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Abstract

In the search for the origin of the proton spin, quark transversity is of great interest but is

still poorly measured. Transversity is the probability of finding a transversely polarized quark in

a target polarized transverse to the incident electron beam. A single spin asymmetry measured

from a semi-inclusive pion-pair electroproduction process is used as a probe of transversity.

The asymmetry, measured from a longitudinally polarized target, is a function of the azimuthal

angle φR⊥, which is the angle between the scattering plane and the 2-pion plane. The sin φR⊥

moment of the asymmetry is proportional to h1H
^

1 , where h1 is the transversity distribution

and H^

1 is the 2-pion fragmentation function. The sin φR⊥ moment is typically less than 0.002

in magnitude and negative. The data were taken from the EG1b run period from CLAS in Hall

B of Jefferson Lab with a 5.7 GeV electron beam.
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1 Introduction

1.1 Nucleon Structure

At the smallest scale, matter is composed of fundamental particles. These include

leptons (electrons, neutrinos, etc.), quarks, and the force carriers (photons, gluons,

etc.). Each is considered to be a point-like particle. Quarks form quantum mechanical

bound states as pairs or triplets, collectively called hadrons. The nucleon (a neutron

or proton) is the lowest energy three-quark hadron state, and is the building block of

the atom’s nucleus.

In 1988, an experiment was performed to measure the spin contribution of the

quarks relative to the total proton spin [1]. Surprisingly, the quarks contributed very

little to the total proton spin. This has been called the spin crisis. A decade of

measurements have confirmed that the quarks are responsible for only 20% of the

proton’s spin [2, 3]. The only other possible sources of proton spin are the gluon

spin or the orbital angular momentum. Since the spin crisis, much has been learned

about the other spin structure functions in the proton but very little is known about

transversity. Transversity is the distribution of transversely polarized quarks in a

transversely polarized target. Transverse refers to the perpendicular angle between

the incident particle and the target spin directions. Other polarizations include the

unpolarized nucleon and longitudinally polarized target, as shown in Fig. 1 [4].

Figure 1: Three primary nucleon structure functions. All directions are relative to an incident beam
coming horizontally toward the target. The arrow outside the circle corresponds to the spin direction
of the nucleon, whereas the arrow inside the circle corresponds to the quark spin direction. Here f1

is the distribution of unpolarized quarks in an unpolarized nucleon. The function g1 is the difference
in distributions of quarks polarized longitudinally along and opposite the nucleon spin. Similarly,
h1 is the difference in distributions along and opposite the nucleon spin for transversely polarized
quarks [5].
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Figure 2: Pion production in deep inelastic scattering from a proton. The incident electron scatters
via virtual photon exchange with a quark in the nucleon. As the struck quark moves away from the
spectator quarks, the strong force creates a string of quark-antiquark pairs. The string breaks into
hadrons states such as a π+, π− and a nucleon [6].

1.2 Scattering Process

Measuring transversity requires colliding a high energy electron with a polarized pro-

ton and observing a single spin asymmetry. A quark struck by a high energy electron

does not have time to interact with the other quarks in the nucleon at the moment

of interaction. With the sudden increase in momentum, the struck quark pulls away

from the two spectator quarks. This creates a strong force field which breaks into a

string of quark-antiquark pairs. The quarks separate and form various hadrons states.

Figure 2 shows an electron scattering via virtual photon from one of the quarks in a

proton. The creation of quarks and antiquarks can vary greatly and what is shown

is only one possibility.

We measure the semi-inclusive reaction e− + p → e− + π+ + π− + X. Here an

electron (e−), scatters off a proton (p), and creates a pion-pair (π+π−). Whatever

other hadrons are created are left unmeasured and included in X. The proton and

neutron have three quarks and spin- 1
2
, but the pion, short for pi-meson, has two

quarks and spin-0. As shown in Table 1, the π+ and π− are made of a simple quark-
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antiquark combination of up (u), down (d), anti-up (ū), or anti-down (d̄) quarks. The

π0 is a linear superposition of states. The u and d quarks are the two lightest quarks,

and similarly, pions are the lightest meson with a mass of 139 MeV/c2. Thus, pions

are the mostly likely particles emitted in ep reactions.

Pion Charge Quark Combination
π+ +1 d̄u

π0 0 (d̄d + ūu)/
√

2
π− -1 ūd

Table 1: Pion types and quark constituents . The pion is made of a combination of an up (u) or
down (d) quark and an anti-up (ū) or anti-down (d̄) antiquark. The π0 is a linear superposition of
two states.

1.3 Experimental Setup

The measurement for transversity requires a powerful electron accelerator, a polarized

target, and a large acceptance detection system capable of simultaneously measuring

the scattered electron and a pair of pions. The Jefferson Lab (JLab) electron beam

and the Hall B CLAS spectrometer meet these requirements. The CEBAF accelerator

at JLab produces a high luminosity continuous electron beam with up to 6GeV of

energy. Although our measurement requires that the incident electron be unpolarized,

we sum over all beam polarization directions to cancel polarized beam effects. We

can determine the electron’s wavelength using De Broglie’s formula, λ = hc/E such

that the 6GeV electron beam at JLab has a resolution on the order of 0.2 fm or about

1/10 the diameter of a proton. The experiment was run at three other beam energies.

This particular data set is the highest energy from two similar energies of 5.628 and

5.735GeV. All the data used were taken between September 8, 2000 and April 20,

2001 and calibrated by the Hall B EG1b Run Group at JLab [7].

The primary target was polarized frozen ammonia (15NH3). The target was po-

larized parallel and anti-parallel with the incoming electron beam. After our cuts,

3



we used 264,072 events from the parallel target which had an average polarization

of 77.3%, and 251,660 events from the antiparallel target which had an average po-

larization of 71.2%. The lower polarization for the antiparallel case is due to the

limitations the magnetic field in the detector. To get only the effect of the polarized

protons, we must subtract out the contribution from the largely unpolarized nitrogen

nucleus. To do this, data from an unpolarized carbon target (12C) was taken and by

scaling the carbon to the size of nitrogen, isolating the proton events is possible.

Data were taken using the wide angular acceptance of the CLAS detector [8]. The

CLAS detector has many layers of detection as depicted in Fig. 3. Nearest to the

target are the drift chambers consisting of thin wires with a voltage potential that

detects charged moving particles. The moving particles move through the interior

gas ionizing it. The free electrons are collected at the wires where a signal is induced

and measured. The chamber is placed in a magnetic field, such that any particle

moving perpendicular to the field will feel a force according to the Lorentz formula,

~F = q( ~E + ~v × ~B). The direction of ~B is along the beam direction, so any particle

moving scattered away from the incident beam will feel this force. The Cherenkov

counter uses a material in which a charged particle can travel faster than the speed

of light in that medium. As a result, a shower of photons is created in an electromag-

netic shockwave, and detected with photo-detectors. The time-of-flight of a particle

is measured further away from the target with scintillating material. On the outer-

most shell is the calorimeter, layered with lead and scintillators which measures an

electron’s or photon’s energy. Together, the calorimeter and Cherenkov detectors are

able to distinguish electrons from pions.
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Figure 3: Schematic of the CLAS detector in Hall B. The innermost line is the incoming electron
beam. Surrounding the target are the cryostats (yellow) of the superconducting magnets. The
drift chambers (blue) measure the ionization track of a charged particle that curls in the magnetic
field. Around that are the Cherenkov counters (purple) that produce an electromagnetic shock
wave only for particle that travel faster than the speed of light in the gas. The time-of-flight
measurements are made by the scintillators (red). The outermost layer is the calorimeter (green)
which measures particle energy using layers of lead and plastic scintillators. The Chernkov detector
and the calorimeters together are used to distinguish electron from pions.

