 1.83 1.83
8 32 0.41 0.015 0.017 0.4 1.78 1.89
8 33 0.455 0.015 0.017 0.37 1.73 1.95
8 34 0.444 0.015 0.016 0.35 1.7 2.01
8 35 0.486 0.015 0.016 0.32 1.59 2.07
8 36 0.405 0.015 0.013 0.3 1.57 2.13
8 37 0.393 0.016 0.013 0.28 1.53 2.19
8 38 0.399 0.019 0.012 0.25 1.43 2.25
8 39 0.299 0.032 0.012 0.24 1.41 2.29
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

8 19 8.83 0.32 0.8 0.89 1.16 3.08 0.8
8 20 8.83 0.33 0.75 0.88 1.1 3.02 0.75
8 21 8.83 0.35 0.71 0.87 1.04 2.94 0.71
8 22 8.83 0.37 0.66 0.86 0.97 2.85 0.66
8 23 8.83 0.4 0.6 0.84 0.91 2.75 0.6
8 24 8.83 0.42 0.55 0.83 0.86 2.64 0.55
8 25 8.83 0.42 0.52 0.82 0.81 2.57 0.52
8 26 8.83 0.45 0.48 0.8 0.77 2.47 0.48
8 27 8.83 0.49 0.44 0.78 0.73 2.36 0.44
8 28 8.83 0.51 0.41 0.75 0.69 2.25 0.41
8 29 8.83 0.53 0.37 0.73 0.65 2.14 0.37
8 30 8.83 0.55 0.35 0.71 0.62 2.04 0.35
8 31 8.83 0.57 0.32 0.68 0.59 1.94 0.32
8 32 8.83 0.59 0.29 0.66 0.56 1.85 0.29
8 33 8.83 0.62 0.27 0.64 0.53 1.76 0.27
8 34 8.83 0.66 0.24 0.61 0.5 1.64 0.24
8 35 8.83 0.68 0.22 0.59 0.47 1.57 0.22
8 36 8.83 0.72 0.2 0.55 0.45 1.45 0.2
8 37 8.83 0.75 0.18 0.52 0.43 1.34 0.18
8 38 8.83 0.77 0.16 0.49 0.4 1.24 0.16
8 39 8.83 0.79 0.15 0.45 0.39 1.15 0.15
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

9 19 -0.493 0.495 0.08 0.88 2.88 1.13
9 20 -0.512 0.218 0.042 0.85 2.88 1.18
9 21 0.046 0.1 0.029 0.82 2.88 1.23
9 22 0.497 0.095 0.02 0.79 2.88 1.29
9 23 0.638 0.084 0.029 0.75 2.88 1.35
9 24 0.716 0.078 0.027 0.72 2.88 1.41
9 25 0.823 0.06 0.03 0.69 2.87 1.47
9 26 0.849 0.058 0.034 0.66 2.86 1.52
9 27 0.661 0.063 0.03 0.64 2.86 1.58

Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

9 19 8.83 0.46 0.56 0.77 0.97 2.49 0.56
9 20 8.83 0.47 0.54 0.76 0.94 2.43 0.54
9 21 8.83 0.5 0.51 0.74 0.91 2.36 0.51
9 22 8.83 0.54 0.48 0.73 0.87 2.28 0.48
9 23 8.83 0.58 0.45 0.71 0.83 2.2 0.45
9 24 8.83 0.6 0.42 0.69 0.8 2.1 0.42
9 25 8.83 0.6 0.39 0.67 0.77 2.02 0.39
9 26 8.83 0.61 0.37 0.65 0.74 1.94 0.37
9 27 8.83 0.66 0.34 0.62 0.71 1.85 0.34
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Table B.9: Values of A1 + ηA2 for E=5.7 GeV data, with statistical and systematic errors. Average
kinematic values in each bin are also shown.

Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

6 30 0.2 0.343 0.022 0.22 0.63 1.78
6 31 0.133 0.152 0.02 0.2 0.62 1.84
6 32 0.122 0.092 0.018 0.18 0.61 1.9
6 33 -0.03 0.062 0.015 0.17 0.6 1.95
6 34 0.088 0.05 0.014 0.16 0.58 2.01
6 35 0.11 0.038 0.014 0.14 0.57 2.07
6 36 0.18 0.032 0.014 0.13 0.56 2.13
6 37 0.156 0.028 0.013 0.12 0.55 2.19
6 38 0.206 0.025 0.012 0.12 0.55 2.25
6 39 0.163 0.022 0.01 0.11 0.55 2.31
6 40 0.127 0.02 0.008 0.1 0.54 2.37
6 41 0.145 0.02 0.007 0.1 0.54 2.43
6 42 0.119 0.019 0.008 0.09 0.54 2.49
6 43 0.115 0.018 0.008 0.09 0.54 2.55
6 44 0.156 0.018 0.007 0.08 0.54 2.61
6 45 0.133 0.017 0.007 0.08 0.54 2.67
6 46 0.118 0.017 0.006 0.08 0.54 2.73
6 47 0.107 0.017 0.007 0.07 0.54 2.79
6 48 0.136 0.017 0.007 0.07 0.54 2.85
6 49 0.132 0.017 0.007 0.07 0.54 2.91
6 50 0.101 0.021 0.004 0.06 0.52 2.96
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

6 30 11.62 0.24 0.41 0.94 0.51 4.16 0.41
6 31 11.63 0.26 0.38 0.93 0.47 4.07 0.38
6 32 11.63 0.27 0.35 0.92 0.44 3.96 0.35
6 33 11.63 0.29 0.32 0.91 0.41 3.85 0.32
6 34 11.63 0.32 0.29 0.9 0.38 3.73 0.29
6 35 11.63 0.34 0.27 0.89 0.35 3.61 0.27
6 36 11.63 0.37 0.24 0.88 0.33 3.48 0.24
6 37 11.63 0.4 0.22 0.86 0.31 3.35 0.22
6 38 11.63 0.42 0.2 0.84 0.29 3.21 0.2
6 39 11.63 0.45 0.19 0.82 0.28 3.06 0.19
6 40 11.63 0.48 0.17 0.8 0.26 2.91 0.17
6 41 11.63 0.51 0.16 0.77 0.25 2.76 0.16
6 42 11.63 0.54 0.14 0.74 0.24 2.6 0.14
6 43 11.63 0.57 0.13 0.71 0.22 2.44 0.13
6 44 11.63 0.6 0.12 0.68 0.21 2.28 0.12
6 45 11.63 0.64 0.11 0.64 0.2 2.11 0.11
6 46 11.63 0.67 0.1 0.6 0.19 1.94 0.1
6 47 11.63 0.7 0.08 0.55 0.18 1.76 0.08
6 48 11.63 0.74 0.07 0.5 0.18 1.58 0.07
6 49 11.63 0.77 0.06 0.45 0.17 1.4 0.06
6 50 11.63 0.8 0.06 0.4 0.16 1.24 0.06
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

7 19 -1.483 0.468 0.099 0.73 1.06 1.13
7 20 -0.397 0.122 0.021 0.67 1.04 1.18
7 21 -0.264 0.071 0.026 0.62 1.03 1.23
7 22 0.154 0.076 0.026 0.57 1.03 1.29
7 23 0.327 0.084 0.024 0.52 1.02 1.35
7 24 0.566 0.071 0.034 0.48 1.04 1.41
7 25 0.743 0.055 0.039 0.44 1.01 1.47
7 26 0.574 0.045 0.029 0.41 1.01 1.53
7 27 0.589 0.044 0.029 0.38 1.01 1.59
7 28 0.529 0.039 0.026 0.35 1.01 1.65
7 29 0.469 0.033 0.025 0.32 0.99 1.71
7 30 0.378 0.031 0.024 0.3 0.99 1.77
7 31 0.293 0.029 0.02 0.28 0.97 1.83
7 32 0.216 0.027 0.018 0.26 0.96 1.89
7 33 0.309 0.023 0.016 0.25 0.96 1.95
7 34 0.281 0.022 0.016 0.23 0.95 2.01
7 35 0.317 0.019 0.016 0.22 0.94 2.07
7 36 0.291 0.018 0.015 0.2 0.94 2.13
7 37 0.274 0.017 0.013 0.19 0.93 2.19
7 38 0.245 0.016 0.013 0.18 0.94 2.25
7 39 0.255 0.015 0.012 0.17 0.94 2.31
7 40 0.208 0.015 0.01 0.16 0.93 2.37
7 41 0.225 0.014 0.009 0.16 0.94 2.43
7 42 0.2 0.014 0.009 0.15 0.94 2.49
7 43 0.214 0.014 0.009 0.14 0.94 2.55
7 44 0.223 0.013 0.009 0.14 0.95 2.61
7 45 0.218 0.013 0.009 0.13 0.94 2.67
7 46 0.2 0.013 0.009 0.13 0.95 2.73
7 47 0.174 0.012 0.009 0.12 0.96 2.79
7 48 0.175 0.015 0.009 0.12 0.96 2.84
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

