(1) We have seen the time evolution operator U (tg,t) = exp(—iH (t — ty)/h) and its matrix
representation in x-space, K (x',t;x,ty). Here we will study the imaginary-time evolution
operator and its propagator. Specifically, we consider the operator exp(—(GH) (3 is real) and
its matrix representation K (z',z;3) = (2'|exp(—FH )|z) for a one-dimensional system with

the Hamiltonian )
H=2 4 V(z).
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For convenience let us set h = m = 1.

1. Show that
K(xlv xT; 6) = Z 6_ﬂEn¢2(Ij)¢n(x)7

where FE,, is an energy eigenvalue and ¢, (x) is the corresponding eigenfunction. The
sum is taken over the complete set of n.

2. Show that the operator exp(—FH) projects out the ground state |¢q) from any initial
state that is not orthogonal to the ground state. That is, given an arbitrary |¢(®)) that
satisfies (¥ |po) # 0, we have

lim expl—B(H — Eo)][:®)  |6o).
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3. Show that, for a short imaginary-time A7 (> 0),
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K2 z; AT) = S exp| SA-

— ATV (z)].

The approximately equal sign, which indicates we have dropped higher order terms
in A7, becomes exact in the limit of infinitesimal A7. Please indicate where the
approximation occurs in the proof.

4. Now we construct a method to obtain the ground-state wave function. Suppose we
choose the constant 3 in (2) to be finite but large enough so that the projection gives
|¢o) for practical purposes. Suppose we then choose AT = (3/L, where L is a large
enough integer so that the error in the approximation in (3) is small. We choose a
¥ (z) which is our best guess of the ground-state wave function. Using (3), express
the projection |¢o) = C exp(—BH)[1)?)) in real space in terms of a path integral. (Do
not worry about the constant C')

Computational methods based on these results have proven extremely powerful for studying
many-body quantum-mechanical systems.