2 Kinematics

2.1 Scattering Kinematics

Each event is described knowing the beam energy and the final momentum of the

electron and two pions. The incoming electron beam is chosen to be traveling in the

positive ẑ-direction. The energy can be written as

E2 = mc2 + (pc2)2, (1)

for energy E in GeV, mass m in GeV/c2, and momentum p in GeV/c. By setting c = 1

and expressing mass and momentum in units of GeV, the notation becomes much

simpler. The notation of four vectors, Eµ = (E, ~p), is the standard for relativistic
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mechanics. The incident electron can be written as

kµ = (k, 0, 0, k), (2)

where k is the incoming electron beam energy and at relativistic speeds, the total

energy E =
√

m2 + p2 ≈ p. The scattered electron’s four-momentum is

k′
µ = (k′, k′ sin θ cos φ, k′ sin θ sin φ, k′ cos θ), (3)

where (θ, φ) are the polar and azimuthal angles of scattering defined from the direction

of the incident electron in the lab frame.

The difference between the incident and scattered four-momenta defines the four-

momentum energy transfer qµ. The laws of energy and momentum conservation

require that kµ = k′
µ + qµ. The four-momentum q is defined as

qµ = kµ − k′
µ = (ν, ~q). (4)

This is the four-momentum describing the virtual photon exchanged between the

electron and the proton target.

The scattering process, shown in Fig. 4, produces two pions after an incident

electron scatters off a polarized target. The momentum of the pions are measured in

the lab frame as

~P1 = (P1x, P1y, P1z)

~P2 = (P2x, P2y, P2z).

(5)

For this analysis, the π+ momentum is denoted by ~P1, and the π− momentum by ~P2.

The sum of the pion vectors is defined as

~Ph = ~P1 + ~P2. (6)

Additionally, the energy of a pion may be computed using Eq. 1 and the four-

6



Figure 4: Pion-pair production in lepton scattering from a polarized target. An incident lepton,
~k, scatters with momentum ~k′ off a fixed target by exchange of a virtual photon ~q. The target is
polarized longitudinally such that ~S is parallel to the direction of ~k. The transverse component
of the polarization S⊥ is the component perpendicular to the virtual photon. The angle, φR⊥, is
measured between the plane defined by the scattered electron and the plane defined by the pion-pair,
~P1, ~P2. Ph is the sum of the two pions [6].

momentum may be written as

P1µ = (E1, ~P1)

P2µ = (E2, ~P2).

(7)

The sum is similarly defined as

Phµ = P1µ + P1µ. (8)

Using the Trento conventions [9], R is defined as

~R =
(~P1 − ~P2)

2
. (9)

The vector perpendicular to ~Ph in the plane defined by ~P1 and ~P2 is defined to be

~RT = ~R − (~R · P̂h)P̂h, (10)

where the unit vector is

P̂h =
~Ph

√

|~Ph|2
. (11)
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Figure 5: Histogram of Θcm for π+ in pair center-of-mass frame. The reference angle (Θcm = 0)

corresponds to the direction of ~Ph. The π− angle is exactly Θcm(−) = π−Θcm. Thus, the two pions
always scatter in opposite directions in the pair pair center of mass frame.

Finally, the azimuthal angle measured between the plane defined by the scattered

electron and the plane defined by the pion-pair is calculated as

φR⊥ =
(~q × ~k) · ~RT

|(~q × ~k) · ~RT |
arccos

(~q × ~k) · (~q × ~RT )

|(~q × ~k)| · |(~q × ~RT )|
. (12)

The angle is also specified to be perpendicular to the virtual photon.

The polar angle Θcm is the angle of the π+ emission with respect to the direction the

pair momentum evaluated in the pion-pair center-of-mass frame. It can be calculated

from experimental data as

Θcm = arccos

[

~Rcm · ~Ph

|~Rcm| · |~Ph|

]

. (13)

In Fig. 5, the distribution of Θcm shows most scattering occurs at 90◦ where the π+

momentum has the same magnitude of the π−. In the pair center-of-mass frame the

distribution of the π− is given by Θcm(−) = π − Θcm. To get to the center-of-mass

frame a Lorentz invariant boost redefines the coordinate system in the direction of of
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the pion pair ~Ph

In the pion-pair center-of-mass the momentum of the pair is 0. Using the rela-

tivistic form of Eq. 1, E = γMh, the relativistic factor γ is defined in terms of the

pion-pair by

γ =
E

Mh

=
E1 + E2

√

Phµ · P µ
h

. (14)

The mass Mh is the mass of the pion-pair. With β =
√

1 − 1/γ2 the four-momentum

components of the pions in the pion-pair rest frame are given by

Ecm
i = γ(Ei − β ~Piz), (15)

~P cm
ix = ~Pix, (16)

~P cm
iy = ~Piy, (17)

~P cm
iz = γ(~Piz − βEi), (18)

where i = 1, 2, and only the ẑ-direction component of the momentum is transformed.

2.2 Invariant Kinematics

Invariant kinematic variables uniquely describe each event and collectively character-

ize this experiment. In their most general form these variables are Lorentz invariant.

They include the four-momentum transfer squared Q2, the Bjorken scaling variable

x, and the fractional energy z. The distributions of these variables are shown in

Figs. 6-11 for the 5.7GeV two-pion data sample.

The four-momentum of the virtual photon is

Q2 = −qµ · qµ = −(ν2 − ~q2). (19)

When evaluated in the lab frame, where p � m, this becomes

Q2 = 4kk′ sin2 θ

2
. (20)
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The polar angle between k and k′, as is used in Eq. 3, is θ. The distribution of Q2 in

Fig. 6 shows most of the events occur between 1-3GeV.
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Figure 6: The Q2 distribution for the 5.7GeV two-pion data. The average value is 1.75 GeV. The
distribution falls off at low Q2 because the of the acceptance of the CLAS detectors. The distribution
falls off at higher Q2 because the scattering process is less likely.

The Bjorken scaling variable is

x =
Q2

2Mpν
, (21)

where Mp is the proton mass. In the limit of large Q2, x is interpreted as the fraction

of momentum of the struck quark compared to the total momentum of the proton.

The range of x is between 0 and 1. At x = 1, the electron collision is perfectly

elastic. In Fig. 7, the x distribution peaks at x = 0.2. The detector acceptance limits

measuring lower x, while at higher x there is only a small probability of scattering

from a quark carrying most of the nucleon’s energy.

The fractional energy transfer

z =
E1 + E2

ν
, (22)
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Figure 7: The x distribution for the 5.7GeV two-pion data. The average value is 0.24.

ranges between 0 and 1 and is the ratio of energy in the pion-pair to the total energy

transferred to the nucleon. The histogram of z in Fig. 8 shows a broad distribution

that drops off below z = 0.1 due to detector acceptance. Although z is defined on

the interval (0, 1), a few events are measured with z > 1. This is explained by the

movement of the proton inside the target nucleus which broadens the distribution

beyond z = 1.

Figure 9 shows a scatter plot of Q2 and x. Although, the variables appear to be

linearly related, they are independent and are correlated because of detector accep-

tance. In contrast, the scatter plots of Q2 vs. z in Fig. 10, and x vs. z in Fig. 11,

show no linear dependence.