7 19 11.64 0.15 1.1 0.97 1.33 4.96 1.1
7 20 11.63 0.16 1.01 0.97 1.23 4.9 1.01
7 21 11.63 0.17 0.94 0.97 1.14 4.84 0.94
7 22 11.63 0.18 0.86 0.96 1.05 4.77 0.86
7 23 11.63 0.18 0.79 0.96 0.96 4.68 0.79
7 24 11.63 0.2 0.72 0.96 0.88 4.58 0.72
7 25 11.63 0.2 0.66 0.95 0.82 4.5 0.66
7 26 11.63 0.22 0.61 0.95 0.76 4.41 0.61
7 27 11.63 0.23 0.56 0.94 0.71 4.31 0.56
7 28 11.63 0.24 0.52 0.93 0.66 4.21 0.52
7 29 11.63 0.25 0.48 0.93 0.61 4.11 0.48
7 30 11.63 0.27 0.44 0.92 0.57 4 0.44
7 31 11.63 0.29 0.41 0.91 0.53 3.89 0.41
7 32 11.63 0.31 0.38 0.9 0.5 3.78 0.38
7 33 11.62 0.33 0.35 0.89 0.47 3.66 0.35
7 34 11.62 0.36 0.32 0.87 0.44 3.53 0.32
7 35 11.62 0.39 0.3 0.86 0.42 3.41 0.3
7 36 11.62 0.42 0.27 0.84 0.39 3.27 0.27
7 37 11.62 0.45 0.25 0.82 0.37 3.14 0.25
7 38 11.62 0.48 0.23 0.8 0.35 2.99 0.23
7 39 11.62 0.51 0.21 0.78 0.33 2.85 0.21
7 40 11.62 0.54 0.19 0.75 0.32 2.7 0.19
7 41 11.62 0.57 0.18 0.72 0.3 2.54 0.18
7 42 11.62 0.6 0.16 0.69 0.29 2.38 0.16
7 43 11.61 0.63 0.15 0.65 0.28 2.22 0.15
7 44 11.61 0.66 0.13 0.61 0.26 2.05 0.13
7 45 11.61 0.69 0.12 0.57 0.25 1.89 0.12
7 46 11.61 0.72 0.11 0.53 0.24 1.71 0.11
7 47 11.61 0.76 0.09 0.48 0.23 1.53 0.09
7 48 11.6 0.78 0.08 0.43 0.22 1.37 0.08
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

8 19 -0.438 0.415 0.175 0.83 1.91 1.12
8 20 -0.16 0.119 0.033 0.77 1.77 1.18
8 21 -0.172 0.068 0.022 0.73 1.79 1.23
8 22 0.317 0.067 0.03 0.69 1.82 1.29
8 23 0.36 0.064 0.027 0.66 1.88 1.35
8 24 0.692 0.059 0.034 0.62 1.87 1.41
8 25 0.8 0.044 0.037 0.58 1.86 1.47
8 26 0.768 0.038 0.031 0.55 1.84 1.53
8 27 0.601 0.037 0.03 0.52 1.83 1.59
8 28 0.631 0.032 0.028 0.5 1.86 1.65
8 29 0.696 0.028 0.029 0.47 1.85 1.71
8 30 0.633 0.028 0.028 0.45 1.86 1.77
8 31 0.499 0.027 0.024 0.43 1.87 1.83
8 32 0.436 0.025 0.02 0.4 1.86 1.89
8 33 0.438 0.023 0.019 0.39 1.87 1.95
8 34 0.409 0.021 0.019 0.37 1.87 2.01
8 35 0.456 0.019 0.019 0.35 1.88 2.07
8 36 0.425 0.019 0.018 0.33 1.86 2.13
8 37 0.425 0.017 0.016 0.32 1.87 2.19
8 38 0.439 0.017 0.016 0.31 1.88 2.25
8 39 0.393 0.016 0.015 0.29 1.88 2.31
8 40 0.388 0.015 0.014 0.28 1.89 2.37
8 41 0.375 0.015 0.013 0.27 1.9 2.43
8 42 0.374 0.015 0.013 0.26 1.89 2.49
8 43 0.341 0.016 0.012 0.23 1.73 2.55
8 44 0.333 0.017 0.012 0.22 1.66 2.61
8 45 0.287 0.017 0.011 0.2 1.58 2.67
8 46 0.284 0.017 0.011 0.19 1.57 2.73
8 47 0.291 0.029 0.009 0.17 1.43 2.78
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

8 19 11.6 0.23 0.87 0.94 1.14 4.49 0.87
8 20 11.6 0.23 0.85 0.94 1.1 4.5 0.85
8 21 11.6 0.25 0.79 0.93 1.03 4.42 0.79
8 22 11.6 0.26 0.74 0.93 0.97 4.33 0.74
8 23 11.6 0.28 0.68 0.92 0.91 4.21 0.68
8 24 11.6 0.29 0.64 0.91 0.86 4.12 0.64
8 25 11.6 0.3 0.6 0.9 0.81 4.04 0.6
8 26 11.59 0.31 0.56 0.9 0.77 3.95 0.56
8 27 11.6 0.34 0.53 0.89 0.73 3.86 0.53
8 28 11.59 0.36 0.49 0.88 0.69 3.73 0.49
8 29 11.59 0.37 0.46 0.87 0.65 3.64 0.46
8 30 11.59 0.39 0.43 0.85 0.62 3.52 0.43
8 31 11.59 0.41 0.4 0.84 0.59 3.4 0.4
8 32 11.59 0.42 0.37 0.82 0.56 3.28 0.37
8 33 11.59 0.45 0.35 0.8 0.53 3.15 0.35
8 34 11.59 0.49 0.32 0.79 0.51 3.03 0.32
8 35 11.59 0.52 0.3 0.76 0.48 2.89 0.3
8 36 11.59 0.55 0.28 0.74 0.46 2.77 0.28
8 37 11.59 0.59 0.25 0.72 0.44 2.62 0.25
8 38 11.59 0.62 0.23 0.69 0.42 2.48 0.23
8 39 11.59 0.65 0.21 0.66 0.4 2.33 0.21
8 40 11.59 0.68 0.19 0.62 0.39 2.17 0.19
8 41 11.59 0.71 0.18 0.59 0.37 2.02 0.18
8 42 11.59 0.74 0.16 0.55 0.36 1.87 0.16
8 43 11.59 0.75 0.15 0.53 0.33 1.79 0.15
8 44 11.59 0.77 0.13 0.5 0.32 1.66 0.13
8 45 11.59 0.78 0.12 0.47 0.3 1.53 0.12
8 46 11.59 0.81 0.1 0.42 0.29 1.36 0.1
8 47 11.59 0.82 0.09 0.4 0.27 1.3 0.09
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Q2 bin W bin A1 + ηA2 σstat σsys xavg Q2
avg Wavg

9 19 -1.762 0.448 0.185 0.91 4.14 1.12
9 20 -0.404 0.193 0.171 0.89 3.94 1.17
9 21 0.298 0.125 0.039 0.85 3.74 1.23
9 22 0.194 0.1 0.043 0.82 3.63 1.29
9 23 0.411 0.084 0.055 0.79 3.76 1.35
9 24 0.691 0.074 0.038 0.76 3.67 1.41
9 25 0.667 0.06 0.036 0.74 3.72 1.47
9 26 0.804 0.056 0.033 0.7 3.42 1.53
9 27 0.729 0.056 0.031 0.67 3.38 1.59
9 28 0.596 0.043 0.029 0.65 3.43 1.65
9 29 0.729 0.038 0.034 0.62 3.41 1.71
9 30 0.658 0.038 0.03 0.6 3.41 1.77
9 31 0.651 0.038 0.027 0.58 3.4 1.83
9 32 0.588 0.036 0.023 0.56 3.43 1.89
9 33 0.535 0.034 0.023 0.53 3.31 1.95
9 34 0.57 0.033 0.02 0.51 3.28 2.01
9 35 0.626 0.032 0.022 0.48 3.17 2.07
9 36 0.549 0.029 0.02 0.46 3.15 2.13
9 37 0.549 0.031 0.018 0.44 3.09 2.19
9 38 0.476 0.038 0.018 0.41 2.89 2.25
9 39 0.524 0.034 0.017 0.39 2.89 2.31
9 40 0.511 0.036 0.015 0.38 2.88 2.37
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Q2 bin W bin savg Davg ηavg εavg γavg E′
avg θavg

9 19 11.58 0.42 0.52 0.77 0.85 3.3 0.52
9 20 11.59 0.41 0.52 0.79 0.85 3.35 0.52
9 21 11.58 0.42 0.52 0.79 0.83 3.37 0.52
9 22 11.6 0.47 0.51 0.79 0.81 3.36 0.51
9 23 11.58 0.52 0.47 0.77 0.78 3.19 0.47
9 24 11.59 0.53 0.45 0.77 0.75 3.16 0.45
9 25 11.57 0.52 0.43 0.74 0.72 3.03 0.43
9 26 11.58 0.5 0.43 0.76 0.71 3.1 0.43
9 27 11.58 0.55 0.41 0.75 0.69 3.02 0.41
9 28 11.58 0.58 0.38 0.73 0.66 2.89 0.38
9 29 11.58 0.6 0.36 0.72 0.63 2.8 0.36
9 30 11.58 0.61 0.34 0.69 0.61 2.69 0.34
9 31 11.58 0.63 0.31 0.67 0.59 2.57 0.31
9 32 11.58 0.65 0.29 0.65 0.57 2.44 0.29
9 33 11.58 0.66 0.28 0.64 0.55 2.38 0.28
9 34 11.58 0.69 0.26 0.62 0.53 2.28 0.26
9 35 11.58 0.71 0.24 0.6 0.51 2.2 0.24
9 36 11.58 0.73 0.23 0.57 0.49 2.07 0.23
9 37 11.59 0.75 0.21 0.55 0.47 1.98 0.21
9 38 11.57 0.76 0.2 0.55 0.45 1.93 0.2
9 39 11.59 0.78 0.18 0.51 0.43 1.79 0.18
9 40 11.59 0.81 0.16 0.47 0.42 1.65 0.16
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B.5 Virtual Photon Asymmetry Results

Table B.10: Values of A1 for the proton from the EG1b data, showing errors (statistical and system-
atic) and averaged kinematics in each bin.

