
Chapter 2

Vectors

Name: Lab Partner: Section:

2.1 Purpose

In this experiment vector addition, resolution of vectors into components, force, and equi-
librium will be explored.

2.2 Introduction

A vector is probably the most frequently used entity in physics to characterize space. It
can represent the spatial behavior of many physical quantities such as forces, velocities,
accelerations, and electric fields.

A vector is a quantity that has both magnitude and direction. A quantity which does
not have direction is called a scalar quantity. In order to distinguish vectors from scalars,
vectors are identified with either bold face or an arrow on the top of the letter: V or ~V .

A vector can be represented by an arrow with length proportional to the magnitude. The
direction of the arrow gives the direction of a vector. Two or more vectors can be added
together. To add two vectors graphically, the tail of the second vector is placed at the head
of the first vector. A vector from the tail of the first vector to the head of the second vector
is the sum of the two vectors (see Figure 2.1).
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Figure 2.1: Graphical representation of vector addition, ~A = ~B + ~C.
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A vector treated as a geometrical object is independent of any coordinate system. Once
a coordinate system is introduced, the vector can be represented by a set of coordinates. For
a n dimensional space, a vector is an array of n numbers. This array of numbers is the
coordinates of the head of the vector with the tail of the vector at the origin. For example,
consider a vector ~F at the origin (see Figure 2.2). The head of the vector has coordinates

(Fx, Fy), so ~F → (Fx, Fy). Using F for the magnitude of ~F and trigonometry the components
of the vector are:

Fx = F cos θ Fy = F sin θ (2.1)

where θ is the angle ~F makes with the positive x axis. (Fx, Fy) are known as the (Cartesian)

components of ~F . If the components of a vector are known, the magnitude of the vector can
be found from the Pythagorean theorem (| F | =

√

F 2
x + F 2

y ) and the direction from θ =

tan−1(Fy

Fx

) The choice between using ~F or (Fx, Fy) is essentially a choice between geometric
and algebraic representation.

In this lab you will study two dimensional static forces using the force table where
∑ ~Fi = 0. Stated another way, the vector resolution of the forces must sum to zero under
static equilibrium. (Later when dynamics are studied, we will see this is a consequence
of Newton’s second law.) Given this condition - that the algebraic sum of the x and y
components must individually be zero - some components will be positive and some will be
negative along a particular axis.

The force table consists of a circular metal disk having a calibrated angular scale (see
Figure 2.3). Three masses, mi, are suspended from the disk’s rim with strings. The three
strings are tied together at the center of the disk. The masses and/or angular positions of
the strings are adjusted until the three mass + string system is in static equilibrium and
doesn’t move. The force acting along the string is proportional to the mass hung from that
string:

| Fi |= mig (2.2)

where g = 9.8 m/s2.
The following is an example of addition of vector forces. Briefly, the force vectors

(~Fa, ~Fb, ~Fc) will be resolved into their respective vector components along the x and y-axis
and a resultant force vector will be obtained by algebraically adding the components of the
respective axes. The equilibrium force is a force vector that statically balances the resultant
force. Consider three vectors ~Fa, ~Fb, and ~Fc with all of the angles measured with respect to
the x-axis. Each of the vector components will need to be resolved and summed to find the
resultant.

~Fa = 150 N at 0o

~Fb = 110 N at 70o

~Fc = 250 N at 135o

with all the angles measured from the positive x-axis.
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Figure 2.2: The resolution of a vector ~F into components in a Cartesian (x-y) coordinate
system.

∑

Fx = 150 N cos 0o + 110 N cos 70o + 250 N cos 135o = 10.84N

∑

Fy = 150 N sin 0o + 110 N sin 70o + 250 N sin 135o = 280.15N

The magnitude of the resultant is then:

R =
√

(10.84N)2 + (280.15N)2 = 280.35N.

The direction of this vector magnitude is found by taking the arc-tangent of the ratio of
the y-axis components and the x-axis components.

arctan
Ry

Rx

= arctan
280.15

10.84
= 87.78o

This angle is taken from the x-axis as its point of origin. This is known as the resultant
vector, ~R. The equilibrant vector has the same magnitude as the resultant but opposite
direction. Thus, θequilibrant = 267.78o.

2.3 Procedure

A picture of the force table is shown in Figure 2.3. Three strings are attached to the a center
ring. A pin holds the center ring in position while angles and weights are being adjusted.
The pin can be then be removed to check for static equilibrium. Each string is placed over
a pulley and connected to a weight hanger. The pulley should be mounted perpendicular
to the edge of the table and the string should be positioned in the slot of the pulley wheel.
A weight hanger is attached the end of the string. The mass of the weight hanger should
always be included in the total mass being considered.

7



Figure 2.3: The force table used for the experiment

2.3.1 Two Masses and Angles Fixed

• Hang 0.2kg of mass (including the mass hanger) at 0o. When placing masses on the
force table always verify the pulley is at the correct angle and the string is properly
positioned over the pulley wheel. Place another 0.2kg of mass (including the mass
hanger) at 240o.

• Using the graphical method, determine the resultant of the two forces. The equilibrant
vector force is the negative (vector rotated 1800) of the resultant vector. Be sure to
draw a proper graph when using the graphical method. Include the properly labeled
and referenced graph with your report. Graph paper is provided at the end of this
chapter.

• Place a pulley at the equilibrant vector position with the proper mass to produce the
equilibrant force. Is the system in static equilibrium?

• Using the component method, calculate the resultant and equilibriant vector for the
two given masses and angles in the table below.

Magnitude Angle x-component y-component
Force 1 0o

Force 2 240o

resultant
equilibrant

• Which method (graphical or component) gives the most accurate result?

2.3.2 Masses Fixed with Angles Varied

• Select two equal masses (ma and mb) and another mass (mc) which is 1

2
of ma and mb,

i.e. mc = 1

2
ma and mc = 1

2
mb. Record the values of the masses and the forces they

produce.
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ma Fa

mb Fb

mc Fc

• To simplify the later calculation, place ma at 0o. Obtain static equilibrium by varying
the angles. Record the angles of mb and mc.

θb
θc

• Using the graphical method, show the system is in static equilibrium. Include the
properly labeled and referenced graph with your report. Graph paper is provided at
the end of this chapter.

• Using the component method, show the system is in static equilibrium.

Vector Magnitude Angle x-component y-component
Vector A 0o

Vector B
vector C
resultant

• Keeping the masses and magnitudes of the forces fixed, rotate each vector by 30o i.e.,
add 30o to each angle. Is the system still in static equilibrium? Using the component
method, calculate the components of each vector at its new angle. Does the component
method still show the system to be in equilibrium?

Vector Magnitude Angle x-component y-component
Vector A 30o

Vector B
vector C
resultant
equilibrant
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2.3.3 Questions

1. Are the vector components of a force equivalent to the force itself? Is a complete set of
components together with knowledge of the coordinate system equivalent to the force
itself?

2. Does the order in which vector components are added affect the resultant of the vectors?

3. Which of the following quantities are vectors: speed, velocity, mass, weight, force, and
volume?

2.4 Conclusion

Write a detailed conclusion about what you have learned. Include all relevant numbers you
have measured with errors. Sources of error should also be included.
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