In four-momentum space the dot product of a four-momentum vector with itself

produces an invariant mass quantity. The invariant mass of the virtual photon-

nucleon system is

W = Phµ · P µ
h =

√

2Mpν + M2
p − Q2, (23)
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Figure 8: The z distribution for the 5.7GeV two-pion data. The average value is 0.48. The variable
z exceeds 1 here because there is a contribution to the total energy of the ep system from the internal
movement of the proton inside the nucleus. When the proton move in the same direction as the
virtual photon, the fractional energy can be greater than one.

The invariant mass distribution for this experiment in plotted in Fig. 12. The mini-

mum value occurs at 0.27GeV which is twice the mass of one pion. The peak at 0.77

GeV, corresponding to the ρ particle which decays into a pion-pair.

3 Calculating the Asymmetry

3.1 Single Spin Asymmetry

A single spin target asymmetry is calculated as a function of the azimuthal angle

φR⊥. Figure 13 depicts an electron scattering from a nucleon for the two possible

longitudinally polarized target orientations. The number of expected pion-pair events

with a perfectly polarized target for the aligned (or anti-aligned) case is denoted as

n↑(↓)(φR⊥). The ideal asymmetry is given by A =
n↑(φR⊥)−n↓(φR⊥)

n↑(φR⊥)+n↓(φR⊥)
. The observed
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Figure 13: Scattering from a longitudinally polarized target. The left diagram has a proton aligned
with the incident electron direction whereas the right diagram has the proton spin anti-aligned with
the electron beam [6].
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number of events for an aligned (or anti-aligned) polarization is N ↑(↓)(φR⊥). The

polarization P , which ranges from (-1, 1) for a given alignment, is related to the

probability p of finding a proton with the same alignment by P ↑(↓) = 2p↑(↓) − 1. The

observed number of events are related to the ideal number of events by

N↑(↓)(φR⊥) = p↑(↓)n↑(↓)(φR⊥) + (1 − p↑(↓))n↓(↑)(φR⊥) + n0(φR⊥). (24)

Thus, for a polarized sample, the probability of finding the proton with an aligned

spin is given by the first term, the probability of finding the proton antialigned is

given by the second term, and the third term is the contribution from an unpolarized

nucleon. For this experiment, n0 is the contribution from the mostly unpolarized

nitrogen in the ammonia target. Because the nitrogen nucleus is unpolarized, only

scattering from the polarized hydrogen atoms should contribute to the asymmetry

calculations.

The polarization and counts (the number of π+π− events) in each run are normal-

ized by the beam intensity during that run. To measure beam intensity a Faraday cup

collects a charge induced by the electron beam. The weighted polarization, summed

over each run i in bins of φR⊥, is

〈P ↑(↓)〉 =

∑

i

P
↑(↓)
i q

↑(↓)
i

∑

i

q
↑(↓)
i

, (25)

where q
↑(↓)
i is the charge collected in that particular run. The normalized number of

counts in each bin of φR⊥ is

N↑(↓)(φR⊥) =

∑

i

N
↑(↓)
i (φR⊥)

∑

i

q
↑(↓)
i

. (26)

Therefore, the experimental asymmetry is

AUL(φR⊥) =
N↑(φR⊥) − N↓(φR⊥)

〈P ↓〉N↑(φR⊥) + 〈P ↑〉N↓(φR⊥)
, (27)
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The subscripts L, T , or U represent longitudinal polarization, transverse polariza-

tion, or no polarization, respectively. The first index describes the beam polarization

followed by the target polarization.

3.2 Theoretical Model

In the theoretical calculations of A. Bacchetta and M. Radici [10], the asymmetry for

an unpolarized beam on a transverse target yields,

A′
UT ∼ B(y) sin(φR⊥ + φS)h1H

^

1 + (. . .). (28)

Whereas the longitudinal component of the asymmetry is,

A′
UL = V (y) sin(φR⊥)

M

Q
(h1H

^

1 + g1G̃
^). (29)

The functions B(y) = 1 − y and V (y) = 2(2 − y)
√

1 − y depend on the kinematic

variable y = ν/k, which is the fraction of energy transfered from the electron into

the virtual photon. In a longitudinally polarized target the angle of transverse spin

goes to 0, φS = 0 in Eq. 28. The functions g1 and G̃^ are related to the longitudi-

nally polarized quark distribution in the same respect as h1 and H^

1 are related to

the transverse distributions. In particular, h1(x, Q2) is mainly a function of x and

H^

1 (z, Q2) is mainly a function of z. Both functions depend weakly on Q2. With

certain approximations one can measure the transversity functions from Eqs. 28 and

29 by extracting the sin φR⊥ moment of the asymmetry AUL.

3.3 Propagation of Error

The asymmetry, AUL(φR⊥), depends on two variables, N ↑ and N↓, which are taken

to be independent. The error on the asymmetry is derived using the standard error

propagation formulas and is

17



δA =

√

(

∂A

∂N↑

)2

N↑ +

(

∂A

∂N↓

)2

N↓, (30)

where it is assumed N ↑ and N↓ have a Poisson distribution such that δN =
√

N . The

partial derivative of A with respect to N ↑ is

∂A

∂N↑
=

(

〈P ↑〉N↓ + 〈P ↓〉N↑
)

− (N↑ − N↓)(〈P ↓〉)
(〈P ↑〉N↓ + 〈P ↓〉N↑)2

. (31)

Simplifying this equation yields

(

∂A

∂N↑

)2

=

(

〈P ↑〉N↓ + 〈P ↓〉N↓
)2

(〈P ↑〉N↓ + 〈P ↓〉N↑)4
. (32)

Similarly, the derivative with respect to N ↓ is

(

∂A

∂N↓

)2

=

(

〈P ↓〉N↑ + 〈P ↑〉N↑
)2

(〈P ↑〉N↓ + 〈P ↓〉N↑)4
. (33)

Combining Eqs. 30, 32 and 33 gives the final result for the error

δA =
〈P ↑〉 + 〈P ↓〉

(〈P ↑〉N↓ + 〈P ↓〉N↑)2

√

N↑N↑N↓ + N↑N↓N↓. (34)

In limit of 〈P ↑〉 = 〈P ↓〉 = 〈P 〉 and N↑ = N↓ = N/2, the error is

δA =
1

〈P 〉
√

N
. (35)

This has the expected 1/
√

N of statistical counting error.

4 Experimental Results

The distribution of AUL(φR⊥) is found by first generating the histograms of N ↑(φR⊥)

and N↓(φR⊥). In Fig. 14, the number of events detected are plotted in bins of φR⊥.

The bimodal structure is a result of the detector acceptance. The target polarized

parallel to the electron produces more pion-pairs than the anti-parallel target. The

asymmetry, calculated from Eq. 27, is plotted in Fig. 15 with an average value of 0.04

18



 0

 2000

 4000

 6000

 8000

 10000

 0  50  100  150  200  250  300  350

co
un

ts

φ in degrees

Raw counts from anti-aligned target
Raw counts from aligned target

Figure 14: Histogram of raw counts for targets aligned and anti-aligned. The raw counts are from
all the runs, but do not include the charge normalization (Eq. 26). The aligned polarization counts
(in green) are less than the anti-aligned counts (in red). There are 36 bins of φR⊥. The distribution
dips at 0 and 180 degrees because of detector acceptance.

with large statistical error bars. The asymmetry is fit to a function of sin φR⊥ defined

by

AUL(φR⊥) = a1 + a2 sin φR⊥, (36)

where a1 and a2 are the fitting parameters. The coefficient of the sin φR⊥ term is

defined as

a2 ≡ A
sinφR⊥
UL . (37)

The error bars are the statistical error calculated in Eq. 34. Although the error

bars do not conform to the expectations of a statistical distribution, by Eq. 35 and

N ≈ 20, 000 the error is expected to be approximately 0.007. This is 17% the value

of the magnitude of the asymmetry. Furthermore, the error bars were checked by

reducing the data used to calculate the asymmetry to only 1% of the total data and

found a 10% increase in the error bar size as expected. This suggests the error bars
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Figure 15: AUL in bins of φR⊥, fit to a function of AUL = a1 + a2 sinφR⊥. The overall asymmetry
is small with an average value of approximately 0.04. The error bars shown here are statistical.

were calculated correctly.