Q2 bin W bin A1 σstat σsys xavg Q2
avg Wavg

3 23 -0.051 0.035 0.052 0.06 0.06 1.35
3 24 -0.12 0.03 0.046 0.05 0.06 1.41
3 25 -0.105 0.023 0.047 0.04 0.06 1.47
3 26 -0.068 0.023 0.009 0.04 0.06 1.53

Q2 bin W bin A1 σstat σsys xavg Q2
avg Wavg

4 19 -0.471 0.137 0.389 0.23 0.11 1.13
4 20 -0.445 0.032 0.12 0.18 0.12 1.18
4 21 -0.407 0.017 0.09 0.15 0.12 1.23
4 22 -0.212 0.021 0.09 0.13 0.12 1.29
4 23 -0.053 0.024 0.116 0.11 0.12 1.35
4 24 -0.028 0.02 0.116 0.1 0.12 1.41
4 25 -0.004 0.015 0.112 0.08 0.12 1.47
4 26 0.022 0.021 0.097 0.08 0.13 1.52
4 27 0.029 0.027 0.113 0.07 0.13 1.59
4 28 -0.055 0.024 0.103 0.07 0.13 1.65
4 29 -0.05 0.022 0.139 0.06 0.13 1.71
4 30 0.019 0.024 0.212 0.06 0.13 1.77
4 31 -0.056 0.024 0.023 0.05 0.13 1.83
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Q2 bin W bin A1 σstat σsys xavg Q2
avg Wavg

5 19 -0.516 0.077 0.286 0.38 0.24 1.13
5 20 -0.454 0.017 0.078 0.31 0.24 1.18
5 21 -0.416 0.009 0.04 0.27 0.24 1.23
5 22 -0.169 0.011 0.047 0.23 0.24 1.29
5 23 0.014 0.013 0.078 0.2 0.24 1.35
5 24 0.073 0.012 0.088 0.17 0.23 1.41
5 25 0.149 0.009 0.08 0.15 0.23 1.47
5 26 0.176 0.007 0.095 0.14 0.23 1.53
5 27 0.12 0.008 0.12 0.12 0.23 1.59
5 28 0.041 0.007 0.109 0.11 0.23 1.65
5 29 0.04 0.009 0.151 0.1 0.23 1.7
5 30 0.061 0.013 0.118 0.1 0.25 1.77
5 31 0.024 0.012 0.063 0.09 0.25 1.83
5 32 -0.018 0.012 0.046 0.09 0.25 1.89
5 33 0.018 0.011 0.044 0.08 0.26 1.95
5 34 0.069 0.011 0.115 0.08 0.26 2.01
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Q2 bin W bin A1 σstat σsys xavg Q2
avg Wavg

6 19 -0.249 0.068 0.171 0.54 0.46 1.13
6 20 -0.361 0.014 0.054 0.47 0.46 1.18
6 21 -0.311 0.008 0.022 0.41 0.46 1.23
6 22 -0.105 0.01 0.033 0.37 0.46 1.29
6 23 0.181 0.012 0.054 0.32 0.45 1.35
6 24 0.228 0.011 0.064 0.29 0.45 1.41
6 25 0.36 0.009 0.08 0.25 0.44 1.47
6 26 0.368 0.008 0.096 0.23 0.43 1.53
6 27 0.262 0.009 0.114 0.21 0.43 1.59
6 28 0.191 0.01 0.104 0.19 0.45 1.65
6 29 0.236 0.009 0.121 0.18 0.46 1.71
6 30 0.193 0.009 0.083 0.17 0.46 1.77
6 31 0.081 0.009 0.053 0.16 0.46 1.83
6 32 0.038 0.008 0.042 0.14 0.45 1.89
6 33 0.074 0.008 0.046 0.13 0.43 1.95
6 34 0.13 0.01 0.099 0.12 0.43 2.01
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Q2 bin W bin A1 σstat σsys xavg Q2
avg Wavg

7 19 -0.019 0.093 0.105 0.68 0.86 1.13
7 20 -0.207 0.021 0.051 0.62 0.86 1.18
7 21 -0.186 0.013 0.026 0.57 0.86 1.23
7 22 0.074 0.015 0.031 0.52 0.87 1.29
7 23 0.347 0.019 0.051 0.47 0.86 1.35
7 24 0.447 0.019 0.056 0.44 0.89 1.41
7 25 0.579 0.015 0.065 0.41 0.89 1.47
7 26 0.572 0.013 0.068 0.37 0.87 1.53
7 27 0.47 0.014 0.091 0.34 0.87 1.59
7 28 0.398 0.013 0.081 0.32 0.88 1.65
7 29 0.429 0.012 0.076 0.3 0.88 1.71
7 30 0.329 0.012 0.079 0.28 0.88 1.77
7 31 0.244 0.014 0.056 0.27 0.93 1.83
7 32 0.169 0.013 0.059 0.26 0.95 1.89
7 33 0.239 0.012 0.147 0.24 0.96 1.95
7 34 0.288 0.011 0.232 0.23 0.95 2.01
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Q2 bin W bin A1 σstat σsys xavg Q2
avg Wavg

8 19 -0.636 0.224 0.135 0.82 1.82 1.12
8 20 -0.303 0.055 0.07 0.77 1.77 1.18
8 21 -0.068 0.034 0.055 0.73 1.79 1.23
8 22 0.241 0.033 0.065 0.69 1.82 1.29
8 23 0.506 0.032 0.128 0.66 1.86 1.35
8 24 0.606 0.029 0.109 0.62 1.88 1.41
8 25 0.756 0.023 0.123 0.58 1.85 1.47
8 26 0.794 0.019 0.146 0.55 1.85 1.53
8 27 0.612 0.019 0.135 0.53 1.86 1.59
8 28 0.6 0.016 0.18 0.5 1.87 1.65
8 29 0.665 0.014 0.143 0.47 1.87 1.71
8 30 0.606 0.014 0.164 0.45 1.86 1.77
8 31 0.458 0.014 0.151 0.42 1.84 1.83
8 32 0.348 0.013 0.148 0.4 1.81 1.89
8 33 0.414 0.013 0.248 0.37 1.77 1.95
8 34 0.412 0.012 0.229 0.35 1.75 2.01
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Q2 bin W bin A1 σstat σsys xavg Q2
avg Wavg

9 19 -1.187 0.332 0.817 0.9 3.57 1.13
9 20 -0.445 0.144 0.612 0.87 3.48 1.17
9 21 0.129 0.078 0.327 0.83 3.21 1.23
9 22 0.299 0.069 0.274 0.8 3.24 1.29
9 23 0.456 0.059 0.358 0.77 3.33 1.35
9 24 0.638 0.054 0.281 0.74 3.29 1.41
9 25 0.694 0.043 0.282 0.71 3.3 1.47
9 26 0.773 0.04 0.332 0.68 3.15 1.53
9 27 0.648 0.042 0.224 0.66 3.15 1.59
9 28 0.566 0.043 0.259 0.65 3.43 1.65
9 29 0.708 0.038 0.211 0.62 3.41 1.71
9 30 0.633 0.038 0.213 0.6 3.41 1.77
9 31 0.624 0.038 0.172 0.58 3.4 1.83
9 32 0.562 0.036 0.153 0.56 3.43 1.89
9 33 0.51 0.034 0.24 0.53 3.31 1.95
9 34 0.551 0.033 0.192 0.51 3.28 2.01
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Table B.11: Values of A2 for the proton from the EG1b data, showing errors (systematic and statis-
tical) and averaged kinematics for each bin.

