- (3) Consider two identical particles in a one-dimensional Harmonic potential. We will work in reduced units: $\hbar = m = 1$, where m is the particle mass. The two particles interact with a potential: $V_{\text{int}} = \alpha x_1 x_2$, where x_1 are x_2 are the coordinates of the two particles, and α is a parameter which satisfies $|\alpha| < 1$. - What is the ground-state energy of the system if the particles have spin 0? - What is the ground-state energy of the system if the particles have spin 1/2 and they are both in the $|s_z = \uparrow\rangle$ state? - What is the ground-state energy of the system if the particles have spin 1/2 but are in a spin singlet? Note: This problem can be solved exactly.