4.1 Asymmetry over Bins of Q2, x, and z

The spin structure of the proton at high Q2 is well known from quantum perturbation

theory, but little is known about the accuracy of the approximations at the lower

energy limits. The asymmetry is plotted in bins of Q2, x, and z, and the sin φR⊥

moment (A
sinφR⊥
UL ) is extracted from each plot. Due to limited statistics, each bin is

split only in half according to the median value of the data.

A significant difference is measured in the sin φR⊥ moment extracted from two

bins of Q2. Figure 16 shows the lower bin of Q2 has a significant negative value

of A
sinφR⊥
UL = −0.0024. The upper half of the Q2 bin (Fig. 17) does not have a

statistically significant sin φR⊥ moment. Similarly, there is a significant difference in

the sin φR⊥ moment in the two bins of x. The lower bin of x (Fig. 18) has a significant
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Figure 16: Asymmetry of lower Q2 bin. A significant sin φR⊥ moment can be extracted in this bin
of low Q2.
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Figure 17: Asymmetry of upper Q2 bin. There is no statistical sin φR⊥ dependence.
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Figure 18: Asymmetry of lower x bin. A significant sinφR⊥ moment can be extracted in the lower

bin of x of A
sinφR⊥

UL = −0.0024.

negative value of A
sinφR⊥
UL = −0.0024. However, the sin φR⊥ moment of the upper

bin of x (Fig. 19) is consistent with 0. Lastly, no significant difference exists in the

two bins of z. Both Figs. 20 and 21 place a consistent limit on the sin φR⊥ moment,

A
sinφR⊥
UL > −0.002 and is close to 0. Because of the relatively small value of the

measured sin φR⊥ moment, the statistical error bars dominate. With more statistics,

these measurements will be able to better pin down the value of A
sinφR⊥
UL and can

be compared to other data at higher Q2 to measure the accuracy of the perturbative

method.

The extracted values of A
sinφR⊥
UL from Figs. 16-21 are plotted in Fig. 22, and the

average kinematics of each plot are given in Table 2. The first and third line in

the table, corresponding to the upper bins of Q2 and x respectively, show the most

significant non-zero sin φR⊥ moment. The statistical values of zero correspond to

the highest bins of Q2 and x (lines 2 and 4, respectively). There only is a small
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Figure 19: Asymmetry of upper x bin. There is no statistically significant sinφR⊥ dependence.
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Figure 20: Asymmetry of lower z bin. The asymmetry shows no statistically significant sin φR⊥

dependence.
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Figure 21: Asymmetry of upper z bin. There is no statistically significant sin φR⊥ dependence.

dependence of A
sinφR⊥
UL on z.

4.2 Dilution Factor

Expanding the asymmetry in Eq. 27 using the definition of the measured counts in

Eq. 24, we get

AUL =
(p↑n↑ + (1 − p↑)n↓) − (p↓n↓ + (1 − p↓)n↑)

〈P ↓〉(p↑n↑ + (1 − p↑)n↓ + n0) + 〈P ↑〉(p↓n↓ + (1 − p↓)n↑ + n0)
. (38)

Q2 Range (GeV2) 〈Q2〉 (GeV2) x Range 〈x〉 z Range 〈z〉 A
sinφR⊥

UL

(0.48, 1.57) 1.24 (0.053, 0.33) 0.18 (0.10, 1.46) 0.49 -0.00245(99)
(1.57, 4.96) 2.24 (0.17, 0.61) 0.31 (0.11, 1.27) 0.50 -0.00004(82)
(0.48, 2.07) 1.29 (0.053, 0.23) 0.17 (0.10, 1.32) 0.47 -0.00243(94)
(0.98, 4.96) 2.19 (0.23, 0.61) 0.32 (0.11, 1.46) 0.52 -0.00006(105)
(0.48, 4.96) 1.72 (0.053, 0.61) 0.23 (0.10, 0.47) 0.35 -0.00161(98)
(0.54, 4.90) 1.76 (0.059, 0.61) 0.25 (0.47, 1.46) 0.65 -0.00088(78)

Table 2: Averages of kinematics plotted in Figs. 16-21. The bins were distributed equally, split above
and below the median. Statistical differences in Q2 and x bins can be seen in the corresponding

figures. Figure 22 plots the A
sinφR⊥

UL dependence of each bin.
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Figure 22: Plots of A
sinφR⊥

UL vs. Q2, x, and z. The lower Q2 and x bins have a value that is
statistically less than zero, while both higher bins of higher Q2 and x have an answer that is
statistically 0. The bins of of z show a sin φR⊥ moment less than zero, but the values do not
significantly change.
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Because pion production will be the same for two unpolarized nitrogen nuclei (under

equal conditions), the n0 term in the numerator cancels. To account for such terms in

the denominator a dilution factor f is introduced such that it scales the experimental

asymmetry to extract the actual asymmetry, or

n↑ − n↓

n↑ + n↓
=

1

f

(

N↑ − N↓

〈P ↓〉N↑ + 〈P ↑〉N↓

)

. (39)

Using Eq. 39, f is rewritten in terms of n↑, n↓, and n0 as

f =
n↑ + n↓

n↑ − n↓

(

N↑ − N↓

〈P ↓〉N↑ − 〈P ↑〉N↓

)

. (40)

By expanding P and N according to their definitions in terms of p and n, this is

f =
n↑ + n↓

n↑ − n↓

(

(n↑ − n↓)(p↑ + p↓ − 1)

(n↑ + n↓ + 2n0)(p↑ + p↓ − 1)

)

. (41)

Finally, this yields the result

f =
n↑ + n↓

n↑ + n↓ + 2n0
. (42)

This is the fraction of the contribution of events from hydrogen over the total contri-

bution of ammonia. The expected value is approximately 3/18, the ratio of nucleons

in the three hydrogen atoms over the total ammonia atom.

4.2.1 Missing Mass

This semi-inclusive experiment measures only the electron and two pions in the final

state. The missing mass is defined as the mass difference between the four-momenta

of the virtual photon and proton and the four-momenta of the two pions. The missing

mass in this experiment is

MM2 = (Pµ + qµ − P1µ − P2µ)2 , (43)

where Pµ is the four-momenta of the proton. In its rest frame the proton has a

four-momenta of Pµ = (Mp,~0).
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Figure 23: Missing mass spectrum for NH3,
12C, and 4He targets. Conservation of baryon number,

charge, etc, requires at minimum a nucleon in the scattering equation. The peak at 0.93GeV is the
mass of nucleon. Above is a large distribution of other combination of particles.