Q2 bin W bin A2 σstat σsys xavg Q2
avg Wavg

4 21 0.756 0.735 0.081 0.18 0.14 1.23
4 22 -0.68 0.884 0.08 0.15 0.14 1.29
4 23 -0.972 0.996 0.106 0.13 0.14 1.35
4 24 -0.177 0.823 0.115 0.11 0.13 1.41
4 25 -0.173 0.608 0.107 0.09 0.13 1.47

Q2 bin W bin A2 σstat σsys xavg Q2
avg Wavg

5 20 -0.529 0.36 0.078 0.32 0.25 1.18
5 21 -0.249 0.213 0.037 0.28 0.25 1.23
5 22 0.017 0.276 0.044 0.24 0.25 1.29
5 23 0.537 0.336 0.075 0.21 0.25 1.35
5 24 -0.098 0.305 0.084 0.18 0.24 1.41
5 25 -0.084 0.219 0.079 0.16 0.25 1.47
5 26 0.287 0.175 0.096 0.14 0.25 1.53
5 27 0.025 0.17 0.119 0.13 0.25 1.59
5 28 0.239 0.143 0.111 0.12 0.25 1.65
5 29 0.044 0.201 0.149 0.11 0.26 1.69
5 30 -0.874 0.46 0.096 0.11 0.29 1.77
5 31 -0.175 0.376 0.06 0.1 0.28 1.83
5 32 -0.09 0.301 0.045 0.09 0.28 1.89
5 33 0.191 0.254 0.044 0.09 0.27 1.95
5 34 0.251 0.328 0.116 0.08 0.27 2
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Q2 bin W bin A2 σstat σsys xavg Q2
avg Wavg

6 19 -0.209 0.662 0.158 0.56 0.5 1.13
6 20 -0.05 0.143 0.053 0.49 0.5 1.18
6 21 0.103 0.085 0.022 0.44 0.5 1.23
6 22 -0.038 0.107 0.032 0.39 0.49 1.29
6 23 0.173 0.129 0.051 0.34 0.49 1.35
6 24 0.345 0.121 0.063 0.3 0.49 1.41
6 25 0.196 0.104 0.08 0.26 0.45 1.47
6 26 0.279 0.087 0.096 0.23 0.44 1.53
6 27 0.158 0.115 0.114 0.2 0.41 1.59
6 28 0.028 0.149 0.105 0.19 0.44 1.65
6 29 0.477 0.158 0.116 0.19 0.49 1.71
6 30 0.169 0.158 0.082 0.18 0.48 1.77
6 31 -0.151 0.144 0.053 0.16 0.48 1.83
6 32 -0.011 0.134 0.041 0.15 0.47 1.89
6 33 -0.034 0.139 0.047 0.13 0.43 1.95
6 34 0.361 0.243 0.098 0.11 0.39 2
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Q2 bin W bin A2 σstat σsys xavg Q2
avg Wavg

7 19 -2.178 0.624 0.105 0.68 0.86 1.13
7 20 -0.22 0.149 0.051 0.62 0.84 1.18
7 21 -0.075 0.103 0.025 0.56 0.84 1.23
7 22 0.325 0.128 0.031 0.51 0.84 1.29
7 23 0.175 0.187 0.047 0.46 0.81 1.35
7 24 0.518 0.222 0.055 0.44 0.89 1.41
7 25 0.582 0.171 0.064 0.4 0.88 1.47
7 26 0.322 0.18 0.068 0.36 0.81 1.53
7 27 0.401 0.201 0.091 0.32 0.79 1.59
7 28 0.327 0.213 0.078 0.3 0.77 1.65
7 29 -0.191 0.226 0.079 0.26 0.74 1.71
7 30 -0.685 0.217 0.081 0.25 0.74 1.77
7 31 -1.406 0.411 0.06 0.25 0.84 1.82
7 32 -1.479 0.562 0.068 0.27 1 1.89
7 33 0.182 0.494 0.166 0.25 1 1.95
7 34 -0.697 0.647 0.272 0.24 1.01 2
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Q2 bin W bin A2 σstat σsys xavg Q2
avg Wavg

8 21 -1.64 0.912 0.059 0.74 1.85 1.23
8 22 0.385 0.892 0.071 0.7 1.88 1.29
8 23 -3.358 0.869 0.141 0.67 1.95 1.35
8 24 0.413 0.809 0.121 0.63 1.96 1.41
8 25 -0.299 0.621 0.139 0.6 1.94 1.47
8 26 -1.596 0.53 0.166 0.56 1.93 1.53
8 27 -1.284 0.529 0.144 0.53 1.94 1.59
8 28 -0.275 0.449 0.193 0.51 1.96 1.65
8 29 -0.221 0.391 0.154 0.48 1.95 1.71
8 30 -0.3 0.387 0.172 0.46 1.95 1.77
8 31 -0.142 0.378 0.155 0.44 1.95 1.83
8 32 0.143 0.363 0.148 0.41 1.89 1.89
8 33 -0.17 0.372 0.249 0.37 1.76 1.95
8 34 0.034 0.495 0.272 0.36 1.74 2
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Table B.12: A1 values for the proton, DIS (W > 2 GeV) only, rebinned in x. These data are plotted
in Figure 8.42.

x A1(x) σstat σsys

0.125 0.1798 0.0198 0.014
0.175 0.2620 0.0079 0.016
0.225 0.2960 0.0056 0.022
0.275 0.3709 0.0062 0.028
0.325 0.4273 0.0074 0.030
0.375 0.4711 0.0115 0.030
0.425 0.4842 0.0167 0.031
0.475 0.5831 0.0231 0.033
0.525 0.6157 0.0387 0.036
0.575 0.4057 0.151 0.036
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B.6 Structure Function Results

Table B.13: Values of g1 for the proton, from the EG1b data. Errors (statistical and systematic) are
shown, as well as averaged kinematic data in each bin.

Q2 bin W bin g1 σstat σsys xavg Q2
avg Wavg

3 23 -0.002 0.022 0.054 0.06 0.06 1.35
3 24 -0.062 0.023 0.055 0.05 0.06 1.41
3 25 -0.111 0.03 0.051 0.05 0.06 1.47
3 26 -0.08 0.035 0.01 0.04 0.06 1.53

Q2 bin W bin g1 σstat σsys xavg Q2
avg Wavg

4 18 0.042 0.009 0.764 0.3 0.12 1.07
4 19 -0.003 0.006 0.723 0.26 0.12 1.1
4 20 -0.108 0.013 0.133 0.2 0.12 1.17
4 21 -0.245 0.013 0.089 0.16 0.12 1.23
4 22 -0.074 0.012 0.09 0.13 0.12 1.29
4 23 0.013 0.012 0.112 0.11 0.12 1.35
4 24 0.032 0.013 0.125 0.1 0.12 1.41
4 25 0.04 0.015 0.11 0.09 0.12 1.47
4 26 0.073 0.024 0.096 0.08 0.13 1.52
4 27 0.069 0.028 0.114 0.07 0.13 1.59
4 28 -0.049 0.028 0.101 0.07 0.13 1.65
4 29 -0.054 0.028 0.139 0.06 0.13 1.71
4 30 0.047 0.029 0.212 0.06 0.13 1.77
4 31 -0.029 0.03 0.023 0.05 0.13 1.83
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Q2 bin W bin g1 σstat σsys xavg Q2
avg Wavg

5 18 0.029 0.003 0.851 0.47 0.25 1.07
5 19 -0.009 0.003 0.548 0.42 0.24 1.1
5 20 -0.088 0.005 0.106 0.34 0.25 1.17
5 21 -0.197 0.005 0.037 0.28 0.25 1.23
5 22 -0.035 0.005 0.047 0.24 0.25 1.29
5 23 0.043 0.005 0.075 0.21 0.25 1.35
5 24 0.082 0.005 0.089 0.18 0.24 1.41
5 25 0.159 0.006 0.076 0.16 0.24 1.47
5 26 0.212 0.006 0.095 0.14 0.24 1.53
5 27 0.152 0.006 0.12 0.13 0.24 1.59
5 28 0.072 0.007 0.109 0.11 0.24 1.65
5 29 0.071 0.009 0.152 0.11 0.24 1.7
5 30 0.102 0.012 0.114 0.1 0.25 1.77
5 31 0.089 0.012 0.063 0.09 0.26 1.83
5 32 0.038 0.012 0.046 0.09 0.26 1.89
5 33 0.052 0.012 0.044 0.08 0.26 1.95
5 34 0.087 0.012 0.115 0.08 0.27 2.01
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Q2 bin W bin g1 σstat σsys xavg Q2
avg Wavg

6 18 0.015 0.001 0.368 0.63 0.49 1.07
6 19 -0.007 0.002 0.256 0.58 0.48 1.1
6 20 -0.06 0.003 0.075 0.5 0.48 1.17
6 21 -0.116 0.003 0.022 0.43 0.48 1.23
6 22 -0.018 0.003 0.033 0.38 0.48 1.29
6 23 0.061 0.003 0.052 0.34 0.48 1.35
6 24 0.091 0.003 0.064 0.3 0.48 1.41
6 25 0.195 0.004 0.077 0.26 0.46 1.47
6 26 0.253 0.004 0.095 0.24 0.46 1.53
6 27 0.192 0.005 0.113 0.22 0.46 1.59
6 28 0.158 0.006 0.102 0.2 0.47 1.65
6 29 0.206 0.006 0.115 0.19 0.49 1.71
6 30 0.184 0.006 0.083 0.18 0.48 1.77
6 31 0.132 0.006 0.053 0.16 0.48 1.83
6 32 0.111 0.006 0.041 0.15 0.47 1.89
6 33 0.116 0.007 0.046 0.13 0.45 1.95
6 34 0.131 0.009 0.099 0.12 0.45 2.01
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Q2 bin W bin g1 σstat σsys xavg Q2
avg Wavg