When only two pions are produced and detected, the missing mass is that of a single

nucleon. Figure 23 shows the distribution of missing mass and at 0.9GeV, the mass

of a nucleon, there is a small peak for the ammonia target. The measurements below

0.9GeV are due to the Fermi motion of the nucleons inside the nucleus. Measurements

above the 0.9GeV peak result from events that produce more than one nucleon and

two pions in the final state.

Measuring the dilution factor requires extracting the hydrogen events from the

ammonia events. The dilution factor is equivalent to the scattering cross section of

the polarized protons in hydrogen over the total ammonia cross section. This is given

by

f =
σH3

σ15NH3

. (44)

Measuring the proton events with a pure nitrogen (15N) target would simply require

subtracting the nitrogen events from the ammonia events. Instead the carbon (12C)
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target that is used must be scaled such that the 12 carbon nucleons resemble nitro-

gen’s 15 nucleons. The scaling ratio is determined by rf = σ15NH3
/σ12C , but in a

kinematic region where the hydrogen protons in ammonia do not contribute to the

number of events measured. Rewriting the dilution factor to reflect the data from

this experiment gives

f =
σ15NH3

− σ15N

σ15NH3

=
σ15NH3

− rfσ12C

σ15NH3

. (45)

Quantum mechanical conservation laws require that during the π+π− production

at least one other particle remains. The smallest remnant is the nucleon from which

the electron was scattered. The events counted below the nucleon mass are a result

of Fermi motion of the nucleons in a large atomic nucleus. Therefore, only nitrogen

can contribute in this region. Finding a value for rf requires that only data below the

0.9GeV peak be used. The 0.9GeV peak is fit to a Gaussian curve to find its center.

Using only the data three standard deviations below the center removes 99.7% of the

events that originated from the polarized proton. Figure 24 shows a scaling ratio of

rf = 3.18 between nitrogen and carbon in the missing mass range of 0.48 to 0.87GeV.

In this range, there are good statistics that are below the range of proton events.

Using the scaling factor rf , we scale the carbon nucleus to resemble the nitrogen

nucleus and calculate the dilution factor using Eq. 45. The scaled 12C target is

compared with the 15N target in Fig. 25. The plot shows the events from the carbon

target closely mimic the events from nitrogen below nucleon peak. The peak is more

distinct in the ammonia target. The difference between the ammonia events and

scaled carbon events are the hydrogen proton events.

The dilution factor measured as a function of missing mass is found by taking the

ratio of the number of proton events to the number of ammonia events. The dilution

factor is shown in Fig. 26 where the nucleon missing mass peak is still clear. Below

the peak, the dilution factor is statistically consistent with zero, while above the peak
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Figure 24: Missing mass distribution of 15NH3/
12C The number of counts from the ammonia target

divided by the counts from the carbon target is plotted as a function of missing mass. At 0.9GeV,
the missing mass is equal to a nucleon. The distribution below this peak is attributed to Fermi
motion of the nitrogen nucleus. To find the ratio of events, only three standard deviations below
from the Gaussian peak are used to find rf . For 0.48 < MM < 0.8735 a ratio is of rf = 3.1835 is
measured. This value is used to scale the 12C data to resemble the 15N nucleus.
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Figure 25: Comparison of missing mass histogram of 15NH3 and C12 scaled to mimic 15N. As found
in Fig. 24, 12C is scaled by 3.1835 to get the 15N contribution. As expected, below 0.9GeV the
carbon events closely resemble nitrogen events. The different of the two histograms are the events
that originate from proton events.

it has an average value of f = 0.14. This is less than a one percent error from the

expected value of 3/18.

Finally, the dilution factor is plotted as a function of φR⊥. The number of the

events from the ammonia and carbon targets are counted and the dilution factor is

calculated using Eq. 45. As shown in Fig. 27, the dilution factor has a small cos φR⊥

dependence, but is otherwise relatively constant with f = 0.13, and is consistent with

the dilution factor of f = 0.14 in Fig. 26.

4.2.2 The Asymmetry with the Dilution Factor

The final asymmetry, which includes the dilution factor scaling, shows the best es-

timate for the sin φR⊥ moment for AUL(φR⊥). The moment is given by A
sinφR⊥
UL =

−0.018(9). The asymmetry data in Fig. 28 is scaled by the dilution factor, 1/f , from
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Figure 26: Dilution factor vs. missing mass. The peak from missing mass of only a nucleon at
0.9GeV is still present. Below the peak the dilution factor is statistically 0 and above the peak
f = 0.138. The constant f = 0.138 is plotted in green and is less than one percent error from the
predicted dilution factor of 3/18.

Fig. 27. The error on the dilution factor is taken to be a systematic error. Other

systematic errors are not included because the statistical errors are much larger than

the systematic errors in this experiment.

5 Conclusions

From a single spin asymmetry of π+π− production, a measurement is made on quark

transversity in a proton. The sin φR⊥ moment of the asymmetry places a limit on

the transversity distribution and fragmentation function h1(x, Q2)H^

1 (z, Q2). For the

kinematics 〈Q2〉 = 1.75, 〈x〉 = 0.23, and 〈z〉 = 0.50, we measured the moment to be

A
sinφR⊥
UL = −0.0065 ± 0.005(stat). This is a first measurement of the JLab data on

the for 2-pion production as a measure of transversity.

It would be interesting to compare this data with an experiment after JLab up-
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Figure 27: Dilution factor vs. φ for all W < 2.2. The constant f(φR⊥) = 0.13 (in blue) is consistent
with the fit in Fig. 26. This value is slightly lower because the missing mass below 0.9GeV was
included. The sinusoidal fit (in green) shows no statistically significant sin φR⊥ dependence, but
there is a small negative cosφR⊥ and a small positive sin φR⊥ dependence.

grades to higher energy. The test of perturbative quantum dynamics and the search

for the origin of proton spin makes this an exciting future experiment to be further

studied.
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A Code–fileprint.pl

The following Perl code calculates the general kinematics for each event. It requires

the run information and the twopi file from the experiment.

#!/usr/bin/perl -w

#----------------------------------------------
# INPUT FILES
# runinfo.txt
# includes target polarization,
# beam energy, and charge collected
# for each run)
# r#####.twopi
# for each run a unique file with
# beam polarization, momentum of
# the scattered electron, and both
# pion momentum.
#
# OUTPUT to <STOUT>
#---------------------------------------------
use Math::Trig;
use diagnostics;

#Define masses of particles in GeV
$MEL = 0.000510999;#electron
$MP = 0.93827; #proton
$MPI = 0.13957; #pion

$count=0;
$runnum = 27070; #first runnum of data

open(FH, "< ./runinfo.txt") or
die "couldn’t open file $!";

@ARRAY = <FH>; #holds information from runinfo
close(FH);

$p_count=0;
$targ_n_acc=0;
$n_count=0;
$targ_p_acc=0;

$ebeam=5.736; #beam energy,GeV

while ($runnum < 27500) { #end of run files
if (-e "r$runnum.twopi") { #if file exists
open DATA, "< r$runnum.twopi" or

print "couldn’t open file:$!";
#DATA contains file r#####.twopi

while (<DATA>) #reads each line in DATA
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{
@array = split;
$count++;
#$polarization = $array[0];
$pion1 = $array[1]; #pion1 charge
$pion2 = $array[2]; #pion2 charge
$elx = $array[3]; #electron mometum
$ely = $array[4]; #in cartesian coords
$elz = $array[5]; #in units of GeV
#make the leading pion with + charge
if ($pion2==1 && $pion1==-1) {
$pi2x = $array[6];
$pi2y = $array[7];
$pi2z = $array[8];
$pi1x = $array[9];
$pi1y = $array[10];
$pi1z = $array[11];
$cont=1;