7 18 0.008 0.001 0.188 0.77 0.96 1.07
7 19 -0.001 0.001 0.143 0.74 0.96 1.1
7 20 -0.022 0.002 0.06 0.66 0.96 1.17
7 21 -0.042 0.002 0.027 0.6 0.96 1.23
7 22 0.012 0.002 0.034 0.55 0.96 1.29
7 23 0.051 0.003 0.055 0.49 0.93 1.35
7 24 0.078 0.003 0.057 0.46 0.95 1.41
7 25 0.149 0.004 0.063 0.42 0.95 1.47
7 26 0.2 0.004 0.066 0.39 0.93 1.53
7 27 0.163 0.004 0.09 0.36 0.94 1.59
7 28 0.161 0.004 0.081 0.34 0.95 1.65
7 29 0.213 0.005 0.074 0.31 0.95 1.71
7 30 0.167 0.005 0.077 0.3 0.96 1.77
7 31 0.148 0.005 0.057 0.28 0.99 1.83
7 32 0.142 0.006 0.067 0.27 1 1.89
7 33 0.157 0.006 0.166 0.26 1.01 1.95
7 34 0.168 0.006 0.24 0.24 1.01 2.01
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Q2 bin W bin g1 σstat σsys xavg Q2
avg Wavg

8 19 -0.001 0.001 0.273 0.86 2.07 1.1
8 20 -0.007 0.002 0.097 0.81 2.05 1.17
8 21 -0.005 0.002 0.089 0.76 2.08 1.23
8 22 0.014 0.002 0.093 0.72 2.06 1.29
8 23 0.03 0.002 0.157 0.68 2.06 1.35
8 24 0.043 0.002 0.139 0.65 2.07 1.41
8 25 0.08 0.002 0.154 0.61 2.04 1.47
8 26 0.107 0.002 0.193 0.58 2.04 1.53
8 27 0.083 0.002 0.155 0.55 2.04 1.59
8 28 0.101 0.002 0.206 0.52 2.04 1.65
8 29 0.138 0.003 0.164 0.49 2.04 1.71
8 30 0.124 0.003 0.178 0.47 2.02 1.77
8 31 0.107 0.003 0.158 0.44 1.99 1.83
8 32 0.109 0.003 0.149 0.42 1.95 1.89
8 33 0.126 0.003 0.246 0.39 1.88 1.95
8 34 0.131 0.004 0.228 0.37 1.87 2.01
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Q2 bin W bin g1 σstat σsys xavg Q2
avg Wavg

9 20 -0.001 0.001 0.892 0.9 4.35 1.16
9 21 0.002 0.001 0.453 0.86 4.09 1.23
9 22 0.005 0.001 0.331 0.83 3.91 1.29
9 23 0.009 0.001 0.432 0.8 3.99 1.35
9 24 0.016 0.001 0.312 0.77 3.81 1.41
9 25 0.023 0.001 0.291 0.75 3.94 1.47
9 26 0.042 0.002 0.344 0.7 3.5 1.53
9 27 0.037 0.002 0.229 0.67 3.4 1.59
9 28 0.034 0.003 0.267 0.67 3.7 1.65
9 29 0.056 0.003 0.212 0.64 3.65 1.71
9 30 0.05 0.003 0.216 0.62 3.65 1.77
9 31 0.055 0.003 0.174 0.59 3.64 1.83
9 32 0.056 0.003 0.153 0.57 3.65 1.89
9 33 0.063 0.004 0.238 0.54 3.52 1.95
9 34 0.075 0.004 0.198 0.52 3.45 2.01
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Table B.14: Values of g1/F1 from the EG1b data. Errors (statistical and systematic) are shown, as
well as averaged kinematic values in each bin.

Q2 bin W bin g1/F1 σstat σsys xavg Q2
avg Wavg

3 23 -0.004 0.029 0.069 0.06 0.06 1.35
3 24 -0.069 0.026 0.056 0.05 0.06 1.41
3 25 -0.074 0.02 0.034 0.04 0.06 1.47
3 26 -0.049 0.021 0.006 0.04 0.06 1.53

Q2 bin W bin g1/F1 σstat σsys xavg Q2
avg Wavg

4 19 -0.06 0.053 3.324 0.23 0.12 1.12
4 20 -0.152 0.016 0.145 0.19 0.12 1.18
4 21 -0.184 0.01 0.066 0.16 0.12 1.23
4 22 -0.089 0.014 0.099 0.13 0.12 1.29
4 23 0.019 0.017 0.157 0.11 0.12 1.35
4 24 0.039 0.016 0.15 0.1 0.12 1.41
4 25 0.035 0.013 0.089 0.09 0.12 1.47
4 26 0.052 0.018 0.07 0.08 0.13 1.52
4 27 0.056 0.023 0.094 0.07 0.13 1.59
4 28 -0.038 0.021 0.076 0.07 0.13 1.65
4 29 -0.039 0.02 0.099 0.06 0.13 1.71
4 30 0.037 0.023 0.164 0.06 0.13 1.77
4 31 -0.022 0.023 0.017 0.05 0.13 1.83
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Q2 bin W bin g1/F1 σstat σsys xavg Q2
avg Wavg

5 19 -0.085 0.025 2.575 0.38 0.24 1.13
5 20 -0.138 0.007 0.112 0.32 0.24 1.18
5 21 -0.161 0.004 0.031 0.28 0.24 1.23
5 22 -0.049 0.006 0.057 0.24 0.24 1.29
5 23 0.07 0.008 0.125 0.2 0.24 1.35
5 24 0.126 0.008 0.135 0.17 0.24 1.41
5 25 0.167 0.006 0.08 0.15 0.24 1.47
5 26 0.195 0.006 0.088 0.14 0.23 1.53
5 27 0.155 0.006 0.124 0.12 0.23 1.59
5 28 0.063 0.006 0.099 0.11 0.23 1.65
5 29 0.057 0.008 0.127 0.1 0.24 1.7
5 30 0.095 0.011 0.11 0.1 0.25 1.77
5 31 0.08 0.011 0.059 0.09 0.25 1.83
5 32 0.033 0.01 0.041 0.09 0.26 1.89
5 33 0.043 0.01 0.037 0.08 0.26 1.95
5 34 0.071 0.01 0.094 0.08 0.26 2.01
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Q2 bin W bin g1/F1 σstat σsys xavg Q2
avg Wavg

6 19 -0.045 0.021 1.847 0.54 0.46 1.13
6 20 -0.129 0.005 0.107 0.47 0.46 1.18
6 21 -0.133 0.003 0.024 0.42 0.46 1.23
6 22 -0.039 0.005 0.056 0.37 0.46 1.29
6 23 0.136 0.006 0.118 0.33 0.46 1.35
6 24 0.197 0.007 0.138 0.29 0.46 1.41
6 25 0.293 0.006 0.113 0.25 0.44 1.47
6 26 0.33 0.005 0.123 0.23 0.44 1.53
6 27 0.279 0.007 0.165 0.21 0.43 1.59
6 28 0.2 0.008 0.131 0.2 0.45 1.65
6 29 0.237 0.007 0.137 0.19 0.47 1.71
6 30 0.233 0.008 0.106 0.17 0.47 1.77
6 31 0.162 0.007 0.066 0.16 0.46 1.83
6 32 0.127 0.007 0.048 0.14 0.46 1.89
6 33 0.122 0.007 0.049 0.13 0.44 1.95
6 34 0.134 0.009 0.101 0.12 0.43 2.01
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Q2 bin W bin g1/F1 σstat σsys xavg Q2
avg Wavg

7 19 0.001 0.032 2.147 0.68 0.85 1.13
7 20 -0.099 0.008 0.186 0.62 0.84 1.18
7 21 -0.103 0.005 0.057 0.57 0.85 1.23
7 22 0.03 0.007 0.103 0.52 0.86 1.29
7 23 0.204 0.01 0.2 0.48 0.86 1.35
7 24 0.293 0.011 0.206 0.44 0.9 1.41
7 25 0.389 0.009 0.155 0.41 0.89 1.47
7 26 0.431 0.008 0.141 0.37 0.87 1.53
7 27 0.403 0.01 0.22 0.34 0.88 1.59
7 28 0.336 0.009 0.166 0.32 0.89 1.65
7 29 0.374 0.009 0.132 0.3 0.89 1.71
7 30 0.329 0.009 0.15 0.28 0.89 1.77
7 31 0.285 0.011 0.11 0.27 0.94 1.83
7 32 0.254 0.01 0.115 0.26 0.95 1.89
7 33 0.266 0.01 0.268 0.25 0.96 1.95
7 34 0.269 0.009 0.378 0.23 0.96 2.01
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Q2 bin W bin g1/F1 σstat σsys xavg Q2
avg Wavg

8 19 -0.273 0.095 15.244 0.82 1.77 1.12
8 20 -0.157 0.025 0.979 0.77 1.74 1.18
8 21 -0.048 0.017 0.541 0.73 1.76 1.23
8 22 0.14 0.017 0.776 0.69 1.79 1.29
8 23 0.327 0.017 1.441 0.66 1.84 1.35
8 24 0.407 0.017 1.08 0.62 1.87 1.41
8 25 0.505 0.014 0.78 0.58 1.83 1.47
8 26 0.565 0.012 0.841 0.55 1.85 1.53
8 27 0.48 0.012 0.794 0.52 1.86 1.59
8 28 0.455 0.011 0.833 0.5 1.87 1.65
8 29 0.516 0.01 0.548 0.47 1.87 1.71
8 30 0.49 0.01 0.656 0.45 1.86 1.77
8 31 0.399 0.01 0.556 0.42 1.85 1.83
8 32 0.358 0.01 0.477 0.4 1.81 1.89
8 33 0.374 0.01 0.709 0.38 1.78 1.95
8 34 0.359 0.01 0.604 0.35 1.76 2.01
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Q2 bin W bin g1/F1 σstat σsys xavg Q2
avg Wavg

9 19 -0.621 0.181 987.269 0.89 3.45 1.13
9 20 -0.252 0.08 71.14 0.87 3.38 1.17
9 21 0.085 0.044 13.415 0.83 3.16 1.23
9 22 0.227 0.04 10.68 0.8 3.19 1.29
9 23 0.348 0.036 12.011 0.77 3.27 1.35
9 24 0.471 0.034 7.003 0.74 3.26 1.41
9 25 0.507 0.027 4.75 0.71 3.26 1.47
9 26 0.568 0.026 4.187 0.68 3.13 1.53
9 27 0.499 0.028 2.914 0.65 3.14 1.59
9 28 0.431 0.03 2.975 0.65 3.41 1.65
9 29 0.531 0.027 1.868 0.62 3.4 1.71
9 30 0.494 0.028 1.986 0.6 3.4 1.77
9 31 0.5 0.028 1.487 0.58 3.4 1.83
9 32 0.464 0.027 1.182 0.56 3.43 1.89
9 33 0.43 0.026 1.573 0.53 3.31 1.95
9 34 0.461 0.026 1.143 0.51 3.28 2.01
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Table B.15: Values of g2 for the proton, from the EG1b data. Errors (both statistical and systematic)
are shown, with averaged kinematics in each bin.

Q2 bin W bin g2 σstat σsys xavg Q2
avg Wavg

4 19 -0.442 0.423 0.754 0.3 0.14 1.1
4 20 -0.84 0.902 0.128 0.22 0.14 1.17
4 21 1.263 1 0.08 0.18 0.14 1.23
4 22 -0.653 0.955 0.081 0.15 0.14 1.29

Q2 bin W bin g2 σstat σsys xavg Q2
avg Wavg

5 19 -0.018 0.086 0.545 0.43 0.25 1.1
5 20 -0.17 0.182 0.108 0.35 0.26 1.17
5 21 -0.029 0.215 0.035 0.29 0.26 1.23
5 22 0.041 0.211 0.044 0.25 0.26 1.29
5 23 0.324 0.228 0.072 0.21 0.26 1.35
5 24 -0.182 0.259 0.085 0.19 0.26 1.41
5 25 -0.242 0.31 0.075 0.17 0.26 1.47
5 26 0.306 0.306 0.096 0.15 0.26 1.53
5 27 -0.011 0.295 0.119 0.14 0.26 1.59
5 28 0.431 0.311 0.111 0.13 0.26 1.65
5 29 0.051 0.514 0.149 0.12 0.27 1.69
5 32 -0.243 0.947 0.045 0.09 0.28 1.89
5 33 0.628 0.92 0.044 0.09 0.28 1.95
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Q2 bin W bin g2 σstat σsys xavg Q2
avg Wavg

6 19 0.027 0.027 0.229 0.6 0.52 1.1
6 20 0.039 0.046 0.073 0.52 0.52 1.17
6 21 0.149 0.051 0.022 0.45 0.52 1.23
6 22 0.017 0.047 0.032 0.4 0.52 1.29
6 23 0.008 0.05 0.05 0.35 0.52 1.35
6 24 0.062 0.056 0.063 0.32 0.52 1.41
6 25 0.032 0.083 0.077 0.27 0.48 1.47
6 26 0.076 0.09 0.095 0.24 0.46 1.53
6 27 -0.003 0.125 0.114 0.21 0.44 1.59
6 28 -0.089 0.193 0.101 0.2 0.47 1.64
6 29 0.616 0.235 0.108 0.2 0.51 1.71
6 30 0.129 0.232 0.082 0.18 0.51 1.77
6 31 -0.258 0.236 0.053 0.17 0.51 1.83
6 32 -0.111 0.258 0.041 0.16 0.5 1.89
6 33 -0.261 0.334 0.047 0.13 0.45 1.95
6 34 1.021 0.704 0.097 0.11 0.39 1.99
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Q2 bin W bin g2 σstat σsys xavg Q2
avg Wavg

7 19 -0.059 0.014 0.143 0.73 0.94 1.1
7 20 -0.019 0.026 0.061 0.65 0.93 1.17
7 21 0.027 0.034 0.027 0.59 0.95 1.23
7 22 0.058 0.032 0.033 0.54 0.95 1.29
7 23 -0.016 0.046 0.049 0.47 0.85 1.35
7 24 0.045 0.061 0.056 0.45 0.92 1.41
7 25 0.082 0.076 0.062 0.42 0.92 1.47
7 26 -0.015 0.109 0.067 0.37 0.84 1.53
7 27 0.067 0.117 0.09 0.33 0.82 1.59
7 28 0.138 0.16 0.078 0.31 0.81 1.64
7 29 -0.446 0.231 0.078 0.27 0.77 1.71
7 30 -0.82 0.217 0.08 0.25 0.78 1.77
7 31 -1.421 0.394 0.06 0.27 0.92 1.82
7 32 -1.539 0.543 0.078 0.28 1.06 1.89
7 33 -0.161 0.544 0.185 0.27 1.07 1.95
7 34 -0.685 0.78 0.279 0.25 1.07 1.99
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Q2 bin W bin g2 σstat σsys xavg Q2
avg Wavg

8 19 -0.021 0.03 0.284 0.86 2.13 1.1
8 20 0.047 0.076 0.1 0.81 2.06 1.17
8 21 -0.144 0.08 0.094 0.76 2.13 1.23
8 23 -0.268 0.072 0.173 0.69 2.14 1.35
8 24 0.034 0.084 0.151 0.66 2.14 1.41
8 25 -0.179 0.104 0.169 0.62 2.13 1.47
8 26 -0.435 0.11 0.213 0.59 2.12 1.53
8 27 -0.273 0.107 0.164 0.56 2.11 1.59
8 28 -0.156 0.122 0.218 0.53 2.13 1.65
8 29 -0.199 0.139 0.174 0.5 2.12 1.71
8 30 -0.245 0.134 0.185 0.48 2.11 1.77
8 31 -0.188 0.145 0.162 0.46 2.11 1.83
8 32 -0.084 0.167 0.15 0.43 2.05 1.89
8 33 -0.193 0.222 0.247 0.38 1.83 1.95
8 34 -0.012 0.329 0.269 0.37 1.81 2
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Q2 bin W bin g2 σstat σsys xavg Q2
avg Wavg

9 19 -0.052 0.023 0.854 0.9 2.88 1.09
9 20 0.019 0.074 0.451 0.86 2.88 1.16
9 21 0.113 0.083 0.285 0.82 2.88 1.24
9 22 -0.195 0.066 0.241 0.79 2.88 1.29
9 23 -0.168 0.075 0.323 0.75 2.88 1.35
9 24 0.034 0.093 0.255 0.72 2.88 1.41
9 25 -0.112 0.103 0.258 0.69 2.88 1.46
9 26 -0.212 0.115 0.327 0.66 2.87 1.53
9 27 0.003 0.12 0.217 0.64 2.87 1.58
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B.7 Moments and Integrals

Table B.16: Values of the moment Γp
1 from the integration of g1. Values and systematic errors are

shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the same
in both cases.

bin Q2
avg(GeV2) Γ1(d) σsys(d) Γ1(d+m) σsys(d+m) σstat

10 0.051 -0.0122 0.0005 -0.0097 0.0020 0.0026
11 0.060 -0.0121 0.0009 -0.0087 0.0019 0.0019
12 0.071 -0.0157 0.0012 -0.0118 0.0019 0.0017
13 0.084 -0.0188 0.0013 -0.0144 0.0019 0.0018
14 0.101 -0.0144 0.0015 -0.0093 0.0020 0.0019
15 0.121 -0.0153 0.0018 -0.0095 0.0022 0.0020
16 0.144 -0.0115 0.0023 -0.0051 0.0026 0.0019
17 0.174 -0.0114 0.0027 -0.0045 0.0030 0.0016
18 0.206 -0.0064 0.0030 0.0011 0.0034 0.0014
19 0.246 0.0019 0.0034 0.0109 0.0037 0.0014
20 0.291 0.0072 0.0038 0.0179 0.0041 0.0011
21 0.346 0.0171 0.0042 0.0297 0.0045 0.0010
22 0.413 0.0261 0.0045 0.0408 0.0049 0.0010
23 0.493 0.0326 0.0049 0.0499 0.0052 0.0010
24 0.588 0.0416 0.0051 0.0620 0.0055 0.0010
25 0.702 0.0495 0.0052 0.0736 0.0056 0.0010
26 0.837 0.0575 0.0051 0.0861 0.0056 0.0010
27 1.002 0.0601 0.0047 0.0943 0.0055 0.0009
28 1.195 0.0618 0.0042 0.1023 0.0052 0.0009
29 1.423 0.0625 0.0037 0.1104 0.0050 0.0008
30 1.702 0.0595 0.0032 0.1165 0.0049 0.0007
31 2.033 0.0544 0.0027 0.1215 0.0047 0.0007
32 2.417 0.0454 0.0023 0.1240 0.0047 0.0006
33 2.875 0.0353 0.0019 0.1265 0.0046 0.0006
34 3.418 0.0256 0.0015 0.1282 0.0046 0.0005
35 3.985 0.0176 0.0013 0.1290 0.0046 0.0006
36 4.720 0.0070 0.0011 0.1302 0.0046 0.0005
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Table B.17: Values of the moment Γp
3 from the integration of g1. Values and systematic errors are

shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the same
in both cases. All values except Q2 are multiplied by a factor of 100.