}
elsif($pion1==1 && $pion2==-1) {
$pi1x = $array[6];
$pi1y = $array[7];
$pi1z = $array[8];
$pi2x = $array[9];
$pi2y = $array[10];
$pi2z = $array[11];

$kprime = sqrt($MEL*$MEL+$elx*$elx+$ely*$ely+$elz*$elz);
#conservation of momentum from electron to q
if ($runnum > 27300) {$ebeam=5.628;} #beam energy changes
#beam comes in z direction with momentum = beam energy
$qx = -$elx;
$qy = -$ely;
$qz = $ebeam-$elz;
$nu = $ebeam-$kprime; #energy of q
#e^2=m^2+p^2 for pion energy calculation
$pi1E = sqrt($MPI*$MPI+$pi1x*$pi1x+$pi1y*$pi1y+$pi1z*$pi1z);
$pi2E = sqrt($MPI*$MPI+$pi2x*$pi2x+$pi2y*$pi2y+$pi2z*$pi2z);

###MASS invariant (sum sq)
$Esum = $pi1E+$pi2E;
##########################
### pi PAIR ###############
@PPh = (($pi1x+$pi2x), ($pi1y+$pi2y), ($pi1z+$pi2z));
@PPhabs = (abs($PPh[0]), abs($PPh[1]), abs($PPh[2]));
$PPhmag = sqrt($PPh[0]*$PPh[0]+$PPh[1]*
$PPh[1]+$PPh[2]*$PPh[2]);
@PPhat = ($PPh[0]/$PPhmag, $PPh[1]/$PPhmag, $PPh[2]/$PPhmag);
$Epairhat = $Esum/$PPhmag;
$pisum= sqrt (FOUR($Esum, @PPh));
#invariant mass from sum of pions
#gamma when pi pair is in rest frame
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$gamma = $Esum / ($pisum);

#########################################################
# pi transform #
#########################################################

$pi1para= ($pi1x*$PPhat[0]+$pi1y*$PPhat[1]+$pi1z*$PPhat[2]);
@pi1perp= ( $pi1x-(($pi1para)*$PPhat[0]),$pi1y-(($pi1para)*

$PPhat[1]), $pi1z-(($pi1para)*$PPhat[2]));

$pi2para=($pi2x*$PPhat[0]+$pi2y*$PPhat[1]+$pi2z*$PPhat[2]);
@pi2perp=($pi2x-(($pi2para)*$PPhat[0]),$pi2y-(($pi2para)*

$PPhat[1]),$pi2z-(($pi2para)*$PPhat[2]));

#lorentz transform
@pi1paratransform= LORENTZ ( $gamma, $pi1E, $pi1para);
@pi2paratransform= LORENTZ ( $gamma, $pi2E, $pi2para);
@pi1tvect= ( $pi1paratransform[1]*$PPhat[0],

$pi1paratransform[1]*$PPhat[1],
$pi1paratransform[1]*$PPhat[2]);

@pi2tvect= ( $pi2paratransform[1]*$PPhat[0],
$pi2paratransform[1]*$PPhat[1],
$pi2paratransform[1]*$PPhat[2]);

@pi1tT= ( ($pi1tvect[0])+$pi1perp[0],
($pi1tvect[1])+$pi1perp[1],(
$pi1tvect[2])+$pi1perp[2] );

$pi1tmagT= sqrt(DOT(@pi1tT, @pi1tT));
$pi1tT[2]/$pi1tmagT);
#theta CM
$theta1piT = acos ($pi1paratransform[1]/$pi1tmagT);

@pi2tT= ( $pi2tvect[0]+$pi2perp[0],
$pi2tvect[1]+$pi2perp[1],
$pi2tvect[2]+$pi2perp[2] );

$pi2tmagT= sqrt(DOT(@pi2tT, @pi2tT));
#@pi2that = ($pi2tT[0]/$pi2tmag, $pi2tT[1]/$pi2tmag,

$pi2tT[2]/$pi2tmag);
$theta2piT = acos ($pi2paratransform[1]/$pi2tmagT);

@pairtest= LORENTZ ( $gamma, $Esum, $PPhmag);
print ("pairtest\t $pairtest[0] $pairtest[1]\n");

#check lorentz by unboosting back to lab frame
@pi1labagain=( $pi1perp[0]+$pi1tvect[0],

$pi1perp[1]+$pi1tvect[1],
$pi1perp[2]+$pi1tvect[2] );

@pi2labagain=( $pi2perp[0]+$pi2tvect[0],
$pi2perp[1]+$pi2tvect[1],
$pi2perp[2]+$pi2tvect[2]);

print ("checklabframe @pi1labagain\n");
print ("checklabfram2 @pi2labagain\n");
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#######################
# ANGLES IN PION PAIR #
#######################
@qcrossk = ($qy*$elz - $ely*$qz, $qz*$elx-$elz*$qx,

$qx*$ely-$elx*$qy);
#RR
@RR = ( ($pi1x-$pi2x)/2, ($pi1y-$pi2y)/2, ($pi1z-$pi2z)/2 );
$Ediff = ($pi1E-$pi2E)/2;
print ("RR(diff/2)\t $Ediff @RR\n");
@RRabs = ( abs($RR[0]), abs($RR[1]), abs($RR[2]) );
#@RRmag = sqrt($RR[0]*$RR[0]+$RR[1]*$RR[1]+$RR[2]*$RR[2]);

#theta specific
$RdotPPhat = ($RR[0]*$PPhat[0]+$RR[1]*$PPhat[1]+

$RR[2]*$PPhat[2]);
@RT = ($RR[0]-($RdotPPhat)*$PPhat[0],

$RR[1]-($RdotPPhat)*$PPhat[1],
$RR[2]-($RdotPPhat)*$PPhat[2]);

print ("R_t @RT\n");
$RdotPPh = ($RR[0]*$PPh[0]+$RR[1]*$PPh[1]+$RR[2]*$PPh[2]);
$RabsdotPPhabs = ($RRabs[0]*$PPhabs[0]+$RRabs[1]*$PPhabs[1]+

$RRabs[2]*$PPhabs[2]);
$theta = acos ($RdotPPh/ $RabsdotPPhabs);

#phi
$qcrosskdotRT = ($qcrossk[0]*$RT[0]+$qcrossk[1]*$RT[1]+

$qcrossk[2]*$RT[2]);
@qcrossRT = ($qy*$RT[2]-$qz*$RT[1], $qz*$RT[0]-$qx*$RT[2],

$qx*$RT[1]-$qy*$RT[0]);
$qcrosskdotqcrossRT = ($qcrossk[0]*$qcrossRT[0]+

$qcrossk[1]*$qcrossRT[1]+
$qcrossk[2]*$qcrossRT[2]);

@qcrosskabs = (abs($qy*$elz - $ely*$qz),
abs($qz*$elx-$elz*$qx),
abs($qx*$ely-$elx*$qy));

$qcrosskmag = sqrt(DOT(@qcrossk, @qcrossk));
@qcrossRTabs = (abs($qy*$RT[2]-$qz*$RT[1]),

abs($qz*$RT[0]-$qx*$RT[2]),
abs($qx*$RT[1]-$qy*$RT[0]));

$qcrossRTmag = sqrt(DOT(@qcrossRT, @qcrossRT));
$qcrosskdotqcrossRTabs = ($qcrosskabs[0]*$qcrossRTabs[0]+