bin Q2
avg(GeV2) Γ3(d) σsys(d) Γ3(d+m) σsys(d+m) σstat

10 0.051 -0.0059 0.0001 -0.0053 0.0002 0.0018
11 0.060 -0.0083 0.0002 -0.0069 0.0003 0.0018
12 0.071 -0.0164 0.0003 -0.0144 0.0005 0.0024
13 0.084 -0.0283 0.0005 -0.0254 0.0008 0.0032
14 0.101 -0.0323 0.0009 -0.0284 0.0013 0.0045
15 0.120 -0.0496 0.0016 -0.0444 0.0022 0.0063
16 0.143 -0.0511 0.0031 -0.0443 0.0040 0.0080
17 0.173 -0.0936 0.0054 -0.0877 0.0066 0.0084
18 0.204 -0.1193 0.0083 -0.1123 0.0097 0.0096
19 0.244 -0.1149 0.0121 -0.1070 0.0135 0.0113
20 0.291 -0.1451 0.0176 -0.1364 0.0189 0.0122
21 0.346 -0.1229 0.0264 -0.1139 0.0275 0.0133
22 0.414 -0.0895 0.0373 -0.0802 0.0382 0.0145
23 0.492 -0.0479 0.0505 -0.0385 0.0512 0.0156
24 0.588 0.0462 0.0631 0.0560 0.0636 0.0168
25 0.700 0.2158 0.0741 0.2264 0.0746 0.0181
26 0.831 0.4026 0.0822 0.4153 0.0825 0.0212
27 1.002 0.4979 0.0851 0.5176 0.0853 0.0234
28 1.193 0.6833 0.0825 0.7105 0.0827 0.0216
29 1.416 0.8458 0.0761 0.8886 0.0764 0.0220
30 1.699 0.9557 0.0688 1.0245 0.0693 0.0217
31 2.031 1.0104 0.0618 1.1203 0.0626 0.0190
32 2.419 0.9903 0.0560 1.1659 0.0572 0.0168
33 2.877 0.9175 0.0520 1.1964 0.0536 0.0156
34 3.419 0.7833 0.0473 1.1916 0.0492 0.0164
35 4.035 0.6266 0.0446 1.1861 0.0467 0.0200
36 4.751 0.3245 0.0411 1.1653 0.0436 0.0193
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Table B.18: Values of the moment Γp
5 from the integration of g1. Values and systematic errors are

shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the same
in both cases. All values except Q2 are multiplied by a factor of 10 4.

bin Q2
avg(GeV2) Γ5(d) σsys(d) Γ5(d+m) σsys(d+m) σstat

10 0.051 -0.0036 0.0001 -0.0026 0.0001 0.0015
11 0.060 -0.0072 0.0001 -0.0042 0.0001 0.0023
12 0.071 -0.0202 0.0004 -0.0141 0.0004 0.0043
13 0.084 -0.0502 0.0004 -0.0384 0.0004 0.0076
14 0.101 -0.0779 0.0009 -0.0568 0.0009 0.0143
15 0.120 -0.1625 0.0019 -0.1258 0.0019 0.0267
16 0.143 -0.2052 0.0051 -0.1442 0.0052 0.0442
17 0.173 -0.5542 0.0137 -0.4832 0.0139 0.0654
18 0.204 -0.9701 0.0327 -0.8668 0.0332 0.0921
19 0.244 -1.2384 0.0653 -1.0950 0.0666 0.1356
20 0.291 -2.1775 0.1149 -1.9893 0.1178 0.1824
21 0.346 -2.6968 0.2084 -2.4677 0.2136 0.2377
22 0.414 -3.3930 0.3594 -3.1255 0.3672 0.3121
23 0.492 -3.9101 0.6224 -3.6165 0.6323 0.3904
24 0.588 -4.1312 0.9745 -3.8185 0.9860 0.4835
25 0.700 -1.3321 1.3950 -1.0199 1.4073 0.5810
26 0.829 2.2229 1.8515 2.5305 1.8637 0.7454
27 1.001 3.2824 2.2448 3.7143 2.2557 0.9430
28 1.193 9.2125 2.4667 9.6268 2.4760 0.9242
29 1.414 15.0471 2.4596 15.5934 2.4685 0.9571
30 1.698 20.7525 2.3036 21.4205 2.3163 1.0450
31 2.031 24.6403 2.0892 25.5637 2.1119 0.9346
32 2.419 27.8380 1.9030 29.1144 1.9392 0.8333
33 2.880 29.2122 1.7945 31.4584 1.8413 0.7285
34 3.417 28.1168 1.6856 32.0632 1.7441 0.7354
35 4.066 25.2141 1.6358 32.2644 1.7010 0.8681
36 4.787 15.7258 1.5672 31.6886 1.6412 0.8819
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Table B.19: Values of the moment
∫
g2dx from the integration of g2. Values and systematic errors

are shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the
same in both cases.

bin Q2
avg(GeV2)

∫
g2dx(d) σsys(d)

∫
g2dx(d+m) σsys(d+m) σstat

2 0.071 0.0489 0.0926 0.0780 0.0971 0.0466
3 0.112 -0.0249 0.0447 -0.0076 0.0468 0.0585
4 0.246 -0.0084 0.0180 -0.0000 0.0289 0.0283
5 0.434 0.0040 0.0128 0.0181 0.0234 0.0157
6 0.935 -0.0310 0.0104 -0.0098 0.0155 0.0174
7 2.102 -0.0605 0.0083 -0.0423 0.0093 0.0113
8 3.451 -0.0238 0.0077 -0.0175 0.0082 0.0085

Table B.20: Values of the moment
∫
x2g2dx from the integration of g2. Values and systematic errors

are shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the
same in both cases. All values except Q2 are multiplied by a factor of 100.

bin Q2
avg(GeV2)

∫
x2g2dx(d) σsys(d)

∫
x2g2dx(d+m) σsys(d+m) σstat

2 0.071 0.0047 0.0116 0.0295 0.0492 0.0047
3 0.085 0.0031 0.0116 0.0396 0.0492 0.0215
4 0.225 -0.1461 0.0242 -0.1457 0.0325 0.1923
5 0.483 0.1037 0.1553 0.1018 0.1556 0.1451
6 0.851 -0.0616 0.1792 -0.0736 0.1797 0.1742
7 1.929 -1.8138 0.2491 -1.9515 0.2498 0.3812
8 3.273 -1.4575 0.3404 -1.8756 0.3420 0.3967
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Table B.21: Values of the integral d2 from the integration of g1 and g2 data. Values and systematic
errors are shown for the data contributions (d) and for the data + model (d+m). Statistical errors are
the same in both cases.

bin Q2
avg(GeV2) d2(d) σsys(d) d2(d+m) σsys(d+m) σstat

3 0.134 -0.0046 0.0049 -0.0042 0.0109 0.0106
4 0.222 -0.0073 0.0028 -0.0068 0.0041 0.0065
5 0.482 0.0002 0.0091 0.0005 0.0092 0.0056
6 0.806 -0.0132 0.0125 -0.0129 0.0126 0.0085
7 2.095 -0.0451 0.0203 -0.0527 0.0222 0.0149
8 2.879 -0.0334 0.0323 -0.0612 0.0395 0.0145
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Table B.22: Values of the spin polarizability integral
∫
x2A1F1dx. Values and systematic errors are

shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the same
in both cases. All values except Q2 are multiplied by a factor of 100.

bin Q2
avg(GeV2)

∫
x2A1F1dx(d) σsys(d)

∫
x2A1F1dx(d+m) σsys(d+m) σstat

10 0.051 -0.0097 0.0001 -0.0105 0.0001 0.0018
11 0.060 -0.0164 0.0003 -0.0154 0.0003 0.0018
12 0.071 -0.0306 0.0003 -0.0286 0.0004 0.0024
13 0.084 -0.0521 0.0006 -0.0491 0.0006 0.0032
14 0.101 -0.0707 0.0010 -0.0663 0.0010 0.0045
15 0.120 -0.1097 0.0017 -0.1036 0.0017 0.0063
16 0.143 -0.1420 0.0031 -0.1336 0.0031 0.0080
17 0.173 -0.2267 0.0053 -0.2173 0.0053 0.0084
18 0.204 -0.3012 0.0080 -0.2893 0.0080 0.0096
19 0.244 -0.3460 0.0115 -0.3314 0.0115 0.0113
20 0.291 -0.4189 0.0169 -0.4017 0.0169 0.0122
21 0.346 -0.4199 0.0255 -0.4007 0.0256 0.0133
22 0.414 -0.3895 0.0365 -0.3687 0.0366 0.0145
23 0.492 -0.3184 0.0498 -0.2967 0.0499 0.0156
24 0.588 -0.1754 0.0626 -0.1533 0.0627 0.0168
25 0.700 0.0764 0.0739 0.0985 0.0740 0.0181
26 0.831 0.3558 0.0821 0.3788 0.0822 0.0212
27 1.002 0.5441 0.0852 0.5766 0.0852 0.0234
28 1.193 0.8228 0.0826 0.8605 0.0827 0.0216
29 1.416 1.0529 0.0762 1.1073 0.0765 0.0220
30 1.699 1.2133 0.0688 1.2933 0.0695 0.0217
31 2.031 1.2920 0.0618 1.4133 0.0630 0.0190
32 2.419 1.2683 0.0561 1.4543 0.0577 0.0168
33 2.877 1.1732 0.0522 1.4667 0.0542 0.0156
34 3.419 1.0030 0.0476 1.4344 0.0502 0.0164
35 4.035 0.7967 0.0450 1.3947 0.0479 0.0200
36 4.751 0.4162 0.0418 1.3407 0.0452 0.0193
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Table B.23: Values of the forward spin polarizability γ0. Values and systematic errors are shown for
the data contributions (d) and for the data + model (d+m). The values of γ0 and its errors are given
in units of 10−4 fm. Statistical errors are the same in both cases.

bin Q2
avg(GeV2) γ0(d) σsys(d) γ0(d+m) σsys(d+m) σstat

10 0.051 -1.1381 0.0090 -1.2346 0.2799 0.2170
11 0.060 -1.1975 0.0324 -1.1275 0.1250 0.1335
12 0.071 -1.3482 0.0267 -1.2578 0.0433 0.1049
13 0.084 -1.3557 0.0254 -1.2774 0.0294 0.0828
14 0.101 -1.0816 0.0229 -1.0153 0.0233 0.0691
15 0.120 -0.9800 0.0199 -0.9254 0.0199 0.0565
16 0.143 -0.7509 0.0154 -0.7068 0.0154 0.0421
17 0.173 -0.6858 0.0123 -0.6573 0.0123 0.0254
18 0.204 -0.5486 0.0094 -0.5269 0.0094 0.0174
19 0.244 -0.3720 0.0082 -0.3564 0.0082 0.0121
20 0.291 -0.2639 0.0069 -0.2531 0.0069 0.0077
21 0.346 -0.1577 0.0056 -0.1505 0.0056 0.0050
22 0.414 -0.0856 0.0043 -0.0810 0.0043 0.0032
23 0.492 -0.0415 0.0030 -0.0386 0.0030 0.0020
24 0.588 -0.0134 0.0020 -0.0117 0.0020 0.0013
25 0.700 0.0035 0.0012 0.0045 0.0012 0.0008
26 0.831 0.0097 0.0006 0.0103 0.0006 0.0006
27 1.002 0.0084 0.0003 0.0089 0.0003 0.0004
28 1.193 0.0075 0.0002 0.0079 0.0002 0.0002
29 1.416 0.0058 0.0001 0.0061 0.0001 0.0001
30 1.699 0.0038 0.0000 0.0041 0.0000 0.0001
31 2.031 0.0024 0.0000 0.0026 0.0000 0.0000
32 2.419 0.0014 0.0000 0.0016 0.0000 0.0000
33 2.877 0.0008 0.0000 0.0010 0.0000 0.0000
34 3.419 0.0004 0.0000 0.0006 0.0000 0.0000
35 4.035 0.0002 0.0000 0.0003 0.0000 0.0000
36 4.751 0.0001 0.0000 0.0002 0.0000 0.0000
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Table B.24: Values of the integral B1 used in hyperfine splitting calculations. Values and systematic
errors are shown for the data contributions (d) and for the data + model (d+m). Statistical errors are
the same in both cases.All values except Q2 are multiplied by a factor of 100.

bin Q2
avg(GeV2) B1(d) σsys(d) B1(d+m) σsys(d+m) σstat

10 0.051 -1.1234 0.0567 -0.8820 0.1825 0.2350
11 0.060 -1.1006 0.0904 -0.7707 0.1661 0.1654
12 0.071 -1.3984 0.1118 -1.0224 0.1661 0.1518
13 0.084 -1.6416 0.1249 -1.2123 0.1704 0.1550
14 0.101 -1.2146 0.1442 -0.7268 0.1830 0.1618
15 0.121 -1.2489 0.1721 -0.6983 0.2071 0.1668
16 0.144 -0.9164 0.2090 -0.2951 0.2428 0.1634
17 0.175 -0.8008 0.2421 -0.1314 0.2760 0.1427
18 0.206 -0.2972 0.2749 0.4327 0.3093 0.1195
19 0.247 0.4430 0.3046 1.3325 0.3390 0.1170
20 0.291 0.9690 0.3323 2.0210 0.3667 0.0937
21 0.346 1.8602 0.3616 3.1063 0.3962 0.0869
22 0.413 2.6523 0.3884 4.1176 0.4235 0.0842
23 0.493 3.2290 0.4158 4.9445 0.4525 0.0833
24 0.588 4.0000 0.4372 6.0281 0.4774 0.0846
25 0.703 4.6522 0.4478 7.0522 0.4949 0.0853
26 0.838 5.3477 0.4414 8.2006 0.5003 0.0855
27 1.003 5.5875 0.4194 8.9899 0.4956 0.0809
28 1.196 5.7131 0.3821 9.7424 0.4837 0.0767
29 1.424 5.7682 0.3397 10.5415 0.4723 0.0743
30 1.703 5.4995 0.2940 11.1617 0.4631 0.0657
31 2.033 5.0401 0.2513 11.6950 0.4575 0.0602
32 2.417 4.2019 0.2104 11.9954 0.4541 0.0549
33 2.875 3.2675 0.1795 12.2948 0.4535 0.0517
34 3.418 2.3663 0.1402 12.5185 0.4540 0.0501
35 3.983 1.6263 0.1233 12.6399 0.4551 0.0598
36 4.719 0.6392 0.1057 12.7991 0.4569 0.0429
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Table B.25: Values of the integral B2 used in hyperfine splitting calculations. Values and systematic
errors are shown for the data contributions (d) and for the data + model (d+m). Statistical errors are
the same in both cases. All values except Q2 are multiplied by a factor of 100.

bin Q2
avg(GeV2) B2(d) σsys(d) B2(d+m) σsys(d+m) σstat

2 0.071 0.0571 0.1386 0.3023 0.4825 0.0567
3 0.086 0.0178 0.1372 0.3050 0.4753 0.2100
4 0.244 -0.3096 0.1753 -0.3057 0.1824 0.4459
5 0.505 0.0706 0.1393 0.0714 0.1404 0.1660
6 0.906 -0.1096 0.1209 -0.1197 0.1218 0.1310
7 2.096 -0.6326 0.0719 -0.6922 0.0725 0.1282
8 3.442 -0.2927 0.0907 -0.3982 0.0911 0.0842
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Table B.26: Values of the leading twist integral BWW
2 used in hyperfine splitting calculations. Values

and systematic errors are shown for the data contributions (d) and for the data + model (d+m).
Statistical errors are the same in both cases. All values except Q2 are multiplied by a factor of
100.

bin Q2
avg(GeV2) BWW

2 (d) σsys(d) BWW
2 (d+m) σsys(d+m) σstat

10 0.051 0.0551 0.0003 0.0512 0.0070 0.0162
11 0.060 0.0636 0.0025 0.0556 0.0084 0.0128
12 0.071 0.1010 0.0034 0.0920 0.0107 0.0134
13 0.084 0.1388 0.0046 0.1285 0.0119 0.0145
14 0.101 0.1279 0.0064 0.1166 0.0133 0.0167
15 0.120 0.1569 0.0090 0.1449 0.0145 0.0187
16 0.143 0.1336 0.0121 0.1209 0.0160 0.0190
17 0.172 0.1876 0.0151 0.1790 0.0177 0.0157
18 0.204 0.1878 0.0179 0.1794 0.0197 0.0148
19 0.244 0.1404 0.0218 0.1325 0.0229 0.0143
20 0.291 0.1336 0.0267 0.1264 0.0274 0.0128
21 0.346 0.0746 0.0323 0.0681 0.0327 0.0116
22 0.414 0.0156 0.0368 0.0098 0.0371 0.0106
23 0.492 -0.0293 0.0399 -0.0347 0.0401 0.0097
24 0.588 -0.0995 0.0407 -0.1049 0.0408 0.0090
25 0.700 -0.1757 0.0392 -0.1813 0.0393 0.0084
26 0.832 -0.2374 0.0348 -0.2440 0.0348 0.0085
27 1.002 -0.2468 0.0291 -0.2559 0.0291 0.0079
28 1.193 -0.2713 0.0228 -0.2829 0.0229 0.0065
29 1.417 -0.2781 0.0175 -0.2940 0.0176 0.0059
30 1.700 -0.2631 0.0134 -0.2851 0.0136 0.0049
31 2.031 -0.2357 0.0106 -0.2654 0.0109 0.0038
32 2.419 -0.1954 0.0086 -0.2358 0.0090 0.0030
33 2.876 -0.1534 0.0073 -0.2074 0.0078 0.0025
34 3.419 -0.1110 0.0061 -0.1773 0.0067 0.0023
35 4.025 -0.0755 0.0055 -0.1520 0.0062 0.0024
36 4.743 -0.0330 0.0049 -0.1291 0.0057 0.0020
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