$qcrosskabs[1]*$qcrossRTabs[1]+
$qcrosskabs[2]*$qcrossRTabs[2]);

$multiplymag = $qcrosskmag*$qcrossRTmag;
$sign = ($qcrosskdotRT );
if ($sign > 0) {
$phirperp = acos ($qcrosskdotqcrossRT / $multiplymag );
}
else {
$phirperp = - acos ($qcrosskdotqcrossRT / $multiplymag );
}
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printf ("theta-and-phi_r_perp: %.9f %.5f\n",
$theta, $phirperp);

$phidegree = 180*$phirperp/3.14159265;
printf ("phirperp_degrees: %.9f\n", $phidegree);

# KINEMATIC INVARIANTS
# Q^2, x, W, nu, Z
$q2 = -$nu*$nu + $qx*$qx + $qy*$qy + $qz*$qz;
if ($nu eq 0) {print "nu\n"; exit 0;}
else {$xx=$q2/(2*$MP*$nu);}
$ww = sqrt($MP*$MP + 2*$MP*$nu - $q2);
$nu = $ebeam - $kprime;
$zz = $Esum / $nu;
printf ("q2,x,w,zz,phi: %.5f %.5f %.5f %.5f\n\n",

$q2, $xx, $ww, $zz, $phidegree);

#calculate INVARIANT of a four vector
#$kinv = FOUR ($kprime, $elx, $ely, $elz);
$invcart = FOUR ($nu, $qx, $qy, $qz);
$mmass=sqrt ( FOUR( $nu+$MP-$Esum,

$qx-$PPh[0], $qy-$PPh[0], $qz-$PPh[2]));

if ($mmass < 2.2) {
#print data
printf ("pi1 pi2 %i %i\n", $pion1, $pion2);
printf ("k\’4(k\’,pe):\t %.5f %.5f %.5f %.5f\n",

$kprime, $elx, $ely, $elz);
printf ("q4(nu,q):\t %.5f %.5f %.5f %.5f\n",

$nu, $qx, $qy, $qz);
printf ("pi1four(piE,ppi) %.5f %.5f %.5f %.5f\n",

$pi1E, $pi1x, $pi1y, $pi1z);
printf ("pi2four\t\t %.5f %.5f %.5f %.5f\n",

$pi2E, $pi2x, $pi2y, $pi2z);
print ("pi1Lor\t\t $pi1paratransform[0] @pi1tT\n");
print ("pi2Lor\t\t $pi2paratransform[0] @pi2tT\n");
print ("theta12\t\t $theta1piT $theta2piT\n");
print ("pi1mag\t\t $pi1tmagT\n");
printf ("inv_mass:\t %.5f\n", $pisum);
print ("ppairhat\t $Epairhat @PPhat\n");
print ("pipair\t\t $Esum @PPh\n");
print ("pairtest\t $pairtest[0] $pairtest[1]\n");
print ("checklabframe @pi1labagain\n");
print ("checklabfram2 @pi2labagain\n");
print ("RR(diff/2)\t $Ediff @RR\n");
print ("R_t\t\t @RT\n");
printf ("q2,x,w,zz,phi:\t %.5f %.5f %.5f %.5f\n",

$q2, $xx, $ww, $zz, $phidegree);
printf ("theta-and-phi_r_perp: %.9f %.5f\n",

$theta, $phirperp);
printf ("phirperp_degrees: %.9f\n", $phidegree);
print ("q2_x_z_teta_phi_thecm: $q2 $xx $zz

$theta $phirperp $theta1piT\n");
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} #end if missing mass below
}### end if pi+ pi- pair

}#end while
close DATA;

}#end if runnum exists
$runnum++;

}#end while run through all data

########## subroutines
sub FOUR {

#input (e,p_x,p_y,p_z)
$invariant = $_[0]*$_[0]-$_[1]*$_[1]-$_[2]*$_[2]-$_[3]*$_[3];
return $invariant ;

}

sub DOT {
#input (x1,y1,z1,x2,y2,z2)
$dotvalue = ( $_[0]*$_[3]+$_[1]*$_[4]+$_[2]*$_[5]);
return $dotvalue;

}

sub LORENTZ {
#input (beta or gamma, energy, p_z)
if (1.0 > $_[0]) {
$beta = $_[0];
$gamma = 1/sqrt(1-$beta*$beta ) ;

}
else {
$gamma = $_[0];
$beta = sqrt(1-(1/($gamma*$gamma)));

}
@lorentzarray = (($gamma*($_[1]-$beta*$_[2])),

($gamma*($_[2]-$beta*$_[1])));
#array output (energy, momentum z)
return @lorentzarray

}

B Code–runPolNH3.pl

The Perl program runPolNH3.pl is a sample code that bins measurements for the

asymmetry in bins of φ. Using in conjunction with the code in Appendix C.

#!/usr/bin/perl -w
#---------------------------------
# Output: phicountX.hist
#
# This program is designed to read
# in data from the two-pion experi-
# ment and analyze the asymmetries
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# and the polarizations involved.
# for Polarized NH3 runs in 6 GeV.
#---------------------------------
use Math::Trig;
use diagnostics;

#histogram info
my (@Ncountpos,@Ncountneg,@ppave,@pnave,@chargesumplus,
@chargesumminus,@ppbinave,@pnbinave);

$bins=12.0; #number of bins
#initializes array for counting histogram
for ($ii=0; $ii < $bins; $ii++) {

$Ncountpos[$ii]=0;
$Ncountneg[$ii]=0;
$ppave[$ii]=0;
$pnave[$ii]=0;
$chargesumplus[$ii]=0;
$chargesumminus[$ii]=0;
}

$division=0; #minimum bin
$maximum=360; #maximum bin

#Set constants
$MEL = 0.000510999;#MASS of electron, GeV
$MP = 0.93827;#MASS of proton, GeV
$MPI = 0.13957;#MASS of pion, GeV
$count=0;

$totalevents=0;
$PI=3.14159265;

#editted start runnum to keep N+=N-
$runnum = 27078;#from r#####.twopi

#beam energy,GeV
$ebeam=5.736;

while ($runnum < 27500) {
if (-e "r$runnum.twopi") {
open(FH, "< ../twopions/runinfo.txt") or die "couldn’t open file $!";
@ARRAY = <FH>;
close (FH);

@line=grep(/^\s*$runnum/, @ARRAY);
if (@line) {

(@vv)=split(/\s+/,$line[0]);
if ($vv[7]) {
if ($vv[7] ne "NH3") {;}#print ("$runnum $vv[7]\n");}
else {

$count=0;
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#print ("run $runnum\n");
$totalevents+=$vv[8];
open DATA, "< r$runnum.twopi"
or print "couldn’t open twopi : $!";

while (<DATA>)
{

@array = split;
$count++;
#$polarization = $array[0];#use for the n counts
$pion1 = $array[1];
$pion2 = $array[2];
$elx = $array[3];
$ely = $array[4];
$elz = $array[5];
#puts positive pion first in calculations
if ($pion2==1 && $pion1 == -1) {
$pi2x = $array[6];
$pi2y = $array[7];
$pi2z = $array[8];
$pi1x = $array[9];
$pi1y = $array[10];
$pi1z = $array[11];
$pionpair=1;

}
elsif ($pion1==1 && $pion2 == -1) {
$pi1x = $array[6];
$pi1y = $array[7];
$pi1z = $array[8];
$pi2x = $array[9];
$pi2y = $array[10];
$pi2z = $array[11];
$pionpair=1;

}
else { $pionpair=0;}
if ($pionpair == 1) {#run the analysis
$kprime = sqrt($MEL*$MEL+$elx*$elx+$ely*$ely+$elz*$elz);
$qx = -$elx;
$qy = -$ely;
if($runnum > 27200){$ebeam=5.628;}
$qz = $ebeam-$elz;
$nu = $ebeam-$kprime;
$pi1E = sqrt($MPI*$MPI+$pi1x*$pi1x+$pi1y*$pi1y+$pi1z*$pi1z);
$pi2E = sqrt($MPI*$MPI+$pi2x*$pi2x+$pi2y*$pi2y+$pi2z*$pi2z);
$Esum = $pi1E+$pi2E;

@PPh = (($pi1x+$pi2x), ($pi1y+$pi2y), ($pi1z+$pi2z));
$PPhmag = sqrt($PPh[0]*$PPh[0]+$PPh[1]*$PPh[1]+

$PPh[2]*$PPh[2]);
@PPhat = ($PPh[0]/$PPhmag, $PPh[1]/$PPhmag,

$PPh[2]/$PPhmag);
@qcrossk = ($qy*$elz - $ely*$qz, $qz*$elx-$elz*$qx,

$qx*$ely-$elx*$qy);
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@RR = ( ($pi1x-$pi2x)/2, ($pi1y-$pi2y)/2,
($pi1z-$pi2z)/2 );

$RdotPPhat = ($RR[0]*$PPhat[0] + $RR[1]*$PPhat[1]
+ $RR[2]*$PPhat[2]);

@RT = ($RR[0] - ($RdotPPhat)*$PPhat[0],
$RR[1]-($RdotPPhat)*$PPhat[1],
$RR[2]-($RdotPPhat)*$PPhat[2]);

#phi
$qcrosskdotRT = ($qcrossk[0]*$RT[0] + $qcrossk[1]*$RT[1] +

$qcrossk[2]*$RT[2]);
@qcrossRT = ($qy*$RT[2]-$qz*$RT[1], $qz*$RT[0]-$qx*$RT[2],

$qx*$RT[1]-$qy*$RT[0]);
$qcrosskdotqcrossRT = ($qcrossk[0]*$qcrossRT[0]+$qcrossk[1]*

$qcrossRT[1]+$qcrossk[2]*$qcrossRT[2]);
$qcrosskmag = sqrt(DOT(@qcrossk, @qcrossk));
$qcrossRTmag = sqrt(DOT(@qcrossRT, @qcrossRT));
$multiplymag = $qcrosskmag*$qcrossRTmag;
$sign = ($qcrosskdotRT );
#phi
if ($sign > 0) {

$phi_r_perp = acos ($qcrosskdotqcrossRT /
$multiplymag );}

else {
$phi_r_perp = 2*$PI - acos ($qcrosskdotqcrossRT /
$multiplymag );}

#convert phi to degree’s
$phirp_degree = $phi_r_perp * 180 / $PI;

#missing mass
$MMfour=FOUR($nu+$MP-$Esum, $qx-$PPh[0], $qy-$PPh[1],
$qz-$PPh[2]);
if ( $MMfour >= 0.0 && $MMfour <= 4.84 )
{ ##CUT AT 2.2 GeV in histogram

$datatrue=1;
}
else {$datatrue=0;}
if ($datatrue==1){

########################### histogram sort
$division=0; #resets division each new variable
for ($jj=0; $jj < $bins; $jj++) {
$divminimum=$division;#set lower bin
$division += ($maximum / $bins); #sets upper bin
if ($phirp_degree < $division &&
$phirp_degree >= $divminimum) {
if ($datatrue==1) {
#target is positive or negative: count respectively
if ($vv[5] > 0) {

$Ncountpos[$jj]+=1/$vv[9];
$ppave[$jj] += $vv[5]*$vv[9]/10000;
$chargesumplus[$jj] += $vv[9]/100;

}
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elsif ($vv[5] < 0) {
$Ncountneg[$jj]+=$vv[9];
$pnave[$jj] += $vv[5]*$vv[9]/10000;
$chargesumminus[$jj] += $vv[9]/100;

}
}#if datatrue

}#if in phi bin
}#end for loop
########################## end histogram sort
}

}#if pionpair is plus/minus
}#while
close DATA;

}#else (i.e. a NH3)
@vv= (0,0);

}#if target is in array
}#if line in runinfo

}#if twopi exists
$runnum++;

}#while in folder for beam energy

##############################
# histogram print out
$hcount=0;
open HIST, "> phicountNH3.hist" or
print "cannot print histogram count:$!";

foreach $ele (@Ncountpos) {
$histc=$hcount*360/$bins;
$ppbinave=$ppave[$hcount]/$chargesumplus[$hcount];
$pnbinave=-$pnave[$hcount]/$chargesumminus[$hcount];
print HIST "$histc $Ncountpos[$hcount] $Ncountneg[$hcount]
$ppbinave $pnbinave $chargesumplus[$hcount]
$chargesumminus[$hcount] $beamppos[$hcount]
$beampneg[$hcount] $beamnpos[$hcount]
$beamnneg[$hcount]\n";
$hcount++;

}
close HIST;

######## subroutines
sub DOT {

$dotvalue = ( $_[0]*$_[3]+$_[1]*$_[4]+$_[2]*$_[5]);
return $dotvalue;

}

sub FOUR {
$invariant = $_[0]*$_[0] - $_[1]*$_[1] - $_[2]*$_[2] - $_[3]*$_[3];
return $invariant ;

}
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C Code–Asym.pl

Here is a sample Perl code that calculates the asymmetry from the output of the

program in Appendix B.

#!/usr/bin/perl -w
#---------------------------------
# input ./phicountNH3.hist
#
# output <STOUT>
#
# this program computes the asymmetry
# from two histograms, one from positive
# target polarization the other negative
# target polarization
#---------------------------------

# input format:
#Nbin [0-350] [N+] [N-] [P+] [P-] [q+] [q-]
#$bin [0] [1] [2] [3] [4] [5] [6]
# where,
#N+ = sum( N+_bin ) counts for a polarization in a bin of phi
#P+ = sum( P+_bin * e+_bin) polarization in a bin of phi
#e+ = sum( e+_bin ) charge collected in a bin of phi

open FILE, "< ./phicountNH3.hist" or die "could not open file $!";
@bin=<FILE>;
close FILE;

$count=0;
foreach (@bin) {$count++;} #count number of bins in file
$i=0;
foreach (@bin)
{

@dat=split(/\s/,$bin[$i]);
$ppave=$dat[3];
$pnave=$dat[4];
$Npnorm=$dat[1] / $dat[5];
$Nnnorm=$dat[2] / $dat[6];

$top=$Npnorm-$Nnnorm;
$bottom=($ppave*$Nnnorm)+($pnave*$Npnorm);
$asymmetry=$top/$bottom;
$sqroot=sqrt(($dat[1]*$dat[2]*$dat[2])+

($dat[1]*$dat[1]*$dat[2]));
$bot2=$bottom*$bottom;

$delta_a=$dat[5]*$dat[6]*($dat[4]+$dat[3])*sqroot/$bot2;

#divide output into same number of bins as input
$spacing=360/$count;
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#print out phi in degrees (0-360)
$twopirad= $spacing*$i;

printf ("$twopirad $asymmetry $delta_a\n");
$i++;

